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Abbreviations and symbols 

Membership function 

A/D Analogue to digital. 

COG Center-of-gravity method in defuzzification. 

CY Number of ring cycles. 

D/A Digital to analogue. 

e(t), é (r) Error and derivative error of feedback control systems. 

FLC Fuzzy logic controller. 

G(s) Transfer function. 

GA 	 Genetic algorithm. 

GE, GC, GU Scaling factor of FLCs. 

H,0 	 Hyper-infinity optimal control. 

IES 	 Integral of square of error. 

'rb 	 Robust performance index. 

110 	 Input-output. 

ISE 	 Integral of the square of error. 

K 	 Process gain. 

MEUC 	Microprocessor embedded universal controller. 

MIMO 	Multi-input-multi-output. 
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MISO 	Multi-input-single-output. 

MOM 	Mean of maximum. 

Ngp 	Number of test points in specification. 

OS 	 Overshoot. 

PAM-I 	First phase-advanced method for non-integrating processes. 

PAM-il 	Second phase-advanced method for integrating processes. 

PID Proportional, integral, and derivative controller. 

P index Performance index. 

R Robustness of a control system. 

R1 Settling time ratio. 

RT Rise time. 

S. Achievable robust space. 

SISO Single-input-single-output. 

Sr Required robust space. 

ST Settling time. 

STPP Similar tuning point performance. 

TZ Sum of all time constants in the controlled process. 

T1, T2 	Time constants of controlled processes. 

Sample period of controllers. 

u 	 Control input of processes under control. 

US 	 Undershoot. 

w 	 Step change of the setpoint of a control system. 

y 	 Output of a control system. 
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Abstract 

This thesis presents the results of an investigation of the robustness of the widely used 

Mandani-type fuzzy logic control systems under a wide variation of parameters of the 

controlled process. 

The measurements of the dynamic performance and system robustness of a control system 

were firstly defined from the engineering point of view, and the concepts of the robust space 

and the robustness index were introduced. The robustness of the PLC systems was 

investigated by analyzing the structure of the fuzzy rule base and membership functions of 

the input-output variables. Based on the close relation of the fuzzy rule base and the system 

dynamic trajectory on the phase plane, a switching line method is introduced to qualitatively 

analyze the dynamic performance of the SISO FLC systems. This switching line method 

enables the qualitative prediction of the shape and position of the robust space of the PLC 

controlled first and second order processes The effects of FLC parameters on system 

robustness were also investigated. The movements of the position and the shape of the 

switching line with the variation of the controller parameters were analyzed, and its relation 

with the system performance was reported. 

Three methods were proposed to improve the robustness of the PLC system. The first 

design method proposed was based on the switching line characteristic of the PLC system. 

The second method, called phase advanced PLC, was introduced to handle the control of 

high order processes with fuzzy algorithms. The third method was an evolutionary method 

based on a genetic algorithm which was used to automatically design a robust fuzzy control 

system, assuming the availability of the controlled process model. 

Finally, to overcome the tuning difficulty of PLC systems, an attempt was made to develop 

a fuzzy tuning algorithm. It was investigated for controlling a first order process and a 

second order process. Based on extensive simulation experiments, the fuzzy rules for tuning 

scaling factors and the sample rate were collected. A complete tuning procedure was 

designed. 
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Introduction 

An initial involvement with ABB Kent-Taylor while working as a visiting scholar to 

Edinburgh University in 1993 led to the design and prototype implementation of a fuzzy 

logic controller (FLC) for process control applications. This work clearly showed the 

difficulty of introducing a new controller to a market that had used and become very 

familiar with PID control concepts. Although the deficiencies of the PID algorithm were 

well recognised, very little work had been done to clarify the advantages and disadvantages 

of PLC. 

Among the advantages claimed by many researchers, the robustness of FLC systems 

attracted special attention. Considerable anecdotal evidence, but very little hard 

experimental evidence, was available to confirm the robustness of fuzzy logic control. It is 

clear that a solid experimental base is required to support this robustness claim. 

This Chapter presents the motivation for the program of research described in this thesis 

The basic concepts of fuzzy control methods are discussed and the concepts of robustness 

are explained. The objectives of the research are defined and the scope of the thesis is 

presented. 

1.1 Problems with control engineering 

Control engineering, which is based on the foundations of feedback theory and system 

analysis, is concerned with understanding and controlling a process to provide a desired 

response. The block diagram of a typical classic feedback control system is shown in Fig. 1-

la. Here C denotes the controller and P1P2  the process. The measurement device is 

symbolised by Pm and noise n corrupts the measured variable y. The controller determines 
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the process input u on the basis of the error e. The objective of the feedback ioop is to keep 

the output y close to the reference (setpoint) w and minimise the effect of the disturbance d 

on the process output y. Commonly the system is simplified into that shown in Fig.l-lb 

where P denotes the entire controlled process and exact knowledge of the output y is 

assumed (i.e. n = 0 and Pm  = l). 

For commonly used design procedure to yield a control algorithm which works 

satisfactorily in a real environment, the process model or information about the dynamic 

behaviour of the process must be specified. Also tuning methods for the control system are 

centred around the process model. The process model can have the form of coupled partial 

differential equations or be simply the process gain and the settling time experienced by the 

plant operator. 

d 

7---r (a) 
YM 
	

P2 

IEIIIIl 
I 	 + 

+ 

(b) y 

Fig. 1-1. General (a) and simplified (b) block diagram of feedback control system. 

However, it is difficult to obtain an accurate process model in the real world. The accuracy 

of this model varies but is never perfect because of the high order, nonlinear characteristics 

of the practical plants. If the process model is obtained via linearization, then it is accurate 

only in the neighbourhood of the operating point chosen for the linearization. Even when 

the underlying process is essentially linear, the physical parameters are never known exactly 

and fast dynamic phenomena (e.g., valve dynamics) are usually neglected in the model. 

2 



CHAPTER I INTRODUCTION 

Therefore, at high frequencies, even the model order is unknown. Moreover, the behaviour 

of the plant itself changes and this is rarely captured in the models. For example, increased 

throughput and flow rates usually result in smaller dead-time and time constants. 

Neglecting these model uncertainties could lead to controllers which are too sensitive and 

which are likely to become unstable in the real operating environment. Therefore, a method 

for designing accurate systems in the presence of significant plant uncertainty is highly 

desirable, but it is a problem which is not solved in classical feedback control theory. 

1.2 Robust control 

There are several methods in modern control theory to cope with the uncertainties in 

control systems. In general, they can be classified into two types: robust control and 

adaptive control. The robust control method is based on the optimisation of a defined 

objective function of the designed system by, selecting proper controller parameters and 

controller structure. The system performance is entirely dependent on an understanding of 

the controlled process and the design of the controller. The adaptive control method is 

based on an on-line learning strategy to achieve the required system performance. The 

system performance mainly depends on the learning ability of the system and the controller 

used. In this thesis, the concept of robust control will be of particular interest. 

A control system is robust when (1) it has low sensitivity to the model uncertainty, (2) it is 

stable over a family of process models, or (3) the performance continues to meet the 

specifications in the presence of a set of changes in system parameters [1] [2]. 

Clearly, the above definition of the system robustness implies three concepts: low 

sensitivity, robust stability and robust performance. If the effect of the process uncertainty 

on system output is the main concern, sensitivity analysis is applied. When the stability of a 

control system over a family of process models is addressed, robust stability is often 

analysed to investigate the design requirement. If a particular system performance is 

required no matter how the system changes, robust performance is studied. 

From the point of view of practical use, robust performance is a more important 

characteristic than the other two. There are two reasons. The first one is that for a control 

3 
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system to be of practical use, stability guarantees alone are insufficient. Stable realisations 

may give totally inadequate performance. For a controller to have robust performance, the 

realisation must meet the desired performance specifications as well as the stability 

requirement. The second reason is that the sensitivity design objectives are different from 

those of robust performance design. Sensitivity looks for the dependence of closed-loop 

performance due to small parameter variations. While robust performance requires that the 

closed-loop system performance is acceptable for all possible parameter values in the 

prescribed range [64]. The third reason is that system performance is usually the major 

design requirement. Therefore, robust performance will be the focus of this research. 

The design of a robust control system involves two tasks: determining the structure of the 

controller and adjusting the controller's parameters to give an "optimal" system 

performance. This design process is normally done with "assumed complete knowledge" of 

the plant. Furthermore, the plant is normally described by a linear time-invariant continuous 

model. The structure of the controller is chosen such that the system's response can meet 

certain performance criteria. 

The most significant research activity in the robust control area is concerned with the so-

called Linear Quadratic (H2) Optimal Control and the H. Optimal Control [2] methods. 

The H2  optimal controller minimises the Integral Squared Error (ISE) for a particular input, 

i.e. the objective of H2  optimal control is to find a controller c which meets the following 

requirement: 

minJedt minIIeII 
	

(1-1) 
C 	 C 

	

where e is the system error. The 	Optimal Control minimises the worst ISE which can 

result from a set of inputs W, which can be described as follows: 

rnjnsupfe2dt = mm supIIeIl = minlielL. 	 (1-2) 

The required information for using these methods to design a robust control system is the 

process model, input type, performance specifications and uncertainty information. In 

general, the process model is in mathematical format. 

4 
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There is one main challenge in using the robust control methods - the availability of a 

process model. In the real world, there are many plants which cannot be described 

mathematically because of the complexity of the plants or the high cost of measuring the 

model parameters. Multi-dimensional, hierarchical structures, mutual interactions, internal 

feedback mechanisms, and unpredictable dynamics are only part of the characteristics of 

such complex systems. This complexity accounts for some of the reasons for the difficulties 

in the attempts to apply the powerful modern system and control techniques. Such 

weakness of the quantitative techniques to adequately describe complex phenomena was 

summarised in the principle of incompatibility, formulated by L.Zadeh [3]. It states: 

"As the complexity of a system increases, our ability to make precise and yet 

significant statement about its behaviour diminishes, until a threshold is 

reached beyond which precision and significance (or relevance) become 

almost mutually exclusive characteristics. 

Zadeh's proposal of modeling the mechanism of human thinking, with linguistic fuzzy 

values rather than numbers, led to the introduction of fuzziness into system theory and to 

the development of a new class of systems calledJizzy control systems. 

1.3 Fuzzy algorithm 

The main characteristic of fuzzy systems is that they are based on the concept of fuzzy 

partitioning of the system's information. Fuzzy systems operate with fuzzy sets instead of 

numbers. A fuzzy set has more power than a single number. The use of fuzzy sets permits 

using and operating on the imprecise information which is often found in the real world. 

With this characteristic of fuzzy systems, the problem of obtaining the mathematical model 

of the controlled process can be partially solved. 

Moreover, fuzzy logic, a reasoning method based on fuzzy set theory, is used in fuzzy 

systems to operate on fuzzy variables and process imprecise information. It is much closer 

in spirit to human thinking and natural language. Basically, it provides an effective means of 

capturing the approximate, inexact nature of the real world. Thus the fuzzy controller can 

be used to imitate control experts or skillful operators as they control a process. It has been 

5 



CHAPTER I INTRODUCTION 

recognised that human operators can regulate practical plants satisfactorily based on their 

experience of controlling the plant. Control is maintained independent of model variations if 

the model belongs to the same class of plant family. With reference to this fact, therefore, 

the fuzzy controller should be expected to inherently possess some robustness. 

However, a fuzzy control system is regarded as a nonlinear system. It is difficult to apply 

the analytical methods available for conventional systems to the fuzzy systems. In addition, 

there is no systematic method to design a fuzzy system and to analyse its performance. 

Thus, as in most applications of fuzzy systems, the experimental method has been used 

extensively in this research. 

Note that the stability of the fuzzy control systems will not be studied in this work. The 

reason is that the main objective of this work is to investigate the robust performance of 

fuzzy control systems, and if system performance meets the performance specifications, the 

system must be stable. 

1.4 Research objectives 

Due to the novel linguistic aspects and the non-linearity of fuzzy systems, it is difficult to 

mathematically analyse the stability of a fuzzy control system. Consequently an analytical 

investigation of the robustness of a fuzzy system with respect to process parameter variation 

and the development of design procedures for a robust fuzzy logic controller has not, as yet, 

been satisfactorily completed. Only a few publications have reported attempts to investigate 

the robust capabilities of fuzzy logic controllers and give experimental evaluations of the 

robust performance of a FLC system. They found that in a certain range of process 

dynamics the conventional controller is difficult to adjust for good responses, while the 

fuzzy control system is less sensitive to process parameter changes and gives good control 

at all operating points. Moreover, many papers mentioned the shortage of analytical 

information on the robustness of fuzzy control systems and the difficulty of developing the 

systematic method for designing a robust fuzzy controller. 

Therefore the following work related to the SISO systems was the focus of this research: 

Investigate the robustness of fuzzy logic control systems and compare with the 
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widely used conventional PID (Proportional, Integral, and Derivative controller) 

control method. 

Investigate the effects of controller parameters on the system robustness. 

Investigate the practical design and tuning methods necessary to improve the robust 

performance of fuzzy logic control systems. 

1.5 Achievements 

This research program has required a full understanding of the theoretical concepts of fuzzy 

control systems and a wide range of system knowledge. To demonstrate the validity of the 

research results, system engineering experiences and computer related skills including 

computer simulation, software and hardware design have been employed. The major 

achievements of this work can be listed as follows: 

• The robust space of the widely used fuzzy control system has been qualitatively 

analysed and experimentally tested. It is found that the robustness of the FLC system 

stems from its switching line feature which presents a low sensitivity of system 

'performance to the process parameter variations. 

• The effects of the PLC parameters (scaling factor, membership functions, or fuzzy 

rules) on the system robustness are demonstrated by both qualitative analysis and 

extensive simulation experiments. It is concluded that the robust space of a fuzzy 

control system can be optimised by changing the PLC parameters 

• The robustness of the fuzzy control system has been compared with that of the widely 

used PID system by a detailed series of simulation experiments. Experiments performed 

as part of the research programme reported in this thesis have shown the advantages of 

fuzzy control systems over PID systems with respect to robustness. 

• Design methods have been proposed for improving the robustness of fuzzy systems. 

These methods include the switching line method, the phase-advanced algorithms, and 

the genetic algorithm. Their practical value has been established. 

- 	 7 
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• A fuzzy reasoning algorithm has been developed for the purpose of auto-tuning the 

scaling factors and the sampling rate when a FLC is used to control first order and 

second order processes. The fuzzy tuning rules for scaling factors and the sample rate 

have been generated based on extensive simulation experiments. A complete tuning 

procedure was designed. The adequacy of this tuning algorithm has been established. 

• A simulation software package for the design and evaluation of fuzzy logic control 

systems has been developed under both MS-DOS and UNIX environments. The 

package includes system simulation, system analysis, robust space mapping, GA 

optimisation, and auto-tuning. 

• An implementation of a fuzzy logic controller based on the Motorola 68HC1 1 

microprocessor and a third-order process emulator has been carried out for 

confirmation of the simulation results. A real-time control interface between the 

practical FLC system and the simulation software stated above has been implemented 

for compiling, downloading, and debugging the program in real-time fuzzy control 

system applications as well as for displaying the system performance. 

1.6 Scope of the thesis 

Fuzzy logic algorithms for process control are reviewed in Chapter 2, beginning with the 

fundamental concepts of the fuzzy set theory. Methods for designing fuzzy control systems 

and studies on the robustness of fuzzy control systems are examined. The necessity for this 

research is discussed. In Chapter 3, the robustness of the widely used FLC systems has been 

investigated and the robust space of the FLC system is qualitatively predicted based on the 

switching line method. The effects of FLC parameters on system robustness are discussed 

and three methods are proposed to improve the robustness of a FLC system. Experimental 

investigations of the robustness of FLC systems are presented in Chapter 4 based on 

extensive simulations, and the feasibility of the proposed methods in analysing and designing 

the robustness of FLC systems is experimentally tested. The simulation software is also 

briefly introduced in Chapter 4. Chapter 5 introduces a novel tuning method for FLC 

systems based on the author's experiences. The fuzzy tuning rules for scaling factors and 

the sample rate are presented and the effectiveness of the tuning method is experimentally 

8 
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tested. Finally, the conclusions from the research reported in this thesis and 

recommendations for further work are presented in Chapter 6. The design methods and 

functions of the simulation package FzySimu are described in Appendix A. Appendix B 

presents the confirmation results of the computer simulations against the practical control 

systems. 

We 
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Fuzzy Logic Control 

2.1 Introduction 

During the last decade, fuzzy logic control has emerged as one of the most active and 

fruitful areas for research in the application of fuzzy set theory [28], especially in the realm 

of industrial processes, which do not lend themselves to control by conventional methods 

because of a lack of quantitative data regarding the input-output relations. The pioneering 

research of Mamdani and his colleagues on fuzzy control [52], [78], [79], [29]-[31]  was 

motivated by Zadeh's seminal papers on the linguistic approach and system analysis based 

on the fuzzy set theory [3] [26]. Since then, applications of fuzzy logic control covered 

numerous fields ranging from finance to earthquake engineering [80].  The notable 

applications include cement kiln control [81], automatic traffic operation [17], robot control 

[18] [19],  arterial pressure control in surgery [20], chemical distillation control [21], anti-

skid braking system[8], power system and nuclear reactor control [82] [83], and many 

consumer products [74] such as auto-focusing in cameras and camcorders, washing 

machines, rice-cookers and so on. Fuzzy logic microcontroller chips [22] and fuzzy 

computers [23] have also pointed the way to an effective utilisation of the fuzzy logic 

theory. 

Surveying the vast literature on fuzzy systems [5] [24] [35]-[37] [69]-[83],  and comparing 

with the traditional control methods, the fuzzy control algorithm offers some advantages 

and possesses certain weaknesses. They can be summarised as follows: 

Advantages: 

(1) It does not require a detailed mathematical model to formulate the control task. 
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It provides an effective way to apply the expert experience and linguistic knowledge 

to the design of control systems. 

It is better able to handle nonlinear control problems. 

It is more robust with respect to changes in controlled process parameters. 

Weaknesses: 

It is unable to verify system stability, performance and robustness by using 

mathematical analysis. 

There is no systematic design method. 

Persons with different control experiences may have different opinions on the above 

summary. One of the main debating topics about fuzzy control is concerned with the 

stability issue. The weakness of the analytical capability of fuzzy systems has been criticised 

by the analytical control community because mathematical analysis is a traditional way to 

design a control system and it is able to provide assurance of adequate performance or 

stability of any mathematically modeled system [35, 36, 37]. However, some researchers in 

the fuzzy control community strongly disagree with this argument and insists that 

"prototyping test is more important than stability analysis; stability analysis by itself can 

never be considered a sufficient test" [5, 61. 

Viewing fuzzy control as a new technique for control purposes, it is natural to find some 

problems with it because there are many facts unexplored. More effort is needed to 

investigate the new area and find solutions to the analysis problems. A solution will arise 

from a strong body of experimental data defining the performance of fuzzy logic control 

systems. This was the major consideration behind the research on the robustness of fuzzy 

control systems reported in this thesis. 

This chapter reviews the basics of fuzzy set, fuzzy reasoning, and fuzzy control theory. It 

provides information necessary for understanding the rest of this thesis. A review of 

literature on the design of fuzzy control systems and the achievement of robust control with 

fuzzy algorithm is presented on the last part of this Chapter. More detailed discussions on 

fuzzy set theory can be found in [3] [16] [25] - [28]. 



CHAPTER 2 FUZZY LOGIC CONTROL 

2.2 Fuzzy sets 

The idea of a fuzzy set, as introduced by Zadeh [3], allows imprecise and qualitative 

information to be expressed in an exact way; it is a generalisation of the ordinary notion of a 

set. Whilst this basic idea can be utilised in many ways, it will be discussed here in the form 

which seems most applicable to the control problem. 

2.2.1 Fuzzy Set 

A fuzzy set F in a universe of discourse U is characterised by a membership function P-F 

which takes values in the interval [0, 1], namely, P-F:  U - [0, 1]. Thus a fuzzy set F in U 

may be represented as a set of ordered pairs of a generic element u and its grade of 

membership function: F= { ( u, P-F(u) ) j UE U }. 

The terminology membership function associated with the fuzzy set F stresses the idea that 

for each UE U, P-F(U) indicates the degree to which u is a member of the set F. In the case 

when the universe U is continuous, the membership function P-F  is expressed in some 

functional form. Fig.2-1 illustrates two widely used membership functions: the triangular 

function and trapezoidal function. 

In situations when the universe U is discrete, the membership grade of each element in a 

fuzzy set will be explicitly expressed. For example, assume F = { x 1  , x2  , x3  x4 
 } 

and x E U; 

then P-F = { 0.7/x, . 0.3/x 2 , 1 .O/x3 , O/x4  I provides a representation of a fuzzy set of U. In this 

representation of fuzzy set F, terms of the form a,/x i  are understood to indicate that the 

element x, has membership grade a in the fuzzy set F. Using this interpretation we see in the 

above example that x 2  has membership grade 0.3. It is noted that the larger the membership 

grade of an element, the more strongly it is the member of the fuzzy set. 

As an illustration, suppose it is necessary to specify a linguistic measure of temperature, for 

example, a statement such as "temperature is about 150°C". An ordinary set or crisp set 

which defines this can be expressed in terms of a membership function p,  which can take 

values of either 0 or 1. Graphically, this might be the rectangular function shown in Fig.2-2. 

A fuzzy set which expresses the same idea has a membership function which takes all values 

between 0 and 1. It might thus be as shown in Fig.2-3. The ordinary set is thus precise in 
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CHAPTER 2 FUZZY LOGIC CONTROL 

this meaning, having a definite transition from membership to non-membership. The fuzzy 

set, on the other hand, allows the qualitativeness of the measure to be reflected in a gradual 

membership transition. Using this idea, qualitative information can be represented 

mathematically and handled in a completely rigorous manner. 

Ilr(u) 
	

Jir(u) 

11/ 
(a) 
	 (b) 

Fig.2-1 Triangular shape (a) and trapezoidal shape (b) membership functions 

Fig.2-2 Non-fuzzy set of "temperature 
is about 150 °C" 

Fig.2-3 Fuzzy set of "temperature is 
about 150 °C" 

Following are some of the terminology related to a fuzzy set. 

Normal fuzzy set: A fuzzy set F is called normal if there exists at least one element in ue U 

such that i(u)=l. A fuzzy set that is not normal is called subnormal. 

Support: The support of a fuzzy set F, denoted Sup(F), is the crisp set of all points u 

in U such that p(u)>0. 

Core: The core of a fuzzy set F, denoted Core(F), is the crisp set of all points in u at 

which i(u) achieves its maximum membership grade. 

Fuzzy singleton: A fuzzy set whose support is a single point in U with p(u) = 1.0 is referred 

to as a fuzzy singleton. 

13 
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It should be noted that in many cases the value of the membership grade for a fuzzy set is a 

subjective context dependent value, just as is the idea of belonging and not belonging to a 

crisp set. Furthermore, in many instances it is the shape of the membership function that is 

of significance rather than the actual grade values. 

2.2.2 Fuzzy Set Operations 

Many of the definitions of operations associated with fuzzy sets are straightforward 

extensions of corresponding definitions from the crisp set theory. These definitions usually 

return to their crisp counterpart when the fuzzy sets are restricted to membership grade of 

zero or one. In some cases, because of the fact that membership is drawn from the unit 

interval [0, 1] rather than simply (0, 11,  many definitions of fuzzy sets have been used. The 

following review will concentrate on the basic operations of fuzzy sets. 

The theoretic operations on fuzzy sets are defined via their membership functions. The 

operation result is also a fuzzy set. Let A and B be two fuzzy sets in U with membership 

functions P-A  and p, respectively. For all uE U, the basic operations of union, intersection 

and complement on A and B are defined as: 

UnionAuB: 	iA UB(u) =  max{}IA(u),Jlb(u)) 	 (2.1) 

Intersection An B: 	ji(u) = min{p A (u), JIB(u)} 	 (2.2) 

ComplementA: 	I(u)=l—JIA(u) 	 (2.3) 

The union and intersection operations on the fuzzy membership functions are usually 

denoted by v and A respectively, i.e. 

P-AUB(u)=P-A(u)vpB(u) 	 (2.4) 

A P-B(') 	 (2.5) 

An illustration of union, intersection, and complement is given in Fig.2-4. 

It is important to note that operations such as minimum and maximum indicate no 

interaction, i.e. as soon as one of the arguments (a grade of membership function) is greater 

(smaller, respectively) than the second one, it has no influence on the operation result. This 

property leads to a certain advantage, since no accurate value of the membership function is 

14 
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required. Thus the membership function can be estimated roughly, and the error in the 

measurement procedure can be largely ignored. This type of robust performance allows us 

to tolerate some imprecision in the real fuzzy control systems. 

1.0 	
A 	B 

0 
L- 	y 

1.0 AL)B,,,,,,/\ ,/_ 

Ii 

YX — 
1.0 ArB 

0 A 

Fig.2-4 Operations on fuzzy sets 

It should be noted that the union and intersection operations are related fuzzy sets in the 

same universe of discourse U. if the fuzzy sets concerned are not in the same universe, the 

operation on these fuzzy sets can be stated as the Cartesian Product which is defined as 

follows. 

Cartesian Product: if A 1 , ••• , A n  are fuzzy sets in U 1 , ..., U with their membership 

functions (u1), •••, p. 4  (un ), respectively, the Cartesian product of A 1 , ... , A n  is a 

fuzzy set in the product space U1  x ... x U. with the membership function 

(u 11  •••, u) = rnin{J.IA (u1), ••• I j.t (un) } 	 . 	(2-6)  A. 

or 

PA 1 x ... XA, (u 1 , •., u) = PA1 (u1) • J'A2 (u 2 ) . •.. 	P, (u n ) 	 (2-7) 

2.2.3 Linguistic Variable and Fuzzy Variable 

In fuzzy control systems, a linguistic representation is used to convey knowledge about the 

control system and control strategies. Thus it is necessary to define linguistic variables in the 

systems design and analysis. A definition of a linguistic variable is as follows; 

15 
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Linguistic Variable: If a variable can take words in natural languages (for example, small, 

fast, and so on) as its values, this variable is defined as a linguistic variable. These words are 

usually labels of fuzzy sets. A linguistic variable can take either words or numbers as its 

values. 

For example, the linguistic variable speed can take "slow", "medium", and "fast" as its 

values. Term "slow" may be interpreted as "a speed below about 40mph", "moderate" as "a 

speed close to 55mph", and "fast" as "a sped above about 70mph". These values can be 

characterised by fuzzy sets in a universe of discourse U = [0, 100] with their membership 

functions shown in Fig.2-5. 

I' 

1.0 slow 
	medium 	fast 

40 	55 	70 	speed (mph) 

Fig.2-5. Membership functions of the fuzzy variable speed 

The important feature of this representation of knowledge is the use of the fuzzy set to 

represent the meaning of a word. It provides a formal way to quantify a system's 

uncertainties which often exist in the practical systems. 

A variable is called fuzzy variable if the variable uses fuzzy sets as its value. A linguistic 

variable is a fuzzy variable whose values are fuzzy sets labeled with words. In this thesis, the 

term fuzzy variable will be used for indicating the variable transferred from or to a non-

fuzzy variable or a crisp variable, and fuzzy sets for the value of the fuzzy variable, rather 

than the termsfuzzy set and fuzzy subset respectively. 

2.3 Fuzzy logic 

In general, fuzzy logic is considered as a reasoning method based on fuzzy set theory. In 

fuzzy logic control, fuzzy relation, fuzzy implication and fuzzy composition are the most 

important concepts. In the following, the definitions of these concepts will be presented. It 

Es 
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should be realised, though, that this can be done in several ways; the most commonly used 

definitions are given below. 

2.3.1 Fuzzy relation 

Assume X and Y are two fuzzy sets with their membership functions j.ix(X),  L) (y) 

respectively. A fuzzy relation R from a set X to set Y is a fuzzy set of the Cartesian 

product X x Y and is expressed as 

{( (x,y),(x,y))l Xe X, 	E Y}. 	 (2-8) 

Its membership function 9 R ( x, y) can be expressed by 

(2-9) 

More generally, if X j, X 2 , ... X are a collection of fuzzy sets, an n-array fuzzy relation is a 

fuzzy set over their Cartesian product X 1x X2x ... x X, with the membership function 

(x 1  , x 2  , 	, x) = min {i , (x 1 ), i 
, 

( x 2 )
1 
 ... , 	X . 

(x ) } 	(2-10) 

An alternative expression of the fuzzy relation can be obtained by replacing the above mm-

operation by the product operation. 

It is noted that the classical concept of relation is simply a special case of a fuzzy one where 

the membership grades are restricted to be zero or one. Since a fuzzy relation is simply a 

fuzzy set defined by the Cartesian product, then all the mechanisms developed for handling 

fuzzy sets can be used to manipulate the fuzzy relations. 

2.3.2 Fuzzy implication 

A fuzzy implication is a special type of fuzzy relation. Assume X and V are two fuzzy sets 

with their membership functions t(x), p.(y) respectively. A fuzzy implication X - V is a 

fuzzy set with the membership function; 

= P x (X)* t y ( y) 	 (2-11) 

where * can by either the Min or the product operator. 
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In fuzzy logic control systems, a fuzzy implication A - B, is a fuzzy IF-THEN rule: 

IF xis A, THEN y is B, where xeX and ye Yare linguistic variables. 

As an illustration, a linguistic implication between electrical current input I, say, and 

temperature error AT might be 

IF { ATis much great than 100°C } THEN { us high }. 

So if the fuzzy sets I = {current I is high } and AT 1  ={ temperature error AT is much higher 

than 100°C } are given by Fig.2-6 and Fig.2-7 respectively, the fuzzy set of this implication 

is a two dimensional fuzzy set R in the product space of AT x I. as shown in Fig.2-8. 

Fig.2-6 Fuzzy set AT 1  = "temperature error Fig.2-7 Fuzzy set of "current is high" 
is much higher than 100 °C" 

Fig.2-8 Fuzzy implication of Temperature Error AT and Current I 

2.3.3 Fuzzy composition 

Fuzzy relations in different product spaces can be combined with each other by the 

operation of composition. Assume X, Y and Z are fuzzy sets with their membership 

functions t(x),  i(y) and p(z)  respectively. If R is a fuzzy relation from X to V and S is a 
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fuzzy relation from Y to Z, then the composition of R and S is a fuzzy relatiOn denoted by R 

S with the membership function 9  (x, z) as 

PRS(,Z) = suP,,EY{i.LR (x,y)*  t'. (y, z)] 
	

(2-12) 

where * is a fuzzy implication operator, sup,,is a pointwise operator of maximum in Y. 

Clearly,R °Sisafuzzy set inXxZ. 

In the fuzzy logic control systems, the most commonly used compositions are the max-mm 

and max-product because of the computational simplicity. The max-min and max-product 

can be expressed as 

max-mm: tRs(x,z) = max { mm { p(x,y), p(y, z) } ); 	(2-13) 

or 

max-product: IL RS() = max { 1(x,y)p(y,z) }. 	 (2-14) 

A important case of the compositions in the fuzzy logic control is to join a fuzzy set X with 

a fuzzy relation R, R e (X x Y). The fuzzy relation R presents the whole rule base and the 

fuzzy set X indicates the present system status. The composition results of X and R is a 

fuzzy set Y denoting the output fuzzy value of the FLC, i.e. Y = X °R. For example, the 

implication linking electrical current and temperature error in last sub-section, which is an 

algorithm with only one rule, can be used to make a statement about electrical current I 

when "temperature error AT is about 150°C". If fuzzy set AT2 = { temperature error AT is 

about 150°C) is given in Fig.2-9, then the electrical current g(I) can be estimated as follows 

by using max-min composition operation on AT 2  and R(AT 1 , I). 

p.(I)= Max { Mm [i(AT2 ), 9R(1TI,fl] ). 

Graphical illustrations on above Mm-operation is shown in Fig.2-10(a) and Max-operation 

is shown in Fig.2-10(b). Note that the resulting fuzzy set of temperature in Fig.2-10(b) has a 

maximum membership function value much less than 1. This is because of the inadequacy of 

the algorithm (rule) described above. The resultant set should be interpreted as a "best 

estimate" given by this inadequate information. 

It is clear that the Mm-operation finds the minimum membership grade in the AT x I space, 

IN 
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and the Max-operation finds the maximum membership grade at every point in I space. 

Careful examination of the composition result can lead to the following general facts: 

(1) The Max-operation is a projection of the result of Mm-operation on I. 

) ( AT2) 

130 150 170 AT(°C) 

Fig.2-9 Fuzzy set of "temperature error AT is about 150°C" 

ji(T, 1) 

I(A 

5 	100 

(a) 

11 . 
100 	150 	200 T(°C)  

P(l ) 

1.0 - 

C)  
0.36  

0 
5 	10 	15 	1(A) 

(b) 

et 

5 	10 	15 I() 

(c) 

Fig.2-10 Illustration on the composition operation (a) Mm-operation result; 
(b) Max-operation result; (c) simplified method 

(2) The maximum membership grade of the resultant fuzzy set is equal to the maximum 

membership grade 'r of fuzzy set AT 1  n T2 . 

The second fact is very important in fuzzy control applications because it significantly 

simplifies the operation procedure as shown in Fig.2-10 (c). 
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2.3.4. Fuzzy Connectives: AND and ALSO 

It is necessary to interpret fuzzy connective AND and ALSO in the concept of fuzzy sets 

because these connectives are often used in fuzzy rules in an fuzzy control system, though 

ALSO is commonly omitted in practice. For example, 

IF x is A 1  AND y is B 1  THEN z is Cl ; 

ALSO 
	

(2-15) 

IF x is A 2  AND y is B2  THEN z is C2 . 

In most of the FLCs, the connective AND is implemented as a fuzzy intersection in a 

Cartesian product space in which the underlying variables take values in the different 

universe of discourse. As an illustration, the antecedent part of R 1  of example (2-15) is 

interpreted as a fuzzy set in the product space X x Y with membership function given by 

I1 xy (x, y)=Min{ 9A 1 (X), 9 13 1 (Y) } 

or 
Px y (x, y)= JIA(X) . 

where X and Yare the universe of discourse associated with A 1  and B 1  , respectively. 

Several interpretations of the connective ALSO can be found in the published literature 

[24]. The interpretation of ALSO as a fuzzy union operator appears to be better suited for 

PLC applications because it is easier to implement. For example, the resultant fuzzy set C of 

example (2-15) can be givenby 

C = C~*  u C; 

where Ci*  and  C2*  are the output fuzzy sets from R 1  and R 2 , respectively. 

2.4 Fuzzy logic controller (FL C) 

The elementary basic diagram of a feedback control system is presented in Fig.2- 11. The 

object to be controlled is called the plant, or the process, denoted as P. The purpose of the 

feedback controller, denoted as C, is to keep the output y close to the setpoint w, despite 

the presence of disturbances, noise and fluctuation of the plant parameters. The law 

governing corrective action of the controller is called the control algorithm. The output of 

the controller u is called the control action. 

'.1' 
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A common feature of conventional control is that the control algorithm is analytically 

described by equations; algebraic, difference, differential, and so on. In general, the 

synthesis of such control algorithms requires a formalised analytical description of the 

controlled process by a mathematical model. The concept of mathematical analysis is one of 

the main paradigms of conventional control theory. 

__ 
e 

C 
U __C:E] 

+ 

Fig.2-11 Block diagram of a basic feedback control system 

The seminal work by L. Zadeh on fuzzy algorithms [3] [28] introduced the idea of 

formulating the control algorithm by logic rules. Mamdani and others [29] - [34] developed 

Zadeh's concept and demonstrated that logic rules with vague predicates can be used to 

derive inference from vaguely formulated data. They concluded that linguistic control 

algorithms can be used for control of complex systems, both human and technical. 

The main paradigm of fuzzy control is that the control algorithm can be a knowledge-based 

algorithm, described by the methods of fuzzy logic. The knowledge encoded in the rule base 

is derived from human experience and intuition, and from theoretical and practical 

understanding of the dynamics of the controlled object. The machinery of approximate 

reasoning converts the knowledge embedded in the rule base into a crisp (non-fuzzy) 

control algorithm. What makes the fuzzy control special and conceptually different from 

conventional control is the lack of an analytical description. 

A collection of implication statements (or rules) on the input and output fuzzy sets of a 

controlled process is called a fuzzy control algorithm or a rule base. A controller with this 

kind of control algorithm and the fuzzy logic inference method is called a fuzzy logic 

controller. Fig.2- 12 shows the basic configuration of a practical FLC, which comprises five 

principal components: input and output scale mapping, a fuzzification operation, a rule base, 

an inference engine, and a defuzzification operation. It should be noted that, in most cases, 
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the inference engine is designed to deliver change of control output, thus a serial 

accumulator is used for obtaining the actual control output. Of course, if the plant naturally 

includes an integrator, then the serial accumulator is not required. In the following, we shall 

discuss these basic elements of a fuzzy control system from the viewpoints of control 

system implementation. 

Rule base 
Input 
	

Control 
variables 

Inference 
engine 

Scale F-H Fuzzification 	Defuzzification_F—'I Accumuiator 
........,] 

Scale 
mapping  mapping 

Fig.2-12 Basic configuration of fuzzy logic controller 

2.4.1 Input and output scale mapping 

The input scale mapping transfers the range of values of the practical input variables into a 

corresponding universe of discourse on which the input fuzzy sets (or linguistic variables) 

are designed. The output scale mapping transfers the universe of the output fuzzy variable 

of a FLC into the corresponding range of practical values of control output variable. These 

mappings can be uniform or non-uniform depending on the a priori knowledge of the 

concerned variable space. 

A scale mapping of a variable in a FLC is done by multiplying a scaling factor with the 

variable. For example, in a three-input-one-output fuzzy controller, a control rule may read 

as 

R, : IF error (e) is A 1  , integral of error (ie) is B 1  , and change of error (ê) is C'1 

THEN output control u is D1. 

A representation of the control rule can be written as 

u(k) = K4 F[ K 1 e(k), K2 ie(k), K3de(k)], 	 (2-16) 

where F denotes the fuzzy relation defined by the control rule and K1 , i=1,2,3,4, represents 

an appropriate scaling factor. In this relation, we see an analogy to the parameters of a 

conventional PID controller, in which as a special case F is a linear function of its 

arguments. 
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The scale mappings are needed when the universes of the fuzzy variables are normalised. 

Even when the maximum value of the input variables defines the normalised variables, it is 

usually necessary to tune scaling factors for obtaining the desired performance [25]. 

2.4.2. Fuzzification 

In fuzzy control applications, the observed input data are usually crisp. Since, the data 

manipulation in a PLC is based on fuzzy set theory, a transformation which converts a 

scaled measurement into a fuzzy value is necessary during the earlier stage. Fuzzification 

can be defined as a mapping from an observed input space to fuzzy sets in the input universe 

of discourse. Basically, fuzzification consists of the following two operations on the input 

variables. 

A. Representation of sampled data - 

To manipulate sampled data with fuzzy sets by using fuzzy set theory, it is necessary to 

represent the sampled data as a fuzzy set, called fuzzy sampled data. Two principal ways to 

represent the sampled data are as follows. 

If a sampled data x 0  is precise or the measurement noise can be ignored, it can be 

represented as a fuzzy singleton A with the membership function iA(X)  equal to zero 

except at the point xo  , at which A(Xo) equals one. This representation has been widely 

used in fuzzy control applications since it is natural and easy to implement. 

If sampled data is contaminated by random noise, the noisy measurement can be 

interpreted as fuzzy sets with a triangular membership function. This membership 

function is constructed with respect to the probability density function of the noise. The 

vertex of the triangle is associated with the mean value and the base is a function of the 

standard deviation [25, 33]. This method is much more complicated than the fuzzy 

singleton method, and requires further exploration. 

B. Conversion 

The conversion operation converts fuzzy sampled data into suitable linguistic values, which 

may be viewed as the labels of fuzzy sets, with a degree of membership to each of these 
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fuzzy sets. The conversion is based on the membership functions defined on the universe of 

each input fuzzy variable. Assume that membership function llx(X) is defined in the universe 

of input fuzzy variable X, and fuzzy singleton A and fuzzy set B are two representations of 

sampled data, x X. Then the calculation of the membership degree 't of x to fuzzy set X can 

be illustrated as shown in Fig.2-13. 

Primary fuzzy sets are usually labeled with linguistic terms, such as NB: negative big; NM: 

negative medium; NS: negative small; ZE: zero; PS: positive small; PM: positive medium; 

PB: positive big. A typical example was shown in Fig.2-14. 

Membership functions can be different shape, asymmetrical or evenly distributed in the 

universe. Furthermore, the number of the primary fuzzy sets determines the maximum 

number of fuzzy rules. For example, if each fuzzy input variable has 7 primary fuzzy sets (7 

membership functions), a two-input-one-output fuzzy system then has a maximum number 

of 49 rules. 

bc(x) 	 Ilx(x) 

¶ 

.0 

(a) 

t 

-p 

(b) 

Fig.2- 13 Calculation of membership degree r of a sampled data 
in the form of (a) fuzzy singleton A and (b) fuzzy set B. 

Fig.2-14 Typical membership functions 
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It should be noted that the membership function can be defined numerically or functionally, 

depending on whether the universe of discourse is discrete or continuous. Also, the fuzzy 

partition of the fuzzy input space has no unique solution. The concepts associated with the 

membership functions are used to characterise fuzzy control rules and the manipulation of 

sampled data in a FLC. These concepts are subjectively designed and they are based on 

experience and engineering judgement. 

2.4.3. Rule base 

A fuzzy system is characterised by a set of linguistic statements based on expert knowledge. 

The expert knowledge is in the form of "if-then" rules. The collection of these fuzzy control 

rules that are expressed as fuzzy conditional statements forms the rule base in a FLC. 

Generally, the rule base has the form of a MIMO system. However, it is proved in [24] that 

a MIMO fuzzy system can be represented as a collection of MISO fuzzy systems. 

Therefore, the MISO fuzzy system will only be consider in this research. 

Most FLCs have a fuzzy rule base which, in the case of MISO systems, is a collection of 

rules of the form 

R 1 : IFx1  isA11 , ... , 	 Ain 	 (2-17) 

where x 1 , ... , Xn and y are linguistic variables representing the process states; A 11 , ... Ain and 

B 1  (i = 1, 2, ..., m, m is the rule number) are the linguistic values of the fuzzy variables x 1 , 

x, and y in the universe of discourse X 1  , ..., Xn  and Y, respectively. Rule R i  is 

interpreted as a fuzzy implication X 1  x ... x X —> Y. 

Typically, system error e and error derivative ê are widely used as the input fuzzy variables, 

and change of control output Au is used as the output fuzzy variable of fuzzy rules in fuzzy 

control applications. In this case, let E, DE and DU as the fuzzy variables of e, é and Au 

respectively. Then a typical rule may be written as: 

IfEisA and DE is B, then DUis C, 

where A, B and C are one of the linguistic labels (fuzzy sets): NB, NM, NS, ZE, PS, PM 

and PB. These fuzzy control rules can be represented as a matrix as shown in Fig.2-15, 

where the linguistic labels of input variables work as index of the matrix, and labels of the 

consequent part in the linguistic rules take the main part of the matrix. 
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NB NM NS 

DE 

ZE PS PM PB 
NB NB NB NB NB NM NS ZE 

NM NB NB NB NM NS ZE PS 

NS NB NB NM ?4S ZE PS PM 

E 	ZE ...  NB ........ NM.  ...... NS ........ ZE ........ PS ......... PM------- 

PS NM NS ZE PS PM PB PB 

PM NS ZE PS PM PB PB PB 

PB ZE PS PM PB PB PB PB 

Fig.2-15 A typical fuzzy rule base 

Suppose the membership functions of E, DE and DU are defined in the format as shown in 

Fig.2-14, and e and é are defined as 

e(k) = w(k) - y(k) 	 (2-18) 

e(k) - e(k —1) 
(2-19) 

t 

where w(k) and y(k) are the setpoint and the output of the control system respectively, t, is 

the sampling period. Then the meaning of rules in the Fig.2- 15 can be interpreted with 

reference to the phase plane as illustrated in Fig.2-16. Different consequent fuzzy labels 

were indicated by the areas with different darkness in the phase plane (overlaps are not 

shown). The upper right part and the lower left part in the phase plane can be interpreted as 

areas where the system output is changing toward a smaller system error, where the control 

rules (control action) are sensitive to the system status, indicating a very careful control 

action. While in the upper left part and lower right part of the phase plane, the interpretation 

is that the system output is changing toward a larger system error, where the control rules 

(control action) are less sensitive to the system status, indicating a very tough control action 

to drive the output back to the system setpoint. Clearly the typical fuzzy rule base 

implements a general control heuristic called 4-zone strategy [86]. 

However, it cannot be expected that the above fuzzy rule base has the ability to solve all 

control problems. Obviously, for complicated control issues, we need more knowledge, and 

therefore a more detailed rule base, that will supply a more sophisticated control strategy. It 

should not be overstated [35] [36] [37] that a designer of a fuzzy control system does not 

need any information about the controlled process. 
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-e 	 Chanedrection 
\ tCfl 	tItflUt 

Fig.2-16 A explanation of the typical fuzzy rule base shown in Fig.2-15 

Clearly, this straightforward formulation of the control algorithm allows the implementation 

of heuristic strategies, defined by linguistic statements. The fuzzy control algorithm reflects 

the mechanism of control, implemented by people, without using any formalised knowledge 

about the controlled process in the form of mathematical models, and without an analytical 

description of the control algorithm. These characteristics explicitly demonstrate the 

inherent robustness of the fuzzy control systems. 

2.4.4. Inference engine - fuzzy reasoning 

The inference engine is the kernel of a FLC. It has the capability to simulate human decision 

making based on fuzzy set concepts and it infers fuzzy control actions by employing fuzzy 

implication and compositional rules of inference in fuzzy logic. Basically, it evaluates the 

state of the process under control based on the fuzzy inputs, and then the fuzzy 

inputloutput relations defined in the rule base are used to compute the new control output. 

A fuzzy inference engine with fuzzy rules in (2-17) can be treated as a system that maps 

fuzzy sets in U = Xi  x ... x X, into fuzzy sets in Y via fuzzy implication R i  defined by its 

membership function IU(U, )). This mapping is often called fuzzy reasoning. Let a fuzzy 

set A in U be the input to the fuzzy inference engine: then each fuzzy IF-THEN rule (2-17) 

determines a fuzzy set }' in Yby using fuzzy composition operation. That is 

Yi  = A oR,, t Y, (y) = sup, [JtA  (u) * 	(u, v)]. 	 (2-20) 

The final fuzzy set B in Y is determined by all rules R 1  , R, , . R in the fuzzy rule base. 
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Its membership function, P-B(y),  is obtained by combining JL y ( y) for all i = 1, 2, ... , musing 

the fuzzy UNION operation because of the ALSO connectives. That is 

	

B=Ao(R1,R2, ... ,R), 	 (2-21) 

	

B(Y)-PY1(Y) V J..L y (y) V 	V t y (y). 	 (2-22) 

Because there are two types of fuzzy composition operations: max-min composition and 

max-product composition, equation (2-20) can be written as; 

mm-inference: 	J.i y  ( y) = Max UEU {Min[p A (u), 	(u, y)]} 	 (2-23) 

product-inference: ji } (y) = Max UEU[p.A(u) iu-, (u, y)] 	 (224) 

It is obvious that the rule inference is just a series of fuzzy composition operations on the 

input fuzzy sets and the implication R 1 . However, there is a major difference in the number 

of input fuzzy sets between the rule inference here and the composition operation in Section 

2.3.3. The number of fuzzy sets in the composition operation will significantly affect the 

applicability of the FLC algorithms. To simplify this multi-input composition operation, 

C.C. Lee proved in [24] the following lemma. 

