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1. Introduction
FES induced movement control is a significantly

challenging area for researchers. The challenge mainly 
arises due to many obstacles in stimulating the paralyzed 
neuromuscular system, such as fatigue, time-varying 
properties and nonlinearity of paralyzed muscles [1]. The 
design of control strategies can greatly benefit from a 
model-based approach; in principle, better muscle models 
mean better control. Many researchers have developed 
electrically stimulated muscle control ranging in levels of 
sophistication from simple to complex. Primarily due to 
the complexity of the system (nonlinearities, time-
variation) practical FES systems are predominantly open-
loop where the controller receives no information about 
the actual state of the system [2]. In its basic form, these 
systems require continuous user input.  Practical success 
of this open-loop control strategy is still, however, 
seriously limited due to the fixed nature of the associated 
parameters. Accurate control of FES-induced movement 
can be ensured with a suitable closed-loop adaptive 
control mechanism. Such approach has several 
advantages over open-loop schemes, including better 
tracking performance and smaller sensitivity to modeling 
errors, parameter variations, and external disturbances 
[3]. 

Many control strategies have been developed to 
provide enhanced reproducibility of muscle responses, 
including fixed-parameter feedback control [4-5], model 
reference adaptive control [6-7], and sliding mode control 

[8]. Fixed parameter feedback control involves the 
construction of a precise mathematical model that 
describes the dynamic behaviour of the controlled 
musculoskeletal system. As musculoskeletal is very 
complex, fixed-parameter feedback control techniques 
realised only with limited success [9]. Model-reference 
adaptive control does not need a precise model of the 
musculoskeletal system, but the control performance is 
satisfactory only when the closed-loop bandwidth is 
restricted by appropriate choice of reference model 
parameters [10]. Moreover, its major drawback is its 
complex algorithm and the problem of convergence of the 
parameters to be estimated. Sliding mode FES control 
was used to regulate knee joint angle and was tested on 
six neurologically intact subjects and two untrained 
paraplegic subjects [8]. Good tracking of a desired knee 
joint trajectory was achieved, but this could only be 
applied to mathematical model based plant. In fact, the 
overall model of the plant being considered is a multi-
input-multi-output (MIMO) nonlinear model consisting 
of nonlinear lumped parameters comprising passive joint 
viscoelasticity and active muscle properties and 
segmental dynamics [11].  

On the other hand, fuzzy logic control (FLC) has 
long been known for its ability to handle a complex 
nonlinear system without developing a mathematical 
model of the system. It is being used successfully in an 
increasing number of application areas in the control 
community. FLCs are rule-based systems that use fuzzy 
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1. Introduction
FES induced movement control is a significantly 

challenging area for researchers. The challenge mainly
arises due to many obstacles in stimulating the paralyzed
neuromuscular system, such as fatigue, time-varying
properties and nonlinearity of paralyzed muscles [1]. The 
design of control strategies can greatly benefit from a
model-based approach; in principle, better muscle models
mean better control. Many researchers have developed
electrically stimulated muscle control ranging in levels of 
sophistication from simple to complex. Primarily due to 
the complexity of the system (nonlinearities, time-
variation) practical FES systems are predominantly open-
loop where the controller receives no information about
the actual state of the system [2]. In its basic form, these
systems require continuous user input. Practical success
of this open-loop control strategy is still, however, 
seriously limited due to the fixed nature of the associated 
parameters. Accurate control of FES-induced movement
can be ensured with a suitable closed-loop adaptive 
control mechanism. Such approach has several 
advantages over open-loop schemes, including better
tracking performance and smaller sensitivity to modeling
errors, parameter variations, and external disturbances
[3].

Many control strategies have been developed to
provide enhanced reproducibility of muscle responses,
including fixed-parameter feedback control [4-5], model
reference adaptive control [6-7], and sliding mode control

[8]. Fixed parameter feedback control involves the
construction of a precise mathematical model that 
describes the dynamic behaviour of the controlled
musculoskeletal system. As musculoskeletal is very
complex, fixed-parameter feedback control techniques
realised only with limited success [9]. Model-reference 
adaptive control does not need a precise model of the
musculoskeletal system, but the control performance is
satisfactory only when the closed-loop bandwidth is
restricted by appropriate choice of reference model
parameters [10]. Moreover, its major drawback is its 
complex algorithm and the problem of convergence of the
parameters to be estimated. Sliding mode FES control
was used to regulate knee joint angle and was tested on
six neurologically intact subjects and two untrained
paraplegic subjects [8]. Good tracking of a desired knee
joint trajectory was achieved, but this could only be
applied to mathematical model based plant. In fact, the 
overall model of the plant being considered is a multi-
input-multi-output (MIMO) nonlinear model consisting
of nonlinear lumped parameters comprising passive joint
viscoelasticity and active muscle properties and
segmental dynamics [11].

