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Abstract 

We consider the problem of dynamically maintaining general series parallel directed acyclic 
graphs (GSP dags). two-terminal series parallel directed acyclic graphs (TTSP dags) and looped 
series parallel directed graphs (looped SP digraphs). We present data structures for updating 
(by both inserting and deleting either a group of edges or vertices) GSP dags. TTSP clags and 
looped SP digraphs of m edges and n vertices in O( log n) worst-case time. The time required 
to check whether there is a path between two given vertices is O(log n), while a path of length 
k can be traced out in O(k + log n) time. For GSP and TTSP dags, our data structures are 
able to report a regular expression describing all the paths between two vertices x and y in 
O(h + log n), where h ~ n is the total number of vertices which are contained in paths from x 
to y. Although GSP dags can have as many as O(n2) edges, we use an implicit representation 
which requires only O(n) space. \Iotivations for studying dynamic graphs arise in several areas, 
such as communication networks, Incremental compilation environments and the design of very 
high level languages, while the dynamic mainter:ance of series parallel graphs is also relevant in 
reducible flow diagrams. 
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I Partially supported by .\'SF Grants 1)( ·H-')·11'13. CCR-.':I6·05J53 and b\' a.n JB\I Graduate Fellowship. 
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1 Introduction 

Significant progress has been recently made in the design of algorithms and data structures for 
dynamic graphs. These data structures support insertions and deletions of edges and/or vertices 
in a graph, in addition to several types of queries. In the following. we will restrict our attention 
to insertions/deletions of edges. The same algorithms gi\'en in this case can easily be generalized 
to take into account insertions/deletions of vertices by means of sta.ndard techniques. 

In particular, much attention has been devoted to the on-line computation of the connected 
components of graphs [6, i, 13, 1-1. 16, Ii, 18, 20. 23. 2-1. 26. 28, 3-1J. The problem consists of 
maintaining an underlying graph under an intermixed sequence of operations of the following kind . 

• add( x, y) : insert an edge between vertices x and y. 

• delete(x,y) : remove the edge between vertices x and y. 

• query( x, y) : return true if there is a path from x to y; return false otherwise. 

• report(x,y) : return an arbitrarily chosen path from x to y. if one exists. 

\Ve will refer to this problem also as the dynamic maintenance of the transitive closure of a graph. 
In the remainder of this paper. we denote by m the number of edges and by n the number of 
vertices in a graph. 

~vlotivations for studying dynamic data structures for graph problems arise in several areas 
including, among others, communication networks, incremental compilation environments [9. 15J 
and the design of very high level languages for incremental computations [3.5J. SO far, the followi ng 
three dynamic problems have been considered: 

(PI) (Insertion Problem) Perform an arbitrary sequence of add. query and report operations. 

(P2) (Deletion Problem) Perform an arbitrary sequence of delete, query and report operations. 

(P3) (Fully Dynamic Problem) Perform an arbitrary sequence of add. delete, query and report 
operations. 

Depending on the different kind of graphs, these problems can be solved in the times gi\,pn 
below. For undirected graphs, by using the set union data structures of Tarjan [31], (PI) can IH' 
solved quite efficiently. Indeed. each add can be supported in O( 1) time. while query and report 
can be carried out respectively in O(o(q.n)) and O(k+o(q,n)) amortized time [30J. where q I' 

the total number of query and report operations, k is the length of the achipved path and 0 is a 
very slowly growing function. a functional inverse of Ackermann's fllnction [31]. Frederickson [1 t: 
proposed a data structure for solving (P.,]) (and therefore also (P2)), in which each insertion "r 
deletion of edges can be performed in O(y'm) worst-case time, while still allowing 0(1) queri .... 
about the transitive closure. The data structure can be easily modified in order to trace out pat h­
in linear time. Frederickson's data structure takes ad vantage of the topological properties of t 11.­
underlying graph. When the graph is planar, things can be done more efficiently and the upd;\lt­
bound becomes 0(log2 n) in the worst case, provided that the updates leave the graph planar. 

As for directed graphs (hereafter referred to also as digraphs). the problem of computing on 111," 
the transitive closure was first tacklpd by Ibaraki and Katoh [16]. TlH'y proposed a data structur·· 
which requires a total of 0(n3) time' to solve (PI) and 0(n2(m + n)) time to solve (PE). Tit.· 
overall time needed for solving (P I) was later red ticed to O( mn) [1 iJ. Also (P2) can he solved ill., 
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total of O(mn) time if the original digraph is ac:.clic [18]. thus improving one order of magnitude 
on the cyclic case. The data structures in [17. 18] are able to answer each connectivity question in 
0(1) time and to report a path of length kin O(k) time. Their space complexity is 0(n2). Similar 
bounds were recently achieved by La Poutre and van Leeuwen [20] and by Yellin [34]. 

In a first comparison to their undirected counterparts. we notice that the time required to solve 
these problems increases by almost one order of magnitude. For (PI). the update amortized time 
bound becomes O( n) instead of O( o( q. n)). There is also a loss of one order of magnitude for (P2). 
Even worse. no efficient fully dynamic data structure is known for general digraphs. This gives 
empirical evidence that reachability for directed graphs is "harder" than for undirected graphs. an 
assertion which has been recently supported by means of theoretical arguments [5]. 

