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A  multi-objective genetic algorithm is developed for the 

purpose of optimizing the rule-base of a Self-Organising 

Fuzzy Logic Control algorithm (SOFLC). The tuning of 

the SOFLC optimization is based on selection of the 

best shaped performance index for modifying the rule-

base on-line. A comparative study is conducted between 

various methods of multi-objective genetic optimisation 

using the SOFLC algorithm on the muscle relaxant 

anaesthesia system, which includes a severe non-

linearity, varying dynamics and time-delay. 
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INTRODUCTION 

The last decade has seen an upsurge in the development 

of intelligent control structures over their counterpart 

model-based control structures due to their success in 

dealing with complex multivariate uncertain systems 

without the need of extensive dynamic modelling. The 

main difficulty in the multivariable case is the 

interaction between variables and sensitivity to faults in 

various channels. At the forefront of intelligent control 

systems technology are Fuzzy Logic Control (FLC), 

Neural Networks (NN) and Genetic Algorithms (GA) 

which have all proved to be serious contenders for many 

other existing forms of control.  

In order to map control designs to specific applications, 

various tuning factors have been appended to these 

design features, which has a double effect. On the one 

hand, having a number of tuning factors ('knobs') makes 

the design attractive to engineers by giving them more 

flexibility in its application to a wide spectrum of 

processes. On the other hand, it adds an extra burden of 

having to find an optimal setting that will reach specific 

objectives. At this stage, it is worth noting that in most 

designs, there exist no golden rules for the tuning of 

such factors. Instead, the user has to rely on his/her 

intuition and knowledge of the process to find a set of 

'good' values necessary to achieve a predefined set of 

objectives. This task can prove to be tedious and only a 

compromise solution is adopted whereby an objective is 

sacrificed in order to satisfy the other objective criteria. 

Various synergies are known to exist and as a result 

have been described in the past between FLC, NN and 

GA which not only showed that these intelligent 

structures can interact together but also can make the 

overall structure more robust against model uncertainties 

as well as disturbances. For example, the concept of 

Neuro-Fuzzy Control was shown to work well by 

producing smoother control than the standard fuzzy 

control by allowing automatic adjustment of the rule-

base and definition of fuzzy sets in terms of widths, 

peaks, and membership functions. The following 

sections will attempt to emphasise one such synergy, 

that between self-organising fuzzy logic control and 

genetic algorithms by allowing the performance index 

table to be tuned to an optimal setting using GA 

techniques which will encompass more than one 

objective function. It will also be shown that by using 

this technique, a much reduced size of rule-base can be 

achieved, in contrast to past experiences where a 

relatively large number of rules were deemed necessary 

to achieve an acceptable performance. 

AN INTRODUCTION TO GENETIC 

ALGORITHMS 

Genetic Algorithms (GA) are exploratory search and 

optimisation methods that were devised on the 

principles of natural evolution and population genetics. 

Holland (1) first developed the technique of GA, and 

several other research studies provided a comprehensive 

review and introduction of the concept (2). Unlike other 

optimisation techniques, GA does not require 

mathematical descriptions of the optimisation problem, 

but instead relies on a cost-function, in order to assess 

the fitness of a particular solution to the problem in 

question. Possible solution candidates are represented 

by a population of individuals (generation) and each 

individual is encoded as a binary string containing a 

well-defined number of chromosomes (1's and 0's). 

Initially, a population of individuals is generated and the 

fittest individuals are chosen by ranking them according 

to an a priori-defined fitness-function, which is 

evaluated for each member of this population. In order 

to create another better population from the initial one, a 

mating process is carried out among the fittest 

individuals in the previous generation, since the relative 

fitness of each individual is used as a criterion for 

choice. Hence, the selected individuals are randomly 

combined in pairs to produce two off-springs by 

crossing over parts of their chromosomes at a randomly 

chosen position of the string. These new off-springs are 

supposed to represent a better solution to the problem. 

In order to provide extra excitation to the process of 
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generation, randomly chosen bits in the strings are 

inverted (0's to 1's and 1's to 0's), this mechanism is 

known as mutation and helps to speed up convergence 

and prevents the population from being predominated by 

the same individuals. All in all, it ensures that the 

solution set is never empty. A compromise, however, 

should be reached between too much excitation and 

none by choosing a small probability of mutation. There 

are four well-known reproduction techniques, 

Generational Replacement (GR), Steady-State (SS), 

Generational Gap (GG), and Selective Breeding (SB). 