On the other hand, fuzzy logic control (FLC) has 
long been known for its ability to handle a complex
nonlinear system without developing a mathematical
model of the system. It is being used successfully in an
increasing number of application areas in the control 
community. FLCs are rule-based systems that use fuzzy
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linguistic variables to model human rule-of-thumb 
approaches to problem solving, and thus overcoming the 
limitations that classical expert systems may face because 
of their inflexible representation of human decision 
making. The control signal is computed by rule 
evaluation called fuzzy inference instead of by 
mathematical equations. Thus FLC is the preferred option 
to control this nonlinear MIMO musculoskeletal knee 
joint model. 

This paper presents the development of strategies for 
swinging motion control by controlling the amount of 
stimulation pulsewidth to the quadriceps muscle of the 
knee joints. The quadriceps muscle plays a fundamental 
role in the main motor activities (i.e., standing up, sitting 
down, walking, standing posture, and climbing stairs). 
First, capability of the controller to control knee joint 
movements is assessed in computer simulations using a 
musculoskeletal knee joint model. The knee joint model 
developed in Matlab/Simulink, as described in [11] is 
used to develop the FLC based on reference trajectory 
derived from passive oscillation to control the knee joint 
movement. The FLC output is the controlled FES 
stimulation pulsewidth signal which stimulates the knee 
extensors providing torque to the knee joint. The 
swinging movement is performed by only controlling 
stimulation pulsewidth to the knee extensors to extent the 
knee and then the knee is left freely to flex in the flexion 
period. A FLC controller fuzzy logic controller has been 
developed by optimizing with GA is investigated. Finally 
the controllers are assessed in computer simulations as 
well as in validation tests through experimental work on a 
paraplegic in terms of tracking performance. 

2. System Model, Description and Control
In this study, the role of simulation based on model

was, to design, test, and optimize the control strategies, 
thus reducing time-consuming trial and error adjustments 
during human experiments. We also focused on the 
design and evaluation of fuzzy logic control approach. 
Therefore, a simplified but effective fuzzy nonlinear 
dynamic model of the lower limb was developed. 
2.1.  Knee Joint Model 

The shank-quadriceps dynamics are modelled as the 
interconnection of passive and active properties of muscle 
model and the segmental dynamics. The total knee-joint 
moment is given as [12]: 

dsgi MMMMM a                                        (1)                            

where aM  refers to an active knee joint moment 

produced by electrical stimulation, sM   is the knee joint 

elastic moment and dM  is the viscous moment 
representing the passive behaviour of the knee joint. In 
this research the  gMM i  is represented by equation of 

motion for dynamic model of the lower limb while aM
and  dMsM  are represented by a fuzzy model as active

properties of quadriceps muscle and passive 

viscoelasticity respectively. A schematic representation of 
the knee joint model consisting of active properties, 
passive viscoelasticity and equations of motion of the 
lower limb is shown in Figure 1.  The active joint 
moment is added with the passive joint moment as an 
input (torque) to the lower limb model and this will 
produce the knee angle as the output. The subject 
participating in this work was a 48 year-old T2&T3 
incomplete paraplegic male with 20 years post-injury 
with height = 173cm and weight = 80kg.  Informed 
consent was obtained from the subject. 

aM
,iM gM

ds MM 

Fig. 1 Schematic representation of the knee joint model 

    A schematic diagram of the lower limb model is shown 
in Figure 2, where 2q = shank length, 1r = position of

COM along the shank, 2r = position of COM along the

foot, 1 =knee angle and 2 =ankle angle.  Hence, the 
dynamics of motion can be represented in the simpler 
form based on Kane’s equations as in (Ibrahim et al., 
2011). The gravitational ( gM ) moment is represented 

by:- 

212111 coscos qgmrgmM g    (2) 