Lemma 2-1: Consider the following fuzzy implication 

IFxisAandyisB THENzisC. 

Let A' be the input fuzzy set of x and B' be the input fuzzy set of y. Suppose 

membership functions of A, B and AxB are 1 1A, lB, and JIAxB,  respectively. Then the 

output fuzzy set C' can be written as 

(A',B')°(AandB—C)=[A'°(A—C)]n[B'°(B—*C)], ifpAXB=PAApB; 

(A',B')°(AandB—C)=[A'°(A---C)]•[B'°(B--*C)], 	ifJIAXB1AIB 

The above lemma can be interpreted as that a multi-input fuzzy composition is equal to the 

Cartesian product of all compositions of each input and the implication from the input to the 

consequent. This fuzzy inference algorithm has been widely used in fuzzy control 

applications. 

By applying the above lemma to equation (2-21) and assuming that the input fuzzy sets are 

X 1 ', ..., X e', i.e. A = X 1 'x ... xX', the final output fuzzy set B can be further developed as 
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follows: 

B=Ao(R 1 ,R2 ,".,R) 

=U(AoRj) 

={(X1  x 	x X')oR 1 ) 

=Ufl{X/ o(AB.)} 
i=lj=I 

Applying the fact 2 in Section 2.3.3 to the above function and assuming c ij  is the 

membership grade of X' to A 1  (i = 1, ..., m, j = i, ... n), the membership function of the 

consequent fuzzy set B 1  in the ith rule (2-17) can be written as 

B(Y) - V A{t *(y)} 
i=1 j=1 

(2-25) 

={t i *B(y)}, 

where * denotes the Cartesian product, t, is called the degree offiring (DOF) of the ith rule 

and is calculated as 

	

I Min{'t1, i2' •• 	if mm-inference 
(2-26) 

( 	. 't i2 . 	• 	in' 'r 	if product-inference. 

In summary, the procedure of the fuzzy reasoning is based on the following three steps: 

Determine the DOF, 'r i , of the ith rule (i = 1, ..., m). 

Calculate the Cartesian product, I, of T j  and the membership function R B,  (y) of 

consequent fuzzy set B i  in the ith rule (i = 1, ..., m). 

Calculate the union of all Ij  to obtain the final fuzzy output set B. 

The following is an illustration of the above procedure. Assume that there are two fuzzy 

control rules: 

R : ifx is A 1  andy is B then z is C 1 ; 

R 2 : ifxisA 2  and y is B 2  then z is C 2 ; 

where x, y and z are fuzzy variables representing the process states; A,  B 1  and C1  (i = 1, 2) 

are the fuzzy values of the fuzzy variables x, y and z in the universe of discourse X, Y and 
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Z, respectively. Suppose that the membership functions of A,  Bi and C ( i = 1, 2) are as 

shown in Fig2-17, and the input fuzzy sets are such that x is x 0  and y is y0 , where x0  and y0  

are fuzzy singletons as is the common situation in practical fuzzy logic control systems. 

Two types of fuzzy reasoning are applied as follows. 

A. Max-Min inference 

In this model of reasoning, each rule leads to the control decision 

PRi =Min{ a1, J'ci(Z) } 

9R2 —M1n{a 2 , 9c2 (Z)) 

where a I = Mm { 	(x0)1 B (y0) }, and ct2  = Mm { t(x0), B 2(Yo) }. The membership 

function g z  of the inferred consequence is pointwise given by 

z(z)=9R I v1R2  

The fuzzy reasoning process is illustrated in Fig.2-17. 

x o  

Y 	ZI 	Z 

92 

11 

y0 	mm 

R 1  R2 

Z1Z2 	Z 

Fig.2-17 Max-Min inference method 

B. Max-Product inference 

In this model of reasoning, each rule leads to the control decision 

PR1 =a I . 

IR2 — a2. 9c2 (Z) 

where a, = Min{ 9A  (x0), i (y) }, and a2  = Min{ IA2(xo), 9 B 2(Yo) ). The membership 
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Z, respectively. Suppose that the membership functions of A, Bi and C, ( i = 1, 2 ) are as 

shown in Fig2-17, and the input fuzzy sets are such that x is x 0  and y is y0 , where x0  and y0 

are fuzzy singletons as is the common situation in practical fuzzy logic control systems. 

Two types of fuzzy reasoning are applied as follows. 

Max-Min inference 

In this model of reasoning, each rule leads to the control decision 

lR =Min{ a1 , J.1 i(Z) } 

R2 _Min{a2, Pc2 (z)} 

where a = Min( hAt (x0), J B I (YO) ), and a2  = Min{ L M (xo), It B 2(Yo) }. The membership 

function 	of the inferred consequence is pointwise given by 

9z(Z)=hR I VtR2  

The fuzzy reasoning process is illustrated in Fig.2-17. 

v 1 ; 2tTh CI  
x 	 Y

B2 

A 2_  _1t   _ 
x 0 	y 	mm 

Fig.2- 17 Max-Min inference method 

Max-Product inference 

In this model of reasoning, each rule leads to the control decision 

hRi =a. 

hR2 	 Pc2(Z) 

where a = Min{ hA  (x 0 )
1  h B I (y0) }, and c = Min{ JIA,(XO), h B 2(0) }. The membership 
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function g z  of the inferred consequence is pointwise given by 

This fuzzy reasoning process is illustrated in Fig.2-18. 

2.4.5. Defuzzification 

Basically, defuzzification is a mapping from a space of control output fuzzy set defined over 

an output universe of discourse into a space of non-fuzzy (crisp) control actions. This is 

because, in most practical applications, a crisp control action is required. At present, the 

commonly used strategies are the mean of maximum (MOM), and the centre of gravity 

(COG). 

11 	 Il 

A----
-
-- - . A ------ -A 

X 	 Y 	 Z, 	Z 

I Al  
 I ------ 	A-  - - 

xo 	 y0 	mm 

R 1  R 

Z I  Z: 	Z 

Fig.2- 18 Max-Product inference method 

MOM : The MOM strategy generates a control action which represents the mean value of 

all local Control actions whose membership functions reach the maximum. More specifically, 

in the case of a discrete universe with finite elements, the control action may be expressed 

as; 

MOM ,! 

1 v,€G 

(2-27) 

where G is the set of elements in the output universe Y which attains the maximum value of 

menibership grade, and I is the number of such elements in G. 

COG: This widely used strategy produces the centre of gravity of the possibility distribution 

of a control action. In the case of a discrete universe with finite elements, it yields; 
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Y COG = i=1 	 (2-28) 

ji 8 (y) 

1=' 

where B is the fuzzy output set in the output universe Y, JIB(y) is the membership function 

of B, and m is the number of elements in B. 

If the output universe Y is continuous, the sum operations in(2-27) and (2-28) become 

integration in the corresponding space. 

It should be noted that the defuzzification problem not only exists in fuzzy control area, but 

also in other decision making areas using fuzzy set theory. A number of different 

defuzzifiers have been proposed in fuzzy logic literature, and their use is quite subjective 

[38]. Some comparative studies of the defuzzification problem were presented in [34] [39] - 

[41]. An overview of the defuzzification methods was given by Lee in [24], indicating that 

the COG method yields a better steady-state performance while the MOM yields a better 

transient performance. 

2.5 Design of fuzzy logic control systems 

The control engineer, when attempting fuzzy control, is generally faced with three main 

problems: the rule derivation, determining the parameters (linguistic labels and membership 

functions) to be used together with the rule base, and tuning of a FLC to meet the 

performance requirements. It is important to realise that the solution to one of these 

problems is highly dependent on the solution of the other two. As indicated in many 

publications, use is made of a priori knowledge of the process. 

There are two principal approaches to designing a FLC. The first is a heuristic method in 

which a collection of fuzzy rules and the parameters of the controller are formed by utilising 

expert experience, or by analysing the behaviour of a process operator. The controller is 

designed in such a way that the rule derivation from a desired state can be corrected and the 

control objective can be achieved. This method is purely heuristic in nature and relies on the 

qualitative knowledge of process behaviour. The second approach is basically a 

deterministic method which can systematically determine the rule base and/or parameters 

33 



CHAPTER 2 FUZZY LOGIC CONTROL 

(membership functions and scaling factors) of the FLC. In this case, several design methods 

have been studied based on, for example, the self-organised principle, the neural network 

technique and the genetic algorithm. A brief review of these methods is given in the 

following sections. 

2.5.1 Based on expert experience 

The formulation of fuzzy control rules is achieved by means of two heuristic approaches. 

The most common one involves an introspective verbalisation of human expertise. Typical 

examples of such method are the application of fuzzy control to a cement kiln [43], and the 

early application of fuzzy logic to industrial control [30]. Many experts have found that the 

fuzzy control rules provide a convenient way to express their domain of knowledge [24]. 

This explains why most FLCs are based on the knowledge and experience which are 

expressed in the language of fuzzy if-then rules. 

Another approach derives fuzzy rules from the working principle of the widely used PID, or 

PT controllers. Example of this method can be found in [47] and [50] which uses input and 

output mapping factors to design a three term controller (PID like) without any information 

about the plant to be controlled. The rule base and membership functions are symmetrically 

selected without any consideration of the plant's features. The performance of the closed-

loop system is justified by tuning the input and output mapping factors which affect the 

membership functions of each input or output fuzzy variable. The weakness of this mthod 

stems from the assumption that the plant to be controlled is not highly nonlinear which 

enables the membership functions and rule base to be designed symmetrically and to be 

tuned evenly. 

2.5.2 Based on measurements 

Wang and Mendel [42] proposed an algorithm for deriving the fuzzy rules and choosing 

controller parameters from numerical data obtained from measurements. A simple and one-

pass build-up procedure has been introduced and proved to be a success by applying it to 

the truck backer-upper control problem. This method provides a general method to combine 

measured numerical information and human linguistic information into a common fuzzy rule 
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base. It is specially useful if only partial linguistic fuzzy rules and partial input-output data 

pairs are available in designing the fuzzy logic controller. However, resolving the conflict 

rules derived from the numerical data and the linguistic information is heuristic because no 

systematic method is given to tell the quality of each data pair which is used to generate the 

rule base. It is also difficult, or impossible in some case, for using this method to build-up a 

complete rule base to cope with all system situations in case of the time-varying process. 

2.5.3 Based on fuzzy model 

An approach to design a FLC, which is analogous to the conventional controller design by 

pole placement, is introduced by Braae and Rutherford in [13] and [51]. Braae and 

Rutherford assumed that the linguistic rules (model) of a process and a desired closed-loop 

system were initially given. The purpose is to synthesise a linguistic control element (FLC) 

based on the fuzzy models assumed above. The main idea is to invert the low order 

linguistic model of the process to find maps from linguistic system states to linguistic 

process control action. However, linguistic inversion mappings are usually incomplete or 

multi-valued. So, an 'approximate" strategy, which is somewhat heuristic and subjective, is 

necessary to complete the inverse mapping which has a reasonable single-valued solution. 

This method is restricted to relatively low order system but it provides an explicit solution 

for the design of the FLC, assuming that fuzzy models of the open and closed systems are 

available. 

2.5.4 Based on operator's control actions 

Takagi and Sugeno [44, 45] proposed a fuzzy identification algorithm for modeling human 

operator's control actions. In this case, a suitable linguistic structure is easy to find since 

one can observe andlor ask for the information which the operator needs, such as process 

state variables. The design problem is reduced to parameter estimation, which is done by 

optimising a least-square performance index via a weighted linear regression method. This 

method provides a more systematic approach to the design of a PLC, and the experimental 

results are quite remarkable. However, some design steps of this algorithm, such as the 

choice of process state variables, the fuzzy partition of input spaces, and the choice of 

membership functions of primary set, depend on trial-and-error. 
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2.5.5 Based on optimisation 

In the past few years, more and more research work has been directed towards the design of 

fuzzy control systems by optimisation methods because of the multi-parameter tuning 

problem. Isaka and Sebald [46] proposed an optimisation approach to design the 

membership functions of a PLC. This method is based on high-dimensional simulated 

annealing that produces a set of optimal membership function values through repeated 

simulations. In [52], a genetic algorithm was used to simultaneously design the membership 

functions and rule base in fuzzy controllers. The advantage of the optimisation method is 

that it significantly reduces time and effort to find appropriate parameters for the 

membership functions and, especially, to tune the FLC. However, a simulation model of the 

process is usually required to carry out the simulations. 

2.5.6 Based on learning 

A phase-plane seif-organising PLC (SOFLC) was proposed by King and Mamdani [30].  It 

involves tracking the closed-loop system trajectory across the domain of the fuzzy 

controller. By relating each rule to an area in this domain or phase-plane, it is possible to 

update and create the relevant rules by applying some meta-rules for rule derivation. This 

technique was modified by Braae and Rutherford [33] by tracking the system trajectories 

through the linguistic space instead of the real space. The advantage of this method is that 

design of a PLC can be performed without any knowledge of the controlled process and it 

reduces the time to tune the FLC. However the selection of the improved rules relies heavily 

on an intuitive feel (meta-rules) for the behaviour of the closed-loop system, and the 

convergence of the algorithm may become a problem in practical applications. 

Recently, considerable research effort has been devoted to the neural fuzzy area, and neural 

network methods have been proposed to tackle the design problems of PLC systems. This 

research area has already become a new branch of science but it is out of the research scope 

of this thesis. 
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2.6 Robustness of fuzzy control systems 

As discussed in the introductory chapter, system robustness is one of the most important 

features of fuzzy control systems when system uncertainty exists. There are two important 

issues related to the implementation of robust fuzzy control: how to measure system 

robustness and how to design a robust fuzzy control system.. 

2.6.1 Measurement of system robustness 

The proper measurement of robustness depends on the situation at hand. Basically, the 

robustness is the amount of uncertainty the system can tolerate and still function 

satisfactorily. So selection of the measure of robustness is according to what uncertainty is 

present in the system. 

Different branches of control theory have different opinions about what "uncertainty" is. In 

adaptive control, people talk about "robustness towards measurement noise", i.e. how much 

measurement noise can be added to the measurements still allow the adaptation algorithm to 

converge "fast enough". 

The more common usage, however, is that uncertainty means model errors. In classical 

control, model errors are modeled as unknown gain blocks or phase delays situated 

somewhere in the control loop. Furthermore, that the system functions satisfactorily means 

that it is stable. Robustness towards such uncertainty is then measured by gain and phase 

margins within which the changes of the unknown gain or phase delays will not make the 

system unstable. 

Many control theorists simply equate robustness with the H. framework [2]. Uncertainty is 

then modeled as MIMO transfer functions which are unknown but have an norm less 

than one [2, 64]. The robustness is then measured by the H_ of some closed-loop transfer 

function. An extension of the H. robustness is the ti-analysis, where several unknown 

transfer functions are present. 

Another widely used form of robustness is that of parametric uncertainty. I.e. how much 

variation in a physical parameter of the controlled process can the system tolerate before the 
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system goes unstable or the performance becomes too poor. The robustness is then 

measured in terms of a parameter range or, in the case of many uncertain parameters, of the 

radius of a ball in parameter space in which the system functions satisfactorily. 

In this research work, parameter uncertainty only was considered, and system performance 

under this parameter uncertainty was emphasised. Therefore, the variation range of 

parameter(s), for which system performances meet the predefined specifications, was used 

as the measurement of system robustness. 

2.6.2 Studies on robust control with fuzzy logic algorithms 

Since the first introduction of the FLC in the 1970's by Mamdani [53] there has been a 

considerable world wide interest in this subject. Though the robust property of a FLC was 

claimed in many publications [5, 7, 8, 11, 24, 27, 30, 54 - 56, 59, 74, 75, 97], the robust 

performance of a PLC was not the main objective of any research in the fuzzy control field 

except for a few publications which reported initial investigations [16] and experimental 

assessments [30][54]. It was only recently that investigations on the robust capabilities of 

FLC systems have been reported [9, 12, 61, 63, 65 - 67, 103]. 

King and Mamdani [30] compared the sensitivities of a FLC with that of a conventional 

controller by changing the parameters of a process. They found that in a certain range of 

process dynamics the conventional controller is difficult to adjust for good responses, while 

the fuzzy control system is less sensitive to process parameter changes and gives good 

control at all operating points. A different method to test the robust performance of a PLC 

was proposed by Kosko [54] by replacing some rules with destructive rules or by removing 

some rules in the truck backing up system. A comparison was also made of the robust 

performances of a PLC system with a neural network system. The results show that the rule 

perturbations did not significantly affect the fuzzy controller's performance, and the PLC 

system produced a better performance than the neural network system when the prior 

knowledge about the controlled process was reduced. 

Tanaka and Sano [9] discussed the robust stability of Takagi-Sugeno type fuzzy systems 

[45] using the Lyapunov Direct Method. In this paper, a fuzzy system was described by the 

fuzzy model containing parameter matrix (A, B, C), and four conditions for ensuring 
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stability of fuzzy system and the concept of stability margin were introduced in the sense of 

the Lyapunov theorem. However, it is difficult to obtain the matrix information in practice, 

and the mathematical operation on the fuzzy sets in the format of a matrix is so complicated 

that the practical application of this method becomes difficult. In addition, the effect of the 

parameters of both the controlled process and the FLC on the robust performance was not 

studied, and no design procedure for a robust FLC was proposed. 

The fuzzy sliding mode method was proposed by Palm in [10], followed by Kawaji [102], 

Hwang [101], Palm [61] and Wu [103]. In this method, a class of FLCs designed with 

respect to the phase plane e x ê was viewed as a sliding mode controller (SMC). In this 

class of FLCs, the general approach to the controller design is to partition the phase plane 

into two semi-planes where positive and negative control actions are produced respectively. 

The similarities between the FLC and the SMC were emphasised and the system stability 

and robustness were discussed, based on the sliding mode control principle in [10] and [61]. 

It is concluded that the robustness of FLC systems designed with a two-dimensional phase 

plane stemmed from their property of driving the system into the sliding mode, in which the 

control system is invariant to system parameter fluctuations and disturbances. However, this 

study was restricted to FLCs with a symmetrical rule base and 2-overlapped membership 

functions (the maximum number of overlapped membership functions is 2). The effect of the 

membership functions and the rule base on system robustness was not investigated, and a 

design method for improving system robustness was not provided. 

Wang and Jordan, [65], presented the results of an experimental study on the effect of 

parameters of both the controlled process and the FLC on the system robust performance 

by exhaustive simulation in the parameter space. Results showed that, by choosing proper 

scaling factors of a FLC designed by common sense, a very good performance can be 

obtained if the variation range of the plant parameters is not wide. Alternatively a wide 

robust range can be achieved if the performance required at the tuning point is degraded 

from the best step response obtainable by tuning the scaling factors. A guideline to tuning 

the scaling factors was given. 

Nguyen, [12, 63], and Wang, [67], presented experimental investigations of the robust step 

performance of SISO systems controlled by FLC and PID algorithms. A large number of 
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simulation results quantified the claim that fuzzy control leads to an improved robust 

performance with respect to the use of PD control. The effects of tuning-point selection 

and tuning-point performance requirement on the system robustness were also presented. 

Jordan and Wang, [66], introduced a phase advanced fuzzy logic control algorithm, which 

uses a proportional path in parallel with the fuzzy control output accumulator. This parallel 

path was introduced to minimise the very strong destabilising influence of the accumulator 

(integrator) required at the output of the fuzzy controller. The phase advance provided by 

the modified controller clearly leads to a better step performance, especially when high 

order processes are controlled. Experimental results were presented showing that the 

modified controller provides a more robust performance with respect to variation of the 

parameters of the controlled process. 

Overall, then, what conclusions may be drawn from the literature survey? Firstly and most 

importantly, the fuzzy logic controller was claimed to be very robust by many researchers. It 

appears to tolerate process parameter changes well and has reasonable noise rejection 

capabilities. Secondly, there is no systematic method to analyse the stability of FLC systems. 

This makes it difficult to investigate the robust performance of the FLC system. Thirdly, 

research on the topic of FLC robustness is still in its initial stage and a more complete 

investigdtion of the robust performance of FLC systems is not yet available. 

2.7 Summary 

In this Chapter, the advantages and disadvantages of FLC systems were summarised first. 

Then the basic concepts of fuzzy set and fuzzy logic were presented to provide a theoretical 

background of this research work. The principle of FLC was illustrated in five functional 

blocks: mapping, fuzzification, reasoning, rule base, and defuzzification. Different design 

methods for FLC systems were reviewed from the point of view of parameter (membership 

functions and scaling factors) selection and rule derivation. A literature review of the studies 

on the robustness of FLC systems indicated that the research on the topic of FLC 

robustness is still in the initial stage and work is required to provide a design method for 

robust fuzzy control systems. 
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Robust Performance of Fuzzy Logic Control 

3.1 Introduction 

Fuzzy control, as one of the most successful applications of fuzzy set theory, has been 

intensively developed during the last twenty years. A large number of publications have 

covered theoretical aspects of fuzzy control systems and various application fields ranging 

from engineering to financial systems. Fuzzy logic control has been claimed in many papers 

to exhibit a very good robust performance under system uncertainties. However, no work 

has been found to give a thorough investigation of robustness of FLCs. The main reason for 

this may be the lack of a generally applicable analytical capability to explain the dynamic 

performance of fuzzy systems. 

As the most desirable characteristic of a control system with system uncertainties, the 

robustness property of fuzzy control systems deserves a complete investigation, especially 

the most widely used fuzzy control system [85], namely the Mamdani type FLC system 

using Mamdani reasoning method (or Max-Min reasoning method) described in Chapter 2. 

In this chapter, the aim is to provide a qualitative analysis of the robustness of Mamdani-

type FLC systems, supposing that this fuzzy logic controller is used to control several kinds 

of processes with parameters varying over a relatively wide range. Also, the effects of 

controller parameters on the system robustness will be examined, so as to pave the way to a 

systematic design method for robustness. Note that in this thesis, the Mamdani type FLC 

will be simply called a FLC. 

As indicated in Chapter 1, robust performance is a more important characteristic because 

system performance is usually the major design requirement. Therefore, robust performance 
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will be the focus of this research; the term robustness will be used to indicate robust 

performance and specifically attention will be restricted to step performances in the time 

domain. 

This chapter is organised as follows. Section 3.2 will define the measurements necessary to 

characterise the dynamic performance and system robustness of a control system from the 

engineering point of view. Section 3.3 will describe the FLC system studied in this work. In 

section 3.4, the robustness of the FLC system will be investigated, a qualitative analysis 

method will be developed and applied to first-order and second order systems. Section 3.5 

will discuss the effects of controller parameters on system robustness. Section 3.6 presents 

design methods for FLC systems with improved robustness. Conclusions will be drawn in 

Section 3.7. 

3.2 Performance measure and robustness measure 

It is important that a suitable measurement method for system robustness is defined, 

especially when performing a comparison between two systems. In this section, some basic 

concepts related to the robustness measure will be presented. 

3.2.1 Performance measure 

There are two methods often used for evaluating the performance of a control system: the 

time domain method and the frequency domain method. In practice, time-domain 

performance measures are usually preferred because control systems are inherently time-

domain systems and transient responses to step inputs can be easily obtained. Therefore, a 

time domain measure for system performance will be used in this work. 

In the time domain, system performance is often evaluated by following standard measures: 

overshoot (OS), undershoot (US), settle time (ST), and rise time (Ri). These are defined 

from the step response of a system as shown in Fig.3-1 [1]. In Fig.3-1, w is the setpoint or 

reference input of the control system (w is also the magnitude of the input step), y the 

output, Ay, the difference between the maximum output and the setpoint, AY2  the difference 

between the minimum downward output and the setpoint, RT the time required for the 
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system output to rise to the setpoint, and ST the time required for the system output to 

settle within the steady state zone (w ± 6), where 6 is a percentage of the setpoint change, 

w. Normally, the overshoot and undershoot are presented as percentages of the setpoint as 

	

Ayl OS=--•l00% 	 (3-1) 

	

US = ?_.100% 	 (3-2) 

Rise time will not be used in this work because settle time can indicate not only the 

swiftness of the system response as rise time does, but also the closeness of the response to 

the desired value. Both overshoot and undershoot will be used in this work due to the non-

linearity of fuzzy control systems where the undershoot feature may not be reflected by the 

commonly used overshoot specification. 

Fig.3- 1 Definitions of standard time-domain measurements 

It should be noted that a system performance satisfying the requirements of the above 

evaluations may not be acceptable because it is too oscillatory. This fact suggests that 

another evaluating term - ring cycle number (CY) should be adopted to characterise an 

oscillatory response. The ring cycle number CY is defined as the oscillation cycles of the 

output y around the setpoint when y is outside the steady state zone. In summary, OS, US, 

ST, and CY will be used as measures to evaluate a system's performance. 

In addition, among these performance measures, ST is dependent on the controlled 

processes, i.e. the larger the time constant of the controlled process, the longer it takes for 
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the control system to settle within the steady state zone. Care is required when specifying 

the settling time, especially when a large range of process parameter variation is expected. 

In general control systems where robustness is not the main concern, the ratio §1, where 
TZ 

T is the sum of all time constants in the process at the tuning point, is often used as the 

indicator of the swiftness of system response. This measure is suitable for non-time-delay 

systems whose parameter variation can be neglected. However, it is not adequate when 

process parameters, especially the time constant, vary in large ranges. For example, for a 

temperature control system in a poultry brooding incubator [86], the time constant of the 

process in the early brooding stage is much larger than in the late brooding stage [98], 

because the poultry eggs must receive heat in the early stage while they are capable of 

producing a certain amount of heat energy in the late brooding stage. A fixed settling time 

specification, say 30 minutes, will be too tight for the early brooding stage so that large 

overshoot can be produced, or it will be too loose in the late brooding stage so that slow 

response can be expected. 

This research has used a settling time specification which takes the current process 

parameters, not necessarily those at the tuning point, into account. That is, whatever 

process parameter varies, the ratio of the settling time ST to the sum of all current time 

constants, T, , will be used as the indicator of the swiftness of system response. 

Characterising the settling time by means of the above method, a fixed ratio of ST and T 

can be used as the settling time specification and it will be denoted as R, In this research, 

the system settling time has been characterised by this method. 

3.2.2 Robustness measure 

As indicated in Chapter 2, the investigation of robust performance of a control system is 

concerned with the parameter range of the system within which the system performance 

meets the required specifications. The parameters affecting system robustness can be either 

controller parameters, or the controlled process parameters, or both. Robust parameter 

range is defined as follows: 
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Definition 3.1: If a system's performance meets the required specifications when parameters 

A, (i = 1, 2, ..., n) in the system vary in the range (a,, b 1), then the parameter range (a 1 , b1 ) is 

called the robust range of parameter A. 

The robust range can be measured by the width of this parameter range M, = b1 - a 1 . The 

product of all robust ranges is called the robust space denoted by S. That is, 

S 
	

AAj 
= 

The robust space S can serve as a measure of system robustness. For example, for a first 

order system with the following transfer function, 

G(s) = K 
1+ Ts 

(3-4) 

the robustness can be characterised by the robust space Ak x At, where Ak and At are the 

robust ranges of system parameters K and T respectively. 

To compare robustness of two control algorithms for the same control task, the required 

robust space and the robust space achievable by each control algorithm should be 

considered. Hence the following definition is necessary. 

Definition 3.2: Assuming 5a and 5, are the achievable robust space and required robust 

space of a control system respectively, then system robustness R can be expressed as 

R =- 	 (3-5) 

As an illustration, let the required variation range of K and T in the above example be AK 

and AT respectively; then we have 

S. = Ak x At 

Sr  = AKxAT 

R =-= AkxAt 

r AKxAT 

In practice, system performance is usually tested at a finite number of points within the 

process parameter space concerned. In this case, the achievable robust space can be related 

to the number of tested points at which the system performance meets the performance 

requirements. These test points can be simply called good points, and the number of these 

(3-3) 
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good points is denoted by Ngp . The required robust space can be replaced by the total 

number of tested points N1  in the parameter space. Then the system robustness R becomes 

NgP  
R =-- 	 (3-6) 

N, 

Clearly the larger the Sa or Ngp  value, the more robust the control system. 

The advantages of the above method for presenting system robustness are that (1) it clearly 

shows the size of the robust space relative to the total concerned parameter space; (2) it can 

be easily implemented in computer simulations. However, this measurement cannot indicate 

the gradual variation of system performance when system parameters are changed, because 

it simply measures the size of the robust space and only counts the performance as in or out 

of specification. 

To study the effect of a system parameter on robust performance, or to optimise system 

robustness by changing certain controller parameters, a suitable measure of system 

robustness is needed to reflect the gradual change of system performance with any system 

changes. The widely used performance index in control systems is the integral of square of 

error (ISE) which is defined as 

ISE= Je2 (t)dt 
	

(3-7) 

where e(t) is the difference between setpoint and the output, T is a finite time chosen 

somewhat arbitrarily so that the integral approaches a steady-state value. 

From the definition of ISE, it can be found that ISE is dependent on the setpoint w and 

process dynamics. In the step input case, this dependency can be removed by the following 

normalisation, where w is the setpoint of the control system; 

ISE= 	Je 2 (t)dt 
wT 0  

(3-8) 

However, JSE does not take performance specifications into account. For example, 

performance A and B in Fig.3-2 have the same ISE value, but performance B may not be 

acceptable in practice due to its high overshoot. For the purpose of studying system 

robustness, the performance index should include information related to the performance 

specification. Therefore, the following definitions are made. 
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Fig. 3-2 Two performances with same ISE value 

Definition 3.3: The peiformance index P index  of a control system was defined from 

experimental experiences as 

Pindex = OS + US + CY + ISEX1O + 
	

(3-9) 

where OS, US, CY and ST are the time-domain measurements described in section 3.2.1, 

and ISE is the normalised integral of square of error defined in (3-8). Note that using ten 

times the ISE in the Pindex  ensures that all items contained in the Pi,dex  will be of equal 

importance. Also, R, reflects the swiftness of response with respect to the system dynamics. 

Clearly a smaller Pindex  reflects a better step performance. Pindex  provides a continuous 

measurement of the system performance. 

Definition 3.4: Assume system parameters vary within a finite parameter space containing n 

test points with performance index Pj' at testpoint i (i = 0, 1, ..., n), and there are m test 

points at which the system performance meets the pre-defined specification. Then the 

robustness index h-h  of the system within that parameter space is defined as: 

10 
'rb fl  — fll+ P 

n index 
n 

(3-10) 

From the definitions of 'rh,  It can be found that 	in the definition is actually the 

average performance index, and it provides a continuous measure of the system robustness, 

which is important when attempting to obtain a fine tuning of the evolved system 

performance. (n - m) is the number of tests in which the system performance was not 

satisfied. In addition, the average performance index is made to play a small part in the 
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robustness index by multiplying by I O, so that the number of unsatisfied tests is addressed 

in the robustness index. Clearly the smaller Ii-b  the more robust the system. It provides a 

continuous measurement of system robustness within the parameter space of interest. 

3.3 Fuzzy control system 

A block diagram of the fuzzy control system used in this research is shown in Fig.3-3, 

where w is the setpoint, y is the output of the process, u the control input, and P the process 

to be controlled. The PLC system was considered as a discrete system, and the 

accumulator, if required, was assumed to be included within the PLC. Error e and 

derivative error é were calculated at instance k as: 

e(k)= w(k)—y(k) 	 (3-11) 

e(k)—e(k— 1) 
(3-12) 

t v  

where t is the sampling interval of the controller. The inputs and the output of the 

controller were limited to lie within the range (-10, 10) to simulate the saturation 

characteristic of practical systems. To conform with normal practice and to minimise 

overload of the controller input, the derivative error was obtained from the process output, 

i.e. è = —i', in all simulation experiments. 

-T L __ FLC 
	 p rd ie 	I 

Fig.3-3 Structure of the fuzzy control system 

It should be noted that the SISO control systems were the main consideration in the 

simulation. The fuzzy controller was chosen to be the Mamdani-type PLC. Three symbols, 

e, è and Au, ware also used to denoted the corresponding fuzzy variables. Seven fuzzy sets 

were chosen for each fuzzy variable and named as NB, NM, NS, ZE, PS, PM, PB. 

Membership functions of each fuzzy variable were defined as the triangle shape as shown 

in Fig.3-4. 

48 



CHAPTER 3 ROBUST PERFORMANCE OF FUZZY LOGIC CONTROL 

Before performing fuzzification, non-fuzzy values of two input variables were multiplied by 

the input scaling factors to adjust the sensitivity of the controller to the variables, and the 

results were limited to the designed interval (40, 10). After defuzzification, the non-fuzzy 

control change A u was re-scaled and accumulated if needed. The results were limited to the 

practical range of the control variable u. The scaling factors were gain of error, gain of 

change of error, and gain of control output, denoted by GE, GC, and GU respectively. 

The fuzzy rule base provides an inference mapping from the input fuzzy universe ExC to the 

control output fuzzy universe U and takes the form of linguistic conditional statements: 

IFeisEk  and è isCk ,THENAuisUk , 

where Ek, Ck and Uk are fuzzy sets, or linguistic labels, defined in the universe E, C and U 

respectively. Every rule expresses a single control action at the stated system situation. The 

entire fuzzy rule base is usually represented by a matrix called the fuzzy inference matrix 

(FIM). Fig.34(c) shows the FIM used in the simulation study. 

The COG method was used to defuzzify the output fuzzy variable in the simulation. An 

accumulator is inserted after the FLC to calculate the control input to the process if there is 

no integrator in the process to be controlled. Fig.3-5 shows the basic structure of a FLC. 

The membership functions and the FIM in Fig.3-4 were heuristically designed based on 

general experiences obtained in controlling linear SISO processes. The control heuristic can 

be illustrated in the phase plane as shown in Fig.3-6. In phase 2 (or phase 4) where the 

process output is moving away from the set-point, the control input to the process should 

be decreased (or increased) proportionally to the magnitude of e and ê to drive the output 

back to the set-point. In phase 1 (or phase 3) where the output is moving toward the set-

point, the control action should be carefully decided according to the change of the output 

so as to keep the output moving at a designed speed without a big overshoot (or 

undershoot). 

It should be note that the FLC described above is widely used in fuzzy control applications, 

and the scaling factors are tuned in practice to obtain the required system performance. It 

must be realised that the results produced by this FLC are conservative; better results may 

be obtainable by using specific rules for a specific control task. 
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NB NM NS ZE PS PM PB 

Fig.3-4 Membership functions (a)(b) and FIN/I (c) used in the FLC 

Fuzzification 	 Inference Engine 	Defuzzification 

Fig.3-5 Basic structure of Mamdani-type FLC 

Set point 
© 	 © 	 Output change 

direction 

10 ________  

01 
e 

Fig.3-6 Phase plane of a control system 
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The basic principle of the operation of the controller is described as follows. For the rule 

base shown in Fig.34(c), the change of control input Au is calculated as: 

R:ifeisAjandè isB,thenAuisC ( i = 1, ......49) 

cL 	 (3-13) 

Au 1 =cog(a1 AJi . ) 	 (3-14) 

49.  

Au = i1 	 (3-15)
49 

cc 
j=1 

where tA.,  p, and p c, are membership functions of A 1 , B, and C, respectively, cog() is 

the defuzzification function with the centre-of-gravity method,. cx j  is called the degree of 

firing (DOF) of R,. Note that cog() can be obtained by performing the following operation 

on the membership function of (a 1  A i a.), say F(u): 

JuF(u)du 

cog(F(u)) = U 	 (3-16) 
f F(u)du 
U 

3.4 Robustness offuzzy  control systems 

In this section, the robustness of the fuzzy control system will be investigated, a qualitative 

analysis method will be developed and then applied to analyse the robustness of PLC 

controlled first-order and second order systems. 

3.4.1 Qualitative analysis 

A. Switching line Characteristics 

It has been recognised that human operators can regulate practical plants satisfactorily 

based on their experience of controlling the plant. Control is maintained independent of 

model variations if the model belongs to the same plant family. With reference to this fact, 

the fuzzy controller should be expected to inherently possess some robustness since its role 

is to imitate human control heuristics. Close examination of the input-output mapping, (e, 

5, 

\, 
• f 	

•J 
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e) => Au, determined by the fuzzy control rule base in Fig.3-4c reveals the following 

characteristics: 

(i ) The input-output mapping, (e, e) = Au, has an output fuzzy-zero line (not 

necessarily straight) called the switching line, separating identically signed 

output fuzzy variables. The larger the distance between a system state (e, é) and 

the switching line, the greater will be the control output change. 

(ii) The fuzzy controller always tries to drive the system state (e, e) in the phase 

plane to the equilibrium state (e = ê = 0) along the switching line. On the 

switching line, the change of error, é, is only dependent on the error e, and the 

bigger the error, the faster it changes. 

Character (ii) can also be interpreted as follows; 

For any given system error e, the FLC will try to drive the system so that the 

system state (e, e) is on the switching line. 

The above characteristics are called the switching line characteristics. These characteristics 

cause a behaviour similar to that of a sliding mode controller (SMC) [88] [61] [101] [102] 

[103]. Because of this sliding mode behaviour, the robustness is inherent in the FLC systems 

according to the sliding mode theory. When the sliding mode occurs on the switching line, 

the system remains insensitive to external disturbances and plant uncertainty. The first 

characteristic enables the desired trajectory in the phase plane to reach the switching line in 

finite time. The second characteristic presents the ability of the PLC to drive the desired 

trajectory to asymptotically go to the origin of the phase plane along the switching line. 

Compared with an ordinary SMC, however, there are two differences between fuzzy control 

and sliding mode control. First, the FLC can provide a flexible input-Output mapping 

function which is more adaptable to the state space of the system to be controlled [ 27]. 

Second, control actions of SMC often discontinuously change whenever the phase plane 

trajectory crosses the switching line; while the variation of PLC's control action is 

continuous. Moreover, the PLC can make use of the linguistic information of the system by 

means of fuzzy control rules. 
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Suppose f(e, è) is the function describing the control surface generated by the FLC. Then 

the switching line L can be expressed as; 

L={ (e, ê)If(e, è)=O} 
	

(3-17) 

If the membership functions of e and é are symmetrically distributed with respect to their 

origins (e = 0 and è = 0) respectively, then the switching line corresponding to the rule base 

in Fig.3-4c is as shown in Fig.3-7. The system states on the switching line determine a 

system performance called the switching line performance. The location of the switching 

line, and thus the performance corresponding to this switching line, is determined by the 

locations of all membership functions, the rule base, and the scaling factors. 

line 

Fig.3-7 Switching line corresponding to the rule base in Fig.3-4c 
(arrows indicate the movements of system states). 

Obviously the switching line characteristic determines the phase trajectory of the fuzzy 

control system. The control objective of the FLC is to maintain the system states on this 

trajectory by regulating the error change rate, é. The switching line performance will 

dominate the dynamic behaviour of the system if the controller can drive the phase 

trajectory to follow the switching line to the origin of the phase plane, i.e. the sliding mode 

occurs. That is, during the sliding mode, f(e, ê) = 0 effectively defines the transfer 

function of the FLC [10]. 

Note that due to the effect of the dynamics in the controlled process, ê cannot change 

suddenly from one initial state, say point A in Fig.3-7, to point B on the switching line. 
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Practical performance will be different from the designed switching line performance, 

especially in the early stage of the response. If most parts of the trajectory of a system 

response can overlap the switching line, this response will be generally considered as the 

switching line performance. Fig.3-8 shows some experimental results of phase-plane 

trajectories of the system states, which relate to several first-order systems with different 

process parameters shown on the figure. In Fig.3-8, all trajectories are very close to each 

other except for the parts corresponding to large error signals, though the process 

parameters vary significantly. Also it can be found in the figure that two trajectories 

oscillate around the switching line at the early stage of the response and finally converge to 

the switching line. Clearly the FLC possesses an ability to control systems with different 

dynamics to give a performance similar to the switching line performance. 
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Fig.3-8 Experimental results of the phase-plane trajectories near the switching line. 

B. Robust space 

Like the SMC system, the transient dynamics of the FLC system consists of two conditions: 

a reaching condition and a sliding condition. Under the reaching condition, the desired 

response aims to reach the switching line in finite time. Under the sliding condition, the 

trajectory asymptotically goes to the origin of the phase plane along the switching line. 

When the parameters of the PLC are determined, the reaching condition of the phase 
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trajectory sets a lower limit on the response dynamics of the controlled process, and the 

sliding condition sets an upper limit on the process response speed. Within these limited 

dynamics, the switching line performance can be obtained. On other hand, any change in the 

FLC parameters could lead to a different position or shape of the switching line, and thus 

change these dynamic limits on the controller process. Clearly, both conditions determine 

the robustness of the FLC system. Since they are closely related to the FLC's performance 

and the process' dynamics, further development of these conditions have to be based on the 

controlled process and the position of the switching line (see Section 3.4.2). 

Considering that the performance specifications allow a range of system performance to be 

acceptable and the system performance at the tuning point, say P o, is tuned to meet the 

performance specifications, there must be a process parameter space, say 0 containing Po , 

within which the system dynamic performance is in the performance specifications. 

Normally, the switching line performance is the designed system performance which will be 

realised at a selected tuning point P o. System performance will deteriorate if the system 

operating point drifts away from the tuning point. Therefore, the size of the robust space 4 
indicates the ability of the FLC to cope with parameter variations. 

Clearly, the robustness of this type of fuzzy control systems will be determined by the 

FLC's ability to control the system state trajectory to follow the designed switching line on 

the phase plane under the variation of system parameters. Fundamentally, there are two 

aspects which can affect this capability of the FLC. The first one is the switching line 

performance because it directly determines the quality of the system response. If the 

performance related to the switching line is just within the performance specification, then it 

can be expected that the system performance will quickly go out of specification when the 

system parameter changes. For example, if the switching line performance produces a 5% 

overshoot which is the maximum overshoot required by the specification, then increasing 

the gain in a first-order process will increase overshoot in the step response, thus the 

performance will go out of specification. 

The second aspect influencing the robustness of the FLC system is the smoothness of the 

control action on both sides of the switching line. A smooth transform of the control action 

can improve the system's stability, but is less able to bring the phase plane trajectory to the 
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switching line, since the smooth transform exhibits a relative low controller gain. On the 

other hand, a harsh jump in the control change Au, when the phase plane trajectory crosses 

the switching line, will lead to close conformity of the phase plane trajectory to the 

switching line, but oscillations in the system output and control input might occur if the 

process gain is high. 

With respect to the principle of the FLC, the switching line performance of the FLC system 

will be determined by the location of the switching line on the phase-plane, and the 

smoothness of the control action on both sides of the switching line will be determined by 

the rate of change of the control surface. The switching line and the control surface can be 

affected by the controller parameters, i.e. the membership functions, scaling factors and the 

rule base. These will be discussed in the next sections. 

Unfortunately, the size of the robust space cannot be analytically determined because (I) it 

completely depends on the controller parameters; and (2) the high non-linearity of the fuzzy 

system makes the analysis very complicated. However, in some specific cases, it may be 

possible to qualitatively predict the shape of the robust space, as will be shown in the next 

section. 

3.4.2 Robustness of the first order process 

The first-order process 

G(s)= K 
1+ Ts 

(3-18) 

is the widely used process model to approximate practical processes in analysing and 

designing a control system. Hence it will be used here to develop a qualitative analysis of 

the robustness of FLC systems. 

Assume K and T in process G(s) are parameters that can vary over a relatively wide range. 

If the system is tuned at the operating point (I(, T 0) in the K-T plane and produces the 

switching line performance at this tuning point, then, based on the argument in the last 

section, there must exists an area 4 around (K0, T0) in the K-T plane within which the 

variation of K or T does not significantly affect the closed ioop performance. 
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Suppose that at time t, process input and output are u(t) and y(t) respectively. For a very 

small time increase At, the output y(t+At) of the process (3-18) can be expressed as 

At + At) = y(t)e_tT + K(1 - e_1'T)u(t) 	 (3-19) 

Suppose At <<T. Then (3-19) can be approximately written as 

At + At) = y(t)(1 
- At 
-) + K 

At  
—U(t) 	 (3-20) T 	T 

y(t+At)–y(t)K 

& (3-21) T 

where u(t) = -
y(t) 

denotes the equivalent control input of y(t). Let AU eq  = u(t) - u(t), 

called the equivalent control change. From the definition of the change of error ê in (3-12), 
if At is sufficiently small, then we have 

ê(t) = —'(t) 	AU eq 	 (3-22). 

From (3-22), it is clear that if the FLC controlled process is of first order, the error change 

ê at any time is proportional to the process parameter ratio (K'T) and the equivalent 
control change AU eq . If AU eq  is constant, then all points on the line K=aT (a is a constant) in 

the K-T plane will present a common phase plane trajectory for a given initial error. If (K/I) 

is constant, the equivalent control change Au eq  can be regulated by the FLC to keep the 

system state (e, è) on the trajectory determined by the switching line. 

Because of the inevitable limitation of the FLC output, there will be a limited range of 

process parameters with which the system phase plane trajectories can be brought to or near 

the switching line. This problem becomes most critical at the beginning of a step input 

response, because the response at that time is required to be fast enough to meet the 

performance specifications. Suppose that I ê I r,,in  is the minimum response speed at' the 

beginning of a step input response for an acceptable performance, and IAÜIm is the 

maximum control change from the FLC. Then from (3-22), for an acceptable performance, 

the process parameters should meet the condition 

!i> Ielmin 
T - IAUI, 	' 	 (3-23) 
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otherwise, the system performance will be slower than the specified response. Note that at 

the beginning of a step input response, IAUeq I max = lAul 

On the other hand, because of the switching line feature of FLC systems, fast system 

response or large control change may lead to oscillations of the phase plane trajectory 

around the switching line, so that the system cannot reach the steady state. For a FLC 

system with all controller parameters fixed, the maximum dynamic response speed of the 

controlled plant will be limited. That is, the response speed of the plant should be so slow 

that any non-zero control change lAul cannot drive the system to the unstable state. 

Therefore, there will be a limited range of process parameters, within which the motion 

speed of any phase plane trajectory maintains the above restriction. 

In practice, a certain amount of fluctuation of the phase plane trajectory around the 

switching line will generally be accepted. That is, the controller's output may vary in a 

certain bounded range to force the system phase plane trajectory to slide on to the switching 

line. Let Au i  indicate this bounded control change. Normally IAU siIm AUIm . Suppose that 

the maximum speed change is IA ê 'm  Then the upper limit of the process parameters can 

be expressed as 

!i< 	leIfl11)( 

T - 	 max  
(3-24) 

The condition (3-23) provides a reaching condition for the system phase plane trajectory to 

reach the switching line; and (3-24) provides a sliding condition for the system phase plane 

trajectory to slide along the switching line. In practice, it is not necessary for the trajectory 

to be exactly on the switching line. These two conditions present a general definition of the 

robust space of a FLC controlled first order system and they are represented by a sector on 

the K-T plane, as shown in Fig.3-9. 