Only one of these will the subject of this study, i.e. SB, 

which is described below: 

Selective breeding 

Selective breeding reproduction method is designed to 

overcome some of the deficiencies in the other method. 

In the steady-state breeding method, a sampling error 

still occurs in selecting the parents and deletion of 

individuals from the population, and often good 

individuals can appear and be deleted without a chance 

of recombination. Selective breeding introduces 

determinism in order to eliminate stochastic sampling 

error in deletion of candidates. The method consists of 

the following: if the initial population is of „n‟ size, then 

another population of the same size „n‟ is produced 

through the mating process. The two populations are 

combined together to form a population of size „2n‟ 

which will ranked in the usual manner to produce a 

population of „n‟ best individuals. It is worth noting that 

this method has already been found to converge more 

quickly that most of the other. 

MULTI-OBJECTIVE_OPTIMISATION 

TECHNIQUE 

In problems that have multi-objective formulation, 

objectives are often combined by means of an 

aggregation function. Combining the objectives to 

obtain an optimised solution has the advantage of 

producing a single solution, which requires no 

interaction with the decision making. However, if the 

solution found is not acceptable, tuning of the 

aggregation function is required followed by a new run 

of the optimiser until a suitable solution is found. The 

aggregation functions can be as simple as the weighted 

sum to a target vector. The method functions by 

generating an initial population which is evaluated to 

determine the performance of each individual, then an 

off-spring is generated which in turn is evaluated 

according to the performance of each individual. The 

last step is to select the best individual from both 

generations. Several popular methods exist for 

producing a single solution to a multi-objective 

optimisation operation as explained below and their 

respective performances may differ depending on the 

problem at hand; these are outlined below: 

Average and distance ranking 

The average multi-objective optimisation approach is 

based on ranking the population according to each 

objective individually, then a new overall rank can be 

generated by taking the average of the newly ranked 

populations. On the other hand, the distance 

optimisation technique is based on ranking the 

populations depending on a single objective at a time 

then taking the square-root of the sum of the squared 

objective values, and finally ranking the new vector to 

produce the final generation. 

Pareto ranking 

A different approach for multi-objective optimisation is 

based on ranking according to the actual concept of 

pareto optimality proposed by Goldberg (2). The 

method guarantees equal probability of reproduction to 

all non-dominated individuals. If both objectives have 

the same priority, all the satisfying individuals (the ones 

which meet their goal) are preferable and have a lower 

rank than  the remaining ones). 

FUZZY LOGIC CONTROLLER (FLC) 

Similarly to other control structures such as neural 

networks, fuzzy logic control has a long history. It stems 

from the theoretical work of Lotfi Zadeh (3). He 

proposed the use of fuzzy logic to mimic the human's 

ability to use imprecise statements to solve complex 

problems. 

The main four components of FLC are fuzzification, 

knowledge-base, inference engine, and defuzzification. 

The fuzzification process converts the measured input 

into a corresponding linguistic value. The knowledge- 

base comprises the settings of the controller parameters, 

such as the labels, fuzzy sets shapes and type and 

number of rules. In this application a Gaussian shape 

membership function is used for the inputs. Two inputs 

are considered, the error and the change in error, while 

the output is calculated using the center of area method. 

There are 9 control rules which are expressed 

linguistically in the following form: 

if error is x and change_in_error is y then output is z 

The controller starts with an empty rule-base with 

constrained inputs and unconstrained outputs. The 

inputs of the rules are constrained in terms of 

optimisation of the position and width. The position 

constraints do not allow a negative labeled rule to be 

positioned in the positive side, neither do they allow big 

overlapping of different fuzzy labels. Moreover, the 

width constraints work by not allowing the fuzzy sets to 

be too wide or too narrow. The unconstrained output 

rules allow assignment of the output rules to any label. 

This has the advantage of giving more flexibility to the 

controller to generate any shape of control surface. 



  

The learning procedure is to generate the rules and tune 

them in terms of the input membership function 

(position and width) and the output of the rules position. 

Therefore for each rule there are five parameters to be 

tuned. The membership function of each input and 

output is defined as follows: 
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where c is the peak position and   is the width. 