The inertial ( iM ) moment of the lower limb is 
represented as follows:- 

1
2
221

2
11112

2
122   qmrmIrqmM i  (3) 

where, 1m = shank mass,  2m =foot mass, 1I = moment

of inertia about COM, 1 =knee angular velocity 1 =knee 
angular acceleration g =gravity=9.81 m/s2. 
Anthropometric measurements of length of the lower 
limb were made and this is shown in Table 1.   
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Fig.2  Lower limb model 

Table 1 : Anthropometric data of subject 

Segment Length (m) 

Shank length 0.426 
Foot length 0.168 
Approximated position of COM of 
shank 0.213 

Approximated position of COM of 
soot 0.034 

The knee joint model input is the stimulation pulsewidth 
as would be delivered in practice by an electrical 
stimulator. The complete model of knee joint thus 
developed is utilized as platform for simulation of the 
system and development of control approaches. 

2.2 Fuzzy Logic Control Development 
2.2.1. Reference trajectory  
Compromising with natural dynamics of the plant in the 
control of movement to produce a desired outcome is a 
good choice as considered in [13] and [14]. Perhaps the 
feature is most prominent within natural movements, 
performed by human or animals, as is suggested by the 
‘minimum torque-change’ model of voluntary human arm 
movement [15].  
   This control scheme emphasises on the choice of 
reference trajectory with a view to overcome some 
drawbacks of trajectory based closed-loop FES control, 
viz. poor tracking and oscillating response [10]. 
Therefore, a reference trajectory for the knee joint is 
obtained from observing the subject’s passive oscillation 
from the pendulum test. The experimental data from the 
first cycle of pendulum test is used as reference trajectory 
in order to get purely passive oscillation as shown in 
Figure 3. This method is different from the traditional 
trajectory control with some improvement; ability to 
swing in the subject’s natural frequency. 

Fig.3 Reference knee joint trajectory derived from 
pendulum test. 

2.2.2 Design of Fuzzy Control for Natural 
Swinging Motion 
An outline of the natural swinging motion PD-type FLC 
(a two-input and single-output controller) is shown in 
Figure 4.  The controller’s inputs are the error and the 
change of error. This addition of controller input is to 
increase the sensitivity of the controller. Error is defined 
as difference between the desired trajectory and measured 
joint angle. The Mamdani-type fuzzy controller will 
regulate the stimulation pulsewidth according to the error 
and derivative of error. Mamdani type fuzzy inference 
was used due to the simplicity to formulate rules. 

The control problem was to design a fuzzy controller 
such that the knee joint tracks the desired trajectory as 
closely as possible for all times in spite of the 
uncertainties and nonlinearities present in the system. 

dt
de

Fig.4 PD-type fuzzy control 

2.2.3 Off-line tuning of Fuzzy control 
Tuning a control loop refers to the adjustment of its 
control parameters to the optimum values for a desired 
control response. On the other hand, the major drawback 
of fuzzy control is the lack of design techniques.  Most of 
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the fuzzy rules are human knowledge oriented and hence 
rules will deviate from person to person in spite of same 
performance of the system. The selection of suitable 
vector of parameters that specify the membership 
function (MF) involves a painstaking trial and error 
process. 

A systematic procedure for choosing the vector of 
parameters that specify the MF is still not available. 
Consequently the tuning operations of fuzzy logic 
controller were suitably formulated as optimization 
procedures using genetic optimization techniques [16]. 
Triangular MFs of FLC were optimized involving 73 
decision variables or parameters. Piecewise linear 
triangular membership functions are preferred, because of 
their simplicity and efficiency with respect to 
computability. A breakdown of optimized parameters of 
the fuzzy system is as follows:- 
i. 3 parameters associated with the scaling factors of the
three fuzzy state vectors relating them to normalized
universe of discourse used by the inference method.
ii. 45 parameters relating to the triangular MFs, (3-
element vector that determines the break points for each
MF).
iii. 25 weighting factors to be applied to the rule between
0 and 1 for all rules.

The configuration of the fuzzy expert system model is 
shown in Figure 5. In the fuzzification step, crisp inputs 
are fuzzified into linguistic values to be associated with 
the input linguistic variables. After fuzzification, the 
inference engine refers to the fuzzy rule base containing 
fuzzy IF-THEN rules to derive the linguistic values for 
the intermediate and output linguistic variables. Once the 
output linguistic values are available, the defuzzifier 
produces the final crisp values from the output linguistic 
values. The defuzzification method used is based on 
calculating the centre of gravity of the fuzzy output.  