As expected from conventional control theory, the sample rate of the FLC will affect system 

robustness. If the sample rate is fixed, its effect will becomes significant when the process 

time constant T is comparatively small or large. For example, if T is relatively small, the 

system response is fast, and the response of the FLC becomes relatively slow so that it may 

be too late for the controller to change its control action before the performance becomes 
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poor. When T is large, the system response is slow, and the response of the controller 

becomes relatively fast. The fast response will lead to too much control action so that the 

system can be easily over-driven or saturated, thus large overshoot or undershoot can be 

produced. Therefore, for a FLC with fixed parameters, there will be a limited range of time 

constant (Tmin , Tmax) of the controlled plant, outside which the system performance will be 

significantly impaired. The parameter regions corresponding to this limitation are illustrated 

as area 3 and area 4 as shown in Fig.3-9. 

In addition, because the response speed in the transient period is limited by the switching 

line performance, the transient performance may not meet the current settling time 

specification in some situations (see Section 3.2.1 for R,çj  definition). For example, a small 

time constant process will expect a faster response to meet the settling time requirement. 

So, there will be a low time constant area (area 5 in Fig.3-9) within which system 

performance will be out of the performance specifications due to the switching line 

characteristic, though its step input performance is the same as the switching line 

performance. 

2. Limitation  
sliding conditionl----, 

5. ST is out of 
specification 

K0  

4. FLC response 
is too slow 

T0 	T rrnux  

(. Robust space 

3. FLC response 
is too fast 

1. Limitation of 
reaching condition 

T 

Fig.3-9 Illustration of the robust space of the FLC system with first-order process 

If the system contains a time delay, or is of high order with one dominant time constant, the 

system robustness will possess the same general features as that of the first order system, 

but the size of the robust space will be significantly affected. As expected with conventional 

control theory, the system becomes unstable if high gain is used in both situations. This will 
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result in a narrowed robust space in the gain K direction. In addition, the time delay 

amplifies the effect of saturation or over-drive in dynamically slow systems, and leads to big 

overshoots or undershoots. Thus the robust space will be reduced in low gain and large time 

constant situations. Although the effect of the time delay is expected to decrease when time 

constant is increased, it is also related to the sampling rate of the controller. For example, 

experiments show that if the time delay is more than four times the sample period, obvious 

increase of overshoot or undershoot in the system performance will be observed, no matter 

how large is the time constant. 

Unfortunately, non-linear system theory cannot, as yet, offer techniques that could be used 

to quantitatively define the robust space. General comments can be made, such as, lAulmax  is 

related to the membership functions of Au and GU, while I è I nin  , I ê I , Tmin and Tmx  are 

mainly affected by location of the switching line on the phase plane. But, any change in the 

membership functions or rule base may affect these parameters. 

3.4.3 Robustness of the second order process 

The second order process is defined by the transfer function; 

G(s) = 
w 2 K 

s 2  +2ws+cO 2  
(3-25) 

It has characteristic features different from that of the first-order process. It is known that 

changes in the parameters of a second order process can change the form of the response as 

well as the response speed, while parameter changes in the first-order process only affect 

the speed of the response. A second order process can display damped characteristics much 

like a first-order process or pure oscillations in its transient response, depending on the 

damping ratio . 

When ~! 1, a second order process has two real poles 

,2 	t0) ±oJc2  —1 
	

(3-26) 

and its transient step response is formed from two exponentials with time constants equal to 

the reciprocal of the pole locations (see Fig.3-10). 
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As increases, one pole moves away from the origin of the s-plane and another moves 

towards to the origin, and the exponential corresponding to the pole near the origin 

becomes more and more dominant in the response. Generally, when >1.5, the second 

order process can be approximated by a first-order process with pole at 

r=—çco, +o/ç2  1. 	 (3-27) 

The corresponding time constant is 

1 
T= 	 (3-28) w ,1 (c_c 2 _1) 

(a) 
	

(b) 

Fig.3-10 Second-order process ( = 1.5, c) = 3). (a) pole location; (b) step response. 

It can be found that T is proportional to and (1/wa 
 ). 

Thus, the robustness of the FLC 

controlled second order process will be similar to that of the first order process in case of 

> 1.5. That is, the robust space will approximately be a sector area in the K - plane 

(with constant () or in the K—(1/w 
) 

plane (with constant 
). 

When :!~ 1.0, the effect of on the robust space of the system is approximately equivalent 

to the effect of the time constant in the first-order process. As decreases, both poles will 

move toward the imaginary axis along a circular route (with radial length equal to (O,  see 

Fig.3-1 1); and thus the step response of the process becomes increasingly oscillatory (OS 

increases and rise time decreases) and its sinusoidal amplitude will decay more and more 

slowly. Under the control of a FLC, should be large enough so that the limited control 

input can overcome the overshoot to bring the system trajectory to the switching line. On 

Me 
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the other hand, for a range of possible control inputs, the damping ratio should be 

sufficiently small to allow the trajectory to reach the switching line. When is small, the 

closed-loop performance is oscillatory, decreasing gain K can improve system performance. 

When is large, the response is slow, increasing gain K can help to meet the reaching 

condition. Therefore, it can be predicted that the robust space of the second order process 

under variation of the damping ratio is approximately a sector area in the K- plane similar 

to that of the first-order process. 

The effect of wi, on the system robustness when ! ~ 1.0 will be different from that of the 

damping ratio, because in the open-loop step response variation of o leads to a change of 

response speed, but does not affect the overshoot. As oc, increases, both poles of the second 

order process will move away from the origin of the s-plane in the radial direction ( 

constant, see Fig.3-12). Therefore, the frequency of the sinusoidal part of the step response 

becomes higher, and the response becomes faster (RT decreases). 

In the closed-loop situation with a FLC as the controller, the FLC will try to bring the phase 

plane trajectory to the switching line. When o increases, the FLC will limit the response 

speed to the speed determined by the switching line. Suppose that the settling time of the 

switching line performance is T1 and the settling time specification of the second order 

process is 3/(t4) for the system output to reach within 2% of the steady state value. Then 

the maximum w to meet the settling time specification is 

" -U) 

=cosO 

jU) 

Fig.3- 11 Pole trajectories of the second 
order process when decreased 

Fig.3-12 Pole trajectories of the second 
order process when cq, increased 
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Co n 	
3

.max = •;- 
	

(3-29) :E  

If oA, is large, the controlled process produces a fast response to the control action. Because 

of the switching line feature, the PLC will try to bring the fast response speed down by 

decreasing the control actions. Hence the process will run at a slower speed in this situation 

than in the open-loop condition with the same setpoint. In addition, the equivalent time 

constant, 1/(o ), of the second order process is relatively small if o is large. Thus, the 

settling time specification for the PLC controlled second order process will be relatively 

small, because the settling time specification is normally defined as a time period 

proportional to the time constant of the controlled process. Due to the response speed 

limitation arising from the switching line feature of the PLC systems, the system cannot 

meet the settling time specification if o becomes larger than a certain value. In this case, 

increasing gain K can help to increase the response speed without changing the settling time 

specification. The larger o, the larger will be the gain needed to bring the system 

performance within the specification. Therefore, the minimum gain K values required to 

meet the settling time specification at different wh will form part of the boundary of the 

robust space of the second order system on the K— ul l  plane. 

As w decreases, both poles of the second order process will move toward the origin of the 

s-plane in the radial direction. The frequency of the sinusoidal part in the step response 

becomes - slower, and the transient period becomes longer (RT increases). Under fuzzy logic 

control, the system produces a faster response speed than that of the open-loop second 

order process, because of the over-drive control action generated from the switching line 

feature (see Fig.3-13). Thus there is a tendency to generate a bigger overshoot than that of 

the open-loop system, and the phase plane trajectory will run away from the switching line 

when the phase plane trajectory crosses the setpoint (point A in Fig.3-13). If the correction 

control is applied at this time and the controller's dynamic speed is relatively slow, then big 

undershoot will be produced, as depicted in Fig.3-13. In addition, even if there is a small 

change in the overshoot or undershoot, the settling time may exhibit a large change because 

of the oscillatory performance, see illustration in Fig.3-14. In this case, intuitively, 

decreasing gain K can reduce the effect of the over-drive problem. The smaller the o , the 

smaller will be the gain K needed to meet the performance specifications. Therefore, the 
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maximum K values required to meet the specification for overshoot or undershoot at 

different o, will form another part of the boundary of the robust space of the second order 

system on the K— al, plane. 

The sampling rate of the controller can also affect the robustness of a system. If the 

sampling rate is fixed, systems with high gain K or large frequency o 0  will encounter 

stability problems; and systems with low gain K or low frequency wr, will have problems 

associated with accumulator saturation. So, from system theory, there must be limited 

parameter ranges of K and O) which satisfy the stability requirements (maximum K and wri  

and the performance requirements (minimum K and o). 

Low gain can be expected to reduce the overshoot or undershoot when (or, is small, but low 

gain will increase the saturation if oi, is low. This conflict will lead to a narrow band of gain 

K in this case. 

From the above discussions, the robust space of the PLC controlled second order process 

can be estimated as the shaded area on the K— ul, plane as shown in Fig.3-15. The lines A 

and D on the figure form a narrow space in the low gain area. Lines B and F are the 

maximum limitations of K and o determined by the sampling rate. Line C is the minimum 

K boundary determined by the settling time specification in the high o situation. Line B is 

the maximum K boundary determined by the overshoot (undershoot) specification in the 

relatively low o situation. 

y(t) 	
A 	

Closed-loop response 

J. 

	

- 	 — -.. 	 - - — - 

— — 

/1 

leads to big undershoot 

1/'NOoesPonse Slow controller dynamics 

'S  Response speed generated by 
S 

S the switch line performance 
, 

Time 

Fig.3-13 Illustration of the system performance when switching line performance 
is faster than the open-loop response of the second order process 
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0 	 S 'B 	 2000 Sample 

Fig.3-14 Big change in settling time with a small change in OS or US 

Fig.3- 15 Estimated robust space of the fuzzy logic controlled second order process 

Finally, it can be concluded that the robustness of the FLC system stems from the switching 

line feature of the controller. The switching line performance will dominate the dynamic 

behaviour of the system if the sliding mode occurs. The size of this robust space will be 

affected by the distribution of rules on both sides of the switching line. If the parameters of 

the controller are fixed, the switching line feature can tolerate some variation of the process 

parameters, provided that the reaching condition and the sliding condition are met. 

Fundamentally, the reaching condition and the sliding condition are closely related to the 

sliding ability of the controller, which is in turn related to the maximum drive and the 

dynamic speed of the controller. Increasing the sliding ability of FLC is achieved by 

increasing the sampling rate (thus increasing the dynamic speed of the integrator after the 
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FLC), or by increasing the scaling factor GU (thus increasing the output of the FLC), or 

both. However, fast sampling or large GU can lead to big and fast oscillation in the control 

output u and thus increase the energy consumption, see illustration in Fig.3-16. 

0 

0 	 Samples 	 1000 

Fig.3- 16 System performance of the FLC controlled second order process 
when sliding ability is increased. (T =1, GE =1, GC =100, 

GU =100. o, = 8.0, = 0.8, K = 2.5). 

Nevertheless, this qualitative discussion does explain that the robustness of FLC systems is 

closely related to the switching line performance, and the sliding ability should be increased 

in the case of a second order system if high robustness is required. However, because of the 

addition of the integrator (accumulator) in the forward path of the control loop, the 

robustness of FLC systems will decrease when the order of controlled processes is 

increased. 

3.5 Effects of FLCparaineters on system robustness 

Since the parameters of the FLC determine the dynamic performance of the controller, they 

can affect the robustness of the control system. The FLC parameters include rule base, 

membership functions and scaling factors. In this section, the effects of these parameters on 

system robustness will be discussed and attention will be paid to the relation between the 

variation of the controller parameters and the switching line performance. 
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3.5.1 Effect of fuzzy rule base 

The fuzzy rule base contains control strategies under most system states. In the SISO 

systems, the rule base can be represented as a matrix. To explore the relationship between 

the rule base and switching line, the rule base will be placed on the phase plane together 

with the membership functions. For readability, the membership functions will not be drawn to 

scale and only the dominant rule will be shown for each cell of the phase plane. 

Let's first investigate the rule base in Fig.3-4 which is redrawn in Fig.3-17. From the 

position of the switching line in the phase plane, it can be seen that the error change rate é 

in the transient period is required to be no bigger than the fuzzy MEDIUM level. This 

structure of the rule base makes it relatively easy for slow dynamic processes to meet the 

reaching condition and relatively hard for fast dynamic processes to meet the sliding 

condition. Therefore, the fuzzy control systems with this rule base will be expected to 

produce a better robustness in the case of slow dynamic processes than in the case of fast 

dynamic processes. 

WWWWWWWWWW kM 

Fig.3-17 Switching line defined by the rule base. 

If all membership functions and scaling factors are kept unchanged, the position of the 

switching line can easily be modified by positioning differently signed control actions in the 

matrix, i.e. changing the consequent part in the fuzzy rules. For example, a symmetrical rule 

base defines a diagonal switching line in the phase plane, as shown in Fig.3-18. This 
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switching line, defined by the symmetrical rule base, allows a faster response speed in the 

transient period than that defined in Fig.3-17. On the gray areas in the figure, the controller 

output is maintained at a constant value and thus becomes insensitive to variations in error 

and error change. 

By modifying the positions of ZERO control actions in the rule base, switching lines with 

different shapes can be obtained. Fig.3-19 gives two types of switching lines which require 

smaller response speed in the relatively small error situations than the switching lines 

defined in Fig.3-17 and Fig.3-18, and produce different responses when the error is 

relatively big. The rule base in Fig.3-19(a) will be suitable for dynamically slow systems, 

because the dynamically slow switching-line-performance can reduce system overshoot and 

undershoot. Similarly, the rule base in Fig.3-19(b) can satisfy fast response requirements 

with a small overshoot or undershoot. 

It can be found that if the angle p between the e-axis and the switching line in the phase 

plane (see Fig.3-20), called the switching line angle, is reduced, the response speed, the 

system overshoot and undershoot in the switching line performance will be decreased, but 

settling time will be increased, and vice versa. Moreover, small ç may lead to oscillation of 

the phase plane trajectory around the switching line, especially when the controlled process 

NB NM NSZEPS PM PB 

NB L 	j NB NBNB NBNMNS 	ZE 

NM NB: NEi  PS 

NS NB NBNMNSZEPS PM 

ZE NB NM:NSZE:PS:PM PB 

PS NM NS:ZEPS:PM:PB PB 

NS ZEPSPMPBPB PB 
PM 

ZE PSPM:PBPBPB PB 
PB : 

e 

Fig.3-18 Switching line defined by a symmetrical rule base. Note 
that the gray areas on the switching line indicates Au = 0. 
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Fig.3-19 Switching lines defined by the modified rule bases which produce 
slow response (a) and (b) fast response in big error situations 
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is dynamically fast; and big p may lead to oscillation of system output around the setpoint, 

specially when the controlled process is dynamically slow. Therefore, unsuitable design of 

the switching line angle can reduce system stability. Fig.3-21 shows three performances of a 

first-order process controlled by a FLC with different switching line angles. Note that a 

switching line may consist of several segments with different switching line angles, which 

generate different dynamic performances at different system states. 

In addition to the effect of the rule base on the position of the switching line, the rule base 

can also affect the smoothness of the control on both sides of the switching line. For 

example, if more SMALL control actions (PS and NS) are added to both sides of the 

switching line in the symmetrical rule base in Fig.3-18, as shown in Fig.3-22, the phase 
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plane trajectory of the system will reach the switching line more slowly than that determined 

by the rule base in Fig.3-18. A smooth phase plane trajectory can reduce oscillation around 

the switching line, thus it is suitable for stabilizing high gain systems. However, increasing 

the smoothness of the phase plane trajectory will lead to a slow response. 

In summary, the rule base can affect the position of the switching line and the smoothness of 

the phase plane trajectory. Because system robustness is closely related to the switching line 

performance, any changes in the rule base can affect the robust performance. Different 

control objectives may require different switching line performance. When the controlled 

process and the switching line performance are decided, system robustness is then 

determined. 

However, the possibilities of changing the switching line performance by modifying the rule 

base are limited because of the limited number of output fuzzy variables. Due to the 

possibility of continuous change in the positions and shapes of membership functions, 

switching lines can be changed to any position with any shape. This will be discussed in the 

next section, 

3.5.2 Effect of membership functions 

To examine the effect of membership functions on system robustness, assume that the rule 

base is symmetrical as shown in Fig.3-18, and the scaling factors are set to 1.0. Fig.3-23(a) 

shows the switching line corresponding to the membership functions in Fig.3-4(b). Because 
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N 	I - e 
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PS NS 	NSEPSPSPM 	PB 
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PM 
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PB 

Fig.3-22 Increasing the smoothness of phase plane trajectory by adding 
more SMALL control actions by the side of ZE-line in the rule base 
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two fuzzy input variables, error and change of error, have the same definitions in both 

fuzzy values (or labels) and membership functions, the switching line determined by the 

FLC has a switching line angles of 45° at the origin of the phase plane, and two large gray 

areas on both ends which will lead to a less sensitive response to the error change ê in big 

error situations. 

If the coordinates of the membership functions of é are multiplied by 2, i.e. changing the 

density of the membership functions around the origin, the saturation part in the 

membership functions of PB and NB disappears, thus there will be no gray areas on the 

switching line. And the switching line angle will be increased, as shown in Fig.3-23(b). 

Clearly the switching line performance defined in Fig.3-23(b) will generate a faster 

response, thus bigger overshoot than the switching line performance defined in Fig.3-23(a). 

Similarly, if the coordinates of the membership functions of e instead of é are multiplied by 

2, there will be no gray areas on the switching line either, and the switching line angle will 

be decreased to 30°. The switching line performance will become slow. 

If the positive part of membership functions of é is multiplied by 2, and the negative part is 

kept unchanged, a combination of the switching lines in Fig.3-23(a) and (b) can be realized, 

as shown in Fig.3-24. This switching line produces fast response when error is negative and 

slow response when error is positive. 

It should be noted that the switching line performance can also be altered by changing the 

overlap of membership functions. If trapezoidal membership functions are used and non-

overlapped gaps are allowed to exist in the membership functions of fuzzy input variables, 
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(a) 
	

(b) 

Fig.3-23 Switching line defined by a symmetric rule base, unit scaling factors, and 
the membership functions in Fig.3-4(b): (a) before (b) after multiplying 

the coordinates of the membership functions of é by 2 
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Fig.3-24 Combination of the switching 	Fig.3-25 Creating insensitive-areas on the switching 
lines in Fig.3-23(a) and (b) 	 line by using trapezoidal membership functions 

there will be several insensitive-blocks on the switching line, as shown in Fig.3-25. In the 

insensitive-area, control output u will not change however the input varies, since only one 

fuzzy rule with constant degree of firing (DOF) is fired. This robustness with respect to the 

input variation can be utilized to stabilize the system when the oscillation of phase plane 

trajectory around the switching line develops, because operation in the insensitive-area 

allows loose control of the phase plane trajectory. It can also be used to eliminate the effect 

of noise in the crisp inputs on the system performance. However, increasing the insensitive-

area on the phase plane may deteriorate system performance due to the open-loop-like 

control characteristic in the insensitive-area. 

On the other hand, increasing the overlap in both sides of membership functions of input 

fuzzy variables will not generate significant changes in the switching line performance 

compared with two-overlapped membership functions. The reason is that an increased 

overlap will increase the number of fired fuzzy rules; the extra rules sit around the previous 

rules; the average control change generated by the extra rules will not significantly differ 

from that generated by the previous rules. In addition, more overlapping requires more 

computational resource, and this may reduce the controller speed. That is why most fuzzy 

control applications use no more than two overlapped membership functions. 

So far little attention has been given to the effect of output variable membership functions 

on system performance. However, they can directly affect the switching line performance of 

fuzzy systems in a manner similar to the effect of the process gain. The membership 
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functions of the output variable enable the PLC to produce any non-linear control by 

different definitions of each fuzzy output set. Changing the position of the membership 

function of an output fuzzy set will alter its contribution to the controller output if this 

output fuzzy set is the consequence of a fired fuzzy rule. Changing the support of the 

membership function of an output fuzzy set will alter its weight in defuzzification if the 

COG defuzzification algorithm is used, this changes its effect on the controller output. But 

the shape of membership functions will not significantly affect the controller output. All 

these effects are equivalent to gain changes in the controller from a piecewise linear point of 

view. 

As far as the reaching condition of the PLC, described in section 3.4, is concerned, high 

controller gain is required so that any start point on the phase plane can meet the reaching 

condition, especially for low gain processes. As far as the sliding condition of the FLC is 

concerned, low controller gain on both sides of the switching line is preferred, since low 

gain can help to stabilize the oscillation of phase plane trajectory around the switching line, 

especially in case of high gain processes. In addition, high order processes or time delay 

processes will not endure high gain controls because of the stability problem. Therefore, 

there is a trade-off between the system performance and stability, or the reaching condition 

and sliding condition. 

Generally, when a symmetrical rule base is used, any monotonic switching line in the phase 

plane can be realized by using different sized and positioned membership functions of the 

input variables. If both the rule base and membership functions are manipulated, any type of 

switching line can be implemented. This flexible switching line feature makes PLC systems 

extremely powerful, able to produce any required non-time-varying control law. Owing to 

this flexible switching line feature, system robustness can be optimized by properly designed 

rule base and membership functions. 

3.5.3 Effect of scaling factors 

Optimal scaling not only depends on the properties of e, è and Au, but also on the shape 

and position of the membership functions used and the dynamics of the plant to be 

controlled. 
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For a given fuzzy controller, increasing the scaling factor is equivalent to compressing the 

corresponding membership functions towards the origin of the related axis, and thus 

decreasing the support of each fuzzy subset related to that fuzzy variable on both sides of 

the origin. For example, membership functions for error g(e) in Fig.3-26(a) with scaling 

factor GE = 2, are equivalent to those shown in Fig.3-26(b) with GE = 1, because the same 

fuzzification can be produced for a crisp input in both cases. That is, if the practical input 

error = 1.0, the output of the fuzzification operation will be PM with membership grade 1.0 

in both situations shown in Fig.3-26. It should be noted that the coordinates in Fig.3-26 are 

given after scaling. 

If the membership functions are fixed, increasing the scaling factor of a variable results in a 

decrease of the practical region of that variable covered by the unsaturated membership 

functions, thus increasing the practical region covered by the saturated part of membership 

functions, i.e. NB and PB. Therefore, the bigger the scaling factor of a variable, the more 

sensitive will the controller be to the small values of this variable, and less sensitive to big 

values of this variable. 

Due to the effect of the scaling factors on the position of membership functions, the 
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(a) GE = 2 

(b) GE = 1 

Fig.3-26 Same fuzzification output from different definition of 
membership functions and different scaling factor 
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Fig.3-27 Illustration of effect of scaling factor GC on the switching line 

switching line angle and the size of the insensitive area on the switching line can be changed 

simply by tuning the input scaling factors. Fig.3-27 illustrates two switching lines at 

different input scaling factors. It can be seen that the two big insensitive-areas at both ends 

of the switching line in Fig.3-27(a) have disappeared and the switching line angle changes 

from 45° to 60° when GC changes from 1.0 to 0.5. 

It is also known that the function of scaling factors is to map the practical universe R of a 

variable to its corresponding designed fuzzy universe F, i.e. 

R = a F 
	

(3-30) 

where a is the scaling factor. From the mapping point of view, if the designed fuzzy 

universe is kept unchanged as it is in the practice, the corresponding practical universe will 

be decreased by increasing the scaling factor. Then a relatively small area in the universe R 

will be focused inside the controller, thus increasing the sensitivity of the controller to small 

input signals. 

The effect of output scaling factor GU on system performance is the same as that of output 

membership functions. Any change in GU will directly affect the system loop gain. The 

difference between the effect of the output scaling factor and the output membership 

functions is that the scaling factor can only change the overall gain of the control, not a 

specific part of the output universe of the control change Au, which can be done by 

modifying only part of the output membership function as discussed in the last section. 

Since GU can change the overall loop gain, it can be used to tune the controller to give the 
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required response speed and/or to meet certain stability conditions. Intuitively, decreasing 

the output scaling factor can improve system robustness if the stability is the main reason 

for poor robust performance; increasing the output scaling factor will improve system 

response speed if there is no stabilit' problem. 

In summary, input scaling factors can affect the position of the corresponding membership 

functions and change the position of the switching line, the size of the insensitive-area, and 

the switching line angle. A big scaling factor results in a small input region around the 

origin, increasing the sensitivity of the controller to small signal changes and saturating large 

signal changes. The output scaling factor functions as a multiplier of the overall ioop gain. It 

can directly affect system performance. Owing to the effects of scaling factors on system 

performance and their simplicity in tuning, they are often used to tune system performance 

in many practical applications of fuzzy control. Chapter 5 will focus on this issue. 

3.6 Designing for robust performance 

Although fuzzy control is very successful, especially for the control of nonlinear systems, 

there is a lack of a systematic design method for such controllers with respect to the robust 

performance and stability of FLC systems. The control rules are normally extracted from 

practical experience, which may make the design rather subjective. It is also difficult to 

design the membership functions of input-output fuzzy variables for a specific system 

performance because of the multi-parameter dependency. A detailed theoretical base has yet 

to be developed for non-linear systems in general and fuzzy systems in particular that will 

allow a systematic, mathematically based, design method to be established. Fortunately, the 

qualitative approach to predicting the performance of fuzzy logic controllers presented in 

this thesis can be applied to the design of fuzzy systems and has been found to lead to 

successful system operation. It is expected that this approach will lead to the formation of a 

knowledge base essential for the development of the theoretical framework. 

In this section, a procedure will be prescribed that will lead to the to design of a FLC to 

achieve robust performance. First, a switching line method for a robust FLC system will be 

discussed. The position of the switching line will be selected and the distribution of rules on 

both sides of the switching line will be determined, based on the relationship between the 
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system performance and the position of the switching line investigated in the previous 

sections. Second, the high order process control problem will be addressed by modifying the 

structure of the FLC. Finally, an evolutionary method based on a genetic algorithm will be 

proposed to automatically design a robust fuzzy control system. 

3.6.1 Switching line method for a robust FLC system 

The motivations for the design of a robust FLC system can be stated as follows. It is found 

in section 3.4.1 that the switching line performance will dominate the dynamic behaviour of 

the system if the sliding mode occurs. So the position of the switching line on the phase 

plane can be determined according to system performance requirements. It is also indicated 

in section 3.4.1 that the size of the robust space will be affected by the distribution of rules 

on both sides of the switching line, thus the locations of all membership functions and rules 

on the phase plane can be selected with respect to the robustness requirement. 

In this section, the position of the switching line will first be determined, then the locations 

of the membership functions and the rules in the phase plane. The position of the switching 

line is determined to meet the requirements of the system performance at the selected tuning 

point. The positions of membership functions of the input variables and the ZERO-output 

rules will be decided by satisfying the reaching condition and sliding condition so that the 

system can operate in the sliding mode. 

A. Design the switching line form the required system peiformance 

Suppose that no more than two membership functions are overlapped, and normalized 

triangles are used except for the trapezoidal membership function at each end of the 

predetermined domain of the fuzzy variable. Also assume that the variation ranges of the 

system error e and error change ê are known as [-emax , emax] and [ max, ê max].  Based on 

the procedure used to draw the switching line on the phase plane from the input fuzzy 

membership functions, the following reverse procedure can be used to design the required 

switching line satisfying the performance specifications. 

Step 1: Draw a normalized phase plane P, and scale the variation ranges of e and è to the 

unit interval, i.e. 
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e domain [-em , ema,j => [-1, 1], èdomain [max, max] => [-1, 1]. 

Step 2: Select a set of process parameters as the operating point 0 of the control system. 

Consideration should be given to the possible variation of process parameters, and 

selecting the middle point as the center of the parameter domains. In this operation, 

the equal variation ratio of each parameter on both sides of the tuning point is 

recommended, that is, the ratio of the upper limit of the operation range to the 

selected operating point value of a parameter should be equal to the ratio of the 

operating point value to the lower limit of that parameter range. For example, if the 

bounded variation range of parameter K is [1, 9],  the operating point should be K = 

3, because K has the same increase and decrease ratios. 

Step 3: On the normalized phase plane P, design a phase plane trajectory L, on which the 

system performance at the operating point 0 is satisfied. Except for the start-up 

part of the phase trajectory, L will be used as the switching line to determine the 

membership functions. In this step, help from computing tools is needed to 

calculate the settling time of the step response. 

Step 4: Use N tangentially positioned lines to approximate the selected switching line L as 

close as possible (N is the number of membership functions to be used for fuzzy 

variables e and e), as shown in Fig.3-28 (a). (N-l) crossing points are generated 

by these tangential lines. One of these lines must cross the origin of the phase 

plane. 

Step 5: Together with the origin of the phase plane, N points determine the coordinates of 

the N apexes of the triangle membership functions for both input fuzzy variables, 

see Fig.3-28 (a). 

There are many possible positions of L because normally the system performance 

specifications are set to accept a performance range rather than exact specifications. 

Attention has to be paid to determine the swiftness of the step response. A fast step 

response may create a stability problem when process gain K becomes high; a slow step 

response could lead to an unsatisfied settling time specification when the process is 

dynamically fast, for example when it has a small time constant T. Either situation could 

78 



CHAPTER 3 ROBUST PERFORMANCE OF FUZZY LOGIC CONTROL 

impair the system robustness. Adjustment of the switching line position may be necessary if 

the robustness does not meet the requirement for the whole or part of the parameter space. 

It should be noted that the selection of the switching line is heavily dependent on the 

dynamics of the controlled process. It is impossible to arbitrarily select a switching line for 

the system with control saturation (as all practical processes are). From the author's 

experience, the phase plane trajectories of the open-loop unit step responses of the 

controlled process with different gains can be used to determine the switching line of a 

closed-loop system. However, a systematic design method for this task has not been 

developed yet. Further research work is needed. 

NB NM NS ZE  Ps 	PM PB 

min 

NSI2PS  
PB[ T•1.~.......... 	A 

e 

 

e 

NB...... use PS or NS on the 
rules on both sides of 

NS .ZE: PSN..,.,
. the ZE rules 

e 	ZE....N.JZE....PS use ZE on the rules 
PS 	NS..Z 	PS corresponding to the 
PM NS 	E PS switching line 

 

Fig.3-28 Determination of (a) membership functions (n=7) and (b) rules from the required 
switching line (A-B, C-D are the start-up region of the phase plane trajectory). 
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B. Design fuzzy rule base from the required robustness 

After the determination of the switching line of the FLC system, system robustness becomes 

the main concern when we are going to design the output membership functions and the 

rule base. Because of the switching line feature of FLC systems, system robustness can be 

achieved by requiring the system to meet the reaching condition and the sliding condition. 

For different controlled processes, a robustness specification may require different reaching 

conditions and sliding conditions. In general, a parameter whose variation can affect the 

dynamic performance of the process will influence these conditions. In the following, a first 

order process will be used to illustrate the design of the output membership functions and 

the rule base to meet these conditions. The method can be applied to other process cases, 

provided that the concerned parameter has the same effect on the system robustness as one 

of the parameters of a first-order process. 

From section 3.4.2, the reaching condition and the sliding condition of the first-order 

process are respectively 

!i> IèInn 	, 	 (3-31) 
T lAuI 

!i< IieI max 	 (3-32) 
T - ILU siI max  

where K is the process gain, T is the process time constant, lAUl max  is the maximum control 

change from the PLC, lAU si I max  is the maximum acceptable control fluctuation, I é I is 

defined by the minimum error change to satisfy the reaching condition, and 1A ê I max  is the 

maximum speed change allowed for the phase plane trajectory to slide on the switching line 

in the sliding period. 

Suppose that the parameter domains of K and T are [Kmjn, Kmax] and [T mn , Tinax] 

respectively, within which the system performance is required to satisfy the design 

specifications. From (3-3 1) and (3-32), we have 

Kmin 
> tmin (3-33) 

Tmax 	IL\UImax '  

Kmax < IL\elmax  (3-34) 
Tm in  - lAUiI max '   
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From the reaching condition (3-33), I è I, is related to the settling time specification, 

denoted as STspec . That is, the system response should be fast enough to reach the switching 

line so that the settling time specification can be met. If the phase plane trajectory of the 

FLC system is partitioned into reaching part and sliding part, see Fig.3-29, the following 

condition can be derived from (3-33): 

treach + tclid  <ST 	 (335) e 	spec 

where treach and tsljde  are times spent in the reaching period and the sliding part of the step 

response respectively. 

If the unequal sign in (3-35) is replace with the equal sign, then treach is the maximum time 

spent during the reaching period. Thus I ê I r,,in  can be approximately calculated as 

IImin 
= Le 	

(3-36) 
treach 

where i.\e is error change covered by the reaching period, as shown in Fig.3-29. Ae and treac/l 

can be obtained from the phase plane trajectory. From (3-33), the maximum control change 

ILUImax  should meet the condition 

lAul 	
> IêI,, •Tmax  = 	e Tmax  

max - 
Kmin treach . Kmin  

(3-37) 

Based on the defuzzification algorithm presented in Chapter 2, IUImax is the control output 

related to the fuzzy control rule corresponding to the start point on the phase plane where e 

is fuzzy BIG, and é is fuzzy ZERO. Suppose that at this system state, the consequent part 

max 

tslide 
	- ,-- 	allowed 

switching line f 	 ....
trajectory  

treach ------ . 	/ 	e 

Fig.3-29 Diagram illustrating the reaching period and the sliding period 
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of the fuzzy rule is fuzzy PB as its output, and the center-of-gravity method is used. Then 

the center-of-gravity value of this output fuzzy set PB, cog(PB), should be 

cog(PB) 
= I AlI rnax  

GU 
(3-38) 

where GU is the scaling factor of the control change Au. If the isosceles triangle is used as 

the membership functions of Au, then the core value of fuzzy set PB, Core(PB AU), will be 

the same as cog(PB) as shown in (3-3 8). 

Similarly, from (3-34), the maximum acceptable control fluctuation, IAusi I max  should met the 

condition 

I AI 	•T 
Au I 	

min 	 (3-39) 
si max - 

	'max 

where IAê Imax can be obtained from the required switching line shown in Fig.3-29. 

If fuzzy SMALL control changes are used in the rules on both sides of the switching line, 

then, for example, the center-of-gravity value of the output fuzzy set PS, cog(PS), should 

be 

cog(PS ) = lAu ci l max 	IAI max T n  

GU 	GUKmax  
(3-40) 

if the isosceles triangle is used as the membership functions of Au, then the core value of the 

PS, Core(PS), will be the same as cog(PS) as shOwn in (3-40). Note that normally 

IAUsiimax<IAUImax, cog(PS)< cog(PB). 

If fuzzy PM is used in fuzzy variable Au, its center-of-gravity value can be chosen at 

between the cog(PB AU) and cog(PS). The support of each fuzzy set can be decided by 

using a normal triangle shape membership function, or simply using fuzzy singletons at the 

positions of cog(PB AU), cog(PM) and cog(PS), as shown in Fig.3-30. Similarly, the 

membership functions of NS, NM and NB can be determined by the same method. 

During the determination of the output membership functions, rules on and besides the 

switching line (see Fig.3-28) are decided. Other rules can be determined by expert 

experience or methods introduced by Yager [25], 
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PS PM 	PB 

XX>< 
cog(PSsu) cog(PMA) cog(PB) 

(a) 

LA 

cog(PS) cog(PM) cog(PBAU) 
(b) 

 

Fig.3-30 Determination of the output membership functions (a)triangles; (b) singletons. 

Note that, if the parameter range of K or T is large, lAuj max  may be too small and IU mIX  

may be too large to implement in the practical system. In this case, modification should be 

made on either the performance specification or the parameter range. There will be a trade-

off between the system performance and the robustness. 

3.6.2 Phase advanced FLC 

It is found in this research that FLC systems present a superior robustness in comparison 

with the traditional PID control systems with respect to the parameter changes in the lower 

order controlled processes. In case of high order controlled processes, FLC cannot handle 

the parameter change so well as in the low order case. Poor transient performance of fuzzy 

logic controlled high order systems has also been reported in [120]. Further investigation 

revealed that the degraded robustness results from the delayed response of the process to 

the control action from the controller. The initial response of a high order process to a step 

input cannot be set up quickly, but rises more slowly to its maximum rate of change than 

that of a first-order process, see Fig.3-3 1. 

0 
Time 

Fig.3-3 1 Step responses of First- and second-order processes with same settling time 
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Because of the switching line feature of the FLC systems, the delayed setup of response 

speed of a high order process will result in further increase (or decrease) of the control 

input from the FLC to force the phase plane trajectory of the process to follow the 

predetermined switching line. The further action in the control input will lead to oscillation 

of the phase plane trajectory around the switching line, because the FLC's decision for the 

further action is based on incorrect feedback information. Although the FLC can be tuned to 

obtain a satisfactory performance whose phase plane trajectory may perfectly follow the 

predetermined switching line, system performance will deteriorate quicidy with variation of 

the process parameters, because parameter change will also affect the setup speed of the 

response. 

Note that the effect of parameter change for a first-order process on the process response is 

different from that of the high order process. Parameter change only affects the response 

speed of a first-order process, but can alter the swiftness of setting up the response speed in 

the high order process. 

In the following part of this section, methods will be developed to handle this high order 

problem with respect to two cases: high order process with and without integrating terms. 

A. Non-integrating high order process 

In the case of the non-integrating controlled process, an accumulator is used after the FLC 

to achieve zero steady state error, as shown in Fig.3-32(a). Functioning as an integrator, the 

accumulator makes the above problem with high order processes worse because of the 

impact of the integrator term on the stability of the closed ioop system. That is, if the 

controlled process is non-integrating and high order, the control problem encountered has 

conflicting design objectives: zero steady state error, and non-oscillatory phase plane 

trajectory following the predetermined switching line. 

From linear control theory, the above problem can be solved by introducing phase-lead 

compensation to the system. Phase-lead compensation can be implemented by introducing 

an extra zero to the system. This design idea leads the addition of a proportional path 

paralleled to the integrator after the FLC, thus creating a PT type compensator. It is known 

that this parallel proportional path can significantly reduce the impact of the integrator term 
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on the stability of the closed loop system. 

The structure of the modified fuzzy control system is illustrated in Fig.3-32(b). To change 

the effect of either the proportional term or the integral term on the system performance, a 

proportional gain K is used in the proportional path and the output scaling factor GU is put 

into the integral path. The control input u is calculated as 

u =KLu + GUJAudt 	 (3-41) 

or 

u(k+1) = K tu(k) + GUAu(i) 	 (3-42) 

The compensation can be expressed in the transfer function form as follows 

G(s) 
= GU(as +1) 	

(3-43) 

where a = K/GU. The zero introduced into the system is at (-1/(X). 

With phase-lead compensation, the modified FLC can output a stronger control action 

during the beginning of the step response than the normal FLC, and the extra control action 

from the modified FLC will gradually disappear when the response speed is setting up. 

Hence the oscillation of phase plane trajectory around the predetermined switching line, 

caused by the over drive from the FLC, can be significantly reduced; and system robustness 

can be improved. 

a) 	
N 

I-T ------------ 

I 	 L\U 	Prqxztüi  

High ci 
(b) 

I
Imegraim 

Ck  

Cotmll 	 I —Y — — — — — — — — — — — — — — L 

Fig.3-32 fuzzy control system for non-integrating processes (a) Basic FLC, (b) phase-lead FLC 

85 



CHAPTER 3 ROBUST PERFORMANCE OF FUZZY LOGIC CONTROL 

B. Integrating high order processes 

If there exists an integrating term in the control process, there is no need to use the 

accumulator after the FLC to achieve the zero steady state error. That is, the output of the 

FLC is used directly to drive the controlled process. In this case, the phase-lead 

compensation proposed above cannot be implemented. 

Although there is no integrator after the FLC when the controlled process contains an 

integrating term, the whole system will present the same performance as the system 

containing a non-integrating process and a normal FLC. Therefore, the problem related the 

poor performance still exists. In addition, even if a high order process contains no 

integrating term, the delayed setting up of the response speed of the process can lead to the 

same problem as mentioned above. 

From the fundamental principle of the FLC in controlling a process, i.e. the switching line 

theory, if the controller inputs can reflect the complete dynamics of the controlled process, 

it won't be a problem to obtain a required performance, because a PLC with an adequate 

rule base containing all possible system states can generate appropriate control action to 

handle the high order process. The reason for a superior robustness achieved in the first-

order process is that the PLC inputs, e and è, contain all system states. In case of the high 

order controlled processes, however, the designer has to pay the price to create and 

implement a complicated FLC rule base, and it is usually much more difficult to create a 

multi-variable rule base. 

Often practical high order processes are approximated as second order processes, so 

attention will be restricted to the second order process. Generally, a second order process 

can be described by 

j+a+by=f(u,t), 	 (3-44) 

where y is the output of the process, f(u,t) is a function of control input from the controller. 

If a system state variable Ycan be found with the following condition met 

Y = j + a), 	 (3-45) 

a second order process becomes 

Y+by=f(u,t). 	 (3-46) 
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Compared with the first order process 

'+by=f(u,t), 	 (3-47) 

it is clear that if both Y and y can be reflected in the inputs of the FLC, a robust 

performance similar to the first order process can be achieved. 

Furthermore, it can be seen from (3-45) that Y will mainly reflect the j' part because 	is 

often much smaller than j' in practice. With Y as the virtual derivative error, therefore, the 

rule base for controlling the second order process will possess the same features as the rule 

base for controlling the first order process. This will greatly save time in designing the fuzzy 

controllers for second order process. 

The structure of this modified FLC system can be illustrated as in Fig.3-33. Because the 

scaling factor GC is used for the mapping of the derivative input signal, an extra parameter 

f3 in the e path will be sufficient to adjust the effect of e on system performance. Due to 

the specific characteristic of the virtual derivative error 1' in this FLC system, this method 

will be referred as the virtual derivative error method. In fact, this is a derivative feed-

forward method which creates a phase lead effect to modify the system performance. 

T 	
process 

non-integrating 1 

process 

integrating 

Fig.3-33 Fuzzy control system for high order processes 

From Fig.3-33, it is found that in the virtual derivative error method, the practical é input is 

compensated by e. That is, not only é, but also the change rate of é is considered by the 

FLC in its decision making. A BIG change rate of ê means the process has got a sufficient 

amount of energy from the control input to produce a BIG change in é. Though é may still 
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be unsatisfied (too SMALL or too BIG) at present, there is no need to change the present 

control action if the combination of ê and e is satisfied. 

This control algorithm can overcome the oscillation of the phase plane trajectory for a high 

order process resulting from overdriving, and provide a better performance and system 

robustness than the normal FLC algorithm. 

3.6.3 Automatic design by genetic algorithm 

Although works on designing a fuzzy control system and on successful applications to 

industrial control problems are widely reported, the available design methods so far have 

been exclusively by way of trial-and-error based techniques, using an initial model and then 

manual adjustments on-line. These do not necessarily yield the "best" design or control 

performance. It is almost impossible to optimize the design of such a multi-variable system 

as FLC systems to obtain satisfactory robustness in case of significant uncertainties in the 

controlled process. 

Clearly, existing robust fuzzy logic controllers and their corresponding parameter ranges are 

known to the designer. The problem is how to automatically determine the controller 

parameters to achieve the "best" system robustness in a known parameter space of the 

controlled process. In fact, this design problem is a search problem which can be solved by 

search methods such as the genetic algorithm and simulated annealing. 

Because of the non-linear and multi-variable characteristic of the FLC, the search method 

used for this purpose must be able to avoid local minima in the search space, i.e. the 

controller parameter space. For the above constraint, a genetic algorithm becomes the 

suitable choice. 

Automatic design of FLC systems using genetic algorithms (GA) has been reported in 

several papers [49][52][108][109][111][112][113]. Most of these papers focus on the 

development of rule sets or membership functions or both for high performance of a specific 

controlled process such as a pH control process [49] and the cart-pole system [52] 

[112][109]. However, system robustness was not the objective of these research projects, 

though a brief examination of system robustness was presented [52]. Thus, the use of the 
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GA to determine all FLC parameters (membership functions, rule base, scaling factors, and 

sampling rate) simultaneously for optimal or near-optimal, robust control is the main 

objective of this section. 

In this section, a brief description of the GA will be presented (for a complete discussion, 

see [110]), and, as the essential issue in designing GA applications, the selection and 

encoding of the evaluated variables of FLC will be discussed. Finally, the evaluation 

function (or fitness function) will be designed with respect to the system robustness. 

Simulation results will be presented in Chapter 4. 

A. Genetic algorithms 

Genetic algorithms are probabilistic search techniques that emulate the mechanics of genetic 

evolution. Unlike many classical optimization techniques, genetic algorithms do no rely on 

computing local derivatives to guide the search process. Genetic algorithms also include 

random elements, which helps avoid getting trapped in any local minima. 

Genetic algorithms explore a population of solutions in parallel. The size of the population 

is a free parameter, which trades off coverage of the search space against the time required 

to compute the next generation. Each solution in the population is coded as a binary string, 

called a gene, and a collection of genes forms a generation. A new generation evolves by 

performing genetic operations, such as selection, crossover, and mutation, on genes in the 

current population and then placing the products into the new generation. 

In a simple genetic algorithm, operations are performed in the following order; selection, 

crossover, and mutation. Selection involves selecting two parent genes from the current 

generation. It is based probabilistically on a gene's fitness value; the higher the fitness of a 

gene, the more likely it can reproduce. After selecting two parents, crossover is performed 

according to a crossover probability. If crossover is to be performed, offsprings are 

constructed by copying portions of parent genes designated by random crossover points 

(two-point crossover shown in Fig.3-34): Otherwise, an offspring copies its entire gene 

from one of the parents. As each bit is copied from parent to offspring, the bit has the 

probability of flipping, or mutating, as shown in Fig.3-34. Mutation is believed to help inject 

any information that may have been lost in previous generations. 
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A gene's fitness is evaluated by decoding the gene's binary representation and then passing 

it through a fitness function. The fitness function is a means to rank solutions in the 

population and can include penalty terms in addition to raw performance measures. In this 

application of GA, a penalty strategy is used to favor populations of PLC parameters with 

stronger tolerance towards the variations of the process parameters. 

Crossover 

nuaimniun 
nmicinnan 

11HUMMMUMB 

Mutation 

111011 l 0 1 0 1 1 lOI 1 I_. ._I1IoIololIliI 0 l 1  
t 

Fig.3-34 Genetic operations 

A step-by-step description of a basic GA procedure is as follows: 

I) encode the variables involved into suitable strings, often a binary string; 

select, at random, an initial population of strings; 

evaluate the fitness of each string; 

choose the strings from the population probabilistically according to their fitness; 

apply, with the respective probabilities, operations on chosen strings to obtain new 

strings, called offspring; 

introduce the new strings into the original population 

go to step 3 for a fixed number of iterations or until an acceptable performance is 

achieved. 

B. System representation 

It is a long recognized limitation of GA that, as a global search technique, the encoded bit 

string length should be kept as small as possible, since the size of the search space increases 

exponentially with the size of the string. Therefore, it is highly desirable to represent the 

system in a compact way to accomplish the evolution task. To meet this requirement, the 

following assumptions are made: 
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the FLC has two input variables (e, ê) and one output variable (Au). Each variable 

has maximum seven fuzzy sets labeled as NB, NM, NS, ZE, Ps, PM, PB; 

each membership functions is a trapezoidal characterized by one reference point and 

three base lengths, except that the top length of the ZE membership function is zero 

with the peak located at the origin, as shown in Fig.3-35a; 

NB is the consequent part of rules in which e is not larger than NM and è is not 

larger than NS; PB is the consequent part of rules in which e is not less than PM and 

é is not less than PS. This is reasonable when a complete rule base as shown in Fig.3- 

4c is used. 