This suggests the investigation of classes of digraphs for which the best bounds known for the 
general case can be improved. Indeed Preparata and Tamassia [23, 28] designed a fully dynamic 
data structure for planar st-graphs. a subclass of planar acyclic digraphs with exactly one source 
and one sink. both on the external face. Their data structure is able to perform each add. delete 
and query operation in O(log n) time and reports a path of length k in O( k + log n) time. provided 
that the digraph remains st-planar after each update. Since planar digraphs have at most O( n) 

edges, their data structure requires O(n) space. 
In this paper. we further investigate classes of digraphs for which the best bounds known for 

general digraphs can be improved. In particular, we consider three classes of series parallel digraphs: 
general series parallel directed acyclic graphs (in short GSP dags) [32]. two-terminal series parallel 
directed acyclic graphs (in short TTSP dags) [32] and looped series parallel directed graphs (in 
short looped SP digraphs) [1]. We show how to efficiently maintain these classes of digraphs under 
a sequence of update operations. each of which leaves the digraph series parallel. In all the three 
cases, the time required for each update (both insertions and deletions of either a group of edges or 
one vertex) is O(logn), while the presence of a path can be checked in O(logn). A path of length 
k can be traced in O(k + logn). For GSP and TTSP dags. a regular expression describing all the 
paths between two vertices x and y can be reported in O(h + log n) time. where h ~ n is the total 
number of vertices in paths from x to y. The space required by all the data structures is O(n). All 
these bounds improve the best bounds previously known for general digraphs. 

Series parallel digraphs and their undirected counterparts arise naturally in many applications 
such as network design [10] and scheduling under constraints [21. 22J. In [8. 19. 2i]linear tim(' 
algorithms are given for solving many problems on such graphs. including problems which are \'p. 
complete for the general case. Dynamic maintenance of series paraUel digraphs arises in different 
areas such as communication networks and reducibility of flow diagrams [2]. 

Our approach seems to be appealing for several reasons. First. despite the fact that GSP daJr;s 
can have as many as 0(n 2 ) edges. we use an implicit representation which reduces to 0(71) tllf' 
space complexity. Second, even if each single update operation operation can either insert or df'I .. IP 

as many as 0(n2 ) edges, each of these operations can still be supported in O(logn) worst·ra .. .;p 

time. Finally, this is the first case that we know of. for which an efficient fully dynamic diila 

structure maintains on line the transitive cl06ure of a non-trivial class of digraphs which contil.ins 
cyclic digraphs (namely. the class of looped SP digraphs). 

The remainder of the paper consists of five sections. In section 2 we give some preliminM\ 
definitions. Data structures for GSP and TTSP dags are prf'sented in section 3 and their time alld 

space complexity analyzed in section .t, Looped SP digraphs are considered in section 5. Sectinn " 
lists some open problems and concluding remarks. 
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2 Preliminary Definitions 

\Ve assume that the reader is familiar with the standard graph theoretical terminology as contained 
for instance in [4]. In addition, we recall that. given a digraph G, a source is a vertex with no 
entering edges and a sink is a vertex with no leaving edges. \Ve now introd uce some terminology 
about series parallel digraphs. :\ Two Terminal Series Parallel digmph [32] (in short TTSP 
digraph) with terminals (source and sink) 8 and t can be produced by a sequence of the following 
operations. 

• Create a new digraph consisting of the edge (8, t). 

• Given two TTSP digraphs G I and G2 with terminals SI, i l ,82, and t2, form a new digraph 
Gp by identifying 8 = 81 = S2 and t = tl = t2 (pamllel composition). 

• Given two TTSP digraphs GI and Gz with terminals sl,t l ,82, and t2, form a new digraph 
G j by identifying s = SI. il = S2 and t = t2 (series composition). 

TTSP digraphs are obviously acyclic (see figure 1). 

[Figure 1] 

By augmenting the set of operations as follows, we obtain the class of looped SP digmphs [1]. 

• Any TTSP digraph is a looped SP digraph. 

• Given two looped SP digraphs G l and G 2 with terminals SI. i l ,82, and i2, form a new digraph 
Gr by identifying 8 = 81 = t2 and t = tl = 82 (pamllel reverse composition). 

Figure 2 exhibits a looped SP digraph. 

[Figure 2] 

The other class of SP digraphs we consider in this paper consists of J[inimal Series Parallel 
Digraphs [32] (in short MSP digraphs) which are ind ucti\'ely defined as follows. 

• The graph with one vertex and no edges is ~ISP. 

• If GI = (VI, Ed and G 2 = (V2 .E2 ) are MSP, then so is G p = (VI U ~2,El U £2) (pamilel 
composition). 

• If GI = (VI,Ed and G 2 = (~r2, E2) are ~ISP, then so is G j = (VI U \12. El U E2 U (T1XS2)), 
where Tl is the set of sinks in G 1 and S2 is the set of sources in G 2 (series composition). 

