
Dynamic Data Structures for

Series Parallel Graphs

Giuseppe F. Italiano
.4.1berto]"1archetti Spaccamela

Umberio ~\janni

CCCS-41i-89

• I

Dynamic Data Structures for Series Parallel Digraphs ,.,

Giu.5eppe F. Italiano t

DepartmeIlt of Computer Science
Columbia Cni,·ersity. i\'ew York. I\Y 10027

and
Dipartimento di Informatica e Sistemistica

U niversita di Roma "La Sapienza", Roma, Italy

Alberto Marchetti Spaccamela
Dipartimento di i-.latematica Pura e Applicata

U ni\'crsita eli L 'Aquila. L 'Aquila. Italy

UmbcTio .Yanni t
Dipartimcnto di Informatica e Sistemistica

U niversita di Roma "La Sapienza", Roma, Italy

.J an uarv 1989

Abstract

We consider the problem of dynamically maintaining general series parallel directed acyclic
graphs (GSP dags). two-terminal series parallel directed acyclic graphs (TTSP dags) and looped
series parallel directed graphs (looped SP digraphs). We present data structures for updating
(by both inserting and deleting either a group of edges or vertices) GSP dags. TTSP clags and
looped SP digraphs of m edges and n vertices in O(log n) worst-case time. The time required
to check whether there is a path between two given vertices is O(log n), while a path of length
k can be traced out in O(k + log n) time. For GSP and TTSP dags, our data structures are
able to report a regular expression describing all the paths between two vertices x and y in
O(h + log n), where h ~ n is the total number of vertices which are contained in paths from x
to y. Although GSP dags can have as many as O(n2) edges, we use an implicit representation
which requires only O(n) space. \Iotivations for studying dynamic graphs arise in several areas,
such as communication networks, Incremental compilation environments and the design of very
high level languages, while the dynamic mainter:ance of series parallel graphs is also relevant in
reducible flow diagrams.

·Work partially supported by the il.lla"n \\1'1 :-iallonal Project -Algorllrnl" Strutture di Calcolo".
I Partially supported by .\'SF Grants 1)(·H-')·11'13. CCR-.':I6·05J53 and b\' a.n JB\I Graduate Fellowship.
!Parlially supported by Sclenia S.p .. \

1 Introduction

Significant progress has been recently made in the design of algorithms and data structures for
dynamic graphs. These data structures support insertions and deletions of edges and/or vertices
in a graph, in addition to several types of queries. In the following. we will restrict our attention
to insertions/deletions of edges. The same algorithms gi\'en in this case can easily be generalized
to take into account insertions/deletions of vertices by means of sta.ndard techniques.

In particular, much attention has been devoted to the on-line computation of the connected
components of graphs [6, i, 13, 1-1. 16, Ii, 18, 20. 23. 2-1. 26. 28, 3-1J. The problem consists of
maintaining an underlying graph under an intermixed sequence of operations of the following kind .

• add(x, y) : insert an edge between vertices x and y.

• delete(x,y) : remove the edge between vertices x and y.

• query(x, y) : return true if there is a path from x to y; return false otherwise.

• report(x,y) : return an arbitrarily chosen path from x to y. if one exists.

\Ve will refer to this problem also as the dynamic maintenance of the transitive closure of a graph.
In the remainder of this paper. we denote by m the number of edges and by n the number of
vertices in a graph.

~vlotivations for studying dynamic data structures for graph problems arise in several areas
including, among others, communication networks, incremental compilation environments [9. 15J
and the design of very high level languages for incremental computations [3.5J. SO far, the followi ng
three dynamic problems have been considered:

(PI) (Insertion Problem) Perform an arbitrary sequence of add. query and report operations.

(P2) (Deletion Problem) Perform an arbitrary sequence of delete, query and report operations.

(P3) (Fully Dynamic Problem) Perform an arbitrary sequence of add. delete, query and report
operations.