Note that trapezoidal membership functions instead of triangle ones are used because they 

can affect the insensitive areas on the switching line. 

Under the above assumptions, membership functions of each variable can be represented in 

28 parameters, namely, e,0, e, 1 , e12, e,. There will be 84 parameters in three FLC variables. 

The normalized universe of each variable is assumed to divided into 1000 units, and each 

base length has values from 0 to 255 units. All membership functions then can be 

represented as a string consisting of 84 one-byte unsigned characters. 

Similarly, the fuzzy rule base contains 36 rules to be decided by the genetic algorithm. If 

these rules are numbered as shown in Fig.3-35b, then only the consequent part in each rule 

needs to be decided by the evolution. Thus, 36 rules can be represented as 36 3-bit binary 

strings because the consequent part of each rule take values from 8 possible values: 

000—NB; 	001—NM; OlO—NS; 011—ZE; 

100—PS; 	101—PM; 110—PB; 111—DON'TCARE; 

where DON'T CARE indicates that the rule has no effect on the system performance. By 

adding the DON'T CARE value for the consequent part, the rule's insertion and deletion 

are automatically done by the genetic algorithms. 

Together with 3 scaling factors and a sampling rate i, which are represented by 16 bits 

each, the entire binary string consists of 84 + 36 + 4 = 124 variables, or 84 x 8 + 36 x 3 + 

4 x 16 = 844 bits, as shown in Fig.3-35c. If the membership functions are assumed 

symmetrical to the origin of this variable, the number of the parameters for representing the 
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membership functions can be reduced to 42, and the string length becomes 508 bits. This is 

a complete but compact representation of a FLC, compared with Lee and Takagi's research 

[99] where 2880 bit per string was used. 
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Fig.3-35 Fuzzy system representation 
(a) representation of membership functions (only variable e is illustrated); 

(b) representation of rule base; (c) FLC representation (n population). 

C. System evaluation 

Another main issue in GA applications is the selection of the new generation of the evolved 

population. To do so, GA operations are applied to the current population. For a proper 

selection, each element in the population has to be evaluated and scored with a fitness value 

according to its performance. 

Unfortunately, there is no mathematical model of fuzzy systems to provide the evaluation of 

a given FLC system. It has to be assumed that a sort of model (mathematical or fuzzy) of 

the controlled process is available for GA to be applied. This is the main drawback of the 
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GA applications in fuzzy control systems, and this is also recognized by other researchers 

[52]. 

With the above assumption of the availability of the controlled process model, simulation 

methods can be applied to evaluate a given FLC system, and the system robustness can be 

evaluated by the robustness index Ith  defined in Section 3.2.2. That is, the fitness function, 

fit, is defined as - 

iO 3  
fit = 'rb n - m + 	' ex 

fl 
(3-48) 

= n - m + 10 
	

(OS °  + 	+ cy +10ISE + 
n 

St 

where OS °, Us', CYW,  ISE and 	are the performance measures in the test point i (i = 
st 

1, ... , n). Becausefit includes the five performance measures, the fitness function provides a 

continuous measure of the system robustness, which is important for obtaining a fine tuning 

of the evolved system performance. In addition, since the number of unsatisfied tests is 

addressed in fit, the penalty of these unsatisfied tests is applied in the evolution process. 

It is obvious that the smaller the fitness valuefit of a FLC system, the more test points there 

are in specification, and the more robust the FLC system. The objective of evolution is to 

minimize the fitness value of the FLC systems. 

With this technique, all controller parameters bounded by the given ranges are mapped to a 

coded string. Variations in every integer of the string will then span the entire design space. 

Thus a systematic and automatic design approach can be established using evolutionary 

programming techniques. Further, the known good controller choices existing in manual 

designs can be put in the initial "generation" of strings so that the learning can start from 

this point rather than from scratch. Such knowledge would be very difficult to incorporate 

directly into an artificial neural network (ANN) where data either has to be logged a-priori 

from the system under study, or generated from mathematical expressions, before training 

the ANN. 

D. Comparison with other research work 

The design method presented above has the following features, compared with the early 
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research work in this field. Firstly, system robustness is the main evolution objective. A 

penalty is adopted in the fitness function to promote the acceptable robust performance 

defined by the performance specifications. Trapezoidal membership functions are used, not 

only to allow the use of normal fuzzy set operation in fuzzy reasoning, but also to take into 

account the effect of the insensitive area on the switching line for system rObustness. In the 

early work, however, the fitness function was designed with respect only to system 

performance, and only triangle membership functions were considered. 

Secondly, the complete parameter range of the FLC is evaluated. Not only the membership 

functions and rule base are encoded in the search string as most of the early work did, but 

scaling factors and sampling rate are also considered. A fine tuning of the positions of 

membership functions can be done by changing the values of scaling factors, unlike 

Homaifar's work [52] where a refinement stage was used. Thus the computing time can be 

greatly reduced. In addition, the representation used in this research is compact. 

Finally, by ignoring the unnecessary overlap of membership functions, the representation in 

this work allows GA to focus on the sensible membership functions instead of the orderless 

placement of membership functions. 

3.7 Conclusion 

In this Chapter, the measurements of the dynamic performance and system robustness of a 

control system are firstly defined from the engineering point of view. The structure of the 

FLC system studied in this work is then described. The robustness of the Mamdani-type 

FLC systems has been investigated. A switching line method is introduced to qualitatively 

analyze the dynamic performance of the SISO FLC systems. It is indicated that the position 

of the switching line on the phase plane determines the dynamic performance of the FLC, 

and the objective of the fuzzy controller algorithm is to drive the system phase plane 

trajectory to the steady state along the switching line. It is found that the robustness of FLC 

systems is closely related to the switching line performance and that it depends very little 

upon the model of the plant to be controlled. Based on the switching line method, the 

robustness of the PLC controlled first order process and second order process is studied 

with respect to the shape and position of the robust space. 
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The effects of FLC parameters (membership functions of the input-output variables, rule 

base and scaling factors) on system robustness have been investigated. The relation between 

the variation of the controller parameters and the position and shape of the switching line, 

thus, the robust performance, is emphasized. It is indicated that all of the parameters can 

affect the position, the shape or the angle of the switching line and the smoothness of the 

phase plane trajectory of the step input responses. The switching line angle is proportional 

to system overshoot and undershoot, but inversely proportional to the rise time in the step 

input response. Changes in the overlaps of membership functions of the input space alter the 

sensitivity of the FLC to the variation of input variables in that space. The effect of output 

membership functions and output scaling factor on system performance is similar to the 

process gain in the FLC systems. 

Finally, methods are presented to design the FLC to achieve a robust performance. A design 

method for a robust FLC system is proposed based on the switching line theory. The 

position of the switching line is selected and the distributions of rules on both sides of the 

switching line are determined, based on the requirements to the system performance. The 

control problem with fuzzy control algorithms in case of high order processes is discussed 

and handled by modifying the structure of the FLC. An evolutionary method based on 

genetic algorithm is proposed to automatically design a robust fuzzy control system, under 

the assumption of the availability of the controlled process model. 

All analysis presented in this Chapter is purely qualitative - without mathematical 

confirmation due to the lack of the systematic analysis method which is applicable to explain 

the dynamic performance of fuzzy systems. The next chapter will present the results of an 

extensive series of simulation experiments designed to assess the robust performance of 

fuzzy logic control systems. It will be seen that the results obtained confirm the qualitative 

predictions described in this Chapter. 

95 



4 

Experimental Investigation of the 

Robustness of Fuzzy Logic Control 

4.1 Introduction 

In the previous chapters the fundamental theory of fuzzy logic control was presented, a 

switching line method was developed to provide a qualitative analysis of the robustness of 

fuzzy control systems and new design methods were introduced to improve-the robustness 

of PLC systems. In this chapter, experimental results will be presented to demonstrate the 

robustness of PLC systems, and the feasibility of the proposed methods for analyzing and 

designing the robust PLC systems will be demonstrated. 

An experimental investigation of the robustness of the fuzzy control algorithm involves the 

collection of comprehensive information describing system performance with variations of 

system structure and parameters. Computer simulation will be used to implement these 

experiments since it is the most effective and economic way. Because designing a PLC does 

not require a mathematical model of the controlled processes, it will be assumed that only 

imperfect information about the controlled plants is available at the design stage, though 

mathematical models of plants are needed for the simulation. Since the widely used PID 

control method also requires little information about the controlled process, it will be used 

as a bench mark method for providing comparative performance information. 

This chapter is organized as follows. In Section 4.2, the simulation system will be described, 

the specification for robust performance and the experimental procedure will be defined. In 

Section 4.3, a specially designed simulation package will be briefly described and its 

functions will be introduced. In Section 4.4, the robustness of the PLC system will be tested 
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and a comparison study with the widely used PID control system will be presented in cases 

of the first order and second order controlled processes. The effects of PLC parameters on 

system robustness will be examined in Section 4.5. The feasibility of the robust design 

methods will be tested in Section 4.6, and the chapter conclusion will be given in Section 

4.7. 

4.2 Simulation design 

All experimental work related to this research has been performed using simulation. Thus it 

is important to design a suitable simulation system, define the proper performance 

specification, and choose an effective experimental procedure for collecting the correct 

experimental results. These aspects will be discussed in this section. 

4.2.1 Simulation system 

The fuzzy control system designed in Section 3.2, Chapter 3 will be used as the main 

structure of the PLC system implemented in the simulation. All details related to the design 

of the fuzzy control system will not be presented again to save space. It should be noted 

that the membership functions and the rule base shown in Fig.3-4 in Chapter 3 are the basic 

settings. Effects of their variations on system performance will be examined. When the 

effect of some FLC parameters on system robustness is examined, the other parameters will 

be kept as the basic settings. As shown in Chapter 3, the FLC system will be implemented 

as a discrete system, since the discrete situation is more critical than the analogue situation 

because of the heavy computational task that has to be performed in the fuzzy controller. 

To compare the robust performance of a fuzzy control system with a PID control system, a 

PID controller has been designed as an alternative method to regulate the output of a single-

input, single-output process P around a set-point. The discrete-time equivalent expression 

for the PID controller used in this paper is given as: 

u(k) = Ke(k)+ Ke(k)+ K d ê(k) 
	

(4-1) 

where K,,, K,, and Kd are the proportional gain, integral gain, and derivative gain of the 

controller, respectively. 
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To demonstrate the feasibility of the proposed methods, for analyzing and designing the 

robustness of FLC systems in Chapter 3, the typical first order and second order processes 

will be used to demonstrate the robustness of the FLC systems in comparison with the PID 

systems. High order processes will be used to demonstrate the feasibility of two phase-

advanced methods and the switching line method. The 'cart-pole' system will be used to 

test the feasibility of the genetic algorithm design method. 

4.2.2 Performance specifications 

To investigate the robustness of a control system, it is important to define the acceptable 

performance, especially when performing a comparative study of different control 

algorithms. Obviously, a control system under strict performance requirements cannot 

tolerate big variations in process parameters, while a large robust parameter space 

requirement may lead to difficulties in designing the system performances. Suitable 

performance specifications should be defined in accordance with the practical requirement. 

In this research, use has been made of the following performance specifications for 

acceptable performance, based on practical knowledge of the required performance of 

control systems: 

Overshoot OS !!~ 5% 

Undershoot US :!~ 5% 

Settle time ratio R,, < 3 
	

(4-2) 

Ring cycle number CY < 3 

The steady state zone for measuring settling time is chosen for the purpose of the 

experimental investigation as 2% of the normalized input step. 

It should be emphasized that the specific values of the above performance specifications are 

not important to the investigation of system robustness, because they are only used as a 

standard with which the system performance can be classified as either in or out of 

specifications. The aim of the investigation is to find the relationship between the controller 

parameters and system robustness. 
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4.2.3 Experiment procedure 

The following experimental procedure was used to test the robustness of a control system 

under process parameter uncertainty: 

Step 1: Select the tuning point, i.e. choose one point in each parameter variation range as 

the operation point. 

Step 2: Tune controller parameters to obtain a satisfactory step response. If performing a 

comparison study of the robustness of the FLC system with other system, tune the 

parameters of both controllers to obtain a similar system response to a step input at 

the same tuning point. The requirement for the similar tuning point performance is 

important to make two systems comparable, and it will be denoted as STPP 

condition. 

Step 3: Fix the controller parameters and test the system performance at different points of 

the process parameter space. 

Step 4: Using the criteria defined in (4-2), determine the robust space and the robustness. 

Note that in all experimental test, system robustness will be measured by using the 

equation (3-6) in Chapter 3. 

Experience of controlling the process is needed in tuning a control system. The main 

technique used to achieve the satisfied performance is to tune the sample rate and K,,, K,, Kd 

in the PID system, or GE, GC, GU in the FLC system. The method for tuning the PID 

system can be found in [4], and that for the FLC system will be extensively discussed in 

Chapter 5. 

4.3 Design of the experimental system 

To investigate the robustness of fuzzy logic control systems and to compare the 

performance of FLC systems with that of the conventional PID control method, a 

simulation package called FzySimu (see Fi.g.4-1) has been developed in the C++ 

programming language. The advantages of this specially designed software over a 

commercial software are as follows. 

1) It is possible to investigate the mechanism of the FLC in depth so as to have a 
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thorough understanding of the PLC systems; 

It is convenient to build any software interfaces to other application programs, such 

as RobustMap, GaOpt and RCPIot in the FzySirnu package, so that automatic data 

processing becomes possible; and 

The cost advantage is obvious. 

FzySimu consists of system simulation and analysis (MultiSiinu), mapping the robust space 

(RobuMap), optimization by GA (GaOpt), auto-tuning (AutoTune), a real-time control 

interface (RCPIot), a practical PLC prototype and a third-order process emulator. The 

whole research environment can be illustrated as shown in Fig.4-1. MultiSimu is a multi-

objective simulation tool which can be used to simulate different control algorithms and 

different controlled processes. RobustMap is a mapping tool which performs exhaustive 

searching in the user defined process parameter space. The size and position of the Robust 

Space are determined within which the system performance satisfied the specifications (3-

3). GaOpt is an optimization tool using the genetic algorithm for selecting the controller 

parameter for improved robust performance. It is designed to automatically select the fuzzy 

membership functions, rule base, scaling parameters and sampling rate. AutoTune is a fuzzy 

tuning tool for tuning the fuzzy control system by altering the input-output scaling thus 

changing the membership grades of the input-output variables belong to the fuzzy subsets to 

which the fuzzy rules are closely related. 

Fig.4-1 Simulation tools in FuzySinu 
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A FLC prototype was designed for the purpose of confirming the results produced by the 

simulator MultiSirnu. A Motorola 68HC1 1 microprocessor based fuzzy controller and a 

third order linear SISO process emulator have been developed in a single printed circuit 

board. A software interface RCP1ot based on the RS-232 communication method was 

implemented to (1) automatically transfer the controller parameter settings in the simulator 

into the practical prototype; (2) download the program from PC to the prototype, then run 

or debug it; (3) collect data from the prototype and show the system performance on the 

screen. 

In the following, a brief description of each function of the simulation package will be 

presented, except for the auto-tuning function which will be presented in Chapter 5. More 

details about this software package can be found in the Appendix A and Appendix B. 

4.3.1 System simulation and analysis 

MultiSirnu is a multi-objective simulation tool which can be used to simulate different 

control algorithms and different controlled processes. The block diagram of MuitiSinzu is 

shown in Fig.4-2. It consists of two levels: a supervisory level and a system level. The 

supervisory level is in charge of the pre-setting of the controller parameters and the 

simulated process parameters. It provides an on-line configuration, i.e. setting simulation 

and system parameters manually, and an off-line configuration, i.e. setting simulation and 

system parameters according to an external configuration file. The controller base currently 

includes the general FLC, phase advanced FLC, PID controller and open loop control. The 

process base currently includes processes described in Section 4.2. Any new controllers or 

processes can be easily added in the corresponding base. 

At the system level, calculations are performed on the controller's action and the transient 

response of the process. The random noise, load disturbance, non-linear properties 

(saturation, dead zone, limited resolution in digital and analogue conversion, and different 

forward or backward gains) can be inserted in to the control system. Three types of 

reference signals: step, square wave and saw tooth, are provided. Measurements for the 

system performance are also computed at this level, and, if required, are output to the 
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external routines which call MultiSimu. In addition, the controller action and the process 

output can be saved in a file or plotted on the screen, in form of a transient response, a 

phase plane trajectory, a control surface or a switching line. 

Command Input 	 - Superwsion 

I 	 - System 

Controller Base I 	I Simulation Supervisor r 	i Process Base 

Noise 	Disturbance 

Calculation of 

GSimulation 
	Process 	 Performance 

Measurements 

I 	 Display 

Fig.4-2 Block diagram of MultiSi,nu 

4.3.2 Mapping of the robust space 

RobustMap is a mapping tool which performs a searching task in the user defined process 

parameter space. Determination is made of the size and position of the so called Robust 

Space within which the system's performance satisfies the pre-defined criteria. To do this, 

RobustMap initializes and calls MultiSimu successively, and produces a data file which can 

be processed by Microsoft Excel or directly displays the robust space on the screen. The 

block diagram of the program is shown in Fig.4-3. 

Like MultiSimu, RobusrMap can be configured manually or based on a configuration file. 

The configurable variables include the variation range and search step of each process 

parameter, controller settings, performance specifications, the mapping method and the 

mapping task. 

The mapping method consists of an exhaustive search (test all parameter points) and a 

boundary search (only test the points on the boundary of the robust space). The former 

method is designed for mapping the robust space of control systems containing processes 

with high non-linearity, where the robust space of the control system may contain several 

separated blocks, and the later is for mapping the robust space of control systems containing 

linear or slightly non-linear processes, where the robust space of the control system contains 

only one block. The mapping tasks include mapping the robust space and testing the 
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Fig.4-3 Block diagram of RobustMap (C for controller 
parameter, P for process parameter) 

sensitivity of controller parameters. 

4.3.3 Parameter optimization 

GaOpt is a tool to optimize the robust performance by automatically selecting the 

controller's parameters including the fuzzy membership functions, rule base, scaling factors 

and sampling rate. It iteratively explores a population of solutions in parallel, and evolves a 

new generation by performing genetic operations on each solution. At the begin, the initial 

generation of FLC solutions are read from an initial file or are chosen randomly. After 

initialization, GaOpt performs an iterative loop: evaluation, convergence determination, and 

reproduction of new FLC generation. Fig.4-4 shows the block diagram of Ga Opt. 
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Encode PLC variables in a 
binary string 

Jr 
Randomly initialize the 

string population 

Evaluate each string by  
passing the corresponding 

variables to RobusrMap 

Collect performance 
statistics 

- 	no 
FLC population 	- 

converged? 

yes 

Save the PLC variables 
corresponding to the best 

stririe 

Apply GA operations on 
chosen stiings to obtain new 

offsprings 

Probabilistically select 
strings from present 

Fig.4-4 Block diagram of GaOpr 

In the evaluation stage, GaOpt passes each solution (i.e. controller parameter group) to 

RobustMap to evaluate the robustness of the system with this solution and determine the 

fitness by means of the fitness function defined in Chapter 3. After evaluation, the statistics 

of the robust performance of each solution in the present FLC generation will be collected 

and the convergence of this searching process will be determined. If the FLC population has 

not converged, GaOpt will randomly select some PLC solutions from the present 

population. The selection algorithms implemented in Ga Opt are proportional-selection 

based on the stochastic universal sampling algorithm and linear-ranking-selection both 

proposed by James E. Baker in [84] and [87] respectively. In the proportional selection 

scheme, each solution, C2 , is assigned the following fitness-proportionate selection 

probabilities: 

I fit(c 1
) 

p(c,) = 
	1fit(c) 	

(4-3) 

0, 	k<in 
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where k is the number of solutions to be selected, n is the total population. In linear ranking 

selection, the selection probabilities are generated based upon the relative ordering of the 

absolute fitness values of individual solutions, i.e. their indices i in the sorted population. 

The selection probabilities are calculated as 

i—i 	l~ i<k -(r 	rflfl)k_l) 
p(c) = 

0, 	 k<i:!~ n 

(4-4) - 

where k is the number of solutions to be selected, n is the total population, r,. and rm,n  are 

maximum and minimum fitness values respectively. More detailed information is given in 

[68]. 

After selection, GA operations, mutation, and crossover, will be applied to the selected 

solutions to form a new generation of FLC solutions. In the mutation operation, each 

position in the encoded string is given a chance rm (mutation rate, default value is 0.001) of 

undergoing mutation. If mutation does occur, a random value is chosen from 10, 11 for the 

selected position. In the crossover operation, the adjacent pairs of the first rn (r denotes 

the crossover rate, default value is 0.6; n- denotes the population) FLC solutions in the 

selected population exchange information contained in a randomly selected segment, i.e. 

two-point crossover. Note that the subfunctions related to Crossover, Mutate, and Select in 

this program were adopted from Genesis 5.0 written by Jone J. Grefenstette. 

Note that because of the simulation requirement and wide parameter variation range, 

evaluation is very time consuming so that the GaOpt function has been mainly performed on 

a Unix Sun work station. 

4.3.4 FLC prototype 

Because the experimental investigation of the robustness of the FLC systems has been 

entirely carried out in computer simulations, it is crucial that the simulation results are in 

conformance with the actual performance of a practical control system. Therefore, an FLC 

prototype, as shown in Fig.4-5, was designed for the purpose of confirming the results 

produced by ihe simulator MultiSimu. It contains a Motorola M68HC 11 microprocessor, a 
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12-bit D/A converter, 32k RAM, 8k EPROM/RAM, a RS232 communication interface and 

a display/keypad port. The reason for using the Motorola 68HC1 1 microprocessor in this 

prototype is its simplicity and flexibility for development work. The 8-bit A/D converter on 

the microprocessor chip is used to sample the system output. The 12-bit, 4-quadrant D/A 

converter MAX501 is used to produce the control input. The RAM is used to store the 

dynamic performance of the system. The EPROM is used to store the control program. The 

RS-232 interface is built in to facilitate controller debug or any high level supervisory 

management. The display/keypad port can be used to display system status and input user 

commands when the controller works in stand-alone mode. The software for the prototype 

is designed using assembly language. Its block diagram is in Fig.4-6. 

To confirm the simulation results from FuzySimu, the controlled processes are also needed 

in addition to the controller. Thus an operational amplifier base emulator of the process is 

designed. With this emulator, a first order process and a second order process are 

implemented to provide the system output information (see appendix B). 

4.3.5 Real-time control interface 

To-  develop a- microprocessor embedded control -system, - a- development tool is needed- to 

perform the program downloading, debugging and evaluation. In addition, frequent changes 

in FLC parameters and comparison between the performance of simulated and practical 

systems requires automatic data processing. That is, this tool should have some CAD 

functions, not only a microprocessor development kit. Based on the above requirement, a 

control interface between the FLC prototype and the supervisory PC, called RCPIot, was 

developed. It has the following functions: 

Automatically transfers the controller parameter settings in the simulator to the 

prototype program, and compiles the prototype program. 

Downloads the prototype program to the prototype, runs or debugs it. 

Transfer the dynamic performance data logged in the prototype to FzySiinu, 

calculates all performance measures and shows the system's performance on the 

screen together with the simulation results. 

For function 1, the program used in the prototype is organized as several function blocks: 
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monitoring and timing block (MT), PID block, FLC block, and configuration data (CD) 

segment, with the controller parameters in the configuration data block. All these blocks are 

written in assembly language. When the configuration of the prototype is required, a 

configuration data block will be created and a complete prototype program will be 

organized according to the simulation configurations. Then this prototype program will be 

compiled into machine code which is ready to run in the practical controller. 

FLC 

32Kx8 	Display and 	8Kx8 
RAM 	key-pad port 	EPROM 

M68HC 1 IA 1  
8-bit A/D 	

, 	
SC! port 

12-bitDIA 

Input 	 4' 	RS-232 
amplifier 	Output 	port 

amplifier 

Analogue process 	Supervisory 
simulator 	 systems 

Fig.4-5 Structure of the FLC prototype 

Power on or Reset 

1 
Initialise system & start timer 

110 

<o sample? 

yes 

Sample process output & save 

no 	Calculate 
control outpu 

yes 

calculate control 
output & save 

Update control output 

Fig.4-6 Block diagram of prototype software 

107 



CHAPTER 4 EXPERIMENTAL INVESTIGATION OF THE ROBUSTNESS OF FUZZY LOGIC CONTROL 

For the communication task implied in functions 2 and 3, the M68HC1I is set to bootstrap 

mode, in which a communication program, called Talker, is automatically loaded from the 

host computer, after the microprocessor is powered up or reset. With Talker, any data 

transmission in serial format can be performed through the RS-232 standard port. By using 

68HC1 I development software, PCBUG]1, the debug task in function 2 can be realized. 

Fig.4-7 shows a block diagram of RCP1ot. 

____________ 	 _______________ 	Debuç 

	

configuration and 	 and job 	 p 
System 	I 	User interface 	 I 

call PCBUGI I 
Simulation 	 distribution 	 I 

	

Create CD segment 	< Co, nec7ted to Read in dynamic 
nerformance data 

	

Organize the prototype 	 no 	 + 

	

program RTC: 	 I 	I Calculate performance 

	

I FLC 	Connect to prototype 	 measures 

	

CD+MT+PiD 	 [4 	 I 
ed. DonIoad RTC  

Show RTC dynamic 
performance and 

	

Compile RTC 	I 	Start RTC 	I 	performance measures 

Fig.4-7 Block diagram of RCPIot 

4.3.6 Designing a FLC system with FuzySinzu 

With help of the FzvSiinu package described above, the procedure to design a FLC system 

can be briefly stated as follows, assuming that a process model (either fuzzy or 

mathematical) and a set of performance specifications are given 

Set the parameters of the fuzzy logic controller, e.g. membership functions associated 

with each input and output variable, rule base, and the scaling factors. If any parameter 

is not available, the default one may be used. 

Test the performance of the system using MultiSimu. Run AutoTune to tune the FLCs 

scaling factors to improve the performance if necessary. 

Measure the robust space within pre-defined process parameter space. 
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If the robust space is smaller than required, optimize the FLC's parameters using 

Ga Opt. 

Repeat step 3 and 4 until the robustness of the system is satisfied. 

Test the above results by applying the FLC's parameters to the FLC prototype. If there 

is any Obvious difference between the real performance and the simulation results, 

check if there is any mismatch between the real process and the model. 

Note that a process model may not be available. There are many publications about how, 

given a process, to generate a suitable model. if the process model cannot be identified by 

any method, it is difficult to use any simulation based design tool to optimize the 

performance. 

4.4 Experimental investigation of robustness of FLC systems 

Investigating the robustness of the fuzzy control algorithm experimentally requires 

comprehensive information on system performance with variations of system structure and 

parameters. With the help of the simulation package FuzySimu, it is possible to explore the 

control performance of the entire system parameter space for which system robustness is 

concerned. In this section, the robustness ot the I- LL system will t)e testeci for two general 

cases: first order process system and second order process system. A comparative study 

against the widely used PID control system will be presented in both cases. For each 

experiment, the parameter space will be given; the controller, the performance specifications 

and the experimental procedure described in Section 3.2 will be used. 

4.4.1 First order process with time delay 

The transfer function of the time delayed, first order process is given as; 

G(s) = Ke 
1+ Ts 

(4-5) 

Its parameter variation ranges are assumed to be K= (1.0-70.0), T = (50-8000), t = (0 - 

100). The unit used for the time constant, the time delay and the controller's sample rate 

was the process simulation sample period. 

To explore the robustness of the PLC system with the above first order process as the 

one 



CHAPTER 4 EXPERIMENTAL INVESTIGATION OF THE ROBUSTNESS OF FUZZY LOGIC CONTROL 

controlled process (first order system for short), extensive simulation experiments were 

performed to test the system performances in the parameter space KxTxt. The step changes 

for K, T and 'r were selected as 0.1, 50 and 100 respectively, thus the total number of test 

points in the parameter space was 224000. The input reference of the system was changed 

from w = 0 to w = 2.5 and all controller inputloutput signals were assumed to be 

constrained by a saturation with limits at ±10. The system was manually tuned at K = 20, T 

= 4000 and 'r = 0 to obtain a satisfied step response, giving the following scaling factors and 

the controller sample rate: 

GE= 1.0, GC = 20.0, GU = 1.0,t=20. 

The robust space of the system without time delay was first tested. The results are shown as 

the shaded area in Fig.4-8a, where two scalings were used for the axis K to provide a clear 

view of the robust space in the low gain area. Step performances at 14 selected points as 

shown in Fig.4-8a were presented in Fig.4-8b, c and d. 

From Fig.4-8, it is clear that the robust space of the first order system is a sector in the K-T 

plane, as predicted in the Chapter 3. In the high gain and small time constant situation 

(points d, g, h), the system generates a fast response so that oscillation of è around the 

switcning line was exhibited before the output y reaches the setpoint (see Fig.4-8b). In low 

gain and large time constant situations (points b, c), the system gives a slow response so 

that large overshoot and undershoot were generated (see Fig.4-8c). When the time constant 

exceeds 6000 sample units (points f, i), the step response cannot meet the performance 

specifications, mainly due to the high overshoot generated by a relatively fast response of 

the controller (see Fig.4-8c). With a time constant less than 500 sample units (point 5), the 

step response is too slow, simply because of the relatively slow sample rate of the controller 

(Fig.4-8d). 

The switching line feature of the PLC systems can also be found from the results. System 

performance at the tuning point (point e) is shown in Fig.4-8b. Similar performance was 

obtained at other parameter points inside the robust space. For example, in Fig.4-8d, the 

main part of the step responses at point I to 4 are nearly identical, presenting closely similar 

phase plane trajectories. 

UM 
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Fig.4-8 Robust performances of the first-order system 
(a) robust space; (b)-(d) step performances at point a - i, I - 5 in (a) 

 

 

(.2 

0.0 

0,6 

0.4 

0.2 

0 

I) 

(.2 

0.0 

0.6 

0.4 

0.2 

0 



CHAPTER 4 EXPERIMENTAL INVESTIGATION OF THE ROBUSTNESS OF FUZZY LOGIC CONTROL 

Note that the step responses at points d, g and h have a positive steady state error. This 

results from the fast response speed (small time constant but large gain K). A small change 

in the control input would lead to big changes in the process output, so that the reach 

condition of the fuzzy controller cannot be satisfied. On the phase plane, the process output 

trajectory exhibits an oscillatory characteristic around the switching line. In addition, 

because the BIG control changes are used to restrain big overshoot when the output is 

becoming larger than the setpoint, according to the rule base in Fig.3-4c, it is much more 

difficult for the system output to reach the negative error zone than to stay in the positive 

error zone. Thus when an oscillation of phase plane trajectory around the switching line 

occurs, a positive system error is usually produced. 

Similar tests were performed with a time delay, t = 100, added to the controlled process. 

The results are shown in Fig.4-9(a). From this figure, it can be seen that the robust space of 

the system is significantly reduced when the time delay is added, but it is still a sector shifted 

to the low gain area in K-T plane. 

As expected from traditional control theory, system robustness is more sensitive to the 

process gain than to the time constant in a time delay system. Compared with the simulation 

results for t = 0, the robust space of the time-delay system is reduced more in the K 

direction (from 60.0 to 4.0) than in the T direction (from 6000 to 3700). The main reason 

for the reduced robust space is the oscillations caused by the relatively high gains. 

Parameter variations around the robust space produce the same effect on the step response 

as in t = 0, except for the large output oscillations at high gain and small time constant. The 

effect of the time delay on system performance can be found from Fig.4-9(b - e). Clearly 

time delay impairs the switching line performance. From Fig.4-9e, although the responses at 

point 2 and 3 meet the performance specifications, the output trajectories are quite different. 

Moreover, time delay increases the overshoot or undershoot, which can be found in the step 

responses at points c, f and b. All these results demonstrate that the controller cannot keep 

the system state (e, ê) on the designed switching line, thus system performance is more 

sensitive to the parameter variations in time delay systems. This is an important observation 

which confirms the argument presented in Section 3.4.1. 
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Fig.4-9a Robust space of the first-order system with time delay (r= 100) 
(a) robust space; (b) to (e) step input performances at selected points in (a) 
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Fig.4-9 Simulation results of the first-order system with time delay (t=100) 
(a) robust space; (b) to (e) step input performances at selected points in (a) 
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Fig.4-10 Robust space of the first-order system with time delay (T=100) after re-turning. 

R () 
30 

25 

20 

15 

10- 

0 	(6) 	200 	30) 	40) 	500 	6ff) 	700t 

Fig.4-11 Illustration of the effect of time delay on system robustness 
(tuning point: 'r = 100) 

Note that another reason for the decreased robustness in the time delay case, is that the 

system was not retuned when a time delay was introduced. If the system is tuned when the 

time delay exists, a bigger robust space than that in Fig.4-9(a) can be expected. Fig.4-10 

a. 
w miNd 
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shows the robust space of the first-order system when the controller was tuned at K = 5, T 

= 2000 and 'r = 100, by setting the scaling factors and the controller sample rate to: GE = 

1.0, GC = 10.0, GU = 0.2, t = 100. 

Comparing with the robust space shown in Fig.4-9, the robustness of the same system was 

increased by 25%. This result clearly demonstrates the effect of the tuning point on system 

robustness. The reason for the increase in the robust space is that the re-tuned system was 

much slower than the first one (t changed from 20 to 100) and every change in the control 

input Au was more carefully applied in the re-tuned system than in the first system (GU 

changed from 1.0 to 0.2). Thus the controller in the re-tuned system can tolerate more 

changes in the process gain than the previous one. Therefore, the tuning point should be 

carefully selected in practical systems if robustness is a particular requirement. 

In addition, if the time delay varies, system robustness changes dramatically. Fig.4-1 1 shows 

the robustness in the KxT plane as a function of time delay 't. This demonstrates the 

predicted result in Chapter 3 that the basic FLC cannot properly handle the time delay, 

especially when the process gain is high. 

In conclusion, extensive experimental tests show that FLC systems possess a strong ability 

to cope witli tile variations 01 parameter K and T in the first order process, but are less able 

to tolerate time delay variation. In addition, it is demonstrated that the robustness of the 

first order system stems from the switching line feature of the fuzzy logic controllers. 

4.4.2 Second order process 

The transfer function of the second order process is given as 

G(s)= 	
Kw 

2 +2ç(j)S+(O 
(4-6) 

Its parameter variation ranges are assumed to be K = (1.0 - 70.0), cc = (1.0 - 20.0), and 

=(0.5 - 1.5). 

It is shown in Chapter 3 that the robustness characteristic of the FLC controlled second 

order process (second order system for short) can be expected to be different from that of 

AN 
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the first order system due to the oscillatory characteristics of the process. The effect of on 

the robust space of the system is equivalent to the effect of the time constant in the first-

order system. The effect of o on system robustness will be different because its variation 

only influences the response speed but not the overshoot. In this section, simulation results 

will be presented to demonstrate these results for < 1.5. 

Extensive simulation experiments were performed to test second order system performances 

in the parameter space Kxwxt. The step changes for K, co, and were selected as 0.5, 2.0, 

and 0.01 respectively. The input reference of the system was changed from w = 0 to w = 2.5 

and the controller input/output signals were assumed to be constrained by a saturation with 

limits at ±10. The system was tuned at K = 10.0, c = 5.0, =0.7 and the following 

controller scaling factors were obtained: 

GE= 1.2,GC= 10.0, GU= 0.01, t= 16. 

The robust space on the K— plane was tested first and the result is presented in Fig.4-12. 

Step performances at different points in the parameter space are presented to illustrate FLC 

performances for different operating situations. 

_FromFig.412,Jt canbe_found that_the robust 	 theK 

- ç plane exhibits a sector with shape similar to that predicted by the qualitative analysis 

presented in Chapter 3, except for a cut-off within a band of gain K. The reason for the cut-

off phenomenon in the robust space can be found in the system step performances at points 

c, f and h. At point f, the process generated a response faster than the speed required by the 

switching line when the process response is near the set-point. Due to the deviation of the 

phase plane trajectory from the switching line, the FLC tries to bring the phase plane 

trajectory back to the switching line by reducing its control output. Because the controller 

acts relatively faster than the process response, the control u is reduced too much so that a 

big undershoot is generated. At point h, the controlled process gives the same response 

speed as at point f, and the run-away phenomenon happens again. However, the process 

response speed is increased (because K is increased at point h, compared with point 0 and 

the control u is not reduced too much, thus no big undershoot can be produced. Also at 

point c, the response speed is much slower (because of the low gain) than the response 
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Fig.4-12 Robust space (on the K— ç plane) and 
step responses of the second order system 

speed at point f, so the FLC produces a different control action from that at point f, thus the 

run-away of the phase plane trajectory is not generated. Clearly, the cut-off phenomenon in 

the robust space results from the non-linear control property of the FLC system. 

From the step responses shown in Fig.4- 12, one can find that the system performances at 
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points a, d, e, f, g and h exhibit a similar rising speed, which indeed confirms the switching 

line performance of a FLC system. In addition, step responses are oscillatory for small c 
(points a, d, g) and slow for large (points c, b). These observations confirm the 

predictions made in Chapter 3. Note that the performance at point c is out of specification 

because at this point a big jump of settling time is caused by a small increase in the 

undershoot. 

The robust space on the K— o plane was also tested. The results and step responses at 

different points in the parameter space are presented in Fig.4-13. These results differ 

significantly from the robust space of the same system on the K— plane. In Fig.4-13, it 

can be seen that the relationship between K and o on the boundaries of the robust space 

can be approximated as 

K=aw +b 

(a and b are constants), and the limitation on the maximum gain K can be clearly seen from 

the measured robust space, confirming the qualitative analysis in Chapter 3. This 

confirmation further demonstrates the validity of the use of the switching line method in 

analyzing fuzzy control systems. 

It can be found from Fig.4-13c that, though the step responses at parameter points d and g 

are similar to that at point e, the system performances at points d and g are out of 

specification. Close examination reveals that the reason for this is that the settling time at 

point d or g is more than the specified settling time (defined as 3 times the equivalent time 

constant, i.e. l/o, ). The same reason can be found at point a. If a fixed settling time 

specification were used, i.e. 3 times of the equivalent time constant at the tuning point b, 

extension of the robust space would be expected in the direction of the large o. Therefore, 

the settling time specification defined in Section 4.2.2 is more strict than the fixed one. 

Similar to the robustness test in the first-order system, the effect of the position of the 

tuning point on the size of the robust space is found to be significant. For example, if the 

second order system is re-tuned at K = 10.0, o, = 2.0, =0.8 to achieve a similar tuning 

point performance to that shown in Fig.4-13b (curve b), the robustness on the K— u plane 

1.18 



I ........T.............. 	• ........... 

I ............ 	 - 

12 

(b) 

0 

l) 

2.5 

CHAPTER 4 EXPERIMENTAL INVESTIGATION OF ROBUSTNESS OF FLC SYSTEMS 

changes from the previous 15.7% to 5.4%. 

In addition, the quality of the performance at the tuning point can affect the size of the 

robust space. In Fig.4-13, the performance measures of the step response of the second 

order system at the tuning point are 

OS = US = 0%, ST =3.0, CY =0, IES = 0.9. 

If the system is re-tuned at the same tuning point to provide a faster and smooth response 

by changing the sampling period t =12 and GU = 0.007, the performance measures become 
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Fig.4- 13 Simulation results of the second order system 
(a) robust space on the K— (q, plane; 
(b) (c) step responses at point a to h 
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Fig.4-14 Effect of tuning point on system robustness 
(a) effect of tuning point position; 

effect of performance quality at tuning point 

OS = US = 0%, ST = 2.3, CY =0; IES = 0.8, 

and the robustness on the K— o plane changes from 15.7% to 28.2%. 

The robust spaces of the two re-tuned systems are shown in Fig.4-14. Comparing with the 

robust space shown in Fig.4-13, it can be found that the location of the tuning point and the 

performance quality at the tuning point not only affect the size of the robust space, but also 

determine the position of the robust area in the parameter space. 

4.4.3 Comparative study with PID control systems 

This section will be dedicated to performing an experimental investigation of the robust step 

performance of SISO systems controlled by FLC and PID algorithms. The objective is to 

quantify the claim that fuzzy control leads to an improved robust performance compared to 

the use of PID control. It should be noted that the reason for choosing to use PID systems 

is that the PID controller is well recognized as a robust controller with respect to input 

disturbance, system parameter variation and model uncertainties [1]. 

The robustness of two control systems will be tested based on the system designs presented 

in Section 4.2. The experimental procedures and the performance specifications presented in 

Section 4.2 will be used in both situations. Two types of controlled processes: first order 

process and second order process, will be investigated and their transfer functions and the 
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parameter variation ranges are chosen to be the same as used in the previous section. 

In addition, as only 4 parameters (K, K,,, Kd and r.) in the PID system can be tuned to obtain 

the required performance, the tuned parameters of the FLC will be restricted to the scaling 

factors and the sampling rate, i.e. the membership functions and rule base in the FLC will 

not be changed. 

To make the two types of systems comparable, identical process parameter variation ranges 

were chosen, and the two systems were tuned separately to meet the STPP condition. 

A. First order process 

In the simulation experiments, the parameter variation range of the first order process is 

chosen as K=(0.5-.20.0), T=(50-2000), t=(0-200). Tuning point was selected as K = 10.0, 

T= 1000, 'r = 100. The following controller parameters were obtained: 

FLC: GE = 0.5, GC = 12.0, GU = 0.075, ts  = 24; 

PID: K = 0.22, K, = 0.0065, Kd = 0.5, t = 24. 

The tuning point performances of these systems are shown in Fig.4- 15. The robust space of 

each system were tested and is shown in Fig.4-16. Note that the percentage numbers in 

Fig.4-16 are the system robustness in this test. 

In Fig.4-16, some robust areas of the FLC system have a flat edge, say at points a and b, 

inside the tested parameter space. The shape of the tested robust area seems unlike the 

predicted shape in Chapter 3. The reason for this is that the whole robust area is larger than 

the robust area shown in the figure, therefore, the pictures in Fig.4-16 are the local and 

amplified view of the robust area. Fig.4-17 shows the step responses at two edge points: a 

(K=5, T=850, t0) and b (K=l5, T=850, t=0). It can be seen in Fig.4-17 that in both cases 

the control inputs are not saturated and the settling time is about 3 times the process time 

constant, i.e. 2550, which is the maximum settling time required by the settling time 

specification. As the time constant T decreases, the step response cannot reach the steady 

state within the specified settling time because of the switching line characteristic of the 

FLC. 

121 



UT 

04 

C) 

CHAPTER 4 EXPERIMENTAL INVESTIGATION OF ROBUSTNESS OF FLC SYSTEMS 

1.2 

O.J!pJt/:pern 

L L- i QmeroVIO 

AM 	 San'4))es 	 U 	 (An? 	 flAA, 	 UA( 	 Sanapk.s 

(a) 	 (b) 

Fig.4-15 Step input response at tuning point. (a) FLC system; (b) PID system 

Fig.4- 16 Robust spaces of FLC and PID controlled first order systems 
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Fig.4- 17 Step responses of the FLC system at the edge of the robust space 
(a) K=5, T=850, t=O; (b) K=15, T=850, T=O. 
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gain change (trajectory 2) is smaller in the FLC system than in the PID system. Similar 

results can be obtained when the time constant T changes. However, the deviation that 

resulted from a time delay change is much bigger in the FLC system than in the PID system. 

These results demonstrated that, compared with the PD system, the FLC system is less 

capable of tolerating time delay changes, but is more robust under variations of the other 

process parameters. 

B. Second order process 

The same tests were performed for the second order linear process. In these tests, the 

parameter ranges were selected as K=( 1.0 - 70 ); = ( 0.5 - 1.3 ); w = (1.0 - 80). Both 

FLC and PID systems were tuned at K = 10, e = 40 and = 0.9, and the following 

controller parameters were obtained: 

FLC: GE = 1.0, GC = 6.0, GU = 0.02, t= 3; 

PD: K = 0.045, K1=0.005, Kd-0.2, t = 3. 

Two step performances at the tuning point are shown in Fig.4-19. The robustness of each 

system was tested with the step changes as AK = Aco = 1.0, A = 0.2. Total number of 

tested parameter points was 28000. The results are shown in Fig.4-20. The robust space of 

the FLC system covers 4487 test points (16%), while that of the PID system covers 1529 

points (5.5%). 

From the location of the robust spaces of two systems, it can be found that the fuzzy logic 

controller can tolerate wider variations in gain K than the PID controller. Further 

investigation found that the overshoot of the PID system increases as K becomes larger, 

while the FLC system can maintain the overshoot almost constant by its switching line 

performance within a large range of K. 

2.5 2.5 

0-F 	 I 	I 
0 	2W 	4W 	fAX) 	8(X) 	100) SWYOM 

	
0 	200 	400 	6M 	9W 	HXX 

(a) 
	

(b) 

Fig.4- 19 Step responses of (a) FLC and (b) PID systems at the tuning point 
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Fig.4-20 Robust spaces of FLC controlled and PID controlled second order processes 

From the variation of the robust areas in the K 	co,, plane, it is clear that the fuzzy logic 

controller is less sensitive to the changes of damping ratio than the PD controller. The 

reason can be explained by noting that the integral term in the PID controller cannot match 

the process response speed when decreases from the tuning point, i.e. the dynamics of the 

process becomes faster, so that a large undershoot andlor a slow settling performance are 

produced by the controller. 

From the width of the robust areas in Fig.4-20, it can be found that both systems are 

sensitive to changes of the frequency I. As discussed in Chapter 3, (LI, in the second order 

process is associated with an oscillatory characteristic which is difficult to control without 

making use of the second order derivative of the system error. This problem will be further 

discussed in the next section. 

It should be noted that the effect of the tuning point location and the tuning point 

performance on the system robustness cannot be neglected, especially the effect of the 

tuning point performance. For example, when both PD and FLC systems were tuned at 

K= 10.0,c, =5.0,=0.7, 

to achieve a step performance defined by: 

Os = 0.0%, Us = 0.0%, ST = 2.3 7  CY = 0, JES = 0.8, 

the robustness of the PID and FLC systems became 4.5% and 2.7% respectively (the FLC 

parameters: GE = 1.2, GC = 10.0, GU = 0.002, t = 12; PID parameters: K = 0.024, K 1  = 
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0.0023, Kd = 1.0, t = 12). In this case, the PID system is slightly superior to the PLC 

system. 

Due to their non-linearity, FLC systems with different parameter settings can give similar 

performance, but their robust spaces will vary widely. From the author's experience, an 

improperly tuned PLC will not show any advantage over the PID system with respect to the 

robustness. The main reason for the low robustness of the PLC system in the above example 

is the slow sampling rate, which gives not enough time for the controller to adjust its 

control output before the system performance becomes unacceptable. Unfortunately, unlike 

the tuning Of PID systems, there is no systematic method of tuning a PLC system for a 

required robustperformance. This is one of the major drawbacks of the FLC systems. 

Finally, the following conclusions can be drawn from the experimental investigations in this 

section. 

The robustness of the PLC systems stems from the constraints introduced by the 

switching line performance. 

The switching line based qualitative analysis in predicting the shape of the robust 

space of the PLC systems is confirmed. The robust space of the first order PLC 

system is a sector in the K-T plane, and is significantly reduced when the time-delay is - 

added. The robust space of the second order PLC system is, approximately, a sector 

shape on the K— plane and a curved sector shape on the K— co plane. 