THE SELF-ORGANISING FUZZY 

LOGIC CONTROLLER (SOFLC) 

The first implementation of a fuzzy controller after 

Zadeh‟s seminal paper was followed by the self-

organising fuzzy controller (SOFLC) (4) as shown in 

Figure 1. The controller consists of two levels; the first 

level is a simple fuzzy controller, while the second level 

consists of the self-organising mechanism, which acts as 

a monitor and an evaluator of the controller 

performance. In the first level, the input signal to the 

controller is taken at each sampling instant in the form 

of error and change-in-error. Each signal is mapped to 

its correspondent discrete level by using the error and 

change-in-error scaling factors respectively and sent to 

the Self-Organising Controller (SOC). The SOC, 

according to control rules issued by the second level, 

calculates the output with respect to the inputs. The 

output control signals are scaled to real values using the 

output scaling factors and sent to the process being 

controlled. The second level consists of four blocks: the 

performance index, the process reference model, the 

rules modifier, and the state buffer. Further details on 

the design of a SOFLC can be found elsewhere (5) but 

suffice here to concentrate on the learning part. 

The self-organising controller is based on observation of 

the trajectory of the process to be controlled. Any 

deviation from the desired trajectory path should be 

corrected by modifying the rule or rules responsible for 

the undesired performance. 

The performance index functions as an evaluation 

criterion of the controller performance, In general terms 

it measures the deviation from the desired trajectory and 

issues the appropriate correction to the rule that gave the 

present behaviour. It is derived from linguistic 

conditional statements by means of using standard fuzzy 

operations and written in a look-up table form. 

As far as the rules modification procedure is concerned, 

it can be explained assuming that a process has a time-

lag of m samples, this means that the control action at 

sample (nT-mT) has most contributed to the process 

performance at the sampling instance nT. Thus, if the 

present instant is nT, the modification is made to the 

controller output U, mT samples earlier, the rule to be 

included being: 

 

E( nT - mT ) CE ( nT - mT ) U ( nT - mT ) + 

)(nTPi   

 

where )(nTPi is issued by the performance index table, 

E is the error, and CE is its derivative.  

The key issue with SOFLC is how to select the 

performance index table. This table is usually selected 

based on the knowledge of the operator or the expert, 

but the table is commonly interpreted as a flat surface 

with curvature on the edges, which ignores the small 

non-linearities that are located in the middle region of 

the table. In light of these considerations, the use of GA 

as a tool for optimising the shape of the table is indeed 

very attractive. In this work, a GA is used in two ways. 

1. To optimise the fuzzy rule-base of a fixed fuzzy 

Proportional integral (PI) controller. 2. To find the best 

fit for the performance index table by starting with a 

linear table then repositioning the output of the table 

with constrained modifications. 

 

A GENETIC ALGORITHM FOR 

PARAMETER SELECTION 

 Coding of the genetic algorithm is based on defining the 

number in the population and the chromosome length of 

each one using a concatenated binary mapping. This 

coding is usually realised by joining segment codes of 

all the parameters into one composite string. In this 

study, the GA was set with the following parameters: 

Population size = 30 

Chromosome =  180  

Probability of Crossover = 1.0 

Probability of Mutation = 0.06 

Number of Generations = 500 

Fitness Scale = 10 x fitness rank + 100 

 

The chromosome lengths were selected on the basis of 

the type of application. For instance, in the case of the 

SOFLC algorithm, the performance index table includes 

25 rules with each rule having only one parameter that 

need tuning (the output). With 10 bits allocated to each 

parameter, the performance index rule-base will require 

a 250-bit chromosome. 

As for the control objective, it is defined as the ability to 

follow the set-point with minimum error. This objective 

can be expressed in terms of minimisation of the 

controller performance indices. These include Integral 

of Absolute Error (IAE), Integral of Square Error 

(ISE), and Integral of Time Absolute Error (ITAE), as 

well as minimising the controller effort by calculating 

the Integral of controller effort (ICE). In this study only 

the IAE and ICE indices are used as will be described 

below. 