Depending on the different kind of graphs, these problems can be solved in the times gi\,pn
below. For undirected graphs, by using the set union data structures of Tarjan [31], (PI) can IH'
solved quite efficiently. Indeed. each add can be supported in O(1) time. while query and report
can be carried out respectively in O(o(q.n)) and O(k+o(q,n)) amortized time [30J. where q I'

the total number of query and report operations, k is the length of the achipved path and 0 is a
very slowly growing function. a functional inverse of Ackermann's fllnction [31]. Frederickson [1 t:
proposed a data structure for solving (P.,]) (and therefore also (P2)), in which each insertion "r
deletion of edges can be performed in O(y'm) worst-case time, while still allowing 0(1) queri
about the transitive closure. The data structure can be easily modified in order to trace out pat h­
in linear time. Frederickson's data structure takes ad vantage of the topological properties of t 11.­
underlying graph. When the graph is planar, things can be done more efficiently and the upd;\lt­
bound becomes 0(log2 n) in the worst case, provided that the updates leave the graph planar.

As for directed graphs (hereafter referred to also as digraphs). the problem of computing on 111,"
the transitive closure was first tacklpd by Ibaraki and Katoh [16]. TlH'y proposed a data structur··
which requires a total of 0(n3) time' to solve (PI) and 0(n2(m + n)) time to solve (PE). Tit.·
overall time needed for solving (P I) was later red ticed to O(mn) [1 iJ. Also (P2) can he solved ill.,

1

total of O(mn) time if the original digraph is ac:.clic [18]. thus improving one order of magnitude
on the cyclic case. The data structures in [17. 18] are able to answer each connectivity question in
0(1) time and to report a path of length kin O(k) time. Their space complexity is 0(n2). Similar
bounds were recently achieved by La Poutre and van Leeuwen [20] and by Yellin [34].

In a first comparison to their undirected counterparts. we notice that the time required to solve
these problems increases by almost one order of magnitude. For (PI). the update amortized time
bound becomes O(n) instead of O(o(q. n)). There is also a loss of one order of magnitude for (P2).
Even worse. no efficient fully dynamic data structure is known for general digraphs. This gives
empirical evidence that reachability for directed graphs is "harder" than for undirected graphs. an
assertion which has been recently supported by means of theoretical arguments [5].

This suggests the investigation of classes of digraphs for which the best bounds known for the
general case can be improved. Indeed Preparata and Tamassia [23, 28] designed a fully dynamic
data structure for planar st-graphs. a subclass of planar acyclic digraphs with exactly one source
and one sink. both on the external face. Their data structure is able to perform each add. delete
and query operation in O(log n) time and reports a path of length k in O(k + log n) time. provided
that the digraph remains st-planar after each update. Since planar digraphs have at most O(n)

edges, their data structure requires O(n) space.
In this paper. we further investigate classes of digraphs for which the best bounds known for

general digraphs can be improved. In particular, we consider three classes of series parallel digraphs:
general series parallel directed acyclic graphs (in short GSP dags) [32]. two-terminal series parallel
directed acyclic graphs (in short TTSP dags) [32] and looped series parallel directed graphs (in
short looped SP digraphs) [1]. We show how to efficiently maintain these classes of digraphs under
a sequence of update operations. each of which leaves the digraph series parallel. In all the three
cases, the time required for each update (both insertions and deletions of either a group of edges or
one vertex) is O(logn), while the presence of a path can be checked in O(logn). A path of length
k can be traced in O(k + logn). For GSP and TTSP dags. a regular expression describing all the
paths between two vertices x and y can be reported in O(h + log n) time. where h ~ n is the total
number of vertices in paths from x to y. The space required by all the data structures is O(n). All
these bounds improve the best bounds previously known for general digraphs.

Series parallel digraphs and their undirected counterparts arise naturally in many applications
such as network design [10] and scheduling under constraints [21. 22J. In [8. 19. 2i]linear tim('
algorithms are given for solving many problems on such graphs. including problems which are \'p.
complete for the general case. Dynamic maintenance of series paraUel digraphs arises in different
areas such as communication networks and reducibility of flow diagrams [2].

Our approach seems to be appealing for several reasons. First. despite the fact that GSP daJr;s
can have as many as 0(n 2) edges. we use an implicit representation which reduces to 0(71) tllf'
space complexity. Second, even if each single update operation operation can either insert or df'I .. IP

as many as 0(n2) edges, each of these operations can still be supported in O(logn) worst·ra .. .;p

time. Finally, this is the first case that we know of. for which an efficient fully dynamic diila

structure maintains on line the transitive cl06ure of a non-trivial class of digraphs which contil.ins
cyclic digraphs (namely. the class of looped SP digraphs).