Compared with a PID system, under conditions of similar tuning point performance, a 

properly designed and tuned PLC system is less capable of tolerating the time delay 

change, but is more robust under variations of process gain, time constant and 

damping ratio. 

The performance of the fuzzy logic control system at the tuning point affects the 

position and the size of the system's robust space in the process parameter space. 

Careful tuning of a PLC is needed for obtaining the high robustness of FLC systems. 

The basic FLC designed in Chapter 3 exhibits less robustness in controlling high order 

processes than in controlling low order processes. Knowledge about high order 

dynamics of a controlled process should be included in the fuzzy rule base for 

controlling high order dynamic systems. 
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4.5 Effects of FLC parameters 

It has been indicated in Chapter 3 that FLC parameters determine the switching line 

position, the reaching condition and the sliding condition of a FLC system and thus affect 

the system robustness. To design a robust fuzzy logic controller, it is essential to understand 

how and how much the controller parameters affect the system robustness. This section will 

be devoted to presenting an experimental investigation of the effects of the rule base, the 

membership function, and the scaling factors on robust system performance. 

To investigate the effect of the rule base and the membership functions on system 

robustness, several fuzzy control systems with different rule bases and membership 

functions have been simulated, and the robustness of each system has been tested and 

compared with others cases. For a reasonable comparison of the system robustness, the - 

scaling factors of each system were tuned to give similar performance at the same tuning 

point. 

For testing the effect of each scaling factor on system robustness, the controller parameters 

were first tuned to obtain a specified performance at the tuning point, then the robust 

- performance of the control system was tested at different values of this scaling factor; 

keeping other controller parameters unchanged. 

The first order process with time delay was chosen as the controlled process, its parameter 

space was defined as 

K= (1.0 70.0), T= (50-8000), t (0-400), 

and the tuning point was selected at K = 35, T = 4000 and 'r = 100. 

4.5.1 Effect of rule base 

Since the robustness of a FLC system is closely related to the switching line characteristic of 

the FLC, the position and the shape of the switching line will affect the robustness to a large 

extent. Therefore, emphasis has been made on the effect of the variations of the switching 

line on the system robustness. These variations of the switching line angle, and switching 
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line shape were considered in this experiment. Five different rule bases have been selected 

as shown in Fig.4-2 1, and the robustness of the FLC system has been tested when each rule 

base was used. The results are shown in Table 4-1. Note that the default membership 

functions defined in Section 4.2 were used and the STPP condition was met in tuning these 

systems. 

From Fig.4-21 it can be seen that the switching line angles of rule base (a), (b) and (d) at the 

steady state (e = é = ZE) are smaller than the switching line angles in rule base (c) and (e). 

Because the smaller switching line angle helps to limit the rising speed of the response, the 

fuzzy control system with rule base (a), (b) or (d) has less chance to produce large 

overshoot or undershoot, thus it is more capable of controlling large time constant 

processes. This is clearly shown in Table 4-1, where the fuzzy systems (a), (b) and (d) 

produced a similar robustness in the prescribed parameter space, while the robustness of the 

fuzzy systems (c) and (e) were only about 40% of that of the former three systems. This 

result demonstrates that the switching line angle can significantly affect the robustness of 

fuzzy control systems. 

From the results in Table 4-1, it can also be found that the shape of the switching line does 

not make a significant difference to the system robustness. This results from the use of the 

same tuning point performance condition. The scaling factors of fuzzy systems with 

different rule bases have to be differently set so as to meet this condition. For example, rule 

base (d) allows a faster response than rule base (b) according to the switching line theory, 

but for the same tuning point performance, the scaling factor GE corresponding to the rule 

base (b) had to be set at twice the scaling factor GE corresponding to the rule base (d). That 

is, different scaling reduces the effect of the differently bent switching line on system 

robustness. If the same scaling factors are used in both cases, the different shapes of the 

switching line will lead to different responses. For example, when the scaling factors of two 

fuzzy systems (with rule base (d) and (e) respectively) were set as 

GE= 1.0,GC= 12.0, GU=0.05; 

there is a big difference in two system performances when system error is small, as 

illustrated in Fig.4-22. 
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Table 4-1 Robust areas of the five fuzzy control systems 
using rule bases as shown in Fig.4-21 
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Fig.4-22 Illustration of difference in the step responses of fuzzy systems using 
rule base (d) and (e) in Fig.4-21, and with the same scaling factors 
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Although comparison among the above five systems indicates that the system with rule base 

is the most robust, as far as process parameter variations are concerned, it should be 

noted that these comparison results can only be applied to low order linear process control. 

The objective of the comparison is to explore the function of the switching line for robust 

control, instead of finding the best rule base for robust control. Different control tasks may 

need different rule bases. Clearly the switching line will play an important role in robust 

control with fuzzy algorithms. 

Note that although the STPP condition is important in the above comparison, it is difficult 

to tune the scaling factors of fuzzy control systems to produce the same performance when 

the switching lines are non-linear. For instance, a fuzzy control system with rule base (d) 

gives a fast start response but slow settling performance, while a fuzzy control system with 

rule base (e) produces a fast response in the whole transient period. Because the two 

switching line functions are different and non-linear, STPP condition can only be 

approximated by tuning the scaling factors. In the simulation tests, three performance 

measures, OS, US and IES, were used to determine the difference between the two step 

performances. 

It is worth indicating that the scaling factors provide an effective method for tuning the 

fuzzy systems only when the switching line covers all the columns and rows of the rule base. 

If the switching line does not cover a row of the rules in the rule base, such as the rule base 

in Fig.4-21, there will be an area on the phase plane e - è corresponding to this row of 

rules, within which any change of the scaling factor GC will have no effect on system 

performance. If the switching line does not cover a column of the rules in the rule base, like 

rule base (d) in Fig.4-21, there will be an area on the phase plane e - ê corresponding to 

this column of rules, within which any change of the scaling factor GE will have no effect 

on system performance. 

4.5.2 Effect of membership functions 

For fuzzy control algorithms, membership functions of each input-output variable of the 

controller play an important role in determining the control system performance. Two 

essential aspects related to each membership function are the support and the position 
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which, together with the fuzzy control rules, provide a complete control surface. It is 

known that the position of each membership function directly affects the position of the 

switching line of the FLC. So the effect of the position of each membership function will be 

similar to that of the rule base described in the last subsection. In addition, the location of 

membership functions can be determined from practical experience of controlling the 

specific process. But in practice the support of each membership function, thus the overlap 

between membership functions, is the main consideration in designing FLC systems. 

Therefore, investigation will only be made into the effect of the overlap of membership 

functions. 

The overlap measurement of two membership functions is defined as follows. Suppose two 

adjacent membership functions j.i1 and t2 are as shown in Fig.4-23. Their overlap is 

measured by 

overlap(%) = lOOa/b, 	 (4-7) 

where a and b are as shown in Fig.4-23. 

To explore the effect of the overlap of membership functions on system robustness, three 

- type of membership functions, as shown in Fig.4-24, were selected for each of the fuzzy 

controller variables. Overlaps in each type of the membership functions were chosen as 

50%, 100% and 150%. 

The controller using membership functions with 100% overlap was defined as the reference 

controller, and other controllers were organized to allow only one of their variables to take 

the membership functions with 50% overlap or 150% overlap. Seven controllers in such 

combinations were tested to control the first order process with time delay 'r = 100. The 

tuning point was selected at K = 35 and T = 4000. Under the STPP condition and with the 

b 

Fig.4-23 Definition of the overlap measurement of two adjacent membership functions 
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Fig.4-24 Membership functions to be used in the robustness tests 
(a) 100% overlap; (b) 50% overlap; (c) 150% overlap. 
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default rule base defined in Section 4.2, the robust areas of each system were mapped with 

the prescribed parameter space by using the simulation tool FzvSimu. The results are shown 

in Table 4-2. 

From the results shown in Table 4-2, it can be found that the variation in the overlap of 

membership functions does not create obvious effects on system robustness except for two 

cases: t(e) in 150% overlap and .t( ê) in 50% overlap. 

Further investigation found that when the overlaps of membership functions j.t(e) are 

increased, the controller looses the ability in handle large gain processes; when the overlaps 

of membership functions ( ê) are decreased, the controller looses the ability in handle large 

time constant processes. Analytically, if the overlaps of membership functions J.i(e) are 

increased, the supports of the BIG and MEDIUM membership functions become wider. The 

controller becomes more likely to give an over-drive control output, so that the controlled 

process, with large gain, generates large overshoot or undershoot more easily. Similarly, if 

the overlaps of membership functions t( ê) are decreased, the supports of the BIG and 

MEDIUM membership functions become narrower. In this case, the derivative error è of a 

sluggish system finds it more difficult to reach the BIG or MEDIUM level, so that the 

controller is more likely to generate excess control output. Thus overshoot or undershoot 

will increase. 

4.5.3 Effects of scaling factors 

In the investigation of the effect of scaling factors on the robust performance of a fuzzy 

control system, the membership functions and rule base described in Section 4.2 were used 

to control a first order process with time delay. The scaling factors were manually tuned at 

the tuning point K = 35, T = 4000 and t = 100, and a satisfactory step response was 

obtained with GE = 0.5, GC = 9.0, GU = 0.05, and t = 50. Then one of these scaling 

factors was varied, with the others unchanged, to test the system robustness within the 

prescribed process parameter space. The test results are shown in Fig.4-25 

From the results, it can be found that the manually tuned scaling factors did not produce the 

best robustness. System robustness can be improved by selecting suitable values for the 
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scaling factors. For instance, if GE is changed from 0.5 to 0.4 and the other controller 

parameters are kept unchanged, system robustness will increase from 50% to 68%. Note 

that these improvements on system robustness are only local optima. The global optimum 

can be obtained by searching all possible controller parameter settings and this will be 

discussed in the next section. 
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Fig.4-25 Effects of scaling factors on system robustness. 

The results also indicate that the robustness of a fuzzy control system is sensitive to the 

scaling factors. To maintain the robustness obtained with the original settings, the variation 

of each scaling factor cannot be large. A careful examination found that the robust range of 

parameter T moves to the higher-value region when GC increases; the robust range of 

parameter K moves to the lower-value region when GU increases. This demonstrates that 

GC has a close relation with the process time constant and GU with the process gain. These 
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relations can be used to improve system robustness by adapting GC and GU according to 

the changes in time constant and process gain respectively. 

To explain the narrow range of scaling factor values maintaining the required robust 

performance, the effect of each scaling factor on system performance at the tuning point 

was tested. The results are shown in Fig.4-26. From the results, the following facts can be 

discovered which are in line with the analysis based on the switching line theory in Chapter 

3. 

A small GE will lead to a slow response and a big overshot because small GE leads to a 

wide tolerance band of error around the set-point. This problem becomes more serious if 

K becomes small or T becomes large. A large GE will cause limit cycling at the steady 

state because the performance measure becomes more sensitive around the set-point and 

less sensitive during rise-time, especially when K is large or T is small. 

Decreasing GC will lead to a quick response but this increases overshoot because the 

controller becomes less sensitive to the error changes. Increasing GC will give a slow 

rising speed of the step response, but limit cycling will occur if gain K is large and the 

performance can not meet the settling time requirement if K is small. 

GU functions purely as an overall gain factor of the controller which varies the 

magnitude of the process input. A small GU leads to slow responses so that the 

overshoot could be large if T is big, while a big GU will give a fast response but could 

cause limit cycling when K is increased. 

Finally, this section can be concluded as follows. In a fuzzy control system, system 

robustness can be influenced by the rule base, the membership functions, and the scaling 

factors, because the variation in any of these controller parameters can change the position 

andlor the shape of the switching line which in turn determines the whole system 

performance. Experimental results shows that the robustness of a fuzzy control system are 

sensitive to the position of the switching line but less sensitive to the shape of the switching 

line and the overlaps of membership functions. In addition, it is indicated that the robustness 

of a fuzzy control system can be optimized by properly selecting the controller parameters. 
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Fig.4-26 Effects of scaling factors on system performance at the tuning point 

4.6 Experimental valuation of the proposed design methods 

In Chapter 3, the switching line method was proposed for designing a robust FLC system. 

Based on this method, the position of the switching line can be selected and the distribution 

of rules on both sides of the switching line can be determined. For the higher order process 

control problem, two different phase advanced methods have been introduced for improving 

the robustness of the fuzzy control systems. For automatic design of a robust fuzzy control 

system, an evolutionary method based on the genetic algorithm was proposed. 

In this section, experimental evaluation of the proposed methods will be performed, i.e. the 

controller will be designed by using the proposed methods, and the robustness of this 

controller will be investigated by allowing the process parameters to vary in certain ranges. 

To demonstrate the value of the proposed methods in improving system robustness, 

comparison with the standard PLC will be carried out with respect to system robustness. 
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4.6.1 Switching line method 

The following process was chosen to be controlled by the fuzzy logic controller designed by 

using the switching line method: 

- Kw(s-1/T) 
G(s) 

- s(s 2  +2(os+) 
(4-9) 

This is a third order non-minimum phase process which is often used to approximate the 

dynamics of flexible-joint robot arms and vehicles driven by motors [1]. Parameter K, w 

and are assumed to vary in the following ranges: 

K=(1.0-7.0),Q)(1.0-- 10.0 ) and ç = ( 0.5 — 0.9 ), 

and the zero (1/I) is fixed at 0.025 (T = 40). The operation point is selected as K=2.5, w, = 

3.0, C = 0.7. 

According to the switching line design method described in Chapter 3, the phase plane 

trajectory of the required system performance and the dynamic region of the controlled 

process are required to select the FLC parameters. Because the process (4-9) is linear, its 

dynamic region on the phase plane can be measured by detecting the two extreme phase 

plane trajectories, i.e. the slowest response and the fastest response. From the linear system 

theory, two extreme responses correspond to the following two parameter settings: 

(i) K = 1.0, oi,, = 1.0, = 0.9; (ii) K = 7.0, a = 10.0, = 0.5. 

Fig.4-27 shows two measured phase plane trajectories at these two parameter points. 

Because of the integrating characteristic of the controlled process, the unit impulse was 

used to test the phase plane trajectories of the process. In addition, the error in the steady 

state was normalized to 1.0. 

Based on the switching line method, the membership function of the input variables, e and 

é, can be determined as illustrated in Fig.4-28. First, the required phase plane trajectory 

was designed as the line c shown in Fig.4-28(a), which is based on the consideration that 

system responses should be fast enough when system error is BIG so as to meet the settling 

time requirement and slows enough when system error is SMALL so as to avoid high 

overshoot or undershoot. Secondly, a simple symmetrical rule base was chosen because the 
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controlled process is linear. Thirdly, based on the rule base and the required phase plane 

trajectory, the membership functions of the input variables were determined as shown in 

Fig.4-28(a), where the membership functions of each variable were assumed symmetrical to 

the origin of this variable. 

The output membership functions were determined as follows. From (3-37) to (3-40) in 

Chapter 3, the following two equations can be obtained 

cog(S 	
LI max  Tmn 	 (4-9) )~  

K ma ,;  

cog(B 	
e•Tmax 	 (4-10) )~ 

treach K,,,,, 

where 1A ê I max  is the maximum error change deviation allowed for the phase plane trajectory 

to slide on the switching line in the sliding period. te is error change covered by the 

reaching period determined by the required switching line, treach is the time spent in the 

reaching period, SA,, and BA are fuzzy sets SMALL and BIG of the controller output 

change, Au.. Note that a symmetrical output membership function is assumed. 

Equation (4-9) is related to the sliding condition. For the control of linear processes, IA ê I ra ,, 

corresponds to the high gain and small time constant situation, like the phase plane 

trajectory b in Fig. 4-28(a), where small change in the control input can lead to a fast and 

I,' tr 

Fig.4-27 Open-loop impulse response of prOcess (4-9) at 
(a) K= 1.0, co = 1.0, = 0.9 and 

(b) K= 7.0, o,, = 10.0, 	0.7. 
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significant change in the process output; thus it has a great tendency to deviate from the 

designed switching line trajectory. From Fig. 4-28(a), it can be seen that if a 2% fluctuation 

of error is allowed, then Iz\ ê max I = 1.5 X 10. 

Equation (4-10) is related to the reaching condition. For linear control, main consideration 

should be made on the slow response situation, like the phase plane trajectory a in Fig. 4-

28(a), where large control action is needed to bring the system state to the required 

switching line trajectory. Parameters & and treah correspond to the required switching 

line performance. From Fig. 4-28(a), it can be seen that ( 	 ) 
is the average error change 

t reaCh 

in the reaching period and can be approximated by the error change at the middle point of 

Ae 
the reaching trajectory, i.e. 	3.5/200 = 0.0175. 

t reO: h 

Considering (OyI as the equivalent time constant, then from the parameter variation 

ranges, Tmj,R = 0.11, Trna = 2, Kmjn = 1.0, and Km=  = 7.0. So, from (4-10) and (4-11), 

following relations can be obtained: 

cog(B) ~! 0.0 175, 

cog(S) :!~ 2.36 X 10.6. 

Obviously, cog(S) is so small that it will take long time for the FLC to adjust its output to 

adapt the error change, and consequently a big overshoot or undershoot will take place. The 

reason is that the required parameter space is too big for the PLC to maintain an acceptable 

performance. An adjustment of either the performance requirements or the size of the 

parameter space is needed. Here the size of the required robust space is adjusted to 

K = (2.5 4.0 ), w = (4.0 6.0) and c = 0.7. 

Within this reduced parameter space, the variation region of the phase plane trajectories of 

the controlled process (4-9) were found to be in the area between trajectory a and trajectory 

b as shown in Fig. 4-28(b). Similarly, the following parameter values can be obtained: 

I1\inaxI = 1.5x 10, 	= 0. 18/120 = 0.00 15, 
t reach  

Taut, = 0.238, T. = 0.357, Knuj = 2.5, and K,,,ax = 4.0. 
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Now the reaching condition and sliding condition become; 

cog(B AU )~!2.l x 10; 

cog(S) :!~ 8.9 x 10.6. 

thtuitively, the above conditions are applicable. So the control change membership functions 

can be selected as follows: 

cog(B,) = 2.5 x 

cog(S) = 5.0 x 10 6 , 

and cog(MA) is chosen as 5.0 x 10. 

The robustness of the FLC system designed above was tested in the previously defined 

parameter space; and the experimental results is shown in Fig.4-29. Note that the system 

was tuned at the operation point, and the scaling factors were set as 

GE=l.0, GC=120, GU=0.025, t = 10. 

ç=O.7 
7 

K 

	 spar 

0 

Fig. 4-29 The tested robust space of the FLC system designed by 
the switching line method (Ref. sl_desig.248) 

In Fig.4-29, it can be seen that system performance meets the performance criteria within 

the main part of the reduced parameter space, and the robustness R 0  in the whole parameter 

space reaches 14.8%. If the damping ratio = 0.7 is only considered, the robustness index 

becomes 24.9%. It should be noted that, if the FLC described in Section 3.2 in Chapter 3 is 

used to control this process, the system robustness will not exceed 8% under the STPP 

condition. 
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From this experimental test of the switching line design method, it is demonstrated that the 

this method is effective for designing a robust fuzzy control system, and the design 

procedure is quite simple and easy to use. However, this method is only suitable for the 

SISO systems, and the required information about the open-loop responses of the controlled 

process may not be available. Also, like most design methods for control systems, tuning is 

very important to achieve the designed performance. Further work is needed to extend this 

method to other types of control processes and reduce the dependence on knowledge about 

the controlled plants. 

4.6.2 Phase advanced methods (PAM) 

In Section 3.6.2 of Chapter 3, two phase-advanced fuzzy control methods were developed 

to handle the problems experienced with the standard fuzzy logic control of high-order 

processes. This section represents the use of these two methods to control the high order 

processes which are found to be more difficult for the standard fuzzy logic control method 

to achieve high robustness compared with the case of first order processes. Comparison 

with the standard fuzzy logic control method will be made to demonstrate the advantage of 

the proposed phase-advanced methods. The experimental procedure defined in Section 

4.2.3, the membership functions and the rule base defined in Section 3.2 were used. 

A. Non-integrating high order process - PAM-I 

The controlled process was chosen to be the time delayed non-integrating second order 

process: 

K _t 
G(s)= 	

e 
 
(1+T1 s)(1+T.,$) 

(4-li) 

The robustness of the closed-loop system was investigated by allowing the parameters of 

this process to vary in the following ranges; 

K = (0.5 9.5), T1  = ( 50 500), T2  = (0 - 225), 't = 20, 50. 

The robustness of both the FLC system and the PAM-I system have been investigated 

within the process parameter space KxT 1xT2 . Scaling factors of both controllers were 
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separately tuned at K = 4.5, T1  = 250, T2  = 100 and t = 20, and the STPP requirement was 

obtained with the following parameter settings: 

FLC: 	GE= 1.0; GC= 18.0; GU=0.07,t=7. 

PAM-I: 	GE=0.5; GC= 12.0; GU=0.1; K=2.0,t 5 =7. 

Each system's step response at the tuning point is closely similar to that shown in Fig. 4-30. 

Note that if the response of the FLC system is made faster than shown, oscillations or a 

large overshoot will result. 

The robust space of each system is shown in Fig.4-3 1 and Fig.4-32, where the upper and 

lower surfaces of the robust space are presented. The robust space of the PAM-I system 

and the FLC system take 680 and 465 test points in 1000 tests respectively. A similar result 

can be found if t = 50 where in this case the robust space of the PAM-I system and the FLC 

system take 643 and 295 test points respectively in 1000 tests. 

0 	500 	1000 	1500 	Samples 

Fig. 4-30 Step responses of FLC and PAM-I systems at the tuning point 
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Fig. 4-31 Robust space of the PAM-I system (A) upper surface; (B) lower surface. 
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T2  

250- 
V . 

(A) 

Fig. 4-32 Robust space of the FLC system (A) upper surface; (B) lower surface. 

B. Integrating high order processes - PAM-Il 

The controlled process is chosen to be the integrating second order process with time delay: 

Koe 
G(s)= (4-12) 

2 s(s +2w +o) 

This process cannot be control by the PAM-I method because an accumulator after the 

fuzzy inference engine is not required. Also due to the time delay term in the process, it will 

be very difficult to control the process by the standard FLC. This high order process, 

however, is suitable for using the second phase-advanced control algorithm PAM-Il. 

The robustness of the closed-loop system was investigated by allowing the parameters of 

this process to vary in the ranges shown below; 

K= (1.0 —7.0), 0),, = ( 1.0— 10.0), ç = (0.5 —0.9), r = 100, 200. 

The robustness of both the FLC system and the PAM-Il system have been investigated 

within the process parameter space Kxco,, xc. Scaling factors of both controllers were 

separately tuned at K = 3.0, w,, = 5.0, = 0.7 and t = 200, and the STPP requirement was 

obtained with the following parameter settings: 

FLC: 	GE = 1.0; GC = 50.0; GU = 0.009. 

PAM-TI: 	GE = 0.9; GC = 70.0; GU = 0.011; 3 = 10.0. 

The sample rate is t. = 20. The step response of each system at the tuning point is shown in 

Fig. 4-33 from which it can be seen that they are closely similar. 
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The robust space of each system is shown in Fig.4-34 and Fig.4-35, where the upper and 

lower surfaces of the robust space are presented. The robustness of the PAM-il system and 

the FLC system are 20.6% and 13.1% in 2700 tests respectively. When the time delay was 

set as t = 100 without re-tuning the system, the robust index of the PAM-Il system and the 

FLC system become 9.8% and 4.0%. 

Comparing Fig. 4-31 with Fig.4-32 and Fig.4-34 with Fig.4-35, it can be clearly seen that 

both phase-advanced methods can achieve higher robustness in controlling the high order 

processes than the standard fuzzy logic control algorithm. This improvement becomes more 

significant when the dynamic impact of the controlled process is increased. This is reflected 

in the system performance when T2  in process (4-11) is increased or in the process (4-12) 

is decreased, where the robust space of the phase-advanced FLC system is much larger than 

that of the standard FLC system. When the dynamic impact of the controlled process 

vO) -- 

	

1.0. 	- - - ------ 

0.8.----- -   --------- - - - - - 
PAM-fl 

	

: 	 - 

0.2..---- 
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Fig. 4-33 Step responses of FLC and PAM-TI systems at the tuning point 
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Fig. 4-34 Robust space of the PAM-IT system (a) upper surface; (b) lower surface. 
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Fig. 4-35 Robust space of the FLC system (a) upper surface; (b) lower surface. 

is decreased, the advantage of the proposed phase-advanced methods becomes negligible, 

which can be reflected when T2  in process (4-11) is small or when in process (4-12) is 

large. 

However, tuning the phase-advanced fuzzy control system becomes more complicated than 

the standard fuzzy control system, because the additional parameter produces significant 

effect on system performance, especially in the high order case. From practical experience in 

tuning these systems, it is found that they can be tuned at first by setting the proportional 

gain K,, in PAM-I or the derivative gain f3 in PAM-il to zero, and then by tuning K,, or P to 

improve the system performance. Generally, when phase-advanced control is applied, the 

scaling factors should be adjusted slightly to increase the system response speed. 

4.6.3 Genetic algorithms 

Genetic algorithms have been successfully used as a global search method for optimal 

conditions in many field. There are also applications in designing fuzzy logic control systems 

for obtaining optimized controller parameters. Since the design of a robust fuzzy control 

system in this research aims to obtain a maximum parameter space where the system 

performance meets the prescribed performance specification, the design task can be 

transferred to a searching problem in the concerned process parameter space which can be 

performed by the genetic algorithm. 
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However, successful application of the genetic algorithm needs a simulation model of the 

controlled process which, in fact, is not required by the fuzzy control method. Nevertheless, 

in some cases where the process model can be approximated, then the genetic algorithm can 

be used as a systematic design method for this fuzzy control system. An example of this 

type of process is the carpole system [121] which is often used as the benchmark of control 

methods. 

This section presents the results of an investigation of the robust performance of the cart-

pole system controlled by a FLC optimised by applying the genetic algorithm. The design 

method described in Chapter 3 was used and the simulation experiments were carried out to 

allow the parameters of the fuzzy controller to be optimized. The robust performance of 

resulting system was compared with that of the manually tuned fuzzy control system. 

The robustness of the cart-pole system defines the ability of the controller to keep the pole 

upright and position the cart in the required zone for a required length of time 	when the 

cart-pole parameters, like the mass of the cart and the length of the pole, vary in certain 

ranges. 

The cart-pole process can be described by the following equations: 

mcii + mji + mlO cosO - m16 2  sinO Ku 	
(4-13) 

JO+ml(j5cosO+lO)_mg/sine =0 

where m is the mass of the cart, p is the horizontal displacement of the cart, m is the mass 

of the pole, 1 is the length of the pole, 0 is the pole's angle to the vertical, u is the control 

force exerted on the cart, J = -- in1 is the moment inertia of the pole, and g = 9.8 ni/s2  is 

the acceleration due to gravity, K is the gain ot the control input. i ne parameiers of the 

cart-pole process at the tuning point are set as follows: 

,n=1.Okg; l=l.Oni; in=0.lkg; K4.0, 

and the initial value of 0 and p are assumed as 0(0) = 0.35 rad, p(0) = 0 (origin of the 

horizontal coordinate). The parameter m and 1 are assumed to vary in the following ranges: 

= 0.5 to 5.0 kg; I = 0.3 to 2.5 m. 
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From the mathematical model of the cart-pole system, it can be seen that, in addition to the 

nonlinearity of the process, the control task with the cart-pole system is to control two 

output variables, i.e. 0 and y, by operating only one control input u, the horizontal force 

applied to the cart. Obviously, there is correlation between the two outputs, which, in 

principle, requires de-coupling techniques and specific fuzzy control rules, if the FLC is 

used. Moreover, if the number of the controller inputs is constrained to two, so as to avoid 

the increase of rules and computing complexity, a method has to be developed to include all 

useful system dynamic information in the input signals. 

The method used in this research can be stated as follows. Intuitively, the pole balance is 

more important than centering the cart. The pole leaning to the left can be balanced by a 

control force to the left, and vice versa. After the pole is balanced, the cart can be centered 

by a "kicking" in the opposite direction of centering, for instance, if the cart is on the left of 

the required position, a control force to the right has to be applied. A kicking control in one 

direction will make the pole lean in another direction, and the next balance control will bring 

the cart to the required position. 

Based on the above intuitive control action, the system error signal e can be calculated as 

follows: 

- f 0 	when balancing the pole 
e - 10 + w,, y when centering the cart 

(4-14) 

where wi,, is the weight of position y in the error signal, and the centering task should be 

performed only when the pole's leaning angle 0 is relatively small and the cart is moving 

away from the required position. 

-With- the-system-errordefinedas .aboveand the _change rate_pf. this error as the controller 

input signals, the standard FLC can be applied directly to control the cart-pole system. 

Therefore, the fuzzy controller designed in Chapter 3 will be used as the initial prototype 

with the membership functions and the rule base as shown in Fig.3-4. When the controller is 

optimized by the genetic algorithm, the objective function for evaluating the performance of 

the control system will be defined as the time period T,, p  during which the pole is kept 

upright and the cart's position is within ±2m from the center y = 0. 
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Based on the algorithms developed in Chapter 3, the GaOpt function in the FzySimu 

simulation package was used to cany out the optimization. The simulation was set as 

follows: 

Gene number: 35; 

Population Size: 100; 

Crossover Rate: 0.6; 

Mutation Rate: 0.001; 

Total generation number: 20; 

T> 10,000 sample periods. 

The 35 genes include GE, GC, GU, t., w, and 30 variables of the whole membership 

functions which are constrained as symmetrical to their origins because the dynamic 

performance of the cart-pole system will not change with the pole angle or the cart 

positions. The initial population was randomly selected by the program. 

After 20 generations of evolution in these 100 populations, the best robust performance 

was found in the system with the membership functions as shown in Fig.4-36 and the 

following parameters: 

GE = 8.0, GC = 547.0, GU = 36.3 1  t. = 2, w = 26.2. 

System performance 'at the operating point is shown in Fig.4-37 and the robust performance 

in the cart-pole parameter space mx 1 is shown in Fig. 4-38. 

As a comparison, the initial prototype of the FLC was manually tuned by adjusting the 

scaling factors, the sample rate and the position weight for the best robust performance with 

the concerned cart-pole parameter space. The best result is obtained when the tuned 

controller parameters were set as follows: 

GE=4.0,GC=200.0,GU=50.0,t5,w =2. 

Fig. 4-39 and Fig. 4-40 present the operating point performance and the robust space of 

this manually tuned system. 

From the operating point performance of both systems, it is found that the manually tuned 

system produced a smaller JES value than the GA tuned system; but the robustness space of 
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the former system only took 30% of the tested parameter space while the later system can 

meet the performance specification in 55.8% of the parameter space. These results show (i) 

that the ability of manual tuning is limited to the adjustment of few parameters, while the 

genetic algorithm can perform multiple parameter tuning for a global optimization, and (ii) 

that manual tuning usually pays more attention to the performance of the operating point 

than other working points and this often leads to a local optimum (GA optimization can 

overcome this drawback). Also it is very time consuming to tune nonlinear systems (e.g. the 

fuzzy logic controlled cart-pole system); it requires system knowledge and practical 

experience. 

From Fig.4-36 it can be found that the membership functions generated by the GA 

optimization are quite strange. For instance, the membership function of the MEDIUM 

control change takes a much shorter support than expected. But by careful examination of 

the system responses, it can be found that the control output is often strong and changes 

sharply to keep the pole balanced, thus the SMALL control output near the switch line 

should be relatively large and the MEDIUM control rules may not often be used. 

It should be noted that a suitable representation of the optimized parameters is very 

important for the fast search of the global optimum in the controller parameters. For 

instance, the symmetrical constraint on the fuzzy membership functions leads to a sensible 

solution of the optimization problem and saves computing time. 

4.7 Conclusion 

In this chapter, an experimental investigation of the robustness of FLC systems has been 

presented, and the feasibility of the proposed methods-for-analyzing-and-designing-The 

robustness of FLC systems has been demonstrated. 

At first, the simulation system was designed, performance specifications were defined, and 

the experimental procedure was chosen for collecting the experimental results. Then, a 

simulation tool was developed to perform the system simulation, robust space mapping, 

auto-tuning, optimization and the real time control tasks. 

With this software tool, the robustness of the fuzzy logic control system was investigated as 
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a controller for the typical first order process and second order process, and the qualitative 

analysis in Chapter 3 of the robustness of fuzzy control systems has been confirmed. It is 

demonstrated that (I) the robustness of the FLC systems stems from the constraints 

introduced by the switching line; (2) the robust space of the first order FLC system is a 

sector in the K-T plane, and its area is significantly reduced when time delay is introduced; 

(3) the robust space of the second order PLC system is an approximate sector shape in K- 

plane and a curved sector shape in K - w, plane; (4) a properly designed and tuned 

fuzzy logic control algorithm is more robust than the PID control algorithm in controlling 

the first order and second order processes; (5) the performance of the fuzzy logic control 

system at the tuning point affects the position and the size of the system's robust space in 

the process parameter space; (6) the standard PLC designed in Chapter 3 exhibits less 

robustness in controlling high order processes than in controlling low order processes, 

knowledge about high order dynamics of a controlled process should be included in the 

fuzzy rule base for controlling high order dynamic systems. 

It has been shown that in a fuzzy control system, system robustness can be influenced by the 

rule base, the membership functions, and the scaling factors, because the variation in any of 

these controller parameters can change the position and/or the shape of the switching line 

which in turn determines the whole system performance. Experimental results showed that 

the robustness of a fuzzy control system is sensitive to the position of the switching line but 

less sensitive to the shape of the switching line and the overlaps of membership functions. 

Experimental evaluation of the proposed design methods for the PLC system has been 

performed in the last part of this Chapter. The PLC was successfully designed by using the 

switching line method and the robustness of this controller in controlling a complicated high 

It 

is also demonstrated that both phase-advanced methods can achieve higher robustness in 

controlling the high order processes than the standard fuzzy logic control algorithm, and 

this improvement becomes more significant when the high order characteristic of the 

controlled process is increased. As a systematic design method, a genetic algorithm has been 

experimentally investigated and is found to be a very powerful method for coping with the 

multi-variable optimization problems associated with the design of fuzzy logic controlled 
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systems. 

Among all the experimental investigations, however, it is found that (i) knowledge about the 

controlled process is very desirable for the design of a robust fuzzy control system, 

especially information of the dynamic changes in the process; (ii) as indicated before, tuning 

the fuzzy control system, although very difficult, is important for the best system 

performance; (iii) the selection of suitable fuzzy control rules is essential for robust control 

purpose, especially in the case of non-linear process control. Further work is needed to 

investigate systematic design methods for fuzzy controllers in the case of non-linear 

processes and high process uncertainties. The tuning problem will be investigated in the 

next chapter. 
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5 
Auto-Tuning of Fuzzy Controller 

5.1 Introduction 

System tuning is an unavoidable step in any implementation of the automatic control of a 

process. Controller parameters will be tuned to achieve the designed system performance at 

the operating point, whatever control technique is used. A fuzzy logic controller is a non-

linear and multi-variable controller, and each of its parameters can affect the performance of 

the fuzzy control system. Thus manual tuning of these parameters usually becomes a critical 

operation which can provide unsatisfactory system performance. Because of the nonlinear 

and the multi-variable features of the FLC, a systematic methodology for parameter tuning 

of FLCs has not been developed. 

Many researchers have addressed their efforts to finding effective tuning methods during the 

last few years. Several analytical methods, such as those reported by [115-118] are based on 

of the relationship between the simplest FLC and the conventional PT controller. They 

provide some theoretical guidelines for tuning fuzzy control systems. Also, many tuning 

algorithms have been studied, such as the adaptive self-tuning method [114], the evolution 

method [60, 62], the gradient descent method [58], and the correlation function method 

[48]. In these studies, a mathematical model of the controlled process is assumed to be 

available, and parameter optimization is automatically performed by the simulation method. 

With these methods, the performance of the resulting fuzzy control system can be 

significantly improved. However, since a considerable computing effort is required to 

implement these methods and the searching algorithms are random to some extent, they are 

not suitable for on-line tuning of a fuzzy control system. 
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In the case of on-line tuning, the controller is tuned while the controller is performing the 

control task. The available information is the measurable system states, such as the system 

error, and error change. The system performance should be kept in the safe region, e.g. less 

than 20% overshoot. The process under control is often not allowed to turn on and off 

frequently. From these requirements, the tuned controller parameters should be kept as few 

as possible and the tuning algorithm should be effective so as to minimise the tuning time. 

Among the various parameters which affect the performance of fuzzy systems, tuning the 

fuzzy rules and the membership functions of the input-output fuzzy variables of the 

controller will be found to be most effective to improve the performance of a fuzzy control 

system. But it is very complicated, thus very time consuming, to perform on-line tuning 

because of the multi-variable nature of the rule base and the membership functions. 

However, the results of fuzzification and defuzzification in the FLC can be changed by 

applying a different scaling of the controller variables, i.e. the system performance can be 

changed by altering the input-output scaling. Although the input-output scaling in the FLC 

cannot affect the rule's distribution and the overlap of membership functions, it provides a 

general modification of the control surface of the FLC. Compared with the tuning of 

membership functions or the tuning of a fuzzy rule base, it is clear that tuning the input-

output scaling, i.e. three scaling factors, is the simplest and most effective way to tune a 

fuzzy control system. In addition, by tuning a fuzzy control system in this way, it is possible 

to use knowledge about the relationship between the scaling factors and the dynamic 

performances of a family of fuzzy control systems. By organizing this tuning knowledge 

into a fuzzy rule base, it is possible to perform the auto-tuning of that family of fuzzy 

control systems by using a fuzzy logic algorithm. 

The results of a study of an auto-tunina methodbasednn n fiiriv loir qlporithm will he 

presented in this Chapter. The aims of the study were to automatically tune the scaling 

factors of a family of fuzzy control systems based on practical tuning experiences, and to 

obtain a relatively satisfactory system performance when the fuzzy system is initially started. 

It will be assumed that the membership functions and the rule base are properly designed 

before auto-tuning commences. This knowledge-based tuning strategy should be 

independent of the process under control, provided that the process belongs to the 

prescribed family. In addition, the on-line feature of the tuning method will be identical to 
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other tuning methods. 

It should be noted that the performance of the fuzzy control system at the tuning point will 

be addressed in this chapter. System robustness will not be the direct objective of the auto-

tuning technique, though examinations have been made of the robustness of the auto-tuned 

systems. This is based on arguments established from previous chapters: the robustness of a 

fuzzy logic control system stems from the switching line characteristic of the controller; the 

position and the shape of the switching line is mainly determined by the rule base and the 

input-output membership functions; the effect of the tuning activity on the robustness of a 

fuzzy control system results from the selection of a tuning point and the performance quality 

at that tunig point. Normally, for on-line tuning, the tuning point is naturally fixed and is 

difficult to alter. As for the quality of the tuning point performance, it is the objective of the 

auto-tuning task to obtain the switching line performance. Therefore, this Chapter will 

focus on the tuning methodology for a required system performance. 

This Chapter is organized as follows. The fuzzy tuning algorithm and the procedure are 

presented in Section 5.2. In Section 5.3, the effectiveness of this tuning algorithm is 

assessed by applying it to four fuzzy control systems where the controlled processes are a 

first order process, a time delay process. a second order process and an artificial nonlinear 

process respectively. Note that attention will be restricted to the SISO fuzzy control system 

with step input testing. The Chapter is concluded in section 4. 

£2 Fuzzy tuning algorithm 

In most technical applications, fuzzy controllers receive crisp inputs and have to. give a crisp 

control outDut. Fi.5- I shows the general structure of fuzzy control systems. In this typical 

case, the operation of a fuzzy controller requires fuzzification of the inputs and 

defuzzification of the control outputs. To do this, each crisp variable is attached to all fuzzy 

sets defined in the universe of discourse by means of membership functions. For simplicity, 

the membership functions are defined within a normalized interval in most cases. Therefore, 

the crisp variables have to be scaled (normalized) by scaling factors, so that they fit into the 

normalized universe of discourse. 
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When the controlled process parameters vary with time or have high uncertainty, or robust 

control is required, it is important that the input-output signals are properly scaled so as to 

obtain the best system performance. The importance of a suitable choice of scaling factors is 

clearly shown by the fact that poorly chosen scaling factors will result in the shifting of the 

operating area in parameter space to the boundaries of the normalized universe of discourse. 

Procyk [31], Palm [48] and Wang [65] have shown the effects of scaling factors on the 

dynamic performance of fuzzy control systems. Note that optimal scaling not only depends 

on the variable's properties but also on the shape and position of the membership functions 

and the dynamics of the plant to be controlled 

w 	
Process  

dt 

Fig.5-1 General structure of fuzzy control systems. 

As discussed in Chapter 3, increasing the scaling factor is equivalent to compressing the 

corresponding membership functions towards the origin of the related axis. Proportionally 

increasing the support of each fuzzy subset related to a fuzzy variable at both sides of the 

origin is equivalent to decreasing the scaling factor of that fuzzy variable. If the membership 

functions are fixed, increasing the scaling factor of a variable is equivalent to amplifying this 

variable. Thus, it is obvious that the bigger the scaling factor of a variable, the more 

sensitive will the controller be to the small values of this variable, and the less sensitive to 

input scaling factors can be used to modify the sensitivity of the fuzzy controller to the input 

signals, and the output scaling factor can be used to modify the ioop gain. 

For any process dynamics, there must be a suitable setting of scaling factors with which the 

fuzzy control system will give an optimum performance. Different process dynamics may 

require different scaling factors for this optimum performance. For a family of process 

dynamics, e.g. the first order dynamics, there must be some rules relating the different 
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process dynamics to the suitable scaling factor settings. For example, the output scaling 

factor GU can be tuned to adapt the variations in the process gain K to obtain the same 

system performance, provided that the product GU•K is kept constant. 

Because of the existence of these relational rules between the process dynamics and the 

suitable scaling factors, although some of them may not be known, it is possible to realise 

on-line auto-tuning of the fuzzy control systems by utilising these relational rules. The 

essential part of the auto-tuning method presented in this Chapter will be a knowledge base, 

called the fuzzy tuning rule base, which contains some of these relational rules obtained 

from practical tuning experience. The main task of the auto-tuning process is to detect the 

present system performance and to work out suitable scaling factors by fuzzy inference from 

the knowledge base. The entire tuning process can be illustrated as shown in Fig. 5-2. It is, 

in fact, a kind of fuzzy control system with the system dynamic performance as its input and 

the scaling factors as its controlled object. 

In the following, attention will be restricted to the standard fuzzy control system controlling 

the first and second order processes. The design of the fuzzy auto-tuning engine 

concentrates on input-output variables, membership functions and the fuzzy tuning rules. 

Finally the tuning procedure will be presented. 

5.2.1 Variables of the fuzzy auto-tuning engine (FATE) 

From the previous discussion, it is known that the input information of the FATE is the 

system performance, and the output is the action required to tune the scaling factors. For 

Fuzzy tuning 
rule base 

scaling 	 Pc rf ornianc e 
factors 	 reference

I 

 rFuzzy 
g engine 

System 	 System 
output setpoint 	

FLC 	 Plant 10  

Fig. 5-2 Illustration of the auto-tuning fuzzy control system 
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the implementation of the fuzzy tuning algorithm, performance measures have to be selected 

and the variables representing the tuning actions have to be defined. 

Two types of performance measures were used, corresponding to the initial phase tuning 

(including initialization, see section 5.2.3) and the final phase tuning of the scaling factors 

and sample rate. Initial phase tuning was based on the dynamic performance, measured by 

the error change rate é, and it was designed to handle the special problems, such as 

oscillation or large damping. The final phase tuning was based on the performance 

measures: overshoot (OS), undershoot (US), number of ring cycles (CY) and integrated 

error square (JES). Note that these performance measures are detected during the transient 

period, thus they indicate the system dynamics and whether the steady state can be reached 

or not. 

The membership functions for these performance measurements are defined in Fig.5-3(a) 

based on practical experience in designing control systems. Note that IES is normalized as 

follows: 

IES= 	e 2 (k), 
Ww k=I 

(5-1) 

where w is the setpoint change, e(k) is error at the instance k, N is total number of samples. 

The output variables of the FATE are the scale factors GE, GC and GU. Membership 

functions for these scale factors, as shown in Fig.5-3(b), were selected with the help of 

practical tuning experience of fuzzy control systems. Fig.5-3(c) shows the membership 

functions (singleton type) of changes in the scale factors with the horizontal scale giving the 

required multiplier. 

5.2.2 Classification of systems 

To generate the tuning rules for the fuzzy control system, a classification of control systems 

is required, based on significant performance features. From the results of simulation 

experiments and practical knowledge of process structure, control systems can be divided 

into three groups: (I) simple systems, i.e. first order linear system without time delay; (2) 

complicated systems, i.e. time delayed systems and high order systems; (3) unstable 
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Fig. 5-3 Membership functions (MFs) of variables in the tuning rules 

(a) MFs for system performance measurements; 

(b) MFs for scale factors; (c) MFs for the changes in scale factors. 

systems, such as the inverted pendulum system. The first two situations will be considered 

in this chapter. 

A system is classified as either a simple or a complicated controllable system by noting 

features of the output change rate, ji, when a step input with fixed amplitude is applied to 

the open-loop system. Fig.5-4 ' illustrates the variations of in the first order system and the 

second order system. It can be seen from Fig.5-4 that If 'decreases monotonically within 

several sample periods, the system is a simple controllable system. Other systems with 

bounded OS, US and CY will be sorted as a complicated controllable system, such as any 

no 
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high order systems. A time delay system is put into the complicated category. Fig.5-5 

illustrates the classification method. 

In Fig.5-5, controlled processes were sorted according to the initial response of the system 

to a step input. Due to insufficient information about the controlled process, at this stage, 

the system was only sorted as either a simple or a complicated system. As more information 

becomes available from the system output and by evaluating the status of undershoot, 

overshoot and number of ring cycles generated by the process when controlled by a default 

fuzzy controller, the system will be further identified as oscillating, non-oscillating, or 

uncontrollable. In both oscillating and non-oscillating situations, performance will be further 

classified with respect to the status of overshoot, undershoot and integrated error square. 

Each status of the response is named as "Onn", where nn is a order number of these 

statutes, as shown in Fig.5-5. This classification has actually defined each of the fuzzy 

subsets on which the tuning rules are based. 

0 	1000 	2000 	3000 	Samples 

0 

second order 
/ 	 system 

1: 	first order 
/ 	 system 

-10 1 

vxlO -4  

Fig.5-4 Illustration of the difference of output change rate between 
the first order system and the second order system 

5.2.3 Tuning algorithm 

The tuning algorithm is the key element in this auto-tuning technique. It consists of two 

parts: the initial phase tuning and the final phase tuning. The initial phase tuning is 

performed from the initialization through the whole transient period. Its objectives are to 

provide a suitable initial setting of the scaling factors and the sample rate, based on the 
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system dynamic performance, and to adjust these tuned parameters during the transient 

period to prevent the system state from being out of the dynamic scope covered by the final 

phase tuning strategies. The final phase tuning is performed at the end of the transient 

period or when the system states are obviously out of the required performance 

specification, such as big overshoot or oscillation. It provides a full adjustment of the tuning 

parameters, based on fuzzy rules derived from practical experience of manual tuning. 