Scaling factors are applied to ensure that the domain of 
discourse covers the whole range [17]. Therefore, two 
input scaling factors are used to transform the crisp inputs 
into normalised inputs so as to keep their value within -1 
and +1. The scaling factors are S1 for error and S2 for 
change of error. An output scaling factor S3 provides a 
transformation of the defuzzified crisp output from the 
normalised universe of the control output into an actual 
physical output (duty cycle of pulsewidth) to be fed to 
quadriceps muscle.  

Fig. 5  A fuzzy expert system model 

Evolutionary computing, GAs are globally searching 
techniques, which are more likely to converge to the 
global optimum and emulate natural genetic operators 
such as selection, crossover, and mutation [18]. This 
evolutionary algorithm in conjunction with fuzzy logic 
has been used successfully in biomedical engineering in 
various applications [19]. The GA approach is able to 
search many points simultaneously as well as able to 
avoid local optima that traditional gradient descent 
algorithms might get stuck in [20]. Optimization of the 
FL controller using GA is shown in Figure 6. The 
automatic optimization is implemented in MATLAB with 
GA Toolbox. 

dt
de

)(te

f

)(ˆ ty

)(ty

Fig. 6  GA optimization of fuzzy controller 

The objective of GA optimization process is to minimize 
the error between the desired trajectory and actual knee 
angle. The error is defined as:  

)(ˆ)()( tytyte  (4) 

where )(ty  is the desired trajectory and )(ˆ ty  is the
actual knee angle.  The ‘goodness of fit’ of the identified 
model is determined using the objective function by 
minimizing the MSE: 

 
























N

tyty
f

N

i 1

2)(ˆ)(
(5) 

3. Results and Discussion
3.1. Simulation Study  
3.1.1.  Fuzzy Controller Optimization 
A new method comprising a GA and unconstrained MF 
overlap to automatically design fuzzy controllers is 
presented. The automatic GA optimization process was 
set to generate up to 100 generations of solutions. 
Population size of GA was set to 50 and crossover and 
mutation probabilities were 0.8 and 0.001 respectively. 
The best solution was kept and the rest were discarded 
until there was no significant change in the mean square 
error (MSE) observed after the 85th generation. The 
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computation time taken by the GA to converge was 18 
minutes and the minimum MSE achieved was 1.07°. The 
optimized weighting factors of all the fuzzy rules for the 
controller are contained in Table 2 in their corresponding 
cells. Figure 7 shows the optimally shaped input and 
output MFs of the fuzzy controller. The output has got 
[0,1] range of normalization as compared to [-1,1] range 
for inputs since the output should be always  positive.  

Table 2 FLC rule table with optimized weighting factors 
for the rules. 

NB=Negative big,  NS=Negative small, ZO=Zero, 
PS=Positive small, PB=Positive big, ZE=Zero, VL=Very 
Low, LO=Low, ME=Medium, HI=High 

Fig.7  Optimised MFs of the fuzzy controller 

3.1.2 Fuzzy Control Trajectory Tracking 
Performance  

The computer simulation test of the designed swinging 
motion FLC was performed to track the desired 
trajectory. The test was initiated with 220µs amplitude 
with 0.15s burst durations of stimulation pulse for the 
first cycle of swing gait before controller took action. The 
simulation was carried out using Matlab/Simulink as a 
platform. The control was performed in stimulation 
course of 100 cycles. The first 10 cycles of the 
controller’s performance can be seen in Figure 8. It can 
be noted that this fuzzy controller achieved the objective; 
to track the trajectory and thus maintain a steady 
swinging of the lower limb. The error between desired 
trajectory and actual response of the knee joint was less 
than 1º for the first 10 cycles.  

Fig.8  Controlled swinging leg (simulation study) 

The ultimate outcomes of the FLC optimization effort, 
the resultant nonlinear control surface defined by plotting 
the output of the FLC against its inputs are shown in 
Figure 9. The control surfaces in these figures are plotted 
in normalized values. 

Fig. 9 Nonlinear control surfaces of the optimized FLC 
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3.2. Experimental Validation 
3.2.1. Experimental Setup 
The laboratory apparatus built to study the knee joint 
control by FES is shown in Fig.10. The subject sat on a 
chair, which allowed the lower leg to swing freely, while 
the ankle angle was fixed at 0°. The knee extensors 
(quadriceps muscle group) were stimulated by a pair of 
surface electrodes (2”x5”). The cathode was placed on 
the motor point of rectus femoris and the anode was 
placed distally at the quadriceps tendon. Knee angle was 
defined in Figure 2, with when the lower leg was at rest 
during knee flexion (i.e., 90).   