General series pamllel digraphs [32] (in short GSP digraphs) are the graphs whose transitive r('­
duction [3] is MSP. Figure 3 shows a GSP digraph. 

[Figure 3] 

Any digraph considered above can be represented by means of a decomposition tree [32]. Eae h 
leaf of the tree corresponds either to a vertex (in case of ~lSP and GSP digraphs) or to an edge (in 
case of TTSP and looped SP digraph) in the original digraph. An internal node v is labeled S or }' 
depending on the series or parallel composition of the digraphs represented by the subtrees rootPd al 

the children of v. Trees representing looped SP digraphs have also nodes labeled R when a paralIpl 
reverse composition takes place. :\odes labeled S, P and R wiU be referred to respectively as S· 
nodes, P-nodes and R-nodes. FigHr!' ·1 shows an ~ISP digraph and a corresponding decomposition 
tree. 
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[Figure 4] 

I"otice that there can be several decomposition trees corresponding to the same :'ISP digraph. 
according to the fact that there can be different sequence of series and parallel compositions which 
give rise to the same !vISP digraph. 

In the remainder of the paper we first consider the problem of dynamically maintaining a 
collection of GSP digraphs under an arbitrary sequence of operations of the following kind. 

• create( G, x) : return a GSP digraph G consisting of vertex x and no edges. 

• remove( G) : delete from the collection the GSP digraph G. This operation assumes that G 
consists of one vertex and no edges. 

• series(G1 ,G2,G) : given two GSP digraphs G 1 and G2, return G as the series composition 
of G1 and G2 • This operation destroys G 1 and G2 • 

• pamlle~Gl,G2,G): given two GSP digraphs G 1 and G2 , return G as the parallel composition 
of G1 and G2 • This operation destroys G 1 and G2 • 

• insert(x,y): if there is a path from vertex x to vertex y, then insert the edge (x.y). 

• undo: undo the last update operation (i.e .. series. parallel or insert) not yet undone. 

• query{x, y) : return true if there is a path from x to y; return false otherwise. 

• report(x, y) : return an arbitrarily chosen path from x to y, if one exists. 

• reg-expr(x, y) : return a regular expression which describes the set of all the paths between 
vertices x and y. 

The update operations form a complete set, in the sense that any GSP digraph can be assembled 
or disassembled by a suitable sequence of such operations. 

In the following section we present a data structure which supports each of the previous opera.­
tions in the claimed time bounds. In particular, we will show how to support each create, remove 
and insert operation in 0(1) time and each series, parallel, insert. undo and query in O(Jogn) time. 
Each report operation takes O(k+logn) time, where k is the length of the achieved path. Similarly. 
reg-expr(x. y) can be supported in O(h + log n) time. with h being the total number of vertices in 
paths from x to y. \Ve also show that all the above operations can be correctly performed by usin~ 
an implicit representation based upon decomposition trees. 

The same data structure can be used to achieve the same bounds for TTSP dags. For loopf>tt 
SP digraphs, we will need different techniques due to the presence of cycles. In this case, we allow 
also a reverse operation. which given two looped SP digraphs composes them according to parallpi 
reverse composition. 

3 Dynamic GSP and TTSP dags 

In this section we present a data structure which supports the repertoire of operations for CSI' 
dags in the claimed time bounds. The same data structure can be used with very few changes rOf 

the dynamic maintenance of TTSP clags. Therefore. we will restrict our attention to GSP dags. 
The ideas underlying the data structure are the following. First of all. instead of representinlf 

a GSP dag, we store the ~ISP dag which is its transitive red uction. This is not a restrictitln 



since for the problem of dynamically maintaining information about paths a GSP or its transitive 
reduction are completel~' equi\·alent. Therefore. without any loss of generality, we will restrict our 
attention to MSP dags. Second. we do not store the ~ISP dags explicitly. but rather represent 
them using decomposition trees. Because we have to perform dynamic operations, decomposition 
trees are implemented by means of the dynamic trees of Sleator and Tarjan [26J. We recall here 
that dynamic trees are able to support the following operations (among many others) on a forest 
of trees. 

• link(v.w): add the edge (v.w). where v is a root and w is a node in a different tree. This 
combines two trees containing v and w into a new one . 

• cut( v) : if v is not a root, delete the edge from t,' to its parent. This divides the tree containing 
v into two trees . 

• /ca( v, w) : compute the least common ancestor of v and w. 

Each operation is supported in O(log n) worst-case time [26J. where n is the total number of nodes 
in the forest. 

We maintain decomposition trees in a such a way that each S-node has exactly two children, 
while each P-node can have more than two children. \Ve refer to such a representation of the 
decomposition trees as compact decomposition trees (in short cd-trees). Assuming that an MSP is 
given by means of a pointer to the root of the corresponding cd-tree, we perform our operations as 
follows. 

In order to carry out a create( G . .r), we initialize a new cd-tree to be a leaf x and associate 
it to the newly created r-.rsp dag G. On the other hand. a remove(G) is done by deleting the 
corresponding cd-tree which consists of only one node. Both these operations can be accomplished 
in constant time. 

