878 research outputs found

    Multi-objective genetic optimisation for self-organising fuzzy logic control

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below.A multi-objective genetic algorithm is developed for the purpose of optimizing the rule-base of a Self-Organising Fuzzy Logic Control algorithm (SOFLC). The tuning of the SOFLC optimization is based on selection of the best shaped performance index for modifying the rule-base on-line. A comparative study is conducted between various methods of multi-objective genetic optimisation using the SOFLC algorithm on the muscle relaxant anaesthesia system, which includes a severe non-linearity, varying dynamics and time-delay

    Development of an adaptive fuzzy logic controller for HVAC system

    Get PDF
    An adaptive approach to control a cooling coil chilled water valve operation, called adaptive fuzzy logic control (AFLC), is developed and validated in this study. The AFLC calculates the error between the supply air temperature and supply air temperature set point for air in an air handling unit (AHU) of a heating, ventilating, and air conditioning (HVAC) system and determines optimal fuzzy rule matrix to minimize the hydronic energy consumption while maintaining occupant comfort. The AFLC uses genetic algorithms and evolutionary strategies to determine the fuzzy rule matrix and fuzzy membership functions for an AHU in HVAC systems;Cooling coil models are developed using neural network, general regression neural network and lump capacitance methods to predict the supply air temperature. These models helped with the development of the adaptive fuzzy logic controller;Two types of validation experiments were conducted, one with cyclically changing supply air temperatures and the second with cyclically changing supply air flow rates. Experiments conducted on two identical real HVAC systems were used to compare the performances of the AFLC to a conventional proportional, integral and derivative (PID) controller. To remove bias between the testing systems, the controllers were switched from one system to the other;The validation experiments indicate that the HVAC system operated under the AFLC consumes 1 to 7 % less hydronic energy when compared with a conventional PID controlled system. More actuator travel distance was observed when using the AFLC. The AFLC maintained better occupant comfort conditions when compared with the conventional PID controller. It was observed that the controlled variable for the AFLC system required 0 to 185% more rise time, had 9 to 68% less overshoot and required 11 to 45% less settling time as compared to the conventional PID controlled system

    Tuning Fuzzy-Logic Controllers

    Get PDF

    Optimized fuzzy control for natural trajectory based FES-swinging motion

    Get PDF
    The use of electrical signals to restore the function of paralyzed muscles is called functional electrical stimulation (FES). FES is a promising ethod to restore mobility to individuals paralyzed due to spinal cord injury (SCI). A crucial issue of FES is the control of motor function by the artificial activation of paralyzed muscles due to the various characteristics of the underlying physiological/biomechanical system. Muscle response characteristics are nonlinear and time-varying. After developing a nonlinear model describing the dynamic behavior of the knee joint and muscles, a closed-loop approach of control strategy to track the reference trajectory is assessed in computer simulations. Then, the controller was validated through experimental work. In this approach only the quadriceps muscle is stimulated to perform the swinging motion by controlling the amount of stimulation pulsewidth. An approach of fuzzy trajectory tracking control of swinging motion optimized with genetic algorithm is presented. The results show the effectiveness of the approach in controlling FES-induced swinging motion in the simulation as well as in the practical environment

    Optimized Fuzzy Control For Natural Trajectory Based Fes- Swinging Motion

    Get PDF
    The use of electrical signals to restore the function of paralyzed muscles is called functional electrical stimulation (FES). FES is a promising method to restore mobility to individuals paralyzed due to spinal cord injury (SCI). A crucial issue of FES is the control of motor function by the artificial activation of paralyzed muscles due to the various characteristics of the underlying physiological/biomechanical system. Muscle response characteristics are nonlinear and time-varying. After developing a nonlinear model describing the dynamic behavior of the knee joint and muscles, a closed-loop approach of control strategy to track the reference trajectory is assessed in computer simulations. Then, the controller was validated through experimental work. In this approach only the quadriceps muscle is stimulated to perform the swinging motion by controlling the amount of stimulation pulsewidth. An approach of fuzzy trajectory tracking control of swinging motion optimized with genetic algorithm is presented. The results show the effectiveness of the approach in controlling FES-induced swinging motion in the simulation as well as in the practical environment

    GA-based multi-objective optimization of active nonlinear quarter car suspension system—PID and fuzzy logic control