The computer-controlled stimulator system consisted of a 
personal computer, computer-controlled interface 
(including analog-to-digital converter), current controlled 
stimulator and goniometer (see Figure 9). The system 
software was written in the Matlab and Simulink. The 
computer controlled the stimulator through the stimulator 
interface which performed all of the timing functions in 
generating either monophasic or biphasic stimulation 
patterns. The stimulation pulsewidth is generated by FLC 
based on the error by comparing the actual extension 
angle and the desired ones. All these operations were 
performed in the Simulink environment in the computer. 
The Hasomed stimulator device was connected to PC via 
USB interface port with sampling time of 0.05s. The knee 
joint angle was measured via the Biometric flexible 
electroganiometer mounted at approximate center of 
rotation of the knee joint. Stimulation pulsewidth ranged 
from 0 to 230µs and stimulation current was fixed to 
40mA with a biphasic type pulse. The stimulation 
frequency was set to 25Hz and the knee joint angle 
sampling time was 0.05s. An intra-trial interval for 120 s 
was used to reduce the effects of fatigue. 

Fig.10  The equipment setup of this study 

3.2.2. Fuzzy Control Trajectory Tracking 
Performance  

The experimental test of the optimized FLC (based on 
simulation study) was carried out to assess the capability 
of the controllers to track the desired trajectory. The 
initial position was defined at the rest position (almost 
90º). The same procedure as in the simulation work was 
applied with the test, initiated with 220µs amplitude with 
0.15s burst durations of stimulation pulse. A controller 
was tested in stimulation course of 100 cycles. Only the 
first 10 cycles were considered for tracking performance 
test to avoid any fatigue influence due to intense 
stimulation.   

3.2.3. Result Comparison between simulation 
and experimental work 

Fig.11  Controlled swinging leg (simulation and 
experimental results) 

Figure 11 shows the comparison between simulation 
and experimental results with respect to desired 
trajectory. As can be seen in this figure, the simulation 
result follows exactly as the desired trajectory while the 
experimental knee joint angle lagged behind the desired 
trajectory at the beginning of the test. This might be due 
to time-delay in muscle response in the early stage of the 
stimulation. Time delay is the time loss from muscle 
activation to active torque generation due to the neuro-
musculoskeletal (NMS) dynamics [21]. However, the 
controller was able to follow the trajectory after 5s. 
Hence these fuzzy controllers achieve the main objective; 
to track the trajectory but the controller need more time to 
track and maintain a steady swinging of the lower limb. 
The error between the actual angle and the desired 
trajectory was slightly higher than in the simulation 
study.  These might happen due to optimisation of both 
controllers performed in off-line mode rather than on-line 
optimisation since genetic algorithm can only be applied 
in the off-line mode.  

6



22

B.S.K.K.Ibrahim et al., Int. J. Of Integrated Engineering Vol. 3 No. 1 (2011) p. 1-4 

Published by UTHM Publisher 
http://www.uthm.publisher.edu.my/ojs/ijie

7

4. Conclusion
FES induced movement control is a difficult task due

to the highly time-variant and nonlinear nature of the 
muscle and segmental dynamics. The great merit of a 
musculoskeletal model of knee joint is to help understand 
how the muscle works and serves for control 
development. In this control design approach, fuzzy logic 
controller has been optimized using genetic optimization 
technique to track the trajectory based on natural 
dynamics of the paraplegic’s leg segment. In principle, 
this control scheme is based on ‘natural dynamics’ of the 
leg segment and are applicable to control any FES 
induced movement of periodic nature. The performance 
of the controller in terms of tracking has been assessed 
through simulation and experimental study.  This study of 
knee joint swinging control provides valuable insight into 
the control of FES-induced paraplegic walking and 
cycling. 