\Vhen a series(GI ,G2 ,G) operation is to be performed. we create a new node r corresponding 
to G and label it with S. Then. we make the roots Tl and T2 of the trees corresponding to G I 

and G 2 respectively the left and the right child of r. This will maintain the invariant that each 
S -node has exactly two children. Since a series operation causes at most two link operations to be 
performed on dynamic trees plus the creation of a new node. it can be accomplished in O(log n) 
time. 

When a parallel(G I , G2 , G) operation is to be performed. we do the following. If both the tree 
root rl corresponding to G I and the tree root r2 corresponding to G 2 are not P-nodes, then we 
make rl and r2 respectively the left and the right child of a new node r corresponding to G and 
labeled P. If at least one of the two roots is a P-node, say rl. then we make the other root r2 

child of TI' The last rule, referred to as compacting rule. causes P-nodes to have more than two 
children. Again, a parallel operation will cause at most two link operations to be performed on 
dynamic trees plus the creation of a new node. This can be accomplished in O(log n) time. 

To perform an insert(x, y). not hing has to be accomplished. In fact. if there was a path from 
x to y, then an edge (x,y) will not aJJ any useful information for our problem. Otherwise the 
insert(x, y) itself is not supposed to do anything. Clearly, this takes O( 1) time. 

To handle undo operations. an oJXmtlOn SiclCk is maintained. which contains pointer(s) to nodf'S 
in the forest of cd-trees. \Vhen cithpr a sprips operation or a parallel operation which introd UCI'S 

two edges is performed, we push onto thp stack two pointers to the roots made non-root. \\'hen 
a parallel operation introduce one I'd)!.c b"cause of the compacting rille. we push onto the stack a 
pointer to the only root made non· foOt. \\'Iwn an insert operation is performed. a dummy record 
without any pointer is pushed onto thp ~tack. Therefore, an undo operation is performed by first 



popping the top record of the stack. Then the node(s) (if any) pointed to by this record are 
accessed. If there is just one node x to be accessed. then it corresponds to a parallel compo::;itioll 
with compacting rule and therefore the edge leaving I has to be deleted. If the nodes to be accessed 
are two, say x and y, then both the two edges leaving x and yas well as the node they are entering 
have to be deleted. As a consequence, each undo invoh'es at most two cut operations on dY'namic 
trees plus the deletion of a node and therefore can be implemented in o (log n) time. Since the 
above operations are the only ones which modify our data structure. we are now able to prove the 
following invariants. 

Lemma 1 There exists a path from t'ertex x to y (x f: y) if and only if the following two conditions 
hold: 

(i) lca(x.y) in the cd-tree is defined and labeled 5; 

(ii) x and yare respectively in the left and right subtree rooted at lca(x. y). 

Proof: By induction on the number of operations performed. 0 

Lemma 2 In any cd-tree each 5 -node has exactly two children, while among the children of every 
P-node there is either a leaf or an 5 -node. 

Proof: By induction on the number of operations performed. 0 

Because of lemma 1, a query(x,y) is performed by testing whether lca(x,y) is defined and 
labeled S. Using dynamic trees, this can be implemented in O(log n) time. Paths between a given 
pair of vertices x and yare reported as the following pseudo-code shows. 

proced ure report( x, y, T); 
begin 
1. ifql1ery(x.y) then begin 
2. initialize both the path T and a queue Q to 0; 
3. u:=lca(x.y); 
4. ascend from x to v inserting into Q all the right children of S-nodes entered from the left: 
.5. descend from v to y inserting into Q all the left children of S·nodes leaved from the right: 
I. while Q f: 0 do begin 
8. remove a vertex u from Q: compute( u, T); 

end; 
end; 

end; 

procedure compute(u, T); 

begin 
1. case u of 

leaf: 
2. T:= Tu {u}; 

S-node: 
3. let i and j denote respecti\'ply the left and right children of 11; 

4. compute( i. T); comput£( j. T): 

6 



P-node: 
·5. pick i. a non P-node child of u; 

6. compute(i, T); 
end case: 

end: 

The procedure report first checks whether there is a path from x to y in the GSP dag by means 
of a query(x, y) operation. i.e. by checking whether lca(x. y) in a cd-tree exists and is labeled S. If 
there is no such a path, then report stops. Otherwise, let us denote by left(x, y) and by right(x, y) 
respectively the paths in the cd-tree between x and lca(x,y) and between y and lca.(x.y). If a 
path from x to y exists, then part of the subtree rooted at lca(x.y) and in between left(x.y) and 
right(x.y) is recursively visited with the following two rules: 

(i) when an S-node v is visited, then both the two children of v are examined; 

(ii) when a P-node v is visited, then a non P-node child of v is examined. 

Because of lemma 2, the above rules are well defined. 
As far as a reg-expr( x, y) operation is concerned. we apply the same technique of a report( x, y) 

operation. with the only difference that now all the subtree rooted at lca(x, y) and in between 
left(x,y) and right(x,y) is visited. Therefore rule (ii) above is substituted by the following rule: 

(li) when a P-node is visited. then all of its children are examined. 