Scaling factors and the sample rate are initialized at the beginning of the tuning procedure 

when only a few samples of error change è are available. Suppose two ê samples are é (to) 

and é (t1) (t1>t0). The initial values of these parameters are empirically determined as 

follows. If ê (to) ~! é (ti) and time delay Td = 0, the controlled process is a first order 

process, and the scaling factors and the sampling rate are initialized as 

	

GE = 1.0; GC = 7.0; GU = 0.5; t = 10. 	 (5-2) 

Otherwise, the controlled process is a time delay process or a second order process, and the 

scaling factors and the sampling rate are initialized as 

	

GE = 0.5; GC = 6.0; GE=0.Ol, t= 10. 	 (5-3) 

System 
Performance 

Uticontrollablel 	1osly one of (OS US is bt91j 	Switch off the system 
systems 	 or (ES is big: CY is ok 

Os 

Xis OK 	
OK 	SM 00 	

IES 
011 1 

Jr SM  
012 013 014 

	tS%1020

Simple 	
BO 

 systems 

r-i 030 

CY is OK 	us =C.mpl. I- 
I 

I BG \ 
JES 

I 
014J 	t

m  I 02O'l 

017  

CYisBG 11 030 

Fig.5-5 Classification of control systems and system's performance 
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The sample rate is set to t.. = 1 at the beginning of the tuning procedure to provide the 

fastest sampling. After a few samples of the error change ê (t) was available, t., is empirically 

adjusted to 

= 0.012/è *, 	 (5-4) 

where è * is the average value of the available samples of é (t). 

In practice, the above initialization is very simple. It only provides a different initial response 

for different types of controlled process, i.e. a fast response in the first order process and a 

slow response in the case of the other processes. However, if the controlled process is 

dynamically fast, the above parameter setttings may lead to oscillation, and if the controlled 

process is dynamically slow, the control system may take long time to reach the final phase 

tuning stage. 

To overcome these problems, the initial tuning phase has been applied to adjust the scaling 

factors and the sampling rate during the transient period so that the final tuning phase 

strategy can handle the system dynamic performance. The special situations considered in  

the initial tuning phase and the actions taken are listed in Table 5-1. Note that the tuning 

actions in Table 5-1 are also based on the practical experience of manual tuning. 

By using trial and error and simulation methods, tuning rules were generated for different 

system performance status. Exhaustive simulation tests have been carried out to find the 

proper action taken to modify the scaling factors and sample rate t in different situations. 

Table 5-2 and Table 5-3 give these heuristic tuning rules for both simple and complicated 

controllable systems respectively. Symbols in the tables come from the definitions in Fig.5-

5. From these tables and Fig.5-5, a rule, say rule No.10 for simple systems, can be read as: 

IF number of ring cycle IS good, 

AND overshoot IS good, 

AND undershoot IS good, 

AND integrated error square IS big 

THEN small increase GE, big decrease GC, small increase GU. 

It must be stressed that the tuning rules in Table 5-2 and Table 5-3 are based on the fuzzy 

164 



CHAPTER 5 AUTO-TUNING OF FUZZY CONTROLLER 

logic controller defined in Chapter 3 and the first and second order processes. 

In addition, in contrast with tuning a complicated system, the sample rate in a simple system 

is not changed while tuning the scaling factors. Sample rate is calculated at the begin of the 

tuning procedure when the first feedback information is available. This method leads to a 

reasonable performance in simple systems and may lead to oscillation in complicated 

systems. Therefore tuning the sample rate is necessary in the complicated systemsituation. 

5.2.4 Tuning procedure 

Before applying the above tuning rules, information about the performance of the control 

system is needed. To excite the controlled process to show up its properties in response to a 

step input without the system generating unacceptable signal changes, the selection of the 

control signal in the tuning stage becomes crucial. In this research, the following methods 

have been used for safe starting: 

1. Closed-loop fuzzy logic control was used. Because fuzzy logic control can be set to 

give a very gentle action, though the response may be too slow, big overshoot and 

undershoot in the system response can be restricted. After more information about the 

system has been collected, the fuzzy controller parameters can be tuned to improve the 

performance. 

Tih1e -1 Triitial nhase tuninc strategies 

Situations Dynamic behavior Action taken 

Big overshoot or undershoot either OS or US is BIG but CY is OK; start final phase 

I 	
tuning 

Oscillatioii. CY is BIG; start final phase 
tuning 

Large steady state error é is ZERO but e is NOT ZERO; increase GE 

Fast oscillation of é sign of é changes fast and the oscillation decrease GC. 

amplitude of ê is big.  

Fast oscillation of ê around sign of Au changes fast. decrease GU 
the switching line 

Large damping system state (e, ê) has been far from the increase GC and 
switching line for a certain time. GU 
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Table 5-2. Rules for tuning simnie controllable processes 
Rule No. System 

status 
Other 

Conditions 
GE 

action 
GC 

action 
GU 

action 

1 010 s_inc  

2 011 b_inc  

3 012 s_dec b_dec 

4 013 s_inc s_inc 

5 014 b_inc  

6 015 s_dec  b_dec 

7 016 s_dec b_dec  

8 017 s_inc b_inc 

9 020 s_dec s_inc 

10 021 s_inc b_dec s_inc 

11 030 GC is BG rn_dec b_dec  

12 030 GUisBG b_dec 

13 030 GC is OK rn_dec 
GU is OK  

Table 5-3. Rules for comnlicated controllable processes 
Rule 
No. 

System 
status 

Other 
Conditions 

tv -  
Action 

GE 
action 

GC 
action 

GU 
action 

14 010 s_dec 

15 011 s_dec rn_inc rn_dec 

16 012 s_inc s_dec 

17 013 s_inc  

18 014 s_dec rn_dec rn_dec 

19 015 s_dec s_inc rn_dec 

20 016 s_dec rn_dec rn_dec 

2f OT7 - - s=dec. - 	 - rn_dec 

22 020 s_dec s_inc s_inc 

23 021 s_dec rn_inc b_dec rn_inc 

24 030 IES is SM rn_inc s_inc rn_dec 

25 030 IES is BG rn_inc  b_dec 
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2. A fraction of the required setpoint change of the tuned system was chosen to be the 

practical setpoint change at the tuning stage. This is used to prevent the process from 

overdriving in most circumstances. Also this method will lead to more than one tuning 

procedure in the tuning stage, and therefore gives more chance for the tuning algorithm 

to improve its tuning performance. 

Fig.5-6 illustrates the tuning procedure. The process control input is kept at zero for an 

initial period of 100 sample intervals which are initialized to give a relatively fast sampling 

action. During this period (stage 1) the system output y(t) is monitored to check for plant 

noise or disturbances which will be used for the calculation of the system status. At stage 2, 

the system is configured as an open-loop to measure the time delay and set the sample rate. 

The control input of the process is switched on with a fixed amplitude of 10% of the 

difference between the set point and the present process output. The system dead time Td  is 

considered as the time period from the beginning of stage 2 to the time when the output of 

the process begins to change (see Fig.5-6). As the system output begins to increase, 10 

samples of process output are taken and used together with the dead time Ta to set the 

sample rate t and initial settings of the parameters of the controller. Next, in stage 3, the 

system is configured as a closed loop system and the control task is handed on to the fuzzy 

controller with the modified setpoint change described above. As the system output 

progresses to the steady state, the system performance will be calculated, heuristic tuning 

rules will be applied and PLC scale factors will be tuned. After that, if the tuning setpoint is 

not equal to the required setpoint, the tuning setpoint will be renewed and a new tuning 

process begins (stage 4). After the all tuning stages, the PLC with fixed scale factors will 

take the control task (stage 5). 

If the system loses control during the tuning stage, the tuning algorithm will switch off the 

control input and bring the system to a safe stop condition. Under some circumstance, for 

example the cart-pole system, this method of dealing with unstable processes may fail, but 

it will lead to a safe stop in most practical situations. 

5.3 Simulations 

To verify the adequacy of the fuzzy tuning method described above, an auto-tuning function 
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was implemented in the simulation tool FzySimu and applied to perform the tuning tasks of 

four fuzzy logic control systems. The transfer functions of these processes are as follows: 

G(s) = K 
	 (5-5) 

1+Ts 

Ke T1c 

G(s)= 

	

	 (5-6) 
1+Ts  

K(t)  
G(s) = 
	

(5-7) 
 s 2  +2o0 s+o 

1 i_et) 
(t)=—I ( 	+ 

- 	 Tl+e' 	
Ku(t)J 	 (5-8) 

where K is the static gain, T is time constant, Td is time delay, co,, is the natural frequency, 

is the damping ratio, u(t) and y(t) are input and output of the process respectively. The 

first three processes are linear processes and the non-linear process IV [32] was used to 

demonstrate the ability of the tuning algorithm to cope with other fuzzy control systems 

which the tuning algorithm was not designed for. 

The process parameters at the tuning point were set as follows. Note that the units for the 

time variables, such as T and Td,  is the simulation time scale in the computer. 

System output 

time 

Control-input 

I 	2 	3 

H 

5 

stage of the tuning 
procedure 

time 
Time delay 

Fig.5-6 The auto-tuning procedure 
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Process I: K = 5, T = 1000; 

Processil: K=5, T=l000, Td=100; 

ProcesS III: K= 2.5, Ci = 5.0; 0.8;. 

Process IV: K= 10, T= 1000. 

The standard fuzzy logic controller was used to control these processes. The rule base and 

the membership functions for the input and output variables are as shown in Fig.3-4 in 

Chapter 3. 

The PLC parameters obtained after auto-tuning are as shown in Table 5-4. Fig.5-7, Fig.5-8 

Fig.5-9 and Fig.5-10 illustrate the performances of the four systems respectively. Each 

figure shows the step response of the system before, during and after the tuning procedure. 

Note that the scaling factors and the sample rate used in the pre-tuning tests are set as 

shown in (5-2) and (5-3). 

From Fig.5-7 to Fig.5-9, it can be clearly seen that without tuning, a generally designed 

fuzzy logic controller with the initial settings of the tuned parameters gave an unacceptable 

performance even when it was used to control a simple process like process I. This 

poor performance can be explained as the poor mapping of controller input and output 

variables from the practical variable spaces to the designed ones. This demonstrates that it is 

necessary to tune the scaling factors and the sampling rate in a fuzzy logic control system to 

meet the design specifications. 

Tih1e 5-4 PTf nirinieters after tuning 

System GE GC GU 

1 	1.0(1.0) 	1.0(1.0) 	0.5(0.5)211f0Y 

II 0.8 (0.5) 5.68 (6.0) 0.09 (0.01) 46 (10) 

III 1.0 (0.5) 5.73 (0.6) 0.129 (0.01) 24(10) 

IV 1.0(0.5) 14(0.6) 0.105(0.01) 1 	13(10) 

Note: initial values are shown in brackets. 

The performances of the tuned systems shown in the figures appear to be unsatisfactory 
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during the tuning stage, because the output of the system stopped rising in the middle of the 

tuning procedure. This is because two tuning procedures are performed for each system and 

each procedure needs a complete system response before carrying out the tuning task. It is 

found that, for better performance, two or more tuning procedures are generally needed if 

the controlled process is a complicated one. 

It can be found from the results that an oscillatory system, before tuning, performed much 

better after applying the proposed fuzzy tuning algorithm. And from Table 5-4, it can be 

found that the scaling factors and sample rate were changed significantly by the tuning 

operation. Though the parameters may not be optimized, for example, the step response in 

Fig.5-7(c) could be faster, the system's responses are acceptable from an engineering point 

of view. 
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Fig.5-7 Step response of system I 
	

Fig.5-8 Step response of system II 
before (a), during (b), and 

	
before (a), during (b), and 

after (c) tuning. 	 after (c) tuning. 
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Fig.5-10 Step response of system IV 
before (a), during (b), and 

	
before (a), during (b), and 

after (c) tuning. 	 after (c) tuning. 

The robustness of the three linear auto-tuned FLC systems described above was tested and 

compared with that of their manually tuned counterparts. The tuning point and the tested 

parameter space of each system are as follows; 

System I: tuning point K= 5, T= 1000; 

tested parameter space: K= (1 - 20), T= (50— 2000); 

System II: tuning point K= 5, T= 1000, Td = 100; 

tested parameter space: K = (1 - 20), T = (50 - 2000); 
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System ifi: tuning point K= 2.5, ü = 5.0, = 0.8; 

tested parameter space: K= (1 - 20), o 	(2 - 12). 

Each system was manually tuned to give a satisfactory performance at the tuning point; and 

the parameters obtained were used in the robustness test of this system. Then, the auto-

tuning algorithm was applied to each system, and, similarly, the robustness of the resulted 

system was tested. The tuned parameters resulting from the two different tuning methods 

and the robustness of the tuned systems are given in Table 5-5. 

From the results it can be seen that the tuned parameters obtained from the two tuning 

methods are quite different. In the first order system, the auto-tuning method generated a 

slower sample rate and a smaller GC than the manual tuning did. If the system is 

complicated, the auto-tuning method produced a slower sample rate and a larger GU. This 

is because different methods were used to handle the unsatisfactory response in the two 

types of tuning. For example, to decrease the overshoot in the simple system, the auto-

tuning method decreased the sample rate, while the manual tuning method increased GC. 

With respect to system robustness, the two tuning methods gave similar results except in the 

time delayed system where the manually tuned system generated much better robustness. 

The robustness of the second order system should be much better according to the test 

Table 5-5 Comparison of auto-tuned PLC systems with manually tuned PLC systems 
with resnect to tuned narameters and system robustness 

System Manual tuned PLC Auto-tuned FLC 

Parameters 'i-b (%) Parameters ',-h (%) (Tuning point, TP) 

I: First order process GE=1. 0 54.8 GE=1. 0 63.8 
GC=18 GC=7.0 

(TPrK5Tt000 GUE0 (-K--F) 
ts 	5  tc  =21  

First order process with GE=0. 8 38.6 GE=0. 8 13.5 
time 	delay GC=16 GC=5.68 

(TP: K=5, T=1000, Td= 100) GU = 0.05 (K-I) GU = 0.09 (K-I) 
t, =20  t =46  

Second order process GE=0. 7 3.2 GE=1. 0 4.4 
GC = 4.0 GC = 5.73 

(TP: K=2.5, o 	=5.0, 	=0.8) GU = 0.04 (K-w a ) GU = (K0)) 
= 18 0.129 

=_24  
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results in Chapter 4; and the robustness of the first order system is quite outstanding. Note 

that system robustness was not addressed in both tuning methods, and similar system 

performance at the tuning point was not obtained, which can influence system robustness. 

It is worth noting that the empirical nature of this fuzzy tuning algorithm makes it quite 

difficult to obtain the general tuning rules and to define the membership functions of each 

variable. Some tuning rules suitable for one type of fuzzy systems may not benefit other 

fuzzy systems. This is the main reason for performing the process classification before 

carrying out system tuning, and it does effectively reduce the difficulty in gathering the 

tuning rules. Due to time limitations, only two types of controlled processes were studied 

and the process parameter settings at the tuning point were restricted to the following 

conditions: 

<5O, 	>5, 	 (5-9) 
K 	Td 

where K is the process gain, 1" is the time constant or the equivalent time constant 1I(c) 

of the process, Td is the time delay in the process. 

5.4 Summary 

A great number of parameters define the performance of a fuzzy control system. Hence its 

tuning at most times becomes a critical and very time consuming operation which can 

provide unsatisfactory system results. In this Chapter, a fuzzy tuning algorithm is developed 

for the purpose of auto-tuning the scaling factors and the sampling rate in the standard 

fuzzy controller. Based on extensive simulation experiments, fuzzy tuning rules for scaling 

factors and sample rate have been generated. A complete tuning procedure was designed. 

The adequacy of this tuning algorithm has been tested by simulations, carried out on 

processes which are commonly used as the approximation of the practical processes and 

also an artificially designed non-linear processes used in [32]. Results show that the fuzzy 

tuning algorithm is effective, and the time and effort used in tuning the fuzzy controllers was 

significantly reduced. 

Because of the time limitation and the difficulty in the rule collection, the tuning rule base 
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discussed in this chapter does not cover all tuning situations. In addition, system robustness 

was not addressed by the tuning algorithm. Further research work is needed to confirm its 

effectiveness in other tuning situations, and to investigate the tuning strategy for improving 

system robustness. 
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Summary and Conclusions 

6.1 Summary 

This thesis has presented the results of an investigation of the robustness of the widely used 

Mandani-type fuzzy logic control systems under wide variation of the parameters of the 

controlled SISO processes. 

The basic concepts of fuzzy set and fuzzy logic were reviewed to provide a theoretical 

background for this research work. The FLC is represented by five functional blocks: 

scaling, fuzzification, reasoning, rule base, and defuzzification. Studies of PLC systems have 

been briefly reviewed from the point of view of parameter selection and rule derivation. A 

literature survey was carried out in the area of robust control with fuzzy algorithms. 

To investigate the robust performance of the PLC systems, the measurements of the 

dynamic performance and system robustness of a control system were firstly defined from 

an engineering point of view, and the concepts of robust space and robustness index were 

introduced. The robustness of the PLC systems was investigated by analyzing the structure 

of the fuzzy rule base and membership functions of the input-output variables. Based on the 

close re1tio a 

switching line method was introduced to qualitatively analyze the dynamic performance of 

the SISO FLC systems. Based on the switching line method, the robustness of the PLC 

controlled first and second order processes was predicted with respect to the shape and 

position of the robust space. 

The effects of PLC parameters (membership functions of the input-output variables, rule 

base and scaling factors) on system robustness were investigated. The movements of the 
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position and the shape of the switching line with the variation of the controller parameters 

were analyzed, and its relation with the system performance was reported. 

To improve the robustness of the FLC system, three design methods were proposed. The 

first one was based on the switching line characteristic of the FLC system. The second 

method, called phase advanced FLC, was introduced to handle the control of high order 

processes with fuzzy algorithms. The third method was an evolutionary method based on a 

genetic algorithm, which was used to automatically design a robust fuzzy control system, 

assuming the availability of the controlled process model. 

To demonstrate the validity of the analytical results and design methods, the robustness of 

PLC systems was investigated by further experiments. At first, performance specifications 

and the experimental procedure were defined. A simulation tool was developed to perform 

the system simulation, robust space mapping and optimization by GA. The simulation 

results were also confirmed by practical results derived from practical control systems. 

With the simulation method, the robustness of the fuzzy logic control system was 

investigated by controlling first order and second order processes. The PLC was tuned at a 

selected tuning point to achieve an acceptable system response; then system performances 

at all selected points within a prescribed process parameter space were tested and the 

system robust space was measured. The results from the qualitative analysis of the 

robustness of fuzzy control systems was confirmed. The factors affecting the position of the 

robust space was investigated by observing the system dynamic performance on the 

boundaries of the robust space. A comparative study was also performed with the widely 

used PD control systems. 

Effects of the rule base, the membership functions, and the scaling factors on system 

robustness were examined. In the rule base tests, emphasis was placed on the effect of the 

variations of the switching line on the system robustness. In the membership function tests, 

the effect of the overlap ratio of the membership functions was investigated and seven FLCs 

with different overlapped membership functions were examined. In the scaling factor tests, 

the sensitivity of system robustness to each scaling factor was assessed. 

Experimental evaluation of the proposed design methods for the PLC system was 
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performed by applying them to control different processes. An FLC was designed by the 

switching line method to control a third order non-minimum phase process. Two phase 

advanced FLCs were respectively applied to controlling a non-integrating second order 

process and an integrating second order process. The genetic algorithm was used to obtain 

an optimized design of a FLC controlled cart-pole system with respect to system 

robustness. 

Finally, to overcome the tuning difficulty of FLC systems, effort was made to develop a 

fuzzy tuning algorithm to perform the on-line auto-tuning of the FLC controlled first order 

and second order processes. Based on extensive simulation experiments, the fuzzy rules for 

tuning scaling factors and the sample rate were collected. A complete tuning procedure was 

designed. The adequacy of this tuning algorithm was assessed. 

6.2 Conclusions 

The superior robustness of the widely used fuzzy logic control technique is claimed in many 

of the publications reviewed in Chapter 2. However the evidence is mainly anecdotal and 

only a few research papers on the robustness of fuzzy control systems have been found. 

Investigation of the sensitivity of system performance due to parameter variations was 

performed experimentally by both Mamdani and Kasko. Studies on the robust stability of 

fuzzy control systems were found in Tanaka's work. The robust performance of fuzzy 

control systems was investigated primarily by Palm and a few others by using the principle 

of the sliding mode control. A review of this research showed that a complete investigation 

of the robust performance of FLC systems was not yet available. In addition, there was no 

systematic method to analyze the stability of FLC systems, thus it is very difficult to 

iiivugate the rooust perrorrnance or ruzzy coruroi systems. 

As a result of the investigation into the close relation of the fuzzy rule base and the system 

dynamic trajectory on the phase plane presented in Chapter 3, a switching line method was 

introduced to qualitatively analyze the dynamic performance of the SISO FLC systems. It 

was shown that the position of the switching line on the phase plane determines the dynamic 

performance of the FLC, and the objective of the fuzzy control algorithm is to drive the 

system phase trajectory to the steady state along the switching line. 
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The following conclusions are drawn from the qualitative analysis presented in Chapter 3 

and the experimentally results presented in Chapter 4: (1) The robustness of the PLC 

systems arises from the constraints introduced by the rule base determined switching line 

and it depends very little upon the model of the plant to be controlled; (2) The robust space 

of the first order PLC system is a sector in the K-T plane, and its area is significantly 

reduced when a time delay is added to the process; (3) The robust space of the second order 

PLC system is an approximate sector shape on the K - plane and a curved sector shape 

on the K - c,,, plane; (4) A properly designed and tuned fuzzy logic control algorithm is 

more robust than the PD control algorithm in controlling the first order and second order 

processes; (5) The position of the tuning point and the performance of the fuzzy logic 

control system at the tuning point affect the position and the size of the system's robust 

space in the process parameter space; (6) The standard PLC exhibits less robustness in 

controlling high order processes than in controlling low order processes, and knowledge 

about high order dynamics of a controlled process should be included in the fuzzy rule base 

for controlling high order dynamic systems. 

The robust space of a fuzzy control system can be optimized by changing the PLC 

parameters. The rule base, the input membership functions, and the input scaling factors can 

affect the position and/or the shape of the switching line. The robustness of a fuzzy control 

system is sensitive to the position of the switching line, but less sensitive to the shape of the 

switching line and the overlap of membership functions. The switching line angle 

proportionally controls system overshoot and undershoot, but it exerts inverse proportional 

control of the rise time in the step input response. Changes to the overlap of membership 

functions in the input space alter the sensitivity of PLC on variation of input variables in that 

space. The effect of output membership functions and output scaling factor on system 

performance is equivalent to a variation of process gain. 

If the open-loop dynamics of the controlled SISO process is available, the switching line 

method can be used to design a PLC to achieve robust performance within an appropriate 

parameter space of the process. The membership functions of the input output variables of 

the controller can be determined by meeting the reaching condition and the sliding condition 

of the system at the operating point. Adjustment of the required robust space and the 
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required system performance may be needed. Tuning of the scaling factors and the sampling 

rate is also important for obtaining the required performance. The main problem of this 

method is the requirement for knowledge of the process dynamic performance which may 

not be available in practice. 

If the controlled process is high order, the phase advanced methods can be used to improve 

system robustness. This is a simple method but it has been experimentally demonstrated as 

an effective method. If the dynamic model of the controlled process is available, the 

robustness of the fuzzy control system can be optimized by using the genetic algorithm. It 

has also been demonstrated to be an effective method for obtaining the global optimization. 

Among all the experimental investigations, however, it is found that (i) knowledge about the 

controlled process is very desirable for the design of a robust fuzzy control system, 

especially information about the dynamic changes in the process; (ii) as indicated before, 

tuning the fuzzy control system is very difficult but important for obtaining the satisfactory 

system performance. 

The tuning difficulty encountered in all fuzzy control systems is addressed in Chapter 5. The 

effectiveness of the auto-tuning algorithm, employing fuzzy logic theory and the author's 

experience, is experimentally demonstrated to be effective in the case of first order and 

second order processes. Results also show that the fuzzy tuning algorithm can be used to 

tune some non-linear fuzzy control systems. It has been found that the system performance 

was significantly improved by the tuning algorithm with respect to the performance 

specifications. The tuning method can be used to develop more general and more powerful 

tuning tools for control systems. 

Finaliyrcbusrtontrol-with-the-fuzzy-logic-algorithm-is-still-a-developing-researeh-area 

Many difficulties in theoretical analysis, practical experiments and literature references were 

encountered in this work. Great effort was directed to establishing an experimental basis for 

an analytical approach to fuzzy control systems. 

6.3 Recommendation for future work 

The following areas of investigation constitute the recommendations for future work. 
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• Quantitative analysis of the robustness of the fuzzy control systems, including the effects 

of controller parameters on system robustness. 

• Extending the switching line theory to MISO fuzzy control systems. 

• Investigation of auto-tuning strategies for improving system robustness and extension of 

the fuzzy tuning algorithm for more general fuzzy control systems. 

• A full investigation of the systematic design method for a required robust performance. 

• Investigation into the effects of noise on system performance. 

• Development of software tools for analyzing system robustness. 

• Investigation of the systematic design methods of fuzzy controllers in the case of non-

linear processes. 

The results of the research presented in this thesis indicate that the switching line method, 

the phase advanced FLC, the GA optimization technique, the auto-tuning algorithm and the 

simulation tool FzySimu provide solutions to some of the present day problems with fuzzy 

control systems. It is hoped that the work presented in this thesis will have made a clear 

contribution to this challenging field. 
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Design of the simulation system 

The research work reported in this thesis is mainly based on computer simulation 

techniques. A simulation package, called FzySimu, has been developed in the C++ language. 

It contains the following functions: performance simulation (MultiSimu), performance 

analysis (Analysis), robustness test (RobuMap), robustness optimisation (GaOpt), auto-

tuning (AutoTune) and real-time control interface (RCPIot). Chapter 5 has already 

presented a very detailed description of the AutoTune function and it will not be discussed 

again. In this appendix, the methods used for the implementation of the other five functions 

will be presented, and the features and the usage of these functions will be described. 

A. 1 Performance simulation 

The performance simulation function is the key function of the whole package. It performs 

the following operations: process simulation, controller simulation, system configuration, 

performance evaluation and result output. System configuration operation and result output 

operation provide a user interface for the interaction between the program and the user. The 

other three operations perform calculations of the entire system states and the 

measurements of the system performance. They form a stand-alone function that can be 

called by other functions, such as the robustness test function and optimisation function, to 

provide an evaluation of the control system under investigation. 

It should be noted that since the fuzzy logic controller is generally implemented by software 

techniques to carry out the complicated computations, the system is simulated in the 

discrete format. A digital sampler with period of t, is added before the controller to obtain 

the system error information. 
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APPENDIX A DESIGN OF SIMULATION SYSTEMS 

A.1.1 Process simulation 

There are three types of processes currently implemented in the simulation package. They 

are as shown in the following. 

Model I: Linear process with time delay and simple non-linear terms 

G1(s)= 
	(02  

?(1+T1  s)(1+T2  s)(s 2 +2(,jos+w)' 
(A-i) 

where K is the constant gain, n = 0 or 1 is the number of integrators in the process, T1  

and T2  are the time constant related to process poles, T3  and T4  are the time constant 

related to process zeros, co and are the natural frequency and the damping ratio, 

respectively, of the second order term in the process, 'r is the time delay in the process, 

Gn  is a non-linear gain with dead-zone and it is defined as follows; 

	

1, 	ifx>D; 

	

G(x) = 0, 	iflxl!~ D; 	 (A-2) 

2LX ifx< -D; 

? is the process gain when the input is negative, D > 0 is the dead-zone. 

• Model II: Cart-pole process 

mP+mj3+mlOcosO —m1O 2  sinO = Ku 
 

JO +ml(PcosO +lO) — mglsinO = 0 

where m is the mass of the cart, p is the horizontal displacement of the cart, m1 , is the 

mass of the pole, I is the length of the pole, 0 is the pole's angle to the vertical, u is the 

control force exerted on the cart, J = !m p i is the moment inertia of the pole, and g = 

9.8 nils2  is the acceleration due to gravity, K is the gain of the control input. 

• Model Ill: Non-linear process 

1 - 
Ty= 	+Kx; 

1+e
- 

 
 

where x is the input, y is the output, T is the time constant, and K is the process gain. 
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To simulate the Model I process, the following basic functions were separately 

implemented. 

• Zero (1+Ts): its output at instance (k + 1) is calculated as 

(A-5) 

where x(k) and y(k) are the input and output of the zero unit respectively. Note that 

the simulation period is assumes as 1 in all process simulations. 

• Pole 	: its output at instance (k + 1) is calculated as 
(1+ Ts) 

-lIT 	 -LIT 

	

y(1+k)=y(k)e 	" +x(k).(1—e P), 	 (A-6) 

where x(k) and y(k) are the input and output of the pole unit respectively. 

Complex poles : its output at instance (k + 1) is simulated as: 
2  +2ws+w 

= 	—1) e 	+ {x(k) - y(k)) . (1— e') 	 (A-7) 

k 
(A-8) 

12 

2 
where I = 1 
	

= -, x(k) and y(k) are the input and output of the 
2w 

complex pole term, respectively. 

• Time delay et:  this term is realised by using the memory loop with the loop length 

equal to the time delay t. Every input values to this term is saved into this memory loop 

and popped out after 't simulation periods. 

• Integrator 
1

- : it is implemented as an accumulator and is assumed that the integrating 

time constant is i. 

By calling these basic functions, the dynamic performance of the Model I process can be 

obtained. Also, Model I process can be set to be one time lag process, two time lag process, 

a standard second order process, or any combination of the basic units. 

The sampling period for the process simulation is defined as the basic unit of time constants 

in the process and the smallest time constant in the process should be at least 10 times 



APPENDIX A DESIGN OF SIMULATION SYSTEMS 

larger than the basic time unit so as to obtain the approximate dynamic performance of the 

simulated process. In addition, the saturation constraints can be selected to applied to each 

function to approximate the practical plant. 

A.1.2 Controller simulation 

There are eight types of controllers implemented in the simulation package. They are PID, 

FLC, first phase advanced FLC (PAM-I), second phase advanced FLC (PAM-il), self-

organised FLC (SOFLC), predictive FLC, multiple input FLC, PID paralleled with FLC. 

The last four controllers are not related to this research work, thus they will not be 

described here. 

A. FLC 

A two-input-one-output FLC was implemented in the simulation. Two inputs are error, 

e(k), and change of error, è (k). The output variable is the control output, u(k). The input 

output variables were non-fuzzy (crisp) variable. The FLC converted the crisp input variable 

into fuzzy variables, performed a fuzzy reasoning based on the fuzzy rules and provided a 

suitable control output. 

There were four fundamental operations in the FLC: scale mapping, fuzzification, fuzzy 

reasoning and defuzzification. In the scale mapping, the proportional mapping was used in 

the simulation. Fuzzification transfers a crisp variable to a fuzzy variable based on the 

defined membership functions of this fuzzy variable, and the defuzzification performs the 

opposite conversion by using the COG method. A membership function L(x), as shown in 

Fig.A-1, is represented by four parameters (x 0 , x1, x2 , x3) in the simulation. Each fuzzy 

var-iableof_theFLC_was_defined by seven fuzzy sets in the universe of [-10, 10]. 

R(x) 

x 

Fig.A- 1 Definition of membership function 

Ila 
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In the fuzzy reasoning, seven fuzzy labels, NB, NM, NS, ZE, PS, PM and PB, were 

represented as 0, 1, ..., 6, respectively. Seven membership grades in each fuzzy input 

variable formed a data group, denoted as p. i (e) and pj( e) (i = 0, 1,..., 6). With these 

notations, the fuzzy rule base can be represented by a data matrix, with the fuzzy labels of e 

as the column index and fuzzy labels of ê as the raw index. Two most conmionly used 

fuzzy reasoning methods, the Max-Min and Max-product, were implemented in the 

simulation. 

The practical output of the PID controller was calculated as 

u(k+1) = KPe(k)+Ke(i)+Kd ê(k) 
	

(A-9) 

where K, K, and Kd are the proportional gain, the integral gain, the derivative gain of the 

controller, respectively. 

PAM-I 

The practical output of the PAM-I controller was calculated as 

k 

u(k +1) = GUI Lu * (i) + a 	* (k) 
	

(A-1O) 
i=1 

where u *(i) is the normalised output change from the FLC at instance i, a is the weighting 

factor in the proportion path of the PAM-I. 

PAM-Il 

The practical output of the PAIvI-Il controller was calculated as 

u(k+1)=fflC (e(k), è(k)+3 (k)) 
	

(A-li) 

wherefflC(.) denotes the PLC function, P is the weighing factor of ë(k) in the PAM-IT. 
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a 

A.1.3 Performance measurements 

The main objective of the simulation function is to measure the dynamic performance of the 

simulated system. As presented in Chapter 3, five parameters, OS, US, ST, CY and IES, 

were used as the measurements of a system performance. Based on the definitions of these 

measurements, a step response of a control system was simulated and the parameters 

measured. 

To obtain the performance measurements, process output y(k) and its change rate (k) are 

checked at each simulation step. If y(k) is increasing compared with y(k-i), the maximum 

output, y,,  is tested. If y(k) is decreasing compared with y(k- 1), then the minimum process 

output, Yrnin,  is tested. If the sign of (k) changes compared with ' ( k-i), then the ring 

number m increases 1. If y(k) is not in the steady state zone (defined as from 98% to 102% 

of the steady state output y(oo)),  then the settle time t is set as the sample step k. For IES, 

the e 2  (k) is simply accumulated to Esum during the simulation period. At the end of the 

simulation period, five performance measurements are calculated as follows; 

OS= Ymax_WX100%; 	 xl00%; 

2 
	 ST = ——; 

Tcurn  

IES 
= Ecuni  

w 2 T1  

where w is the setpoint change, Tsurn is the sum of all time constants, time delay andlor 

equivalent time constants in the controlled process, and T1  is the total number of simulation 

steps in the simulation period. Note that OS and US will be set to 0 if they are negative. 

A.1.4 System configuration 

To perform a simulation of a control system, the simulation programs have to be configured 

first, which includes selecting the controlled process, the controller, and other system 

parameters such as the length of simulation period, the type and amplitude of the reference 

signal. The simulation software provides a user interface for the system configuration, as 

shown in Fig.A-2. 
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1.10 
- ôurpiji 

1.00 

0.90 

' OIC_ 0. 

0 	100 	200 	300 	400 500 	600 	700 	800 	900 100C 
S,,pIe 

Os 	0.0•,'. 
M. 	 o.rJ 
T: 2.1 

C',' 0 
XES 0.5 

Fig.A-2 A screen capture of the user interface provided by the simulation program. 

The screen is divided into two parts (two windows in the Xwin under UNIX). The upper 

part is the output area that is used to plot the process control input u and output y and to 

show the system performance measurements. The lower part is for system configuration. 

There are three columns in the configuration area, indicating the process parameters, the 

controller parameters and simulation parameters, respectively. Each column contains several 

items. And each item indicates one or more parameter values, or an operation. The first 

letter, called a command code, in each item is used to modify the parameter value(s) or 

staring an operation. When one of the command codes related to parameters is entered, an 

explanation of the command code will be given in the bottom line and new parameter values 

can be entered. When one of the command codes related to an operation is entered, the 

operation will be performed. 

The "TASK" item is used to assign a job to the simulation. The jobs are system simulation, 

control surface, switching line, phase trajectory, robustness test (interactive mode), 

optirnisation by genetic algorithm (interactive mode) and real-time control interface. System 

simulation is the topic of this section, and other jobs will be explained in other sections. 

The "Option" item in the simulation column provides the following options for performing 

system simulation. 

(I) Reference options: 

u -- use step input as system reference; 
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r -- use single step pulse as the system reference; 

q -- use square wave as the system reference; 

t -- use ramp signal as the system reference. 

(2) Controller options: 

s -- apply saturation constraint to controller signals; 

8 -- apply 8-bits resolution to controller input/output signals; 

c -- normalise controller input/output signals to system setpoint; 

w -- use DOF of each fuzzy rule as the weight in the COG operation (FLC); 

m -- use Max_Product reasoning method if set, otherwise use Max-Min method. 

(3) System options: 

p -- plot system response in the normalised format, i.e. [-1, 1]; 

d -- apply load disturbance in the simulation; 

n -- add random noise to system output signal; 

U -- add ring number of the process control to the CY measurement. 

The "Setpoint" item indicates the maximum change in the system reference. The "SAVE" 

command saves all system parameters into a file in a defined order and format. The 

"LOAD" command is used to initial the simulated system by loading the system parameters 

from a parameter file in the required format. The "RUN" command starts the simulation to 

perform the required task. 

The required format of the parameter file is illustrated by an example as shown in Fig.A-3. 

The first line of the parameter file contains the controller type, process type, system options 

and the number of controller parameters. The second line and the third line list the process 

parameter settings at the tuning point in the following order; 

Model I: K, Td, TI, 72, T3, T4, o,, , n, dead-zone D, X; 

Model II: K, m, in k,,, 1, the maximum force 	applied to the cart, and the initial pole 

angle 0(0); 

Model III: K, T. 

The controller parameters are listed in the last part of the file. Note that the data format of 

the membership functions in the file is different from the definition of the membership 

functions in Fig.A-l. The format used to represent a membership function in the initial 
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parameter file (INI-file) is (XO, D 1 , D2 , D3 ) where D, = x1-x> 0, D2  = X2 - x 1  > 0, D3  = - x2 > 

0 (see Fig.4-1). Using this format is only for the convenience of calculation in the 

simulation. These controller parameters are saved in the following order; 

if the controller is FLC: 

GE, GC, GU, t 

membership functions of error (28 parameters), 

membership functions of ê (28 parameters), 

membership functions of Au (28 parameters), 	rule 

matrix (49 parameters); 

o cuswp f 137 
TP: Kr2.0 Td0 T1=0.0 T20.0 T3-40.0 T4=0.0 
Wn=3.0 Dr=0.7 n=1 Dz=O.O Gr=1.0 

1.0 12.0 0.025 12 

-10.0 0.0 4.0 3.4 
-6.0 3.4 0.0 2.1 
-2.6 2.1 0.0 0.5 
-0.5 0.5 0.0 0.5 
0.0 0.5 0.0 1.4 
0.5 1.4 0.0 3.4 
2.6 3.4 4.0 0.0 

-10.0 0.0 3.0 2.0 
-7.0 2.0 0.0 4.2 
-5.0 4.2 0.0 0.8 
-0.8 0.8 0.0 0.8 
0.0 0.8 0.0 4.2 
0.8 4.2 0.0 2.0 
5.0 2.0 3.0 0.0 

-10.0 5.0 0.0 5.0 
-1.9 0.9 0.0 0.9 
-0.2 0.1 0.0 0.1 
-0.1 0.1 0.0 0.1 
0.0 0.1 0.0 0.1 
0.1 0.9 0.0 0.9 
0.0 5.0 0.0 5.0 

0000124 
0001234 
0012345 
0123456 
1234566 
2345666 
2456666 

Fig.A-3 An example of the parameter file 
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• if the controller is PAM-I: 

GE, GC, GU, t5 , a 

membership functions of error (28 parameters), 

membership functions of ê (28 parameters), 

membership functions of Lu (28 parameters), 

rule matrix (49 parameters); 

• if the controller is PAM-H: 

GE, GC, GU, t, 13 
membership functions of error (28 parameters), 

membership functions of ê (28 parameters), 

membership functions of i.0 (28 parameters), 

rule matrix (49 parameters); 

• if the controller is PID: 	K, K,, Kd, t. 

Clearly the simulation program provides convenient methods for the system configuration. 

The control system can be configured manually or by loading in the parameter file. But the 

membership functions and the rule base can only be initialised by the parameter file. 

A.1.5 Simulation and output 

Fig.A-4 shows the block diagram of the simulation program. It consists of two parts: the 

initialisation and the simulation. In the first part, the controller and the process are selected, 

and their parameters are initialised. The second part calculates system states at every 

sampled point based on the controller's algorithm and the process dynamics. The simulation 

is in a ioop structure with one loop equals to a simulation period. The performance 

square are an independent function which can be called from other package functions, such 

as the function for the robustness test. 

Simulation results were both displayed on the monitor and saved to a data file. In the DOS 

version, graphic user interface (GUI) was designed and system dynamic performance was 

plotted on the screen, see Fig.A-3. In UNIX version, system dynamic performance was 

displayed in a gnuplot window which was connected to the simulation program by the 'pipe' 
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function, see Fig.A-5. The information displayed on the screen and saved in the data file 

depends on the 'TASK' selection. The data file is mainly used to create figures in the 

Microsoft word document by Microsoft Excel. 

A.2 System analysis 

In addition to the above simulation function, FzySimu provides three system analysis 

functions for fuzzy logic control systems. These functions are the control surface function, 

the switching line function and the phase trajectory function. These functions can be 

selected from the "TASK" item in the simulation parameter column as shown in Fig.A-2. 

Select default system structure and 
parameters values 

display system parameters in the 
configuration area 

input a command code 

yes 

display explanation of 
	

initialise simulation, 	 system simulation 
the command code 	 set loop control T1  

read in new value of 
• the modified 

parameter 

validity check 	I 

sample e and 

1. 
calculate performa 

measures 

- calculate system 
output based on 
selected plant 

collect plotting data 
according to TASK 

calculate control input 
update screen 	J 	.lnJ 

_put yes 

performance measure, 
save data into file 

F1g.A-4 Block diagram of the simulation program 
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FAILSAFE 
PRCCE:ss PAR1ETERS 	CONTROLLER PARctIETERS 	SIMULATION SETTING 

0. Process: Simple 	6. Controller: 	FLC 	B. Options: 	cusv 
GaIn: 	2.50 	7. Sample time: 	5 	C. Setpoint: 	2.5 
Time lag 1: 100.0 	S. Scale CE: 	1.000 	D. Steps to simu.: 
Time lag 2: 0.0 	9. Scale SC: 	7.00 	T. Task: simuletic- 
Time delay: 	0 	A. Scale CU: 	0.500 	S. Save 	L. Load 
Integrator: 	0 	 P. Run 	Q. 0ut 

Choose one of the LEADING character- 

09: 0.0 	
Gnu tot 

US: 0.0 	 ontr- 
ST:2.1 	 °P 

1ES05 

FigA-5 Screen capture of the performance siniulation function in UNIX (Xwin). 

FAILSAFE 

	

PROCESS PARAMETERS 	CONTROLLER PARAMETERS 

0. Process: Simple 	6. Cortroller: 	FLC 
Gain: 	2.50 	7. Sample time: 	1 
Time lag 1: 100.0 	B. Scale GE: 	0.500 
Time lag 2: 0.0 	9. Scale SC: 	0.50 
Time delay: 	0 	A. Scale GU: 	1,000 
Integrator: 	0 

Choose one of the LEADING charactersD_ 

SIMULATION SETTING 

Options: 	cusp 
Setpolnt: 	2.5: 
Steps to sirnu.: 

T. TASK: plot cr 
S. Save 	L. Lc- 
R. Run 	0. O- 

Cnuplot - 

'output.Ic 

deLu 

err or 

Fig.A-6 A screen capture of the control surface function (UNIX) 

In the control surface function, the output changes, Au, at all points (e, é) in the normalised 

input space of the FLC are calculated and a three dimensional control surface e x é x Au is 

plotted. A screen capture of the control surface function is shown in Fig.A-6. The control 

surface provides a graphical description of the transfer function of the simulated FLC, and it 

can be used to analyse the controller performance at different system states. 

In the switch line function, the system states (e(k), è (k)) where the control change Au is 

we 
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zero are searched in the normalised input space of the FLC. The switching line formed by all 

these points are plotted in the exé plane. A screen capture of the switch line function is 

shown in Fig.A-7. The switching line function can be used to study the dynamic 

performance of an FLC system since the switching line of the FLC determines the dynamic 

performance of the control system. 

-8 -6 -4 -2 0 	2 	4 	6 	8 	d_ 

Fig.A-7 A screen capture of the switch line function 

-8 -6 -4 -2 0 	2 	4 	6 	0 	d_ 

Fig.A-8 A screen capture of the phase trajectory function 
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As indicated by its name, the phase trajectory function provides a tool to plot the phase 

trajectory of a control system on the phase plane. Fig.A-8 shows a sampled screen of this 

function. The phase trajectory can be used to study the switching line characteristic of the 

fuzzy control system and design the FLC parameters to obtain the required system 

performance. 

These analysis functions can be directly accessed from the simulation user interface as 

shown in Fig.A-2. The block diagram of these functions is shown in Fig.A-9. The phase 

trajectory function is similar to the simulation function, except for the different output 

information. In the control surface and switching line functions, the control output change 

Lu is calculated at 1600 points evenly distributed in the input space, exé. The 1600 data 

groups, (e(k), ê (k), Eu(k)), are used to produce the control surface and the points where 

iu(k) = 0 are used to plot the switching line. 

from system configuration 

Iot phas° 	7ot other 

 fine 	 functions Lrajectory?  

4, 	yes yes + yes 

call simulation calculate Au at 1600 e = emin 

function points on exe plane 

increasefromèmin, find 
+ the first point 	= 	i. where 

plot & save plot 3D control fnc( e, è L) = 0 

data file surface based on 
the data groups 4, 

(e, 	, Au) decrease 	from e man, find 
the first point 	= k R where 

fnc(e,èR)=O 

collect data(e, e L , e R) 

I increaseebyonestep I 

to system configuration 	
date 

Fig.A-9 Block diagram of the analysis functions 
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A.3 Robustness test (RBT) 

Investigation of the robustness of the fuzzy control system is the main task of this research. 

The simulation package FzySimu provides an experimental tool for pursuing this study. 

Two investigation areas have been emphasised in the FzySimu: robust space detection and 

sensitivity test. In addition, FzySimu provides two working modes: the interactive mode and 

the quiet mode. All these are discussed bellow. 

A.3.1 Robust space detecting (RSD) 

Given a control system, the process parameter variation range c1 and the required 

performance specifications, the RSD function searches for the parameter space 0 (I E 

within which the system performance meets the performance specification. To obtain the 

information about the system performance in different process parameter settings, test 

points are selected in the parameter space and simulation of the system step response at 

each test point is performed. 

The simulation package FzySimu provides a function to detect the robust space of the 

system in the parameter space determined by three parameter variation ranges [x i , x2]x[y 1 , 

y2]x[z 1 , z21,  where x, y and z are process parameters. Step length, Ax, Ay, and Az are used to 

select test points in each parameter range. The detected robust space is plotted on the 

screen as x-y plane plots at each test point of parameter z, called slices. The results are also 

saved into a file suitable for MS-Exel to re-create these slices or plot a three dimensional 

figure. 

Two searching methods have been used in the RSD function: full searching and edge 

searching. The full searching method measures the performance of a control system at all 

test points in the process parameter space, and determines the robust space by checking if 

the system performance meets the required specifications. This method is suitable for 

systems with multiple separated patches in robust spaces in the parameter space. In the edge 

searching method, the function starts with the full searching method; after one point on the 

edge of the robust space has been detected, the function will test the system performance 

only at those test points around the robust space edge, and thus the position of the edge of 
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the robust space can be discovered. It should be noted that the edge searching method is 

faster than the full searching method, but it is not suitable for systems with multiple 

separated robust spaces in the parameter space. Fig.A-lO shows the block diagram of the 

RSD function. 