The remainder of the paper consists of five sections. In section 2 we give some preliminM\
definitions. Data structures for GSP and TTSP dags are prf'sented in section 3 and their time alld

space complexity analyzed in section .t, Looped SP digraphs are considered in section 5. Sectinn "
lists some open problems and concluding remarks.

2

2 Preliminary Definitions

\Ve assume that the reader is familiar with the standard graph theoretical terminology as contained
for instance in [4]. In addition, we recall that. given a digraph G, a source is a vertex with no
entering edges and a sink is a vertex with no leaving edges. \Ve now introd uce some terminology
about series parallel digraphs. :\ Two Terminal Series Parallel digmph [32] (in short TTSP
digraph) with terminals (source and sink) 8 and t can be produced by a sequence of the following
operations.

• Create a new digraph consisting of the edge (8, t).

• Given two TTSP digraphs G I and G2 with terminals SI, i l ,82, and t2, form a new digraph
Gp by identifying 8 = 81 = S2 and t = tl = t2 (pamllel composition).

• Given two TTSP digraphs GI and Gz with terminals sl,t l ,82, and t2, form a new digraph
G j by identifying s = SI. il = S2 and t = t2 (series composition).

TTSP digraphs are obviously acyclic (see figure 1).

[Figure 1]

By augmenting the set of operations as follows, we obtain the class of looped SP digmphs [1].

• Any TTSP digraph is a looped SP digraph.

• Given two looped SP digraphs G l and G 2 with terminals SI. i l ,82, and i2, form a new digraph
Gr by identifying 8 = 81 = t2 and t = tl = 82 (pamllel reverse composition).

Figure 2 exhibits a looped SP digraph.

[Figure 2]

The other class of SP digraphs we consider in this paper consists of J[inimal Series Parallel
Digraphs [32] (in short MSP digraphs) which are ind ucti\'ely defined as follows.

• The graph with one vertex and no edges is ~ISP.

• If GI = (VI, Ed and G 2 = (V2 .E2) are MSP, then so is G p = (VI U ~2,El U £2) (pamilel
composition).

• If GI = (VI,Ed and G 2 = (~r2, E2) are ~ISP, then so is G j = (VI U \12. El U E2 U (T1XS2)),
where Tl is the set of sinks in G 1 and S2 is the set of sources in G 2 (series composition).

General series pamllel digraphs [32] (in short GSP digraphs) are the graphs whose transitive r('­
duction [3] is MSP. Figure 3 shows a GSP digraph.

[Figure 3]

Any digraph considered above can be represented by means of a decomposition tree [32]. Eae h
leaf of the tree corresponds either to a vertex (in case of ~lSP and GSP digraphs) or to an edge (in
case of TTSP and looped SP digraph) in the original digraph. An internal node v is labeled S or }'
depending on the series or parallel composition of the digraphs represented by the subtrees rootPd al

the children of v. Trees representing looped SP digraphs have also nodes labeled R when a paralIpl
reverse composition takes place. :\odes labeled S, P and R wiU be referred to respectively as S·
nodes, P-nodes and R-nodes. FigHr!' ·1 shows an ~ISP digraph and a corresponding decomposition
tree.

3

[Figure 4]

I"otice that there can be several decomposition trees corresponding to the same :'ISP digraph.
according to the fact that there can be different sequence of series and parallel compositions which
give rise to the same !vISP digraph.

In the remainder of the paper we first consider the problem of dynamically maintaining a
collection of GSP digraphs under an arbitrary sequence of operations of the following kind.

• create(G, x) : return a GSP digraph G consisting of vertex x and no edges.

• remove(G) : delete from the collection the GSP digraph G. This operation assumes that G
consists of one vertex and no edges.

• series(G1 ,G2,G) : given two GSP digraphs G 1 and G2, return G as the series composition
of G1 and G2 • This operation destroys G 1 and G2 •

• pamlle~Gl,G2,G): given two GSP digraphs G 1 and G2 , return G as the parallel composition
of G1 and G2 • This operation destroys G 1 and G2 •

• insert(x,y): if there is a path from vertex x to vertex y, then insert the edge (x.y).