We will prove the correctness of this approach as well its timing analysis in the next section. 

4 Correctness and Time Complexity 

Before proving the correctness of the data structure and its time complexity. we need the following 
technical lemma. 

Lemma 3 Procedures report and reg-expr correctly accomplish their task in an AlSP dag. 

Proof: By induction on the number of operations performed. 0 

Theorem 1 The data structure correctly implements any sequence of create, remove, series, par­
allel, insert, undo, query, report and reg-expr opemtions. 

Proof: The correctness of the create, remove, series. and parallel operations derives from l h., 
definition of decomposition tree. Insert operations are correctly performed since in any case w.' 

do not have to add any new information to the reachability in the GSP dag. The correctnf'SS o( 

each undo is a consequence of how the operation stack is handled. Finally. report and reg-expr art' 
implemented correctly because of lemma. 3. 0 

\Ve now turn to the time analysis of our algorithm. We notice that in the implementation "I 

procedure report(x,y} we have still to specify how to traverse the pa.ths in the cd-tree betw('('n r 
and lca(x,y) and between lca(x.y) a.nd y (lines.5. and 6. of procedure report). This is crllCl.I!. 

since there can be as many as O( n) nodes in these paths. Therefore. a trivial implementation .. ( 
this traversal would infringe the desired bound for report. Uefore describing the details on II" .... 
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to speed up the search on these paths, we need a few more terminology. For any GSP dag G we 
defi He a canonical .source and a ca non ical 8i1lk c hosl'n a I110ng t he set of sou rces and sin ks of C. The 
canonical source and canonical sink of G are associated to t.he root of the cd-tree corresponding to 
G. Since each subtree of the cd-tree defines a GSP dag, \ve can associate inductively a canonical 
source and a canonical sink to each node z of a cd-tree. as follows. 

• If z is a leaf, then the canonical source (sink) of z is z itself. 

• If z is an S-node, then the canonical source (sink) of z is the same as the canonical source 
(sink) of the left (right) subtree rooted at z. 

• If z is a P-node, then the canonical source (sink) of z is the same as the canonical source 
(sink) of an arbitrarily chosen child w of z which is not a P-node. In this case, w is said to 
be the canonical child of z. 

The correctness of this definition hinges on lemma 2 which states that each S-node has exactly two 
children and that among all the children of a P-node, there is always a non P-node. Given any 
cd-tree T corresponding to a GSP dag G, we define the left (right) ancestor of any leaf l of T as 
the highest node w in T such that l is the canonical sink (source) of w. By using these definitions. 
we are able to speed up the search on the path from x to lca( x. y), as follows. Assume that we 
are considering a node z in such a path. If z is the left child of an S-node v (v ::j:lca(x,y»), then 
we have to insert the right sibling of z into the queue Q defined in procedure report. Otherwise, 
we would like to skip to the least ancestor of z which can possibly enjoy the above property. The 
previous definitions give us a shortcut to this node. which indeed can be located as the left ancestor 
of the canonical source of the parent of z. As a result, line 4. of procedure report(x,y) can be 
implemented as follows. 

z:= x; 
while z is not a child oflca(x.y) do begin 

while z is the left child of an S-node different from 1ca(x,y) do begin 
insert the right sibling of z into Q; 
z := parent(z); 

end; 
if z is not a child of 1ca(x, y) then 

z := LeftAncestor(CanonicaISource(parent(z»); 
end; 

The search in the path from 1ca(x,y) to y (line 5. of procedure report) can be sped up in a 
similar way and therefore the details are omitted. 

To perform the search efficiently. to each node z of a cd-tree we need to associate a pointer to its 
parent, a pointer to its canonical source and a pointer to its canonical sink. tvforeover. depending 
on z, we have the following additional pointers. If z is a leaf. there are two pointers to the left and 
right ancestors of z. If z is a P-node. there is a pointer to the canonical child and a pointer to thp 
list of the remaining children of z. Finally, if z is an S-node, there are two pointers to the left and 
right children of z. To maintain all these pointers we need to perform some bookkeeping durin~ 
the different operations. Indeed. if a s('fies operation combines two GSP dags G 1 and G2 . then thp 
canonical SOurce (sink) of the newly created root T will be the canonical source of G 1 (canonical 
sink of G2 ). Moreover, r will be tllp new left (right) ancestor of its canonical source (sink). If <t 

parallel operation is performed, WI' ran have the following two cases. If no new root is created. thf>n 
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no pointer will be affected. Otherwise, denote b~' r the newly created root. Because of lemma 2. 
r ha.s a non P-node which will be chosen as the canonical child of r. The canonical source (sink) 
of r will then be set to the canonical source (sink) of the canonical child of r. }'loreover. r will be 
the new left ancestor (right ancestor) of its canonical source (sink). In case of an undo operation 
which will delete a root r, we need only to update the left (right) ancestor of the canonical sink 
(source) of r. By using these pointers. the speed up achieved in the procedure report allows us to 
prove the following theorem. 