I 	System initialisation 	I 

yes 
full test 
method 

set ioop control of 
selected test points 

set process parameters 
of the next test point 

call simulation function to 
obtain system performance 

measurements 

mark robust space and 
count the number of in- 

spec test points 

- 	 no complete all 
st points? 

yes 

no 

set layer control loop 	I 

set 3rd process parameter to the 
next layer, and set raw control loop 

set 2nd process parameter to the next raw 

start from the boundary values (1st 
variable) of the last raw, find the 

boundary values of the current raw, 
ML and MR , by calling the 

simulation function 

no 	all raws 
<ompleteeted? 

yes 

	

layers 	no 
mplete 

yes 

calculate robustness index 'rb  and save result data 	I 

Fig.A-10 Block diagram of RSD function 

A.3.2 Sensitivity test (SST) 

To design or tune a robust controller, it is necessary to know the effect of controller 

parameters to system robustness. Controller parameters may play different roles for 

obtaining a good robust performance. The sensitivity test function in the simulation package 
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FzySimu provides a tool to investigate the effect of four tuning parameters, GE, GC, GU 

and t,ç , to the robustness of fuzzy control systems. Moreover, the effect of these parameters 

to system performance can also be tested by the SST function. 

To test the effect of a parameter to system robustness, the variation range and the variation 

step of this parameter are to be selected. For each value of this parameter, the RSD function 

is called to obtain the size of the robust space within the interested process parameter space. 

The relation between the parameter and the system robustness is then represented by the 

data pairs of the tested parameter value and the size of the robust space. Similarly, to test 

the effect of a parameter on system performance, the variation range and the variation step 

of this parameter was selected. For each value of this parameter, the system simulation 

function is called to obtain five performance measurements defined in Chapter 3. Then the 

effect of the tested parameter on system performance can be indicated by the data pairs of 

the tested parameter value and the performance measurements. Fig.A-1 1 shows the block 

diagram of the SST function. 

I 	System initialisation 	I 

set ioop control of the controller parameter 

set the tested controller parameter to the next value 

	

yes __—i;:t effect on 
	no 

	

call RSD function to obtain 	 call simulation function to 
the robustness index, Irh, 	 obtain five performance 

of present system 	 measurements 

	

I 	collect data 	I 

omplei 	no 

all tests?,-' 

save result 

Fig.A- 11 Block diagram of SST function 
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A.3.3 Working modes 

FzySi,nu provides two working modes, interactive mode and quiet mode, for the robustness 

test function. 

A. Interactive mode 

When the robustness test function is working in the interactive mode, all system parameters 

and simulation settings are displayed on the screen, system structure and parameters can be 

manually initialised, and detected robust space is plotted on the screen. The screen is 

divided into three parts: system initialisation area in the bottom, RBT initialisation area in 

the top and the plotting area in the middle. All initialisation items are similarly initialised as 

in the simulation function. The plotting area shows all slices of robust space at different test 

points of the third parameter. A screen capture of the interactive mode of the robust space 

detecting function is shown in Fig.A-12. 

Fig.A- 12 A screen capture of the interactive working mode of the RBT functions 

Items in the system initialisation area are the same as those in the simulation function. Items 

in the RBT initialisation area include the variable parameters which the system robustness is 

considered with, their variation ranges, their step changes in the detecting tests, the required 

performance specifications, the function task, and the file name for saving the results. More 
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explanations on the items are given bellow. 

The variable parameters of the process are indicated by their order numbers in the list 

shown in the system initialisation area. Take Fig.A-12 as an example. Item 0 in the RBT 

initialisation area indicates 'variable order: 123', which means that the variation of the first 

three parameters in the parameter list will be considered in the system robustness test. Since 

the second order process with time delay is selected as the controlled process as shown in 

the system initialisation area and its parameters are listed in the order of K, o, and Td,  so 

the variable parameters are K, o and . If the variable order is 124, then the variable 

parameters become K, o and Td.  Note that the 'variable order' also indicates the format for 

plotting the robust space. Because the variable parameters are assumed in the order of x-y-z, 

the slices of the robust space will be plotted in the plane determined by the first two 

parameters. 

The variation ranges and varying step lengths of three variable parameters are indicated in 

item 1 to 3 as "FromlTo/Step". 

The TASK item lists the following 9 sub-functions and anyone can be selected as the 

present task; 

RSD; 

GE effect to system robustness; 

GC effect to system robustness; 

GU effect to system robustness; 

t effect to system robustness; 

GE effect to performance measurements; 

GC effect to performance measurements; 

GU effect to performance measurements; 

t effect to performance measurements. 

The interactive mode provides a tool for a manual tuning of process parameters and direct 

view of the detected robust space. It is suitable for a preliminary test in which the number of 

test points is small, thus the test is fast. 
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B. Quiet working mode 

From the above description of the RBT function, it can be seen that if the number of test 

points is big, the RBT function will be very time consuming because it needs to call the 

simulation function to evaluate the system performance at each test point. Sometime it takes 

almost an hour to view the robust space of a slow dynamic system if the program runs in 

MS-DOS. One method used in solving this problem is to develop the fast detecting method 

- the edge detecting method. The another method is to prepare the operation results of the 

program in the off-work hours so that the time for waiting for the results can be greatly 

reduced. The main objective of the quiet working mode is to allow the RBT function to be 

automatically run in the off-working hour on the UNIX system by using the crontab 

function. 

In the quiet working mode, no system parameter is displayed on the screen, except for the 

progress information. The progress information in the robustness test function is a 

percentage of the explored parameter space in the required parameter space. System 

parameters and all other configurations are done by using the initialisation file (INI-file) and 

the input file (IN-file). The INI-file uses the same format of the initialisation file used in the 

simulation function as described in Section A. 1.4. The IN-file has the format as illustrated in 

Fig.A-13, and it can be created by another program, called STUP, which runs separately to 

let the user to configure the RBT function. 

When the RBT function is executed in the quiet mode, it will firstly read these initial files to 

configure the simulation system and the program, secondly it determines the task to perform 

according to the "Mapping Task" in the IN-file, then it calls the appropriate sub-function to 

create the result data file. 

A4 Robustness optimisation 

Because of the multiple parameter and non-linear characteristics of the fuzzy logic 

controller, it is very difficult to design an FLC to provide an optimised robust performance. 

In this research, the genetic algorithm (GA) is used to optimise the robustness of the fuzzy 

control system by selecting the controller parameter settings. The function, called Ga Opt, in 

FzySimu package provides this optimisation. 
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TASK = m 
Controller = f 
Plant Type = 3 

Plant variables = 178 
1st variable from = 1.000 

to 	= 7.000 
step = 0.100 

2nd variable from = 1.000 
to = 20.000 

step = 0.100 
3rd variable from = 0.700 

to 	= 0.701 
step = 0.200 

Setpoint = 2.5 
OvershootSpec = 5 

UndershootSpec = 5 
SettletimeSpec = 3 

Ring NumberSpec = 2 
Mapping Task = 5 

Fig.A-13 An example of IN-file for RBT functions 

Since the objective of the optimisation is to obtain the maximum robust space in the 

interested process parameter space, system robustness is tested in each group of controller 

parameter settings (called a gene) by calling the RSD function. In addition, the genetic 

algorithm is based on an iterative procedure of selection-evaluation, the entire optimisation 

process will be much more time-consuming than the RSD function. Therefore, the edge 

detection method in the RSD function is mainly used, the interactive working mode and the 

quiet working mode are also designed for the GaOpt function, and this function is mainly 

run on UNIX. 

The initialisation and the working modes of the Ga Opt function are the same as those in the 

RBT function. Fig.A-14 shows a screen capture of the interactive mode of the this function 

in MS-DOS. Fig.A-15 gives an example of the IN-file used for the function initialisation 

when the program runs in the quiet mode.. 

The genetic algorithm used in this research is a standard one, and the main operations, such 

as the Crossover, Mutate and Select, are adopted from the Genesis 5.0 written by Jone J. 

Grefenstette. In the Crossover operation, two-point crossover on the entire population is 

performed. In the Mutate operation, each position in the population string is given a chance 

(mutation rate) of undergoing the operation. The selection algorithms implemented in 

GaOpt are proportional selection based on the stochastic universal sampling algorithm and 

linear ranking selection both proposed by James E. Baker in [84] and [87] respectively. 
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Fig.A-14 A screen capture of the interactive mode of GaOpr in MS-DOS. 

TASK = g 
Controller = f 
Plant Type = 3 

Plant variables = 178 
1st variable from = 1.000 

to = 50.000 
step = 	1.000 

2nd variable from = 2.000 
to = 	12.000 

step = 1.000 
3rd variable from = 	0.500 

to = 	0.900 
step = 0.200 

Setpoint = 	2.5 
OvershootSpec = 5 

UndershootSpec = 5 
SettletimeSpec = 3 

Ring NurnberSpec = 2 
Mapping Task = 5 
Experiments = 1 

Total Trials = 1000 
Population Size = 50 
Crossover Rate = 	0.6 
Mutation Rate = 	0.001 
Generation Gap = 	1.0 
Scaling Window = 5 

Report Interval = 100 
Structures Saved = 10 

Max Gens w/o Eval = 2 
Dump Interval = 0 

Dumps Saved = 0 
GA Options = cefgill 
Random Seed = 123456789 

Rank Min = 	0.75 

Fig.A- 15 An example of the IN-file used in GaOpt. 
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In the evaluation stage, GaOpt passes each solution (i.e. controller parameter group) to 

RobustMap to evaluate the robustness of the system with this solution and determine the 

fitness by means of the fitness function defined in Chapter 3. After evaluation, the statistics 

of the robust performance of each solution in the present FLC generation will be collected 

and the convergence of this searching process will be determined. If the FLC population is 

not converged, GaOpt will randomly select some FLC solutions from present population. 

The block diagram of the GaOpt function has already presented in Chapter 4. 

A.5 Real-time control interface 

This function of the FzySiinu package was only designed for the development of the 

microprocessor based real time controller (tPRC) used to confirm the simulation results of 

this package. Normally, the relevant development tools (both hardware and software) for 

the related microprocessor are necessary for this kind of development. But, on one hand, 

the microprocessor development tools are normally costly, on the other hand, the 

communication interface between this development tool and the simulation tool FzySimu is 

still needed for the automatic transmission of the controller's configuration data required by 

the extensive experiments. Therefore, the Motorola M68HC1 1 microprocessor was chosen 

for implementing the real time controller due to its simplicity in development [119]. The 

real time control interface, RCP1ot, was designed in the FzySimu package for this real time 

controller (MS-DOS platform only). 

RCPIot function performs the following operations: code generation, communication 

between a PC and the real time control system (RTCS), and displaying the dynamic 

response of the RTCS. 

In the code generation operation, all controllers configuration data are firstly collected and 

saved into a data file as "DB' macros of the M68HC1 I assembly. Note that each floating 

point variable in the simulated controller is represented in the iPRC as a fixed point variable 

in the format of 16 or 32 bits with 8 bits after the decimal point. Then this data file (DT) is 

merged with the library files to form the assembly program of the real time control system. 

The library files are specially designed for the RTCS in M68HC 11 assembly, and they are 

the head file, the system management file, and four controller files. The head file defines the 
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globe variables in the control software. The system management file provides the data 

sampling, data collection and communication in the RTCS. The controller file calculates the 

control input based on the control algorithm, such as FLC and PD. Finally, the assembly 

program is compiled by the compiler, ASMHC 11, to generated the machine code 

corresponding to the present simulated controller. 

The communication between the RTCS and the host PC is carried out via the RS-232 

interface. Because no software permanently resides in the RTCS, the configuration of the 

RTCS is specially designed for this research. The M68HC1 1 in the RTCS was set to the 

boot-trap mode [119] which allows 256 bytes program to be downloaded into the on-chip 

RAM. A special program, called Talker designed by Motorola, is downloaded from the host 

PC to the RTCS via the serial port. With the talker running in the RTCS, the asynchronous 

serial communication becomes active and the read-write operations in the RTSC can be 

controlled by the host PC. With these basic functions provided by the Talker, the 

fundamental operations, such as downloading, executing and debugging, required by the 

development of microprocessor systems can be performed. 

Note that the boot-trap working mode of M68HC1 1 does not satisfy the requirement for 

the dynamic memory and 110 ports in the real time systems. Therefore, after loading the 

Talker, the working mode of M68HC1 1 is changed to the expanded mode via re-

configuration of the control register HPRIO and re-locating the interrupt vectors, see the 

block diagram shown in Fig.A-16. After this re-configuration, the RTCS based on 

M68HC1 1 has 32K bytes of RAM as well as the basic development functions. 

For downloading and executing the control program (the machine codes), the communication 

protocol defmed by the Talker (Table A-i) is implemented in the RCPIot. Note that to execute the 

control program, the "Memory Write" command is issued to modify the return address in the stack 

so that when the Talker finishes the interrupt services for the communication and returns to the main 

program, the control program is started. A similar technique is used to stop the execution of the 

control program. 

Another operation performed by the RCPlot is to display the response of the RTCS and 

compare it with the simulation result. In this operation, the system performance data saved 

by the control program are read from the RTCS to the host PC and plotted together with 

the simulation results. Fig.A-17 shows a screen capture of the RCPIot function. 
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remind the operator to turn on 
or reset the RTCS 

I 	download Talker 	I 

con ne— ~r failure 

yes 

change the mode to TEST mode 

re-locate the interrupt vectors to 
the extended RAM area 

change the mode to 
EXPANDED mode 

Table A-i Communication nrotocol 

Code 
(Hexadecimal) 

Operation 

OiH Memory read 

41H Memory write 

8111 Register read 

OCIH Register write 

OB5H Break point information 

Fig.A- 16 Block diagram of re-configuration 
of the RTSC 
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F1g.A-17 A screen capture of the RCPlot function 
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Confirmation of Simulation Results 

B. 1 Introduction 

The research work presented in this thesis is mainly based on computer simulations and 

extensive experimental results. The simulation tool played a very important role in this 

research work. Therefore, the creditability of the simulation results is critical to this 

research. After the design of the simulation program, the simulation results of different 

control systems have been confirmed by comparing with the results from a practical control 

system to which the control algorithms were applied. 

A practical control system was designed for the confirmation. It consists of a 

microprocessor embedded universal controller (MEUC) and a third order analogue 

emulator (AE3). Control algorithms were implemented in the controller by software 

techniques. The controlled process (not more than third order) was realized in the analogue 

emulator by hardware configuration. The communication between the control system and a 

personal computer was supported so that automatic data processing and system 

configuration can be performed by using the RTPIot function in the simulation package 

FzvSi,nu (see Appendix A). 

In this appendix, the implementation of the MEUC is presented in Section B.2 with respect 

to both hardware and software. Section B.3 describes the structure of AE3 and the method 

for process emulation. In Section B.4, dynamic performance of the practical control system 

is compared with the simulation results. It is concluded in Section B.5 that the simulation 

program is reliable and the results from the simulation compare well with results obtained 

from the practical systems. 
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B.2 MEUC 

The following facts have been considered in designing the MEUC: 

• It is supposed that the controller process is controlled by the analogue voltage signal 

and its output can be transferred (by certain sensors) into a voltage signal. Both the 

control input and process output signals are d.c. in the range of [-12v, 12v]. 

• The communication between the controller and a PC is required for the purpose of 

development and high level supervisory management. 

• The controller can record system dynamic performance for the confirmation of the 

simulation results. 

All these facts will be reflected in the hardware and software described as follows. 

B.2.1 Hardware design 

The FLC circuit is shown in Fig.B- 1. Due to its simplicity and the flexibility of developing 

feature, the Motorola M68HC1 1 microprocessor is used in the MEUC. As introduced in the 

Appendix A, the M68HC 11 microprocessor system can be economically developed by using 

the boot-trap function. This function can be selected by setting the selection lines (MODA 

and MODB) to the ground. However, M68HC1 1 can not access the external memory and 

I/O ports in the boot-trap mode. It is necessary to re-configure the M68HC1 1 into the 

expanded mode, which can be carried out by the software (see Appendix A). For the data 

recording, two RAIVI chips, 62256 and 6264, have been used to provide 40k byte memory 

space. Two jumpers were used for re-configuring the 32k RAM (62256) into the 32k 

EPROM (27C256) for the stand-alone working mode of the MEUC. In order to 

communicate with the PC machine, the Max232 chip was used to provide an RS-232 serial 

port which is commonly used in PCs. 

Since the control signal and the process feedback signal are analogue, the converters from 

analogue to digital (AID) and digital to analogue (D/A) are important elements in the 

controller. In practical control systems, the number of the input or output signals could be 

more than one. So the multi-channel A/D and D/A interfaces were designed in the MEUC. 
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M68HC1 1 has 8 x 8 bits A/D converter which can be used as the A/D interfaces. Two 

channels of D/A (12 bits) were designed with MAX50 1 which can provide analogue output 

in the range from -5v to 5v. Two jumpers were used for selecting the reference signals of 

the MAX501 in order to change the sign of the controller output, see Fig.13-2. 

Since the inputs of the AID converter require a signal variation from Ov to 5v, there should 

be a level shifter to convert the controller input signals from the range (-1 2v - 1 2v) to (Ov - 

5v). Similarly, there should be a level shifter to convert the controller output signals from 

the range (-5v - 5v) to (-12v - 12v). The level-shift circuit, as shown in Fig. B-3, consists 

of four CA3 140 operational amplifiers with flexible adjustability. 

In addition, considering the possibility to turn it into a commercial product, the LCD display 

interface (LM032L) and the keypad interfaces (74C922N) were implemented in the 

controller. 

The access addresses of all components in the MEUC are listed in Table B-i. 

Tih1 R-1 (mnnnent address list 

Component Address (Hex.) 

RAM 62256 (EPROM 27256) 8000 - OFFFF 

RAM 6264 4000 - 7FFF 

D/A MaxSOl (1) 4010 (LSB), 4018 (MSB) 

D/A Max501 (2) 4014 (LSB), 401C (MSB) 

A/D (0-7) (on chip) 1030 (control), 1031 - 1034 (results) 

RS-232 102B - 102E (control), 102F (data) 

LM032L 4008 

74C922N 4007 

B.2.2 Software design 

To make the real time control system comparable with the simulation system, the real time 

control software were designed to implement the control algorithm in the same manner as 

the simulation, and the controller parameters, such as the membership functions, rule base 
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	 Fig.B-3 Level-shift circuit 

and sample rate, are directly transferred from the simulation configuration to the data 

segment when compiling the machine codes in the real time controller (see Appendix A). In 

addition, the controller parameters in the simulation are also constrained to the 16 bit 

(binary) resolution. 

Since the FLC control algorithm takes about 5ms to work out the control input in the 

MEUC, the timing unit in the MEUC is set to 6ms. That is, one sampling period in the 

simulation is equivalent to 6ms in the real time control system. 

To increase the calculation speed, the following methods are used: 

• The FLC's software was designed in assembly language, not converted from any high-

lever language.. 

• Triangle-shape membership functions were used for all fuzzy variables in the MEUC. 

The block diagram of the program used in MEUC is shown in Fig.4-6 in Chapter 4. Note 

that the program used in the MEUC is only for the confirmation experiments. Some 

functions, such as the LCD display and keypad management, are not implemented in the 

program. 
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B.3 Process emulation 

In the robustness study of the FLC systems, the following two processes are mainly used. 

. First order with time delay: G 1  (s) = 
Ke 

1+ Ts  

Y 
. Second order process: G 2  (s) = 2 

Ko
2çws + 

To confirm the simulation results, these processes have been emulated by using the 

analogue hardware. The implementation of these processes is shown in Fig.B-4, where the 

process parameters can be calculated as follows. 

• For Gj (s): K = 
R12R22 

, T= R22C2 ; time delay 'r is implemented by software. 
R1 I  R21  

• For G2(s): K= 	 c 1J7 	- 1 

= - - 	
, T2  = R22C2 , T3  = R3 C3 , R 12=R 14 , R21 =R22 . 

T2 T R 11 	 3  

Because variations of the parameters are required by the study, each operational amplifier 

unit was implemented to enable multiple choices of capacitor or resistor values. With the 

jump connectors, it is very easy to obtain any combination of these components. 

Note that the time delay 'r is implemented by software. A 2k byte RAM block is reserved to 

record up to 1000 samples of the control u. Each sample of the control u is retrieved after 

the time delay. Therefore, the time delay can be set from 0 to 6 secOnd (6ms per sample). 

B4. Simulation confirmation 

To perform the confirmation, 10 experiments were carried out with different system 

configurations. These experiments are listed below. 

1) First order process (low K, high I) controlled by FLC. Process: G 1 (s) with K=1.07, 

T=2.1s, r=O. Controller: FLC with GE=l, GC=10, GU=0.2, t=20. 
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Fig.B-4 Hardware implementation of the controller processes. 
(a) First order; (b) second order. 

First order process (low K, high T, with 't) controlled by FLC. Process: G 1 (s) with 

K=1.07, T=2.1s, 'r=50. Controller: FLC with GE=1, GC=lO, GU=0.2, t=20. 

First order process (high K, high T, with 't) controlled by FLC. Process: G i (s) with 

K=9.7, T=2.ls, 'r=50. Controller: PLC with GE=l, GC=lO, GU=0.08, t=20. 

First order process (low K, low T, with 'r) controlled by PLC. Process: G 1 (s) with 

K=1.07, T=1.05s, 'u=50. Controller: FLC with GE=1, GC=10, GU=0.2, t=20. 

First order process (high K, high T, with 'r) controlled by PID. Process: G i (s) with 

K=9.7, T=2.ls, t50. Controller: PD with K=0.5, K 1=0.01 17, K j=5, t20. 

First order process (low K, high T, with 'r) controlled by ND. Process: G 1 (s) with 

K=1.07, T=2.ls, r5O. Controller: PD with K=0.6, K 1=0.043, K=5, t=20. 

First order process (low K, low T, with 'r) controlled by PID. Process: G 1 (s) with 

K=1.07, T=1.05s, t=50. Controller: PD with K=0.6, K 1=0.043, K(j=5, t=20. 

First order process (low K, low 1) controlled by PD. Process: G 1 (s) with K=1.07, 

T=1.05s, t=O. Controller: PD with K=0.6, K,=0.043 1  K=5, t=20. 
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Second order process (low K, low , high con ) controlled by PLC. Process: G 2 (s) 

with K=0.76, 027, t=0.5. Controller: FLC with GE=1, GC=2, GU=0.5, t=12. 

Second order process (high K, high , low w) controlled by PLC. Process: G 2(s) 

with K=1.66, o=8, =1.45. Controller: PLC with GE=0.8, GC=10, GU=0.2, t=12. 

The confirmation results are presented from Fig.B-5 to Fig.B-14. Each figure shows the 

step response of the real time control system and the simulation result. The important 

parameters are indicated with their values in each figure. 

Note that legend in each figure has following meanings; 

u_rt: real time control; y_rt: real time output; 

u_sm: simulation control; y_sm: simulation output. 

B.5 Conclusion 

From the confirmation results, it can be found that there is a good match between the real 

system performances and the simulation results if all system parameters are set the same. 

The most obvious difference between these two system's performances is that there are 

small ripples in the control signal of the real system which are not observed in the 

simulations. This situation has been examined carefully by debugging the real system and it 

was found that the conversion error in A/D chips and the noise from the power supply is the 

main reason for this problem. The effect of noise in practical systems cannot be neglected. A 

small GC will help to reduce this effect. When the performance at small GC is not satisfied, 

selecting a bigger sample rate may help to improve the performance. In simulating a 

practical process, the internal saturation of the process should be considered. Even if the 

input/output of the process are not saturated, the state variable inside, for example, the 

output of the first operational amplifier may saturate. In addition, the variation ranges of 

system parameters should be scaled uniformly. The most important unification is the 

membership functions of the PLC. 

It is concluded that the simulation software used in this research correctly predicts the main 

features of the performance of practical control systems. 
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AN EXPERIMENTAL INVESTIGATION OF THE DYNAMIC 
PERFORMANCE OF FUZZY LOGIC CONTROL 

J. Wang and J.R. Jordan 

Abstract 
This paper presents the results of an experimental (simulation based) investigation of the effect of 
scaling factor choice on the step response of a fuzzy logic controlled system. It is shown that if 
scaling factors are adjusted to give the best step response then small changes of process 
parameters (eg. time constant and gain) quickly degrades this good performance. Alternatively, if 
the performance required is degraded from the best step response obtainable by tuning the scaling 
factors, then scaling factors can be selected to give an acceptable performance over a wide 
variation of process parameters. 

Key Word -- fuzzy logic control; scaling factor; robust performance. 

1. Introduction 

Fuzzy logic controllers( FLCs) are being used successfully in an increasing number of application areas, such 
as pilot-scale process control (King and Mamdani, 1976), pH control (Karr and Gentry, 1993), control of 
muscle relaxant anaesthesia (Linkens and Hasnain, 1991), and laser beam alignment (Marchbanks and 
Jamshidi, 1993). In many applications (Chiu \f2et al.\f 1, 1991; Liaw and Wang, 1991; Pedrycz, 1993; Ray and 

Majumder, 1985; Tong, 1977), it is found that the performance of fuzzy logic control is robust under a wide 
range of variation in process parameters. This is a desirable feature since, in most control applications, the 
accuracy of the plant model is not guaranteed, and plant characteristics may change considerably during 

normal operation. 

In many of these applications that the robust feature was observed, the effect of the parameters of the FLC on 
this performance feature was not a primary concern. For example, Procyk and Mamdani (1979) gives a 
description of the effect of scaling factors on system performance, but the rule-learning ability and the 
convergence of a self-organised fuzzy logic controller was the major concern of that paper. 

In practical design, the rule base and the membership functions are usually first decided, and then the scaling 
factors (and also the sample rate) are adjusted to obtain the required dynamic performance. It is a very 
demanding procedure to choose these parameters if the range of variation of process parameters is relatively 
wide and a robust dynamic performance is required. General guidelines for tuning the performance of a fuzzy 
logic controller are not available. 

This paper presents results demonstrating the effect of FLCs parameters on the range of variation of process 
parameters, over which the dynamic response (eg. a step response) remains within the designed specification. 
An exhaustive search of the process parameter space, KxT, and the scaling factor space, GExGCxGU, has 
been carried out by simulation to establish the range of acceptable system performance. From 
these experiments guidelines are being developed for the design of fuzzy logic controllers. 

For the purpose of this paper, robust performance is used to indicate a dynamic response that remains within 
the designed specification. 
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2. Fuzzy Logic Controller 

To demonstrate the performance of a fuzzy control system, a simple fuzzy logic controller was simulated and 
used to control a simulated single-input-single-output process. The controller, originally conceived by Mamdani 
and Assilian (1975) and based on Zadehs fuzzy set-theory (1965), was designed to regulate the output of the 
process around a set-point. A block diagram of the simulated controller is shown in Fig. 1. 

GU 

e 	

E  : 

	

ojk 

Fig.l The fuzzy logic controller. 

The controller first calculates the error and the change of error from the samples of set-point and feedback of 
the process output. Then these numerical values are fuzzified into linguistic values with degrees of membership 
to predefined fuzzy sets. After evaluating the fuzzy rules, several linguistic values of control output are 
generated and defuzzified into a numerical value which is used to control the process. 

In the simulation, two inputs to the FLC, error ( e ) and change of error (é ) are calculated at step k as: 

e(k) = S(k) -0(k) 	 (1) 

ê(k)= (e(k)—e(k—l)}/t, 	 (2) 

where S is the set point, 0 is the output of the process, and t, is the sampling interval of the controller. The 
inputs and output of the FLC is limited within a defined range [-10, 10],  and the sampling rate for the process 
simulation is designed to be more than 5 times higher than that of the controller to ensure that a continuous 
performance is approximated. 

The input and output variables of the FLC are associated respectively with three fuzzy sets: ERROR, CHANGE 
IN ERROR and CHANGE IN PROCESS INPUT (denoted by E, C and U respectively). Seven fuzzy subsets are 
chosen for each fuzzy set and named as NB, NM, NS, ZE, PS, PM, PB. Fuzzy subsets contain elements with 
degrees of membership. A fuzzy membership function mA: Z-4 [0, 1] assigns a real number between 0 and I to 
every element z in the universe of discourse Z. This number mA(z) indicates the degree to which the object or 
data z belongs to the fuzzy set Z. Equivalently, ,nA(z) defines thefit value of element z in Z. 

The corresponding fuzzy subsets, Ek, Ck and Lik can be expressed by a set of ordered pairs, i.e. 

Ek  =[e,l.I(e)]cE 	 (3) 

C =[e,.t(e)]cC 	 (4) 

Uk  —[u,p.(u)]cU 	 (5) 
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where e, ê and u are elements of non-fuzzy variables, and mE (e) , m (è) and m (u) are the corresponding 

membership values which give the degree to which the element is a member of the subset. 

Fuzzy membership functions can have different shapes depending on the designer's preference or experience. In 
practice triangular and trapezoidal shapes are widely used because they help capture the modeller's sense of 
fuzzy numbers and simplify computation. Fig.2 shows membership function graphs of the fuzzy subsets, where 
NB for Negative Big; NM for Negative Medium; NS for Negative Small; PB for Positive Big; PM for Positive 
Medium; PS for Positive Small and ZE for Zero. In Fig.2 the fuzzy set ZE is narrower than the other fuzzy 
sets. The narrow set permits fine control near the set point while the wider fuzzy sets permit coarse control 
when the output is far from the set point. 

Fig.2 The fuzzy membership function. 

A scaling factor for each variable is used to adjust the sensitivities of the controller to this variable. These 
scaling factors are gain of error (GE), gain of change of error (GC) and gain of control output (GU). The 
fuzzyfication procedure consists of first scaling the actual value by multiplying them by a suitable scaling factor 
and then quantizing the result according to the defined membership function. The effect of fuzzyfication can be 
altered by changing the value of the scaling factor or changing the definition of the membership function. 

The fuzzy rule base provides an inference mapping from the input fuzzy universe to the output fuzzy universe 
and takes the form of a set of linguistic conditional statements: 

IF E is Ek  and C is Ck  TI-LEN U is U 

Every rule expresses a single control action at the stated system situation. The entire fuzzy rules base is usually 
represented by a single matrix called a fuzzy inference matrix (FIM). Fig.3 shows the FIM used in the 
simulation study. 

e 
NB 	NM 	NS 	ZE 	PS 	PM PB 

NB NB NB NB NB NB NB NS 
NM NB NB NB NM NM NM PS 
NS NB NB NM NS NS PS PM 

e ZE NB NM NS ZE PS PM PM 
PS NM NS PS PS PM PM PM 
PM NS PM PM PM PM PM PM 
PB PS PB PB PB PB PB PB 

Fig.3 Fuzzy rule base 

The design of the FIM used is based on experience obtained in controlling the simulated process manually. 
The control heuristic is illustrated in Fig.4. At phase I and 3 where the process output is moving away from the 
set-point at more than a relatively small speed, the control input to the process should be greatly reduced (or 
increased) to drive the output back to the set-point. At phase 2 and 4 where the output is moving toward the set-
point, the control action should be carefully decided according to the change of the output so as to keep the 
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output going at a satisfactory speed without a big overshoot. All these imprecise decisions can be executed by 
the fuzzy logic controller. 

VV 

- /11~ 	I //--X O 

Setpoint. 

Response. 

Fig.4 General control strategy 

The centre-of-area method is used to defuzzify the output fuzzy variable. Since the output of the FLC is the 
change in control, an accumulator after the FLC is inserted to calculate the control input to the process if there 
is no integrator in the process to be controlled. 

To simplify the evaluation of the compositional rule of inference and avoid heavy computational task, the fuzzy 
rule base in Fig.3 is represented in the form of a two-dimension data group. That is, let seven numbers (0-6) 
denote the seven fuzzy subsets NB, NIvI, NS, ZE, PS, PM, PB respectively, then Fig.3 can he rewritten into a 
7x7 integer data group as follows: 

F1M[7][7] = {( 0,0, 0, 0, 0, 0, 2); 
(0,0,0,1,1,1,4); 
(0,0,1,2,2.4,5); 
(0,1,2,3,4,5,5); 
(1,2,4,4,5,5,5); 
(2, 5, 5, 5, 5, 5, 5); 
(4,6, 6,6,6,6, 6)) 

This data group is easy to store in the computer memory and it is easy to use it to implement the linguistic 
inference operations. 

Another approach to simplify the evaluation of the fuzzy rule is that there should be no more than two fuzzy 
subsets whose membership functions are overlapped. Because of this restriction, four rules at most can be 
invoked at any system state, which leads to a great reduction in computing load and meets most control 
requirement in practice. For example, if e(k) = 2.0, and è (k) = -1.0 after multiplying the scaling factors at step 
k, it can be found from Fig.2 that only PS and PM in the E universe, and NS and ZE in the C universe have a 
non-zero fuzzy degree of membership. Therefore only four rules ( FIM[4, 21, FIM[4, 3], FIM[5, 2], FIM[5, 3] 
are needed. 

3. Experiment results 

To demonstrate the performance of the fuzzy controller, a simulation study has been carried out on a single-
input-single-output system. The process to be controlled has the following transfer function: 
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G(s) 
= K 	

(6) 
Ts+1 

where K is the process gain within a range of ( 50 - 400 ), T is the process time constant within a range of 
(50 - 400 ). Note that the time constant is expressed using the fast simulation sampling interval of the process 

not t ) as the unit interval. 

A step response test was used to determine the effect of the FLCs parameters (GE, GC, GU) on the robustness 
of the fuzzy logic control system. The criteria under which the performance of the fuzzy system is considered 
acceptable were specified as: 

Rise time <= 4T; 
Overshoot <= 5%; 
Settling time <= 51. 

Note that the rise time is the time for the system output to rise from 10% to 90% of the steady state value. Also 
the settling time denotes the time spent for the system output to get into the output range specified by 99% to 
101% of the steady state value. 

In this section, two investigations will be reported. The first one investigated the robust performance of the 
system with scaling factors tuned to give the best step response at the tuning point, and the second one 
investigated the effect of scaling factors on the robust performance of the fuzzy logic controlled system. 

3.1 Robust performance test 

To test the robust performance of the fuzzy logic controlled system, the scaling factors of the FLC are tuned to 
give a best response (fast without overshot) at K=100 and T=100 (tuning point). Then, with these scaling 
factors unchanged, the system performance was evaluated for parameter ranges of K=40 to 400 and T=40 to 
400. An exhaustive search of the process parameter space, KxT, has been carried out to establish the range of 
acceptable system performance. Fig.5 shows the system performance at the tuning point with GE=l .5, GC=8.0 
and GU=0.5. The variation range of gain K at different T, within which the acceptable performance is 
obtained, is shown in Table 1. 

Vout 

Vout process output divided by the setpoint 

Vm: process input divided by its maximum. 

0.5 
v1 

o r 

0 	 50 	 100 
Time ( t s ) 

Fig.5 System performance at tuning point 
(GE=l.5; GC= 8.0; GU=0.5; K=100; T=100; t,.=l0) 

T 50 1 	100 150 200 250 
K 50 - 200 1 	50 - 250 50 - 150 50 50 

Table 1: Robust range of K. at different T 
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(GE=1.5; GC= 8.0; GU=0.5; t, =10) 

From Fig.5 it can be found that the step response of the system is very fast with I .5T rise time without overshot. 
From Table 1 we can also see that the robust performance range of the system is within K=50 to 150 and T=50 
to 150 which is a significant increase in robust range compared with a P1 controller whose robust range was 
found to be K=85 to 120 and T85 to 120 under the same test conditions. 

The robust range can be significantly increased by tuning the values of these scaling factors. Many simulations 
have been carried out and it has been found that, with the same membership functions and rule base, a robust 
range for K of 50 to 250 and T of 50 to 200 can be achieved when scaling factor are chosen as GE=1.8, 
GC=12.0 and GU=0.25. Responses at the tuning point and the terminal points of the specified ranges 
(K=T=100; K=250, T=50; K=50 T=200; K=T=50; K=250, T=200) are shown in Fig.6. 

4) 
Ii) 

0 
0 
Cr 
4) 

U 	 50 	 100 
Time (t s) 

Fig.6 System performance with robust objective. 
a: K=250, T=50; b: K=250, T=200; c: K=100, T=l00; 

d: K= 50, T= 50; e: K= 50, T=200. 

From the results stated above, it is obvious that a very good performance can be obtained if the variation range 
of the plant parameters is not wide, while by appropriately choosing proper scaling factors, a wide robust range 
can be achieved. 

3.2 Effect of scaling factors on the robust performance 

To investigate the effect of scaling factors on the robust performance of the fuzzy logic controlled system. first 
the parameters of the FLC was chosen to give a satisfactory performance over the process parameter ranges 
K=50 to 250, T=50 to 250. The parameters which gave this performance are listed below: 

GE=1.8; GC=12.0, GU=0.25. 

Then one of these three parameters was varied about the value specified above, with the others unchanged to 
investigate the parameter range which still gave the desired performance. Table 2 to Table 4 show the results of 
these experiments. 

These tables show that the specified robust performance over the parameter range K=50 to 250, T=50 to 200 
can he achieved when only GE varies from 1.5 to 1.9, or only GC from 11 to 15, or only GU from 0.20 to 0.30. 
These scaling factor ranges were narrower than expected. However, a careful examination of these tables shows 
that the acceptable performance range of T moves to the higher-value region when GC increases; the acceptable 
performance range of K moves to the lower-value region when GU increases. This result shows that GC has a 

228 



Appendix C Published Papers 

close relation with the process time constant and GU with the process gain, and this suggests that GC can be 
changed if T is changed and/or GU can be changed if K is changed to meet the performance requirement. 

K range 
50 100 

T 
150 200 250 

0.7 - - 50-250 100-250 100-250 
0.9 - 50-250 50-250 50-250 150-250 
1.1 150-250 50-250 50-250 50-250 50 
1.3 100-250 50-250 50-250 50-250 50 
1.5 50-250 50-250 50-250 50-250 50 

GE 	1.7 50-250 50-250 50-250 50-250 50 
1.9 50-250 50-250 50-250 50-250 50 
2.1 50-200 50-250 50-250 50-250 50 
2.3 50 - 200 50 - 250 50 - 250 50 - 250 50 
2.5 50 - 200 50 - 200 50 - 250 50 - 250 50 
2.7 50-150 50-200 50-250 50-250 50 
2.9 50— 150 50— 150 50— 250 50-250 50 

Table 2: Variation range of gain K at different GE and 7 
(GC=12.0; GU=0.25; t, =10) 

K range 
50 100 

T 
150 200 250 

5 50 - 250 50 - 200 - - - 

7 50 - 250 50 - 250 50 - 250 50 50 
9 50 - 250 50 - 250 50 - 250 50 50 
11 50-250 50-250 50-250 50-250 50 

GC 	13 50-250 50-250 50-250 50-250 50-250 
15 50 - 200 50 - 250 50 - 250 50 - 250 50 - 250 
17 200 50-250 50-250 50-250 50-250 
19 150 50-250 50-250 50-250 50-250 
21 - 100-250 50-250 50-250 50-250 
23 - 100-200 50-250 50-250 50-250 

Table 3: Variation range of gain K at different GC and T 
(GE=1.8; GU=0.25; r, =10) 

T range 
50 

K 
100 150 200 250 

0.05 - 100 50— 100 50— 100 50— 100 
0.10 100 50— 100 50-150 50— 150 50-200 
0.15 50— 150 50— 150 50-200 50-200 50— 200 
0.20 50-200 50-200 50-200 50-200 50-200 
0.25 50 - 250 50 - 200 50 - 200 50 - 200 50 - 200 

GU 	0.30 50 - 250 50 - 200 50 - 200 50 - 200 50 - 200 
0.35 50-250 50-200 50-200 50-200 100-200 
0.40 50-250 50-250 50-200 100-200 100-200 
0.45 50-250 50-250 50-200 100-200 100-200 
0.50 50-250 50-250 100-200 100-200 150-200 
0.55 50-250 50-250 150-250 100-250 150-200 

Table 4: Variation range of gain Tat different GU and K 
.(GE=1.8; GC=12.0; t, =10) 

An explanation for the narrow range of scaling factor values giving the required robust performance can be 
obtained by considering Fig.7, Fig.8 and Fig.9. Fig.7 shows that if K is small and T is large, a small GE will 
lead to slow response and a big overshot. This is because the tolerance band around the set-point is wide and 
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considerable steady-state error and overshoot are acceptable. On the other hand, if K is large and T is small, a 
large GE will cause limit cycling at the steady state because the performance measure becomes more sensitive 
around the set-point and less sensitive during rise-time. 

GC 121; G0.025; K100. 1100. . 	 K1; T1. 

10 
10 so 

1!) 

40 
40 

0• 

Scaling F.der GE 	 (a) 
Scaling  

CC-12fl; G0024; K200T00, 
GE 	13; CUC.25; K.21. T-lJ. 

to ............ 	R.T1 	(I.) 
10 L 50 

Ri.Th(t.) 

o io: $ 
'. 

40 

30 SO 

ol 

20... 4 

:i . 

................. to 

:° 

I1 

Sclifl9 F.clor GE 	 (b) 

.-.. 
\ 

GC- 121 GU0.25; K.4 	T2. 
40 - € \ 	 S.,.. 

40 

- .... Ri.,T(t. 

Sk1b..(t.) .... 

031 17 	
212 

Facto, GE 	 (c) 
SclgF4d 

Fig.7 Effect of GE a. K=100, T=100. Fig.8 Effect of GC a. K=100; T=lOO 
h. K=200, T=lOO. c. K=lOO, T=200. b. K=200, T=100. c. KzlOO, T200 

Change in GC affects the sensitivity of the controller to the change of error. Fig.8 shows that decreasing GC 
will lead to a quick response but this increases overshoot, while increasing GC will give a gentle rising speed of 
the step response but limit cycling will occur when the process gain is large. When GC is large, the 
performance can not meet the first requirement of the performance specification defined above if K is small. 
When GC is small, the controller can not discriminate between small rates of change so that it can not take 
action sufficiently early to overcome time lags if the process has a large time constant. 

GU functions purely as an overall gain factor of the controller which varies the magnitude of the process input. 
Fig.9 give a demonstration of the effect of GU. A small GU leads to slow responses so that the overshoot could 
be large if T is big, while a big GU will give a fast response but could cause limited cycling when K is 
increased. 
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When time delay is added to the controlled process, the parameters of the controller have to be adjusted to meet 
the specified requirements. But it is much more difficult to obtain a wide robust range. Also, the variation 
range of the parameters of the controller giving acceptable performances become even narrower if the process 

has a time delay than that without one. 

GE-IA;GC.420 K- 	T-1, 3.3 Some tuning experiences 
IC - 50 

40 From practical observation of the performance of the 
I simulated system, it has been found that there are 

6 3° upper and lower limits on the values of GE, GC and 

. 

GU to give an acceptable performance. For example, if 
.--. the gain of error GE is too small the fuzzy algorithm 

2 . 	 ..................... 10 suffers from indecision whereas if it is too large the 
fuzzy algorithm performs erratically. 

It is also found that, generally GE determines the (a) 
amount of overshoot, GC determines the dynamic 

K-2  
speed of the performance and GU influences the close- 

0 

........ 	R,T(t.) 

S.nT1(t.) 
40 

loop 	gain 	of 	the 	system. 	To 	achieve 	a 	good 
j performance, GC should be changed proportionally to 

4 0 the time constant T and GU should be changed 
inversely proportional to the gain K.  

20 

"J' 	
" 	 ......... . Some general guidelines have been found in tuning 

2 .- ................................. 10 
these scaling factors. If error in steady state is big, 
then increase GE; if overshot is big, then decrease GE 0 

0.1 	0.2 	030.4 	05 	05  or increase GC. If system is not stable and output 
( change is sharp and non-periodic, try decreasing GU 

is 
Gt11; GC-I25 1c-I00 T.'200. 
__... so i or increasing GC. If system 	s not stable and output 

change is periodic but not sharp, try decreasing GU or 
C ° GE. If time delay exists, GE or GU should be reduced 

or GC be increased. 

: 
.. ....: 

2 

. 

10 
4. Conclusion 

11, The studies presented in this paper involve many 0 __________________________________ 
III 	 03 	03 	04 	03 	CA  simulation experiments on the robust performance of 

ScalinC F.ao GO 

 fuzzy 	logic 	control. 	Effort 	was 	mainly 	made 	to 
Fig.9 Effect of GU a. K=lOO; TrlOO. investigate the effect of the parameters of fuzzy logic 
b. K=200, T=lOO. c. K100, T200. controller on the robust performance of the system. It 

can be concluded that: 

The simulation result shows that, by choosing proper scaling factors, a very good performance can be 
obtained if the variation range of the plant parameters is not wide. Alternatively a wide robust range 
can be achieved if the performance required is degraded from the best step response obtainable by 
tuning the scaling factors 

The scaling factor ranges which give required robust performance are quite narrow. The robust 
performance range of T moves to the higher-value region when GC increases and the robust 
performance range of K moves to the lower-value region when GU increases. This result shows that 
GC has a close relation with the process time constant and GU with the process gain. 

The scaling factor GE affects the performance measure of error. The performance measure becomes 
more sensitive around the set-point and less sensitive during rise-time if GE is big. GC affects the 
dynamic speed of the whole system so that a big GC will lead to a quick response if there is any 
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interference in the system output. GU functions purely as an overall gain factor of the controller which 
varies the magnitude of the process input. 

It should be realised that there are many factors in addition to the scaling factors, such as definition of 
membership functions, elements in rule base and sample interval, which can affect the performance of the 
system. Different combinations of values of these factors may result in the same response. The problem of 
choosing the values of the scaling factors to achieve a best robust performance is difficult to solve even when 
the controlled plant is a simple first order process. 
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Abstract 

This paper introduces an experimental (simulation based) investigation of 
the robust step performance of SISO systems controlled by PLC and PID 
algorithms. The results of a large number of simulation experiments are 
presented quantifying the claim that fuzzy control leads to an improved 
robust performance with respect to the use of PID control. The effect of 
tuning-point selection and tuning-point performance on the robust 
properties of the PLC and PD systems is also presented. 

1. INTRODUCTION 

Fuzzy logic control (PLC) has been claimed to exhibit a very good robust performance in 
many research papers [1 - 4]. The robust performance of an PLC has been experimentally 
tested in this published research work by changing the process parameters or by choosing 
different type of processes. It is commonly found that in a certain range of process 
dynamics the fuzzy control is insensitive to process parameter changes and acceptable step 
responses can be obtained in a relatively wide parameter space. However, none of these 
research papers gave a comparison with other control methods. In this paper, the results of 
a simulation study of the control of SISO systems are presented in an attempt to quantify 
the claim that fuzzy control leads to an improved robust performance with respect to the 
use of PID control. 

In the next section, the simulated system is briefly described and the PLC and PD 
algorithms are presented. Section 3 presents the results derived from the simulated 
systems and Section 4 concludes the paper. 
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2. THE SIMULATED SYSTEMS 

2.1. The Controllers 

To compare the performance of a fuzzy control system with a PID control system, a fuzzy 
logic controller and a PID controller were designed to regulate the output of a single-
input, single-output process around a set-point. A block diagram of the simulated control 
system is shown in Fig.l. Error e and derivative error é are calculated at step k as: 

e(k) = x(k) — y(k) 
	

(1) 

ê(k)=(k) =[y(k)—y(kl)J/t ç 	 (2) 

where x is the set point, y is the output of the process, and 
t is the sampling interval of the controller. To minimise overload of the controller input, 

the derivative signal was obtained from the process output y. The inputs and the output of 
the controller are limited to lie within the range (40, 10), and 

the sampling rate for the process simulation was designed to be more 
than 5 times higher than that of the controller to ensure that a continuous performance is 

approximated. 

x 	 y + 	e 	H Controller 	 Process 	I 

- I 	I 	Si 
d 
dt 

Fig. 1 Structure of the simulated system 

The input and output variables of the fuzzy logic controller are associated respectively 
with three fuzzy sets: ERROR, CHANGE IN ERROR and CHANGE IN PROCESS 

INPUT (denoted by E, C and U respectively). Seven fuzzy subsets are chosen for each 
fuzzy set and named as NB, NM, NS, ZE, PS, PM, PB. Fuzzy subsets contain elements 
defined by a degree of membership parameter. 