  

SIMULATION RESULTS 

A series of simulations were conducted using GA for 

optimising the FLC rule-base and the performance index 

related to the SOFLC algorithm using the optimisation 

techniques already described in Sections 3.1 and 3.2. As 

a process test bed we used the muscle relaxation process 

associated with the drug atracurium (5). The continuous 

model associated with the drug atracurium is highly 

nonlinear and is identified to be of the Wiener structure: 
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The overall nonlinear model is obtained by combining 

the above equation with the following Hill equation: 
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where U is the drug input, Eeff
 is the actual output 

(muscle relaxation or paralysis) and X1  is the drug 

concentration in the blood. 

To simulate the above model, a fourth order Runge-

Kutta method with fixed step length was used for 

integration together with a sampling interval period of 

one minute. A bolus dose of drug was used initially to 

speed up the response time. Three categories of patients 

were used depending on their sensitivity to the drug; 

low, medium and high sensitivity. A training set-point 

profile of 90% then 80% changed every 70 minutes was 

used, while a testing profile was chosen to have a set-

point change of 95%, 80% and 90% every 70 minutes. 

The controller used in this series of experiments is of an 

incremental type (linguistic PI).  

The experiment described here used a GA to optimise 

the performance index table relating to the SOFLC, in 

an off-line study, using the IAE and ICE as optimising 

criteria. Figure 2 is a bar chart representing the 

performance of each algorithm (the non-optimised 

SOFLC and the optimised SOFLC using the three 

fitness-ranking methods. Although the distance ranking 

method performed better under the IAE criterion and the 

average ranking method performed better under the ICE 

criterion, the Pareto ranking method was found to lead 

to a reasonable performance under both objectives.  

Tables 1 and 2 display the corresponding criteria values 

under the various regimes for the training and testing 

set-point profiles. 

Finally, Figure 3 shows the performance of the SOFLC 

when the performance index table was optimised using 

the fitness Pareto ranking method. As seen in Figure 3a 

the output tracked the output changes efficiently with a 

reasonable control activity. Moreover, Figure 3c 

emphasises the nonlinear shape of the control surface. 

 

CONCLUSIONS 

It is widely recognised that for control designs to be 

flexible, they need to incorporate as many tuning factors 

('knobs') as possible to allow them to be tailored to 

particular applications. Concomitant disadvantages of 

these tuning factors is the lack of clear guidelines for 

optimal settings, especially with control designs based 

on a heuristic approach where stability analyses are 

either impossible or difficult to carry out. Fuzzy logic 

control is one of these strategies. One of the adverse 

effects of this is that a relationship between stability and 

design tuning factors is not always easy to establish. For 

instance, it is known that a qualitative rather than a 

quantitative relationship can be drawn between the 

parameters of a conventional PID controller and the 

tuning of a simple PID fuzzy controller. In this paper, 

we proposed a new method for tuning the performance 

index table relating to the SOFLC. Future work will 

include the extension of this work to the multivariable 

case and the introduction of a fuzzy gain scheduling 

procedure for selecting the appropriate rule-base based 

on the initial response of the patient to the initial bolus 

of drug. 
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Figure 1: Block diagram of SOFLC with GA learning 

          FZ: Fuzzification, DFZ: Defuzzification. 
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Figure 2: Training  error (IAE, ICE) for three patient sensitivities for SOFLC table adjustment 
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Table 1: IAE and ICE error after training with  SOFLC for 3 patient sensitivities. 

 

Ranking low sensitivity medium sensitivity high sensitivity 

 

 IAE ICE IAE ICE IAE ICE 

no-training 380.365 669.920 325.861 546.479 364.960 637.990 

Distance 312.0425   219.595 297.668   135.691 226.387   100.622 

Average 330.705   190.436 302.350   133.558 256.453   63.496 

Pareto  340.218   193.506 291.980   136.732 237.078   83.017 

 

 

 

Table 2: IAE and ICE error after testing with  SOFLC for 3 patient sensitivities. 

 
Ranking low sensitivity medium sensitivity high sensitivity 

 

 IAE ICE IAE ICE IAE ICE 

no-training 881.514 419.599 702.470 317.543 688.182 696.943 

Distance 588.967   280.597 543.386   195.322 447.562   127.899 

Average 604.4115   237.6572 524.700   171.231 454.549   101.1101 

Pareto 572.995   282.999 562.164   176.088 453.361   119.875 
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Figure 3: Simulation results of SOFLC using selective breeding and pareto multi-objective optimisation (a) simulation 

of training profile (b) ISE and ICE error minimisation (c) control surface after learning (d) modified performance index  