Theorem 2 The data structure is able to support each create, remove and insert in O( 1) time, 
each series, parallel, undo and query in O(log n) time. Each report operation takes O(k + log n) in 
returning a path of length k. while reg-exp( x. y) can be supported in O( h + log n) time, with h being 
the total number of vertices in paths from x to y. The total space required is O( n). 

Proof: Create and remove operations require the initialization or the deletion of a singleton node 
in the forest of cd-trees and therefore can be accomplished in constant time. Each insert does 
nothing and therefore can be supported in 0(1) time. Series, parallel, undo and query operations 
can be performed in O(log n) since they require that at m06t a constant number of link, cut and 
lea operations be performed on dynamic trees and that a constant number of pointers be updated. 

To bound the total time required by a report operation, we notice the following two facts. 
First, the total time spent by report(x.y} in the paths from x to lca(x,y) and from lca.(x,y) to y is 
proportional to the total number of nodes inserted into the queue Q during this step. The latter 
is clearly bounded by the total number of nodes visited in the cd-tree. Second, the total number 
of nodes visited in the cd-tree can be analyzed as follows. Because of rule (li) (line 5. in procedure 
compute), the number of P-nodes examined is bounded above by the total number of S-nodes and 
leaves examined. As a consequence, the number of S-nodes examined is no more than the number 
of leaves examined. Since when a leaf is considered, it is inserted into the path to be reported (line 
2. of procedure compute), the total number of nodes considered in the cd-tree while reporting a 
path of length k is O(k). Therefore, the total time required by a report operation is O(k) plus the 
time required by a query operation. This gives the claimed bound. 

The analysis of procedure reg-exp can be carried out in a very similar vein and therefore it ha.s 
been omitted. 0 

5 Dynamic looped SP digraphs 

\Ye now show how to maintain a collection of looped SP digraphs under an intermixed sequence of 
the following operations. 

• create(G, s, t) : return a looped SP digraph G consisting of one edge (s. t). 

• remove(G) : delete from the collection the looped SP digraph G. This operation asSUffif>ll 
that G consists of one edge. 

• series(G1 ,G2 .G) : given two looped SP digraphs C\ and G 2 , return G as the series comp<~ 
sition of G1 and C 2 • This operation destroys C t and G2 • 

• paralIel(G\,G2 .G) : given two looped SP digraphs G\ and G 2 • return G as the parallr4 
composition of G1 and G2 • This operation destroys G\ and G2 • 

• reverse(Gt , G2 ,C) : given two looped SP digraphs C\ and C 2 . return G as the reverse parallr4 
composition of C1 and C 2 • This operation destroys G\ and G2 • 
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• undo: undo the last update operation (i.e., series. parallel or re\'erse) not yet undone . 

• query(x,y): return true if there is a path from x to y: return fal.,e otherwise . 

• reTX)rt(x, y) : return an arbitrarily chosen path from x to y, if one exists. 

The update operations form a complete set. in the sense that any looped SP digraph can be 
assembled or disassembled by a suitable sequence of such operations. 

The undo operations can be performed with the help of an auxiliary stack. as shown for GSP 
dags. Therefore, in the following we will omit the details of such operation in our description. 

Very recently, Afrati [1] proposed a fast parallel algorithm to check connectivity in looped 
SP digraphs. She uses two data structures. a decomposition tre€ of the shrunk digraph (Le., the 
digraph obtained by shrinking each strongly connected component into a single node) and the forest 
of decomposition trees of the strongly connected components. Again, it is possible to check whether 
there is a path from a vertex x to a vertex y. by performing least common ancestor queries either 
in the shrunk digraph or in the forest of strongly connected components [1]. In fact, although the 
leaves of decomposition trees are now corresponding to edges (not to vertices) of the SP digraph. 
in order to decide whether a vertex x reaches a vertex y, it suffices to decide whether an edge 
entering x reaches an edge leaving y. By using dynamic trees. each query operation can therefore 
be accomplished in O(logn) time. It is not difficult to Se€ that these two data structures can be 
dynamically maintained at the cos t of O( log n) per update d Ilri ng series. parallel. reverse and undo 
operations. The details are substantially the same as those given in the previous sections and there 
is only some extra bookkeeping due to reverse operations. 

This gives a total of 0(1) time for create and remove operations, and O(logn) time for each 
series, parallel, reverse and query operations. However. given these only two data structures. it 
does not seem possible to trace out paths in less than O(n) time. To achieve the O(k + log n) 
bound, where k is the length of the returned path, we need a novel technique based upon ear 
decompositions [33] recently developed by Eppstein [11]. 