Fuzzy rule base and membership functions are designed heuristically or by the trial-and- 
error method with the objective of achieving a specified dynamic performance. To map the 
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practical signal variation spaces to the designed fuzzy spaces, scale factors, GE (gain of 
error), GC (gain of change of error) and GU (gain of control output), are used. 

The basic principle of the operation of the controller is described as follows. Suppose 
there are N rules in fuzzy rule base. The change of control input Au is calculated as: 

R 1  : if e is A i  and è is B, then Au j  is C1  (i = l ...... N) 

a =pA.(e)Ap , B.(e) 	 (3) 

L4t =cog(aj AL . ) 	 (4) 

Au= N 	 (5) 

Note that cog(S) is the value obtained by defuzzifying with the centre-of-gravity method. 
An accumulator is used after the FLC to generatethe control signal from Au. 

The discrete-time equivalent expression for the PID controller used in this paper is given 
as: 	

u(k)— Ke(k)+Te(k)/ +K dAe(k)/T c 	 (6) 

where u(k) is the control signal, e(k) is the error and A e(k) the change of error. Kp, T, 

Kd, and Ts  are the proportional gain, integral time constant, derivative gain, and sampling 
period for the controller, respectively. 

2.2. Controlled processes 

To investigate the performance of FLC and Pifi algorithms in controlling SISO processes, 
the following processes were controlled by these algorithms. Note that the unit for the 
time constants is the sampling interval in the process simulation, and this unit will be used 
for all time constants in this paper. 

Model 1:G(s) = K , 
1+ Ts 

(K = 1.2 to 10, T = 50 to 400); 

Ke TdS 

Model 2: G(s) = 	, (K=1.2 to 10, T=50 to 400, Td  =0 to 50); 
1+ Ts 

Model 3: G(s) 
= 	K 	

, ( K = 1.2 to 10, T1  = 50 to 400, T2  = 0 to 225). 
(I + 1s)(l + T2 s) 
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The reason for choosing such processes is that they are often met in practical control 
engineering. Experiments were carried out to determine the range of process parameter 
values that gave a controlled step response satisfying peak overshoot and settling time 
specifications. This parameter range is called the robust range in this paper. Use is made of 
the number of acceptable performance tests, together with the total number of the tests as 
the measure of the robust range of a system. 

3. EXPERIMENTAL INVESTIGATION 

In the robust parameter range the system's performance is considered acceptable (for the 
purposes of this paper) providing that: 

Maximum overshoot 1'  :!~ 5%; 

2% settling time T  !!~ 5T; 

Note that the 2% settling time T  denotes- the time spent for the system output to get into 
the output range specified by 98% to 102% of the steady state value, and 
T. in criteria (2) denotes the sum of all time constants in the controlled process. 

The following experimental procedure was used: 

Step 1: select one tuning point, i.e. choose one middle point in each parameter 
variation range for that parameter. 

Step 2: tune controller parameters of both FLC system and PD system to obtain a 
similar system response (i.e. Y 0  and T ) 

at the tuning point to the step 
input. 

Step 3: Fix the parameters of both FLC and PD. Test the system performance at 
different points of the process parameter space. 	 - 

Step 4: Using the criteria defined above, determine the robust range for each 
system. 

In the following, the experiment results derived from each process are presented together 
with a brief discussion. 

Model 1 

This is a simple process but it is often used as an approximation to many industrial 
processes. Parameters of both controllers are separately tuned at K=4.5, T=250 (the 
tuning point). The membership functions and the rule base in the FLC are shown in Fig.2. 
Other parameters of the controllers are: 

FLC: GE = 1.0; GC = 12.0; GU = 1.0. 
PD: K=1.0; T 1 =45.0; K=1.0. 
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After carrying out step 3 and step 4 in the procedure, percent overshoot and 2% settling 
time are automatically collected and presented in the form shown in Table 1 and Table 2 
by the simulation program. The robust range is shown as the non-shaded area in each 
table. Robust ranges of the FLC system and the PD system take 88 and 56 test points 
respectively. From these results it would appear that the first order process can be 
controlled by the PLC with an improved robust range. 
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Fig. 2 Membership functions (a) and rule base (b) of the FLC 

It is worth noting that tuning point selection is important if wide robust range is needed 
over the variation range of the plant's parameters, especially for the PID system. For 
example, if these two systems are tuned at K= 1.5 and T= 100 to give a similar tuning-point 
performance as above (GE=1.8, GC=8.0, GU=2.5; K=2.3; T 1=8.0; Kd=l.0), robust 
ranges of PLC system and PD system take 71 and 27 test points respectively. Considering 
this result, it can also be conclude that in the first order system case, the FLC is not only 
robust to the plant parameter change, but also to the selection of the tuning point. 

Model 2 

This process model is also often used as an approximate model for many industrial 
processes. Due to the pure time delay in its response to the control signal, this plant is 
much more difficult to control than the first model process. In practical control 
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engineering, a controller tuned to handle process dead time tends to respond rather slowly 
while attempting to correct a deviation in the process output [5]. Although the process 
dead time is simple to estimate from a reaction curve, it is much harder to identify 
automatically during normal loop operations when the process input and the process 
output vary simultaneously, or noise and load disturbances can not be neglected. 

TABLE I 
Performance of FLC system at different Doints of the parameter space 

K ______  
}'0, T 
- 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 

- 

50 000 299 000 299 000 282 000 234 000 203 000 184 000 170 000 298 246 297 437 299 

100 0.75,426 0.26, 275 0.14, 242 0.09, 235 0.07, 217 0.06, 195 0.05, 181 0.04, 172 0.04, 163 0.03, 156 

150 1.97,401 0.73, 272 0.35, 206 0.21, 208 0.16, 210 0.13, 207 0.10, 194 0.09, 182 0.08, 174 0.07, 169 

200 3.16, 620 1.34, 272 0.71, 202 0.40, 182 0.26, 189 0.21, 196 0.17, 199 0.14, 191 0.12, 184 0.11, 176 

T 250 4.32,647 1.96, 281 1.16, 214 0.75, 173 0.42,172 0.29, 178 0.23, 184 0.20, 190 0.16, 190 0.15, 183 

300 5.48, 665 2.63, 428 1.70, 220 1.20, 183 0.82, 161 0.47, 160 0.31, 168 0.26, 178 0.22, 183 0.20, 187 

350 6.61, 1070 3.31, 457 2.43, 330 1.58, 196 1.25, 164 0.85, 155 0.52, 154 0.36, 159 0.28, 172 0.24, 175 

400 767 1120409478 317 363 237 285 192 177 134 156 079 152 10 .54 , 151 039 152 030 167 

450 8.60, 1153 4.74,494 3.73, 383 2.94, 316 2.27, 261 2.01, 206 1.29, 152 0.77, 148 0.50, 150 0.44, 148 

- 500 861 1209 531 509 4 . 16,3991 3 . 45,3331 2 . 78,2851 238 240 201 186 144 148 084 146 054 147 

Note: the first number is V0  and the second one is T. 

TABLE II 
Performance of PD system at different points of the parameter space 

K 
Yo , T 
- 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 

50 000 299 000 299 000 299 000 299 000 299 000 299 000 299 000 299 000 299 000 299 

100 000 549 000 	49 00(1) 549 000 	49 000 465 000 401 000 350 000 308 000 272 000 241 

150 0.00, 799 0.00, 799 0.00, 575 0.00. 441 0.00, 353 0.00, 288 0.00, 236 0.00, 193 0.00, 156 0.00, 124 

200 0.00,10491 0.00,6671 0.00,401 0.00,275 0.00,2041 0.00,160 0.00,130 0.00, 1091 0.00, 93 0.00, 82 

T 250 0.001 1299 0.35, 522 0.64, 315 0.75, 227 0.80, 178 0.81, 146 0.81, 124 0.80, 107 0.79, 95 0.77, 84 

300 0.00,1457 2.05, 807 2.52, 642 2.57, 513 2.50, 425 2.40, 359 2.29, 306 2.19, 263 2.09, 224 2.00, 91 

350 0.76,1321 4.00,1098 4.44, 819 4.35, 667 4.14, 568 3.92, 496 3.70, 441 3.50, 396 3.32, 358 3.16, 326 

400 2.08,1965 5.9 1,1234 6.25, 924 6.021 762 5.68, 657 5.33, 582 5.02, 525 4.73, 478 4.47, 439 4.25. 406 

450 3.48,2299 .7,73,1332 7.95,1002 7.57, 832 7.11, 724 6 66. 647 6 25, 588 5.88, 540 5.56, 500 5.27, 467 

- 500 4.94 1 2549 9.43,1412 9.53,1066 9.02, 889 8.45, 778 7.90, 699 7.41 	638 6.97, 5901 6 58, 549, 6.24, 515 

From the practical engineering point of view, the slow-control method is adopted and the 
dead time is assumed unknown in the simulation. Parameters of both controllers are 
separately tuned at K=4.5, T=250, Td=lO  (tuning point). The membership functions and 
the rule base in the FLC are the same as shown in Fig.2. Other parameters of the 
controllers are: 

FLC: GE=0.8; GC=25.0; GU=O.l. 
PD: K = 0.28; T 1  = 200.0; K,J  = 5.0. 

238 



10 

K 

50 

40 

2 30 

20 

El 40-50 

• 30-40 

20-30 

500 	Lii 10-20 

I 

APPENDIX C Published Papers 

After carrying out step 3 and step 4 in the procedure, information on the system 
performances is automatically collected by the simulation program, but can not be shown 
here due to the page limitation. Two 3-D surface charts (Fig.3 and Fig.4) have been 
included to demonstrate these data. Points in the parameter space above the surface shown 
give an unacceptable step response. 

Simulation data shows that the robust ranges of the FLC system and the PID system cover 
623 and 378 test points in 1000 test points respectively. From these figures, we can also 
see that for a model 2 process with a fixed time delay, the FLC system has a wider K-T 
area than that of the PID system, and for high gain, high time constant processes, the FLC 
system can cope with higher time delay than the PID system. 

Note that the performance of the FLC system at the tuning point gives a stronger effect on 
the robust range than that of the PID system. For example, if we set the controller 
parameters to decrease the settle time from the above 830 to 580 at the same tuning point 
(GE=0.8, GC=20.0, GU=0.15; K=0.3, T1 =160.0, Kd=S.0),  then the robust range 
becomes only 491 test points for the FLC system but 338 test points for the PID system 
in 1000 test points. 

Fig.3 Robust space of FLC in controlling Model 2 process 
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Fig.4 Robust space of PD in controlling Model 2 process 

Model 3 

Fuzzy logic control of high order processes requires the use of higher order derivative 
error information [6]. However, the high order derivative error information is difficult to 
obtain in practical engineering situations due to the typically noisy environment. So an 
FLC system performance when controlling a high order system is usually inferior 
compared with the first order case. On the other hand, there is no special problems for a 
PD controller. 

Many experiments show that the poor performance of fuzzy logic control of high order 
systems is due to the delayed information input to the FLC. Therefore the slow response 
control method used with time-delay processes should be effective for controlling high 
order processes. 

Experimental methods used for the model 2 process was applied to the model 3 process, 
and the parameters of the controllers tuned at K=4.5, T1 =250. T2=100 (tuning point) are: 

FLC: GE = 0.8; GC = 33; GU = 0.06. 
PID: K= 0.18; T= 330; Kd=  10. 

Table HI and Table VI indicate the ranges of T2  at each point of the K x T 1  space. The T2  
ranges are the ranges within which the step response of the corresponding system is 
acceptable. The robust ranges of the FLC system covers 553 test points, while that of the 
PID system covers 315 points in 1000 test points. From the tables it can be found that for 
the same tuning-point performance condition, the FLC algorithm is more robust than the 
PID algorithm. 
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To test the effect of tuning-point selection on robust performance, two systems were 
tuned at K=1.5, T1=100, T2 100 to give the same response as above, and the controller 
parameters were GE=1.1, GC=22, GU0.2, K=0.4 T 1 =65, Kd=S. Acceptable 
performance was achieved at 305 and 74 test points by the FLC and PD algorithms 
respectively. So it is confirmed again that the selection of the tuning point affects the 
system's robust range and this effect is stronger in the PD system than in the FLC system. 

The effect of performance at the tuning-point on the system's robust range has been tested. 
The two systems were re-tuned at K=4.5, T1=250, T2 100 to give a fast response (i.e. 
decrease the settling time from 1000 to 700), and the controller parameters were 
GE=0.78, GC=28, GU=0.08, K=0.21, T=260, K=5. Acceptable performance was 
achieved at 511 and 304 test points by the FLC and PD algorithms respectively. The 
difference is not large, but further investigation has shown that the changes of the 
controller's parameters lead to different positioning of the robust range in the plant 
parameter space. In the case of the model 2 process, the robust range moved out of the 
plant's parameter space when the controller parameters were changed, so the robust range 
within the plant' parameter space became smaller. While in the case of the model 3 
process, because the shifting of the robust range was still in the plant's parameter space, 
there was no obvious change in the system's robust range. 

TABLE Ill 
Robust rane of FLC system - Model 3 case 

K 
7 	range 
- 0.5 	1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 

- 

50 225 200-225 200-225 175-225 175-225 150-225 150-225 

100 20-225 175-225 150-225 125-225 125-225 125-225 100-225 100-225 

150 20 - 225 150 - 225 125 - 225 100 - 225 75 - 225 75 - 225 75 - 225 50 - 225 50 - 225 

200 150 - 225 10 - 225 75 - 225 50 - 225 50 - 225 25 - 225 25- 225 25 - 200 25 - 175 

250 10-225 50-225 25-225 25- 225 25-225 25- 200 25- 175 25- 175 25- 150 

300 50 - 225 25 - 225 25 -225 25 - 200 25 - 175 25 - 175 25 - 150 25 - 150 25 - 125 

350 25 - 200 25 - 225 25 - 200 25 - 175 25 - 150 25 - 150 25 - 150 25 - 125 25 - 125 

400 25- 175 25- 200 25- 175 25- 150 25- 150 25- 125 25- 125 25- 125 25- 100 

450 50 - 150 25 - 175 25 - 150 25 - 125 25 - 125 25 - 125 25 - 100 25 - 100 25 - 100 

- 

500 50- 125 25- 125 25- 125 25- 125 25- 100 25- 100 25- 100 25- 100 25- 100 

TABLE VI 
Robust range of PD system - Model 3 case 
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K  
range 

0.5 	1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 
- 
- 

200-225 175 —225 150-225 150-225 125-225 
50 

200-225 150-225 125-225 125-225 100-225 75-225 
100 

150 200 - 225 150 - 225 100 - 225 75 - 225 200 - 225 200 - 225 25 - 175 

200 225 - 225 150 - 225 100 - 225 50 - 200 25 - 175 25 - 150 25 - 125 25 - 125 

T1  250 175 - 225 100 —225 25 —225 25 - 150 25 - 125 25 - 125 25 - 100 25 - 75 

300 125 - 225 25 - 225 25 - 225 25 - 125 25 - 100 25 - 75 25 - 75 25 - 50 

350 75 - 225 25 - 175 25 - 225 25 - 100 25 - 75 25 - 50 25 25 

400 200 - 225 25 - 225 25 - 125 25 - 225 25 - 50 25 

450 200 - 225 25 - 175 25 - 100 25 - 225 

- 500 125-225 25 25-50 

4. CONCLUSION 

This paper presents the results of a large number of simulation experiments quantifying the 
claim that fuzzy control leads to an improved robust performance with respect to the use 
of PD control in the case of SISO systems. The results of the simulation studies reveal 

several aspects of robustness in fuzzy control: 

The fuzzy control system is more robust than the PID control system in the 

SISO case. 

The performance of the fuzzy logic control system is much less sensitive to 
the selection of the tuning-point than that of the PD control system. 

The performance of the SISO fuzzy logic control system at the tuning point 
affects the position of the system's robust range in the process parameter 
space, but does not have an obvious effect on the size of the robust range. 

Further work is required to investigate the effect of system non-linearity and the robust 

performance of MIMO systems,. 

Acknowledgement 

The authors would thank the British ORS organisation and the faculty of Science and 
Engineering, University of Edinburgh, UK, for their financial supports. 

References 

[1] G.M. Abdelnour, C.H.Chang etc., "Design of a fuzzy controller using input and output 

mapping factors", IEEE trans. syst., man, cybern., vo.21, no.5, pp.952-960, 1991. 

242 



APPENDIX C Published Papers 

C.W. Tao, R.Mamlook etc., "Reduction of complexity for a robust fuzzy controller", 
Proc. of 2nd IEEE mt. conf on fuzzy syst, vo.2, pp.1346-1349, 1993. 
M. Braae and D.A. Rutherford, "Theoretical and linguistic aspects of the fuzzy logic 
controller", Automatica, vo. 15, pp.553-577, 1979. 
R. Sutton and D.R. Towill, "An introduction to the use of fuzzy sets in the 
implementation of control algorithms", Journal of the institution of electronic and 
radio engineers, vo.55, no.10, pp.357-367, 1985. 
V. Vance J Vandoren, The Challenges of Self-Tuning Control, Control Engineering, 
February 1994, pp. 77-79 . 
S. Boverie etc., Fuzzy Logic Control for High Order Systems, Proc. of 2nd IEEE 
International Conference on Fuzzy Systems, vo.1, pp.1  17-121, 1993. 

243 



APPENDIX C Published Papers 

The Design of Fuzzy Logic Controlled SISO Processes 
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Abstract 

The results of a simulation based investigation of the step performance of 
fuzzy logic controlled proportional processes are presented. Conventional 
fuzzy logic control and a modified form, introducing the use of a 
proportional path in parallel with the fuzzy control output accumulator, are 
investigated. The controlled process was second order, with and without a 
time delay term. The phase advance provided by the modified controller 
clearly leads to a better step performance, especially when high order 
processes are controlled. Experimental results are presented showing that 
the modified controller provides a more robust performance with respect to 
variation of the parameters of the controlled process. 

1 Introduction 

Closed loop operation of non-integrating process requires the use of a controller with an 
integral term if a zero error condition is to be achieved. A P1 controller uses a series 

integral term with a parallel proportional term. This parallel proportional path significantly 
reduces the impact of the integrator term on the stability of the closed loop system. A 
conventional fuzzy logic controller uses a series connected accumulator (integrator) to 
convert the control change information output from the defuzzification process into a 
signal that is used to control the process. This paper presents the results of an 
investigation into the use of a parallel term across the accumulator to improve the stability 
of fuzzy logic control when the controlled process is a high order system. The step 
response performance of the modified fuzzy logic controller is investigated and the results 
of a comparative study of the robustness of the responses of fuzzy and modified fuzzy 
control, with respect to variation of the parameters of the controlled process, are 

presented. 

Section 2 of this paper introduces the modified fuzzy logic controller and section 3 
describes the experimental system. The results presented in section 4 shows that when the 
controlled process has high order the system stability has been improved and the ability of 
the system to tolerate variations of process parameters is enhanced when the modified 
fuzzy controller is used. 
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2 The fuzzy logic controller 

The basic configuration of a fuzzy control system is shown in Fig. 1, where GE, GC and 
GU are scaling factors for input and output variables of the PLC. Generally, because the 
output of the PLC is CHANGE IN CONTROL (Au'), an integrator (accumulator) is .used 
after the PLC to convert the control change information output into a signal that is used to 
control the non-integrating process, e.g. 

	

u = JAu' dt = GUJAudt 	 (1) 

[STI 

= GUAu(i) 	 (2) 

where Au or Au(i) ( i = 0,1 .......k) are the crisp output defined in the output space of 
the PLC. However, when the controlled process is a high order process, this integrating 
term introduce stability problems [1] [2]. 

By analogy with the P1 controller the modified fuzzy controller uses a parallel proportional 
path to reduce the impact of the integrator term on the stability of the closed loop system. 
The structure of the modified fuzzy control system is illustrated in Fig. 2. To change the 
effect of either the proportional term or the integral term on the system performance, a 
proportional gain K, is used in the proportional path and the output scaling factor GU is 
put into the integral path. Therefore the control input u is calculated as 

u=KAu+GU5Audt 	 (3) 

Set 
poin 	

e 	
iLI 	

process 
Non-integrating 

____J_f_ø• 	
Controller 
- 

Fig. 1 Basic structure of fuzzy logic control systems 

Set 	 e i u Proportion 	I 

II 	High order point I I-i-*i non-integrating 
:GC:] 	 FFInEtegra)t:io]n ---p- 

:U) 

	

_Ij 	
process 

Controller 

Fig. 2 The structure of the modified fuzzy control system. 
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or 

u(k+l) = K Au(k) + GUAu(i) 	 (4) 

3 Experimental system 

The systems shown in Fig. 1 and 2 were simulated using specially designed software 
package. Performance was evaluated by applying a step change to the set point input and 
observing the resulting output response of the control process. 

The basic principle of the operation in the FLC controller is described as follows. Suppose 

there are N rules in fuzzy rule base. The change of control input Au is calculated as: 

R 1  : if e is A i  and é is B, then Auj is C 1  (i = l ...... N) 

a =pA1(e)APB1(e) 	 (5) 

L4I = cog(ct, A it.) 	 (6) 

j ct.Au, 
Au 'N 	

(7) 

a, 

where cog() is the value obtained by defuzzifying with the centre-of-gravity method, A 

B 1  and C1  are fuzzy subsets of e, é and Au respectively, and tA, P-B, and AP-  are the 

membership functions of A , B 1  and C1  respectively. 

Fig.3 and Fig.4 shows the rule base and membership functions used in the simulation 
experiment with the MFLC and FLC. Input and output variables use the same group of 
membership functions, and the range of each variable is normalised to [-10, 10] by 
applying the corresponding scaling factor. The rule base and membership functions are 
designed by the trial-and-error method. In the experiments, the rule base and membership 
functions are kept unchanged but scaling factors GE, GC, GU and the proportional gain 
Kp  are tuned to obtain a more robust system performance because the scaling factors give 
strong effect on the performance of the FLC system [3]. 

Fig. 3 Membership functions used in the FLC 
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Fig. 4 Rule base used in the FLC 

Two kinds of high order processes were chosen to be controlled by the FLC and MFLC. 
Their transfer functions are 

K 
(8) 

(1+7s)(1+7s) 

e' 
G2(s)= 	

K 
	 . 	 (9) 
(1+ 7s)(1+ 7s) 

The process, G2 ( s), is a good approximation to many of the commonly found industrial 
processes. 

The robustness of the performance of the closed loop - systems was investigated by 
allowing the parameters of the controlled process to vary in the ranges shown below: 

K=O.5 to 9.5; 	T 1  = 50 to 500; 
T2 =0to 225; 	r=20, 50. 

Note that the unit for the time constants is the sampling interval in the process simulation, 
and this unit will be used for all time parameters in this paper. 

Two parameters, overshoot and settling time, are selected as the important features of the 
step responses of the systems investigated. The system's performance is considered 
acceptable (for the purposes of this paper) providing that: 

Maximum overshoot Y0  :!~ 5%; 

2% settling time T  :!~ 5T. 

Note that the 2% settling time T s  denotes the time spent for the system output to get into 
the output range specified by 98% to 102% of the steady state value, and 
T. in criteria (2) denotes the sum of all time constants in the controlled process. 
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The process parameter space ( KxT 1 xT2  for process G 1 ( s ) or KxT 1 xT2x't for process 

G2 ( s ) ) is investigated with given controller parameters GE, GC, GU, and K to 
determine the sub-space within which the system's performance is acceptable. This sub-
space of the parameter space is called the robust space of the system. 

The following experimental procedure was used: 

Step 1: Select a common tuning point for the two systems, i.e. choose a middle value in 
each parameter variation range as the value of that parameter at the tuning point. 

Step 2: Tune controller parameters of both FLC system and MFLC system to obtain a best 
step response (i.e. 1'0  and  T) at the tuning point for each system. 

Step 3: Fix the parameters of both PLC and MFLC. Test the system performance at 
different points in the process parameter space. The test points are evenly located 
on the parameter space. 

Step 4: Using the criteria defined above, determine the robust space for each system. 

4 Results 

In the following, the experiment results derived from each process are presented together 
with a brief discussion. 

Model 1: Scaling factors of both controllers are separately tuned at K = 4.5, T = 250, 
T2= 100 (the tuning point), and they are: 

PLC: 	GE = 0.75; UC = 26.0; GU = 0.09. 
MFLC: 	GE=1.0; GC=20.0; GU=0.2; K=5.0. 

Each system's step response at the tuning point is shown in Fig. 5 where an obvious 
difference between two settling times can be found. It worth noting that if the response of 
the PLC system is made faster than that shown in the Fig.5, oscillations or a large 
overshoot will result. 

After carrying out step 3 and step 4 in the procedure, percent overshoot and 2% settling 
time are collected and presented in the form of 3-D surface charts shown in Fig.6 and 
Fig.7. The robust space of each system lies between the upper and lower surfaces (see 
Fig.6 and Fig.7) defined in the KxT 1 xT2  space. The robust space of the MFLC system and 
the FLC system take 811 and 505 test points in 1000 tests respectively. From these results 
it would appear that the second order process can be controlled by the MFLC with an 
improved robust space. 
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Fig. 5 Step responses of FLC and MFLC systems at the tuning point 
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Model 2: Due to the pure time delay in its response to the control signal, this process is 
much more difficult to control than the first model process. In practical control 
engineering, a controller tuned to handle process dead time tends to respond rather slowly 
while attempting to correct a deviation in the process output [4]. Although the process 
dead time is simple to estimate from a reaction curve, it is much harder to identify 
automatically during normal loop operations when the process input and the process 
output vary simultaneously, or noise and load disturbances can not be neglected. Hence 
more complicated control algorithms requiring this information are difficult to use in 
practice. 

From the practical engineering point of view, the slow-control method is adopted and the 
dead time is assumed unknown in the simulation. Scaling factors of both controllers are 
separately tuned at K = 4.5, T 1  = 250, T2 = 100 and t = 20 (tuning point), and they are: 

FLC: 	GE = 0.6; GC = 23.0; GU = 0.07. 
MFLC: 	GE=0.5; GC= 20.0; GU=0.l; K=2.0. 

Each system's step response at the tuning point is shown in Fig. 8 from which no obvious 
difference can be found. but if the response of FLC system is made faster than that shown 
in the Fig.8, oscillations or a large overshoot will result. 

The robustness of each system is tested at t = 20 and the robust space of each system lies 
between the upper and lower surfaces (see Fig.9 and Fig.lO) defned in the KxT 1 xT2  
space. The robust space of the MFLC system and the FLC system take 680 and 465 test 
points in 1000 tests respectively. A similar result can be found if t = 50 where in this case 
the robust space of the MFLC system and the FLC system take 643 and 295 test points 
respectively in 1000 tests. From these results it can be concluded that the second order 
process with pure time delay can be controlled by the MFLC with an improved robust 
space. 
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It is worth noting that all parameters of both the FLC and the MFLC, such as scaling 
factors, rule base and the membership functions, affect the robustness of the system [3]. 
This is the main reason for the confusion that often arises when the performance of a FLC 
system is compared with its traditional counterparts. Also the multi-variable nature of the 
tuning requirement of FLC systems makes their optimisation difficult and time consuming. 
Fortunately, the requirements of practical engineering can be generally met by a non-
optimised, or sub-optirnised FLC system. 

5. Conclusion 

This paper has described the results of a simulation based investigation of the step 
performance of fuzzy logic controlled processes. Two processes were investigated: namely 
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processes having proportional second order transfer function with and without a time 
delay term. Closed loop control was implemented using a conventional fuzzy control 
algorithm and a modified algorithm that introduced a proportional term in parallel with the 
accumulator used to implement a series integral term. The acceptable step response was 
defined by a maximum overshoot less than or equal to 5% with a 2% settling time less 

than or equal to 5 times the sum of all time constants in the controlled process. The closed 
loop system was tuned to give an acceptable step response and the process parameters 
varied until an unacceptable step response was obtained. 

It was found that the modified fuzzy control algorithm could be applied to give a faster 
monotonic step response than can be achieved with the conventional algorithm. In addition 
for the process examples investigated a significantly improved range of acceptable 
performance was obtained as the parameters of the controlled process were varied over a 
wide range of values. Previous papers [2,3] have demonstrated that conventional fuzzy 
control has an improved robust performance compared with the standard PID control 
algorithm. The improved performance of the modified fuzzy control algorithm is 
particularly apparent when it is used to control a high order process. 
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AUTO-TUNING ALGORITHM FOR FUZZY CONTROL SYSTEMS 

Jianzhou WANG, Jim R. JORDAN 

University of Edinburgh, Edinburgh, EH9 3JL UK 

Abstract. The lack of a general methodology for parameter tuning of fuzzy controllers is a major drawback to a 
more widespread use of the fuzzy control technique. In this paper, a tuning algorithm for the fuzzy controllers is 
proposed which features on-line performance, uses fuzzy logic algorithms and does not require detailed 
information about the process to be controlled. Based on exhaustive simulation experiments, the fuzzy tuning rules 
for scaling factors and sample rate are presented. A complete tuning procedure has been designed. The adequacy of 
this tuning algorithm has been tested by simulations carried out on a second order process with time delay and 
other SISO processes. Results show that the fuzzy tuning algorithm is effective and can save time and effort in 
tuning fuzzy controllers. 

Keyword. auto-tuning, fuzzy logic control, scaling factor. 

1. Introduction 

A great number of parameters define the performance 
of a fuzzy controller. Hence its tuning at most times 
becomes a critical operation which can provide 
unsatisfactory system results. The lack of a general 
methodology for parameter tuning of fuzzy controllers 
is a major drawback to a more widespread use of this 
control technique. For this reason, many researchers 
have addressed their efforts to finding effective tuning 
methods during the last few years. Adaptive self-
tuning[1], the evolution method[2,3], the Rosenbrok 
identification method, the gradient descent method[ 4], 
and the correlation function method[5],  have been 
studied to cope with the tuning difficulty of the fuzzy 
controller. Most of these methods are successful and 
valuable for the practical design of fuzzy systems. 
However they all required models of the process to be 
controlled. In this paper, a tuning method is proposed, 
which features on-line performance, uses fuzzy logic 
algorithms and does not require detailed information 
about the process to be controlled. 

Among the parameters which affect the performance of 
fuzzy systems, intuitively it will be most effective to 
change the performance of the fuzzy control system by 
tuning the fuzzy rules and/or the membership functions 
of the fuzzy subsets related to the input output fuzzy 
variables of the controller. But it is very complicated to 
perform an on-line tuning because of the multi-variable 
feature of the controller and the typically high non-
linearity of the process. Nevertheless the system 
performance can be changed by simply altering the 
input-output scaling, thus changing the membership 
grades of the input-output variables belonging to the 
fuzzy subsets which the fuzzy rules are closely related 
to. Experimentally tuning the fuzzy control system in 
this way, it is possible to obtain the expert knowledge 
about the relationship between the scaling factors and 

the system's performance, and therefore to perform the 
auto-tuning of a fuzzy system by using a fuzzy 
algorithm. 

The aim of the research presented in this paper is to 
automatically tune the scaling factors with the help of 
fuzzy algorithms to obtain a relatively satisfactory 
system performance when the fuzzy system is initially 
started. The fuzzy tuning algorithm and the procedure 
is presented in section 2. In section 3, the effectiveness 
of the tuning algorithm is assessed by application to a 
simulated fuzzy control system. The paper is concluded 
in section 4. In this paper, attention will be restricted to 
single-input single-output processes. 

2. Method 

2.1 Tuning Algorithm 

In most technical applications, fuzzy controllers receive 
crisp inputs and have to give a crisp control output. 
Fig.I shows the general structure of fuzzy control 
systems. In this typical case, the operation of a fuzzy 
controller requires fuzzification of the inputs and 
defuzzification of the control outputs. To do this, each 
crisp variable is attached to a fuzzy set defined in the 
universe of discourse by means of membership 
functions. For simplicity, in most cases the membership 
functions are defined within a normalised interval. 
Therefore, the crisp variables have to be scaled 
(normalised) by multiplication with scaling factors, so 
that they fit into the normalised universe of discourse. 

Note that the optimal scaling not only depends on the 
variable's properties but also on the shape and position 
of the membership functions used and the dynamics of 
the plant to be controlled. The importance of a suitable 
choice of scaling factors is clearly shown by the fact 
that poorly chosen scaling factors will result in the 
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Fig. 1 General structure of fuzzy control systems. 
GE, GC and GU are scaling factors of the FLC. 

shifting of the operating area in parameter space to the 
boundaries of the normalised universe of discourse. 
Paper [5,6,7] have shown the effects of scaling factors 
on the dynamic performance of fuzzy control systems. 

Generally, for a given fuzzy controller, increasing the 
scaling factor is equivalent to compressing the 
corresponding membership functions towards the 
origin of the related axis. On other hand, 
proportionally increasing the support of each fuzzy 
subset related to a fuzzy variable in both side of the 
origin is equivalent to decreasing the scaling factor of 
that fuzzy variable. For example, membership functions 
for error p.(e) in Fig.2(a) with scaling factor GE=2, are 
equivalent to those shown in Fig.2(b) if GE=l; i.e. if 
error = 1.0, after scaling, it will be PM with 
membership grade 1.0 in both situations shown in 
Fig.2. Therefore if the membership functions are fixed, 
the bigger the scaling factor of one variable, the more 
sensitive will the controller be to the small values of 
this variable, and less sensitive to big values of this 
variable. 

To perform the auto-tuning of scale factors, the 
relationship, i.e. fuzzy rules for tuning, between the 
scale factors and the system's performance is essential 

and may vary in different system configurations. Also, 
before tuning is performed, the current system 
performance is required. To obtain information about 
the performance of the system to be tuned, an effective 
driving signal has to be carefully selected. In the 
following, the variables in the tuning rules will first be 
defined. Then rules for auto-tuning the scale factors in 
different situations will be discussed. Finally the tuning 
procedure related to the driving signal will be designed. 

2.2 Tuning variables 

Due to their simplicity in practical control engineering, 
the overshoot (OS), undershoot (US), number of ring 
cycles (CY), and integrated error square (IES) of the 
controlled process response to a step input have been 
selected as the performance indicators and thus the 
main input variables. According to the common 
practical specifications of a control system, the 
membership functions for these performance 
measurements are defined in Fig.3 (a). Note that IES is 
normalised as follows: 

IES=__>e2 (k) 	 (1) 
M 

Fig.2 Equivalent membership functions (ê is the scaled error) 
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where M is the magnitude of the step input, i.e. the set 

point change, e(k) is the system error at instance k. 

The output variables of the tuning rules are the scale 
factors GE, GC and GU. Membership functions for 
these scale factors, as shown in Fig.3(b), were 
designed with the help of design experience in fuzzy 
control systems. Fig.3(c) shows the membership 
functions (singleton type) of changes in the scale 
factors with the horizontal scale giving the required 
multiplier. 

2.3 Classification of systems 

To generate the tuning rules for the fuzzy control 
system, a classification of control systems is required 
based on significant performance features. From the 
results of simulation experiments and practical 
knowledge of process structure, control systems can be 
divided into three groups: (I) simple controllable 

OK 	SM G 	

us  
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systems, such as a low order linear system without time 
delay; (2) complicated controllable systems; (3) 
uncontrollable systems. The first two situations will be 
considered in this paper. A system is classified as either 
a simple or a complicated controllable system by noting 
features of the error change when a step input with 
fixed amplitude is applied to the open-loop system. If 
the error change decreases monotonically within 
several sample periods, the system is a simple 
controllable system. For example, any first order linear 
process demonstrates this feature. Other systems will be 
sorted as a complicated controllable system, such as any 
high order systems. A time delay system is put into the 
complicated category. Fig.4 illustrates the classification 
method. 

In Fig.4, controlled processes are sorted according to 
the initial response of the system to a step input. Due to 
insufficient information about the controlled process, at 
this stage, the system is only sorted as either a simple 

sm OK BG 

OK 	 SM 	 BG 	
SM OK 	 BG 

X,  X11 

	

c 	

III 	

GC 
y  

OK 	 SM 	 BO 	 sm 	OK 	 BG 

GU 

(a) 

b_dec rn_dec s_dec s_inc rn_inc b_inc 

2.0 	rnuIplier 0.5 0.7 0.8 1.25 1.5 

(c)  

(b) 

OK — good; 
SM — Small; 	BG — Big; 
s_dec - small decrease; 
m_dec - medium decrease; 
b_dec - big decrease; 
s_inc - small increase; 
rn_inc - medium increase; 
b_inc - big increase; 
NC - no change 

Fig. 3 Membership functions (MFs) of variables in the tuning rules 
MFs for system performance measurements; 
MFs for scale factors; 
MFs for the changes in scale factors. 	 255 



or a complicated system. As more feedback information 
becomes available from the system's output and by 
evaluating the status of undershoot, overshoot and 
number of ring cycles generated by the system when 
controlled by a default fuzzy controller, the system will 
be further identified as oscillating, non-oscillating, or 
uncontrollable. In both oscillating and non-oscillating 
situations, performance will be further classified with 
respect to the status of overshoot, undershoot and 
integrated error square. Each status of the response is 
named as "Onn" (nn is a number here) in Fig.4. This 
classification has actually defined each of the fuzzy 
subsets on which the tuning rules are based and will be 
discussed next. 

2.4 Tuning rules 

By using trial and error and simulation methods, 
tuning rules are generated at each different status of the 
system performance. Exhaustive simulation tests have 
been carried out to find the proper action taken to 
modify the scaling factors and sample rate T,, at 
different situations. Table I and Table 2 give these 
heuristic tuning rules for both simple and complicated 
controllable systems respectively. Symbols in the tables 
come from the definitions in Fig.4. From these tables 
and Fig.4 , a rule, say rule No.10 for simple systems, 
can be read as: 

IF number of ring cycle IS good, 

AND overshoot IS good, 
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AND undershoot IS good, 
AND integrated error square IS big 
THEN small increase GE, 

big decrease GC, 
small increase GU. 

Note that in contrast with tuning a complicated system, 
sample rate in a simple system is not changed while 
tuning the scaling factors. In fact, sample rate is 
calculated at the begin of the tuning procedure when 
the first feedback information is available. The method 
to determine the sample rate is empirically designed 
as: 

= ,[o.o24/ E, for simple system; 	(2) 
t0.012 I E, for complicated systems. 

where E is the first non-zero sample of error change of 
the system. This method leads to a reasonable 
performance in simple systems and may lead to 
oscillation in complicated systems. Therefore tuning 
the sample rate is necessary in the complicated system 
situation. 

2.4 Tuning procedure 

Before applying the above tuning rules, information 
about the performance of the control system is needed. 
To excite the controlled process to show up its 
properties in the response to a step input without the 
system generating unacceptable signal changes, the 

System 
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selection of the control signal in the tuning stage 
becomes crucial. In this paper, the following methods 
have been used for safe starting: 

Closed-loop fuzzy logic control is used. Because 
fuzzy logic control can be set-up to give a very 
gentle action, though the response may be too 
slow, the safety of the control system can be 
guaranteed. After more information about the 
system has been collected, the fuzzy controller 
parameters can be tuned to improve the 
performance. 

2. A fraction of the required setpoint change of the 
tuned system was chosen to be the practical 
setpoint change at the tuning stage. This is used to 
prevent at most circumstances the process from 
overdriving. Also this method will lead to more 
than one tuning procedure in the tuning stage, and 
therefore gives more chance for the tuning 
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algorithm to improve its tuning performance. 

Fig.5 illustrates the tuning procedure. From Fig.5, the 
process control input change is kept at zero for an 
initial period of 100 sample intervals which are 
initialised to give a relatively fast sampling rate. 
During this period (phase 1) the system output y(t) is 
monitored to check for plant noise or disturbances 
which will be used for the calculation of the system 
status. In phase 2, the system is configured as an open-
loop to measure the process time delay and set the 
sample rate. The control input of the process is step 
increased with a fixed amplitude of 10% of the total 
setpoint change introduced by the tuning procedure. 
The system dead time Td is considered as the time 
period from the beginning of phase 2 to the time when 
the output of the process changed by 2%. As the system 
output begins to increase, 10 samples of process output 
are taken and used with the dead time T, to set the 
sample rate T and the initial setting of the parameters 

Table 1 
1ii1es for tiinini simnie controllahie fuzzy systems 

Rule 
No. 

System 
status 

Other 
Conditions 

GE 
action 

GC 
action 

GU 
action 

1 010  s_inc  
2 011  b_inc  
3 012  s_dec b_dec 
4 013  s_inc s_inc 
5 014  b_inc  
6 015  s_dec  b_dec 
7 016  s_dec b_dec  
8 017  s_inc b_inc 
9 020  s_dec s_inc 
10 021  s_inc b_dec s_inc 
11 030 GC is BG m_dec b_dec  
12 030 GUisBG  b_dec 
13 030 OC is OK 

 GU is OK 
rn_dec 

 _ 

Table 2 
Pitipc fnr rnmnfirntpri cnntro11ih1 f1177v cvctpm' 

Rule 
No. 

System 
status 

Other 
Conditions 

- 	T. 
Action 

GE 
action 

GC 
action 

GU 
action 

14 010  
15 011  s_dec rn_inc m_dec 
16 012  s_inc sdec 
17 013  s_inc  
18 014  s_dec rn_dec rn_dec 
19 015  s_dec s_inc rn_dec 
20 016  s_dec rn_dec m_dec 
21 017  s_dec  m_dec 
22 020  s_dec s_inc  s_inc 
23 021  s_dec rn_inc b_dec rn_inc 
24 030 JES is SM rn_inc s_inc  rn_dec 
25 030 IES is BG  rn_inc  b_dec 
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of the controller. Next in phase 3, the system is 
configured as a closed loop system and the control task 
is handed on to the fuzzy controller with a setpoint step 
equal to 50% of the total setpoint change. As the 
system output progresses to the steady state, the system 
performance will be calculated, heuristic tuning rules 
will be applied and FLC scale factors will be tuned. 
After that, the setpoint will be further increased and a 
new tuning process begins (phase 4). After the tuning 
stage, the FLC with fixed scale factors will take the 
control task (phase 5). 

If the system loses control during the tuning stage, the 
tuning algorithm will switch off the control input and 
bring the system to a safe stop condition. Under some 
circumstance, for example the cart-pole system, this 
method of dealing with unstable processes may fail, 
but it will lead to a safe stop in most practical 
situations. 
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G(s) = 	 Ke T 	(4) 
2  +2cc+ s  

e 'W 
(t)= 

1  
—I 	+Ku(t)J 	 (5) 
Tl 

(l  

1+e' 

where Kis the static gain, Tis time constant, Td is time 
delay, w,, is the natural frequency, is the damping 
ratio, u(t) and y(t) are input and output of the process 
respectively. 

The process parameters are: 

Process I: K = 2.5, T = 400, T 1  = 200; 

Processfl:K=2.5, Ta =200, 

= 6.0; E = 0.8;. 

Process ifi: K = 2.5, T = 400. 

3. Simulation and Results 

To determine its adequacy, the fuzzy tuning algorithm 
is applied to the FLC control systems. Two common 
processes and a non-linear process are tested by 
simulations. The transfer functions of these three 
process are as follows: 

Note that the unit for the time variables, such as T and 
Td , is the simulation time scale in the computer. 

The fuzzy logic controller uses error e(t) and change of 
error è(t) as its inputs and change of control as its 

output. e(t) and è(t) are calculated as follows: 

I: G(s)= Ke 
	

(3) 
1+ Ts 

e(k) = vc(k)—V 0 (k) 

é(k) =e(k)—e(k-1) 
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Fig.5 The auto-tuning procedure 
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The membership functions for the input and output 
variables, and the rule base are shown in Fig.6. The 
scaling factors and the sample rate of the FLC are 
initialised as: 

GE= 1.0;GC= 10.0; GU=0.05; T= 10 

Note that to make the controller give a gentle control, 
small GU is chosen. GE, GC and T are chosen 
empirically by using the approximate knowledge of the 
controlled processes. 

After auto-tuning, the FLC parameters are shown in 
Table 3. Fig.7, Fig.8 and Fig.9 illustrate the system 
performances of process I, H and III respectively. Each 
figure shows the step response of the system before, 
during and after the tuning procedure. 

Table 3 
FLC parameters after tuning 

Process 	GE 	GC 	GU 	T 

I 	0.5 	12.0 	0.075 	16 

II 	0.625 	2.94 	0.031 	19 

III 	0.8 	17.56 	0.15 	16  
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generally designed fuzzy logic controller often gives an 
unacceptable performance even if it is used to control a 
simple process like process I. This is easy to understand 
because it is common practice to tune a control system 
to meet the designed specifications. This poor 
performance can be explained as the poor mapping of a 
controller input and output variables from the practical 
variable spaces to the designed ones. 

The performances of the tuned systems shown in the 
figures appear to be unsatisfactory during the tuning 
stage, because the output of the system stopped rising in 
the middle of the tuning procedure. This is because two 
tuning procedures are performed for each system and 
each procedure needs a complete system response 
before carrying out the tuning task. It is found that for a 
better performance, two or more tuning procedures are 
generally needed if the controlled process is a 
complicated one. 

It also clear that an oscillatory system performed much 
better after applying the proposed fuzzy tuning 
algorithm. And from Table 3, it can be seen that the 
scaling factors and sample rate were changed 
significantly by the tuning procedure. Though the 
parameters may not be optimised, for example, the step 
response in Fig.7(C) could be faster, the system's 
responses are acceptable from the engineering point of 

From Fig.7 to Fig.9, it is clear that without tuning, a 
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Fig.6 FLC parameters. (a) input membership functions; 
(b) output membership functions; (c) Rule base. 	 259 
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Fig.8 Step response of system II before (a), 
during (b), and after (c) tuning. 
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It is worth noting that the empirical nature of this fuzzy 
tuning algorithm make it quite difficult to generate the 
tuning rules and define the membership functions of 
each variables. Hence the tuning rule base discussed 
above may not cover some tuning situations of the 
fuzzy control systems. Further work is needed to test 
and improve this algorithm. 

4. Conclusion 

A great number of parameters define the performance 
of a fuzzy control system. Hence its tuning at most 
times becomes a critical and very time consuming 
operation which can provide unsatisfactory system 
results. In this paper, a fuzzy tuning algorithm for the 
fuzzy controllers is proposed. Based on extensive 
simulation results, the fuzzy tuning rules for scaling 

factors and the sample rate are presented. A complete 
tuning procedure is designed. The adequacy of this 
tuning algorithm has been tested by simulations carried 
out on processes which are commonly used as the 
approximation of the practical processes and an 
artificially designed non-linear processes used in [8]. 
Results show that the fuzzy tuning algorithm is 
effective and quite robust with respect to changes of the 
controlled processes. The system's performance after 
the fuzzy tuning was quite acceptable. The system's 
safety was also guaranteed during the tuning stage by 
the specially designed default fuzzy control method. 
Experiments show that the time and effort expended in 
tuning the fuzzy controllers were significantly saved. 
Further work is needed to confirm its effectiveness in 
other tuning situations of fuzzy control systems. 
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