References 
[1] M. Levy, J. Mizrahi, and Z. Susak, “Recruitment
force and fatigue characteristicsof quadriceps muscles of
paraplegics isometrically activated by surface functional
electrical stimulation,” J. Biomed. Eng., vol. 12, pp. 150–
156, 1990.
[2] P.E. Crago,N. Lan, P. H. Veltink, J.J. Abbas and
C.Kantor. New control strategies for neuroprosthetic
systems, Journal Rehabilitation Res Device 33(2):158-
72,1996.
[3] M.S.Huq, Analysis and control of hybrid
orthosis in therapeutic treadmill locomotion for
paraplegia,  PhD Thesis. The University of Sheffield,
Sheffield, UK, 2009.
[4] J. Quintern, P. Minwegen, and K. H. Mauritz,
“Control mechanisms for restoring posture and
movements in paraplegics,” Prog. Brain Res., vol. 80, pp.
489–502, 1989.
[5] J. J. Abbas, “Feedback control of coronal plane
hip angle in paraplegic subjects using functional
neuromuscular stimulation,” IEEE Trans. Biomed. Eng.,
vol. 38, pp. 687–698, 1991.
[6] J. Allin and G. F. Inbar, “FNS control schemes
for the upper body,” IEEE Trans. Biomed. Eng., vol. 33,
pp. 818–828, 1986.
[7] L. A. Bernotas, P. E. Crago, and H. J. Chizeck,
“Adaptive control of electrically stimulated muscle,”
IEEE Trans. Biomed. Eng., vol. 34, pp. 140–147, 1987.
[8] S. Jezernik, R.G. Wasink, and T. Keller, Sliding
mode closed-loop control of FES: controlling the shank
movement. IEEE Transaction Biomedical Engineering
51(2):263-72,2004.
[9] G.C. Chang, Jer-Junn Luh, Gon-Der Liao, Jin-
Shin Lai, Cheng-Kung Cheng, IEEE, Bor-Lin Kuo, and
Te-Son Kuo, Senior Member, IEEE A Neuro-Control
System for the Knee Joint PositionControl with
Quadriceps Stimulation IEEE Transactions on
Rehabilitation Engineering, Vol. 5, No. 1, March,1997

[10] M. S. Hatwell, B. J. Oderkerk, C. A. Sacher, and
G. F. Inbar, “The development of a model reference
adaptive controller to control the knee joint of
paraplegics,” IEEE Trans. Automat. Contr., vol. 36,
pp.683–691, June 1991.
[11] B.S. K. K. Ibrahim, M.O. Tokhi, M.S. Huq, R.
Jailani and S.C. Gharooni, Fuzzy modelling of knee joint
with genetic optimization, Journal of Applied Bionics and
Biomechanics, Vol. 8, pp. 85–99, 2011.
[12] M. Ferrarin, and A. Pedotti. The relationship
between electrical stimulus and joint torque: a dynamic
model. IEEE Transactions on Rehabilitation Engineering,
vol. 8 (3), pp. 342-352, 2000.
[13] N.C. Singer and W.P.Seering, Preshaping
command inputs to reduce system vibration. ASME
Journal of  Dynamic Systems Measurement and Control,
112(1), pp. 76–82, 1990.
[14] M. M. Williamson Exploiting natural dynamics
in robot control.  MIT AI Lab, 545 Technology Square
Rm 828, Cambridge, MA 02139.,1998.
[15] Y.Uno, M.Kawato, R.Suzuki,  Formation and
control of optimal trajectory in human multijoint arm
movement - minimum torque-change model. Biol.
Cybern. 61:89-101. 1989
[16] C. Fonseca, and P. Fleming, “Genetic algorithms
for multiobjective  optimization: formulation, discussion
and generalization,” Genetic Algoritms: Proceeding of
the Fifth International Conference, San  Mateo, CA, pp.
416-423,1993.
[17] L Reznik,  Fuzzy Controllers, Newnes-
Butterworth-Heinemann, Oxford, 1997. 
[18] D. E. Goldberg, Genetic algorithms in search,
optimization and  machine learning. Reading, MA:
Addison-Wesley, 1989.
[19] H.N. Teodorescu, A. Kandel, L.C. Jain, editors,
Fuzzy and Neuro-Fuzzy Systems in Medicine, CRC Press
LLC, Boca Raton, Florida. 1999.
[20] M. Levin, Use of Genetic Algorithms to solve
biomedical Problems, M.D. Computing, 12(3), pp. 193-
198, 1995.
[21] Vette, A. H., Masani, K., and Popovic, M. R.

(2008). Time delay from muscle activation to torque
generation during quiet stance: Implications for closed-
loop control via FES. Biomedizinische Technik. 53: 423-
425.

7


	ijiev3n2.pdf