An ear decomposition is a partition of the edges of a graph. A (directed) ear is a (directed) path 
in the graph. An ear is open if its two endpoints are different. The first vertex of a directed ear E 
will by denoted by start(E), while the last vertex will be denoted by end(E). An ear decomposition 
consists of a partition of the edges of a graph into an order sequence of ears E 1 , E2 , ••• , E q • such 
that the endpoints of an ear E" i > 1, appear in a previous ear EJ , j < i. but such that the internal 
vertices of each ear did not appear in any other previous ear. An open ear decomposition contains 
only open ears. Given a digraph and an open ear decomposition D = {E1 .E2 .... ,Eq }. Ei is said 
to be nested in Ej if j < i and both the endpoints of E, appears in E)' We denote the path in EJ 

between the two endpoints of E, as the nesting range of E, in EJ • An ear decomposition D is said 
to be nested if both the following conditions hold: 

(1) for each i > 1, there exists a j < I such that E, is nested in E): 

(2) no two nesting ranges in any par cross each other. 

Eppstein showed that TTSP undirected graphs admit a nested open ear decomposition [11]. 
His proof can be easily extended (0 the class of looped SP digraphs, and by using nested orH'n 
ear decompositions of looped SP dii?;raphs. we are able to r('port efficiently paths between pairs of 
vertices. Before showing how the information about a nested ear decomposition can be maintain(,(j 
during a sequence of series. parallt'l. r,,\'NSf> and undo opNations and how it can be used to perform 
report operations in the claimed bOllnd". we need some more terminology. 
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Given two ears Ei and Ek nested in the same ear Ej, we say that Ek dominates Ei (or equiva­
lently that Ei is dominated by Ek) if and only if the nesting; range of Ei is properly included in th€' 
nesting range of Ek' Ek directly dominates Ei (Ei is directly dominated by Ek) if there is no other 
ear Eh nested in Ej which is dominating Ei and dominated by Ek. Ek is a dominating ear if it 
is not dominated by any other ear .. -\11 these definitions can be extended to the nesting ranges ni 

and nk of Ei and Ek in Ej. Therefore we will indifferently say that the nesting range nk (directly) 
dominates the nesting range ni and we will talk about dominating ranges. Figure.5 shows a looped 
SP digraph and an associated ear decomposition. Ear {l. 2, 6, 8.11, 12} is not dominated by any 
other ear, while ear ill, 10,9, 6} is nested in {I, 2. 6,8.11, 12} and is dominated by {ll, 5, 4, 2}. 

[Figure 5] 

We maintain information about a nested open ear decomposition as follows. Given a looped SP 
digraph with terminals sand t, we define as ear E1 a path from s to t (El is the only ear which 
is not nested in any other ear). We do not maintain explicitly the relative ordering of the ears in 
the sequence, but rather we maintain information about the ear nesting. In fact, we associate to 
each ear Ej a rooted tree T(Ej) of all the ears nested in E). The root rj of T(Ej) corresponds to 
Ej. The children of rj correspond to the dominating ears nested in Ej (the dominating ranges in 
Ed and are sorted in a left-to-right fashion according to the increasing distance of their endpoints 
from start(Ej). In other words. a vertex corresponding to Ei precedes a vertex corresponding to 
Ek in the left-ta-right order if and only if start(E;) precedes start(Ek ) in the directed path E)' 
Furthermore, if different ears share the same range in E), then there will be just one vertex in 
T(Ej) corresponding to all of them. The definition of the tree T(Ej) is recursively completed as 
follows. The children of a non-root vertex v of T( Ej) corresponding to an ear Ev. correspond to 
all and only the ears directly dominated by Ev, again sorted in a left-ta-right fashion according to 
their distance from start(Ev ). In each tree T(Ej), the edges are directed from a child to the parent. 

This definition is consistent, because the open ear decomposition is nested. Therefore. to each 
ear of the decomposition D = {EJ, E2 , •••• Eq} a tree of nesting ranges is associated. Each ear E l , 

i > 1, of the decomposition D correspond to two vertices ri and Vi in two different trees of nesting 
ranges, defined as follows. Vertex ri is the root of T(Ei). the tree of nesting ranges associated to 
Ei. Furthermore. since D is nested. there is an ear E j such that Ei is nested in Ej. Therefore, 
vertex Vi is defined as the internal vertex in the tree T( Ej) associated to the nesting range of E, 
in Ej • As a consequence of the definition of trees of nesting ranges, we have that if Ei :I Ek then 
Ti :I Tk. On the other hand. it can be that Vi = VI; if and only if Ei and EI; are nested in the sarnf> 
ear and share the same nesting range. As for E\. VJ is undefined. 

The q trees of nesting ranges can be combined together to form a unique rooted tree descrihinlZ: 
the nested ear decomposition. by joining the trees along the q - 1 directed edges (ri. Vi), 2 ~ i ~ q. 

The root of the resulting tree will therefore be rJ, the root of the tree of nesting ranges associated to 

E1 • In order to distinguish the two different types of edges. we refer to the edges (ri. pd. 2 ~ i ~ q. 

as dashed edges and to the edges in the trees of nesting ranges as solid edges. The global t r ... · 
obtained is referred to as the nested ear decomposition tree. Using this global tree. a path betwf'f'n 
two vertices x and y can be traced according to the following steps. 

