739 research outputs found

    Analysis of Smart Parking System Using IOT Environment

    Get PDF
    The typical parking experience has been transformed by smart parking systems that use the Internet of Things (IoT) environment to integrate technology to improve efficiency, convenience, and sustainability. In order to monitor and manage parking spaces in real-time, this unique technique makes use of IoT devices, such as sensors, cameras, and networking technologies. As a result of the system's reliable information on parking availability, drivers may find and book parking spaces in advance, which eases traffic and reduces aggravation. Additionally, parking systems with IoT capabilities optimize resource use, lowering carbon emissions and fostering sustainability. The adoption of IoT in parking systems is a crucial step towards building smarter, more connected cities that will enhance both drivers' and parking operators' experiences with parking. There are numerous crucial elements in the process for developing a smart parking system in an IoT context. First, sensors are placed in parking places to gather up-to-the-minute occupancy information. Then, using wireless communication protocols, this data is sent to a central server or cloud computing platform. After that, a data processing and analysis module interprets the gathered data using algorithms and machine learning techniques and presents parking availability information to users via a mobile application or other user interfaces. For effective management and monitoring of parking spaces, the system also includes automated payment methods and interacts with existing infrastructure. Taken as Alternative parameters is Park Smart, Street line, Park Whiz, ParkMobile, Spot Hero. Taken as evaluation parameters is Light Sensor, CCTV coins, SMS, Cost-effectiveness, Timestamp. This demonstrates the rank of the data set Park Smart is on 1st Rank, ParkMobile is on 2nd Rank, Park Whiz is on 3rd Rank, Street line is on 4th Rank and Spot Hero is on 5th Rank. To sum up, implementing a smart parking system employing IoT technology has shown to be a potential way to deal with the problems associated with urban parking. The system increases parking efficiency, lessens traffic congestion, and enhances user experience by utilising IoT sensors, data analytics, and real-time communication. The parking scene in smart cities has the potential to change dramatically, enhancing ease and sustainability

    A Study on Vehicle Trajectory Analysis

    Get PDF
    Successful developments of effective real-time traffic management and information systems demand high quality real time traffic information. In the era of intelligent transportation convergence, traffic monitoring requires traffic sensory technologies. The present analysis extracted data from Mobile Century experiment. The data obtained in the experiment was pre-processed. Based on the pre processed data experimental road map has generated. Individual vehicle tracking has done using trajectory analysis. Finally an attempt has been made for extracting association rules from mobile century dataset using Apriori algorithm

    Survey of smart parking systems

    Get PDF
    The large number of vehicles constantly seeking access to congested areas in cities means that finding a public parking place is often difficult and causes problems for drivers and citizens alike. In this context, strategies that guide vehicles from one point to another, looking for the most optimal path, are needed. Most contributions in the literature are routing strategies that take into account different criteria to select the optimal route required to find a parking space. This paper aims to identify the types of smart parking systems (SPS) that are available today, as well as investigate the kinds of vehicle detection techniques (VDT) they have and the algorithms or other methods they employ, in order to analyze where the development of these systems is at today. To do this, a survey of 274 publications from January 2012 to December 2019 was conducted. The survey considered four principal features: SPS types reported in the literature, the kinds of VDT used in these SPS, the algorithms or methods they implement, and the stage of development at which they are. Based on a search and extraction of results methodology, this work was able to effectively obtain the current state of the research area. In addition, the exhaustive study of the studies analyzed allowed for a discussion to be established concerning the main difficulties, as well as the gaps and open problems detected for the SPS. The results shown in this study may provide a base for future research on the subject.Fil: Diaz Ogás, Mathias Gabriel. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Fabregat Gesa, Ramon. Universidad de Girona; EspañaFil: Aciar, Silvana Vanesa. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Cost-effective robot for steep slope crops monitoring

    Get PDF
    This project aims to develop a low cost, simple and robust robot able to autonomously monitorcrops using simple sensors. It will be required do develop robotic sub-systems and integrate them with pre-selected mechanical components, electrical interfaces and robot systems (localization, navigation and perception) using ROS, for wine making regions and maize fields

    A Survey of Smart Parking Solutions

    Get PDF
    International audienceConsidering the increase of urban population and traffic congestion, smart parking is always a strategic issue to work on, not only in the research field but also from economic interests. Thanks to information and communication technology evolution, drivers can more efficiently find satisfying parking spaces with smart parking services. The existing and ongoing works on smart parking are complicated and transdisciplinary. While deploying a smart parking system, cities, as well as urban engineers, need to spend a very long time to survey and inspect all the possibilities. Moreover, many varied works involve multiple disciplines, which are closely linked and inseparable. To give a clear overview, we introduce a smart parking ecosystem and propose a comprehensive and thoughtful classification by identifying their functionalities and problematic focuses. We go through the literature over the period of 2000-2016 on parking solutions as they were applied to smart parking development and evolution, and propose three macro-themes: information collection, system deployment, and service dissemination. In each macro-theme, we explain and synthesize the main methodologies used in the existing works and summarize their common goals and visions to solve current parking difficulties. Lastly, we give our engineering insights and show some challenges and open issues. Our survey gives an exhaustive study and a prospect in a multidisciplinary approach. Besides, the main findings of the current state-of-the-art throw out recommendations for future research on smart cities and the Internet architecture

    Buried RF Sensors for Smart Road Infrastructure: Empirical Communication Range Testing, Propagation by Line of Sight, Diffraction and Reflection Model and Technology Comparison for 868 MHz–2.4 GHz

    Get PDF
    Updating the road infrastructure requires the potential mass adoption of the road studs currently used in car detection, speed monitoring, and path marking. Road studs commonly include RF transceivers connecting the buried sensors to an offsite base station for centralized data management. Since traffic monitoring experiments through buried sensors are resource expensive and difficult, the literature detailing it is insufficient and inaccessible due to various strategic reasons. Moreover, as the main RF frequencies adopted for stud communication are either 868/915 MHz or 2.4 GHz, the radio coverage differs, and it is not readily predictable due to the low-power communication in the near proximity of the ground. This work delivers a reference study on low-power RF communication ranging for the two above frequencies up to 60 m. The experimental setup employs successive measurements and repositioning of a base station at three different heights of 0.5, 1 and 1.5 m, and is accompanied by an extensive theoretical analysis of propagation, including line of sight, diffraction, and wall reflection. Enhancing the tutorial value of this work, a correlation analysis using Pearson’s coefficient and root mean square error is performed between the field test and simulation results

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions
    corecore