223 research outputs found

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog⁥2nlog⁥log⁥n)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log⁥2nlog⁥log⁥n)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs

    Planar Reachability in Linear Space and Constant Time

    Full text link
    We show how to represent a planar digraph in linear space so that distance queries can be answered in constant time. The data structure can be constructed in linear time. This representation of reachability is thus optimal in both time and space, and has optimal construction time. The previous best solution used O(nlog⁥n)O(n\log n) space for constant query time [Thorup FOCS'01].Comment: 20 pages, 5 figures, submitted to FoC

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself

    Planar Reachability Under Single Vertex or Edge Failures

    Get PDF
    International audienceIn this paper we present an efficient reachability oracle under single-edge or single-vertex failures for planar directed graphs. Specifically, we show that a planar digraph G can be preprocessed in O(n log 2 n/log log n) time, producing an O(n log n)-space data structure that can answer in O(log n) time whether u can reach v in G if the vertex x (the edge f) is removed from G, for any query vertices u, v and failed vertex x (failed edge f). To the best of our knowledge, this is the first data structure for planar directed graphs with nearly optimal preprocessing time that answers all-pairs queries under any kind of failures in polylogarithmic time. We also consider 2-reachability problems, where we are given a planar digraph G and we wish to determine if there are two vertex-disjoint (edge-disjoint) paths from u to v, for query vertices u, v. In this setting we provide a nearly optimal 2-reachability oracle, which is the existential variant of the reachability oracle under single failures, with the following bounds. We can construct in O(n polylog n) time an O(n log 3+o(1) n)-space data structure that can check in O(log 2+o(1) n) time for any query vertices u, v whether v is 2-reachable from u, or otherwise find some separating vertex (edge) x lying on all paths from u to v in G. To obtain our results, we follow the general recursive approach of Thorup for reachability in planar graphs [J. ACM '04] and we present new data structures which generalize dominator trees and previous data structures for strong-connectivity under failures [Georgiadis et al., SODA '17]. Our new data structures work also for general digraphs and may be of independent interest

    Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

    Get PDF

    Hardness Results for Dynamic Problems by Extensions of Fredman and Saks’ Chronogram Method

    Get PDF
    We introduce new models for dynamic computation based on the cell probe model of Fredman and Yao. We give these models access to nondeterministic queries or the right answer +-1 as an oracle. We prove that for the dynamic partial sum problem, these new powers do not help, the problem retains its lower bound of  Omega(log n/log log n). From these results we easily derive a large number of lower bounds of order Omega(log n/log log n) for conventional dynamic models like the random access machine. We prove lower bounds for dynamic algorithms for reachability in directed graphs, planarity testing, planar point location, incremental parsing, fundamental data structure problems like maintaining the majority of the prefixes of a string of bits and range queries. We characterise the complexity of maintaining the value of any symmetric function on the prefixes of a bit string
    • 

    corecore