1. Perform a query(x, y) operation. If there is no path from x to y. then stop. 

2. Locate Ex and Ey, the ears in the decomposition containing respectively x and y. Let us d,· 
note by rx and ry the vertices in the nested ear decomposition tree corresponding respecti\·,·!\ 
to Ex and Ey • 
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3. Starting from rx and ry and alternating bet ween them one at the time, we climb towards 
the root of the nested ear decomposition tree. :\ccording to the tra\'f'fsal of the nested ear 
decomposition tree, we trace out paths in the looped SP digraphs. The path from x is traced 
forward and the path from y is traced backwards. At the beginning, we follow the path 
from x (backwards from y) to the endpoint of Ex (Ey ). Each time we go from a vertex lL 

to its parent v along a solid edge in a tree of nesting ranges T( E)), we continue to trace the 
directed path in Ej from the current endpoint of Eu to an endpoint of Ev. respectively the 
ears corresponding to the ranges lL and v. If the edge (u. v) is dashed, then we continue to 
trace the directed path of Eu up to one of its endpoints. In this traversal, we mark each 
visited vertex in the nested ear decomposition tree. 

4. The process terminates when we reach the same vertex of the nested ear decomposition tree 
for the second time. This vertex will correspond to a range in a certain ear Ej, which was 
reached by tracing paths forward from x and backward from y. Denote by x' the vertex in 
Ej reached while tracing forward. and by y' the vertex in Ej reached while tracing backward. 
)/'otice that as a consequence of the tracing procedure, x' and y' will be the two different 
endpoints of the ear Ej. If Ei is directed from x' to y', then we join the achieved path from 
x to x', the fragment of Ei from x' to y' and the achieved path from y' to y; the whole 
path can be now returned. Otherwise, we keep on tracing a (forward) path from x' and a 
(backward) path from y' in Ei and check whether there is a ear which spans the same range 
so far considered in Ei but in the opposite direction. 

As a consequence of the open ear decomposition being nested, the above procedure terminates 
and correctly returns a path from vertex x to vertex y. It is possible to maintain on line the 
nested ear decomposition tree while performing series. parallel, reverse and undo operations without 
infringing the cost of O(logn) time per operation. In fact, after a series(G1 ,G2,G) operation. 
the decomposition of G is obtained by joining the two non-nested ears in the decompositions 
corresponding to G1 and G2 • As a consequence. we have to merge the children of the roots of the 
two nested ear decomposition trees corresponding to G 1 and G2 • If all the children lLj of a node v 
in the nested ear decomposition tree such that the edges (lLj, v) are solid, are doubly linked with 
only the first and last item pointing to v, the merging of the children list can be accomplished in 
constant time. This will not affect the time complexity of the report operation. In fact, although 
the climbing phase will require more time. it can be shown that it is still bounded by the number of 
edges traced out in the actual path. A parallel(G1,G2.G) or a reverse(G1.G2.G) operation mergps 
the two nested ear decomposition trees Tl and T2 respectively corresponding to G 1 and G2 b~' 

introducing the dashed edge (r2' rl), where rl and r2 are the roots of Tl and T2. Some bookkeepinll; 
information is required to distinguish between a parallel and reverse operation. This requires an 
extra constant time. As a result, a path of length k can be reported in O(k + logn) time without 
increasing the time required for each update in the looped SP digraph. The above argument If.'aJs 
to the following theorem. 

Theorem 3 It is possible to dynamically maintain looped SP digraphs with the following bound., 
Each create and remove requires O( 1) time. u'hile each series. paralld. rCl'erse, undo and qU(rlj 

can be performed in o (log n) time. Each report operation takes O( k + log n) in returning a path til 
length k. The total space required is O( 11 ). 
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6 Concluding Remarks 

In this paper we have shown how to maintain dynamically GSP dags. TTSP dags and looped SP 
digraphs. We have introduced data structures for updating (by both inserting and deleting either 
a group of edges or vertices) GSP dags. TTSP dags and looped SP digraphs of m edges and n 
vertices in O(logn) time. The time required to check on line whether there is a path between two 
given vertices is O(logn), while a path of length k can be returned in O(k + logn) time. In case 
of GSP and TTSP dags, a regular expression describing the set of all paths between two vertices x 
and y can be reported in O(h + log n). where h ~ n is the number of vertices contained in any path 
from x to y. By carefully exploiting the properties of series parallel digraphs. the space complexity 
of the data structures presented is 0 (n). 

There are several related and perhaps intriguing open questions. First of all, it seems worth 
of further investigation to study whether there are other classes of digraphs for which the best 
bound known for maintaining the transitive closure of general dynamic digraphs can be improved. 
Furthermore, few results are known about the dynamic maintenance of shortest paths and related 
problems [6, 12, 25]. All the algorithms so far presented are either not fully dynamic or far from 
being optimal. Is it possible to improve these bounds for special classes of graphs, such as planar 
st-digraphs or series parallel digraphs? 
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F 1 gure 1: A TTSP dag. 

Figure 2 A looped 5P digraph 



Figure 3: A GSP dag 
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Figure 4 : An MSP dag and a decompositIOn tree 
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Flgure 5 : A looped SP dIgraph and lts nested ear decomposition 