    Get PDF
    Background The primary function of a suspension system is to isolate the vehicle body from road irregularities thus providing the ride comfort and to support the vehicle and provide stability. The suspension system has to perform conflicting requirements; hence, a passive suspension system is replaced by the active suspension system which can supply force to the system. Active suspension supplies energy to respond dynamically and achieve relative motion between body and wheel and thus improves the performance of suspension system. Methods This study presents modelling and control optimization of a nonlinear quarter car suspension system. A mathematical model of nonlinear quarter car is developed and simulated for control and optimization in Matlab/Simulink¼ environment. Class C road is selected as input road condition with the vehicle traveling at 80 kmph. Active control of the suspension system is achieved using FLC and PID control actions. Instead of guessing and or trial and error method, genetic algorithm (GA)-based optimization algorithm is implemented to tune PID parameters and FLC membership functions’ range and scaling factors. The optimization function is modeled as a multi-objective problem comprising of frequency weighted RMS seat acceleration, Vibration dose value (VDV), RMS suspension space, and RMS tyre deflection. ISO 2631-1 standard is adopted to assess the ride and health criterion. Results The nonlinear quarter model along with the controller is modeled and simulated and optimized in a Matlab/Simulink environment. It is observed that GA-optimized FLC gives better control as compared to PID and passive suspension system. Further simulations are validated on suspension system with seat and human model. Parameters under observation are frequency-weighted RMS head acceleration, VDV at the head, crest factor, and amplitude ratios at the head and upper torso (AR_h and AR_ut). Simulation results are presented in time and frequency domain. Conclusion Simulation results show that GA-based FLC and PID controller gives better ride comfort and health criterion by reducing RMS head acceleration, VDV at the head, CF, and AR_h and AR_ut over passive suspension system

    Genetic Algorithms Based Approach for Designing Spring Brake Orthosis – Part Ii: Control of FES Induced Movement

    Get PDF
    Spring brake orthotic swing phase for paraplegic gait is initiated through releasing the brake on the knee mounted with a torsion spring. The stored potential energy in the spring, gained from the previous swing phase, is solely responsible for swing phase knee flexion. Hence the later part of the SBO operation, functional electrical stimulation (FES) assisted extension movement of the knee has to serve an additional purpose of restoring the spring potential energy on the fly. While control of FES induced movement as such is often a challenging task, a torsion spring, being antagonistically paired up with the muscle actuator, as in spring brake orthosis (SBO), only adds to the challenge. Two new schemes are proposed for the control of FES induced knee extension movement in SBO assisted swing phase. Even though the control schemes are closed-loop in nature, special attention is paid to accommodate the natural dynamics of the mechanical combination being controlled (the leg segment) as a major role playing feature. The schemes are thus found to be immune from some drawbacks associated with both closed-loop tracking as well as open-loop control of FES induced movement. A leg model including the FES knee joint model of the knee extensor muscle vasti along with the passive properties is used in the simulation. The optimized parameters for the SBO spring are obtained from the earlier part of this work. Genetic algorithm (GA) and multi-objective GA (MOGA) are used to optimize the parameters associated with the control schemes with minimum fatigue as one of the control objectives. The control schemes are evaluated in terms of three criteria based on their ability to cope with muscle fatigue

    Investigation of performance of fuzzy logic controllers optimized with the hybrid genetic-gravitational search algorithm for PMSM speed control

    Get PDF
    Fuzzy logic controllers (FLCs) are widely used to control complex systems with model uncertainty, such as alternating current motors. The design process of the FLC is generally based on the designer’s adjustments on the controller until the desired performance is achieved. However, doing the controller design in this way makes the design process quite difficult and time-consuming, so it is often impossible to make a suitable and successful design. In this study, the output membership functions of the FLC are optimized with heuristic algorithms to reach the best speed control performance of the permanent magnet synchronous motor (PMSM). This paper proposes a new hybrid algorithm called H-GA-GSA, created by combining the advantages of the Genetic Algorithm (GA) and Gravitational Search Algorithm (GSA) to optimize FLC. The paper presents a convenient adjustment and design method for optimizing FLC with heuristic algorithms considered. To evaluate the effectiveness of H-GA-GSA, the proposed hybrid algorithm has been compared with GA and GSA in terms of convergence rate, PMSM speed control performance and electromagnetic torque variations. Optimization performance and results obtained from simulation studies verify that the proposed hybrid H-GA-GSA outperforms GA and GSA

    Robust control with fuzzy logic algorithms

    Get PDF
    • 

    corecore