• undo: undo the last update operation (i.e .. series. parallel or insert) not yet undone.

• query{x, y) : return true if there is a path from x to y; return false otherwise.

• report(x, y) : return an arbitrarily chosen path from x to y, if one exists.

• reg-expr(x, y) : return a regular expression which describes the set of all the paths between
vertices x and y.

The update operations form a complete set, in the sense that any GSP digraph can be assembled
or disassembled by a suitable sequence of such operations.

In the following section we present a data structure which supports each of the previous opera.­
tions in the claimed time bounds. In particular, we will show how to support each create, remove
and insert operation in 0(1) time and each series, parallel, insert. undo and query in O(Jogn) time.
Each report operation takes O(k+logn) time, where k is the length of the achieved path. Similarly.
reg-expr(x. y) can be supported in O(h + log n) time. with h being the total number of vertices in
paths from x to y. \Ve also show that all the above operations can be correctly performed by usin~
an implicit representation based upon decomposition trees.

The same data structure can be used to achieve the same bounds for TTSP dags. For loopf>tt
SP digraphs, we will need different techniques due to the presence of cycles. In this case, we allow
also a reverse operation. which given two looped SP digraphs composes them according to parallpi
reverse composition.

3 Dynamic GSP and TTSP dags

In this section we present a data structure which supports the repertoire of operations for CSI'
dags in the claimed time bounds. The same data structure can be used with very few changes rOf

the dynamic maintenance of TTSP clags. Therefore. we will restrict our attention to GSP dags.
The ideas underlying the data structure are the following. First of all. instead of representinlf

a GSP dag, we store the ~ISP dag which is its transitive red uction. This is not a restrictitln

since for the problem of dynamically maintaining information about paths a GSP or its transitive
reduction are completel~' equi\·alent. Therefore. without any loss of generality, we will restrict our
attention to MSP dags. Second. we do not store the ~ISP dags explicitly. but rather represent
them using decomposition trees. Because we have to perform dynamic operations, decomposition
trees are implemented by means of the dynamic trees of Sleator and Tarjan [26J. We recall here
that dynamic trees are able to support the following operations (among many others) on a forest
of trees.

• link(v.w): add the edge (v.w). where v is a root and w is a node in a different tree. This
combines two trees containing v and w into a new one .

• cut(v) : if v is not a root, delete the edge from t,' to its parent. This divides the tree containing
v into two trees .

• /ca(v, w) : compute the least common ancestor of v and w.

Each operation is supported in O(log n) worst-case time [26J. where n is the total number of nodes
in the forest.

We maintain decomposition trees in a such a way that each S-node has exactly two children,
while each P-node can have more than two children. \Ve refer to such a representation of the
decomposition trees as compact decomposition trees (in short cd-trees). Assuming that an MSP is
given by means of a pointer to the root of the corresponding cd-tree, we perform our operations as
follows.

In order to carry out a create(G . .r), we initialize a new cd-tree to be a leaf x and associate
it to the newly created r-.rsp dag G. On the other hand. a remove(G) is done by deleting the
corresponding cd-tree which consists of only one node. Both these operations can be accomplished
in constant time.

\Vhen a series(GI ,G2 ,G) operation is to be performed. we create a new node r corresponding
to G and label it with S. Then. we make the roots Tl and T2 of the trees corresponding to G I

and G 2 respectively the left and the right child of r. This will maintain the invariant that each
S -node has exactly two children. Since a series operation causes at most two link operations to be
performed on dynamic trees plus the creation of a new node. it can be accomplished in O(log n)
time.

When a parallel(G I , G2 , G) operation is to be performed. we do the following. If both the tree
root rl corresponding to G I and the tree root r2 corresponding to G 2 are not P-nodes, then we
make rl and r2 respectively the left and the right child of a new node r corresponding to G and
labeled P. If at least one of the two roots is a P-node, say rl. then we make the other root r2

child of TI' The last rule, referred to as compacting rule. causes P-nodes to have more than two
children. Again, a parallel operation will cause at most two link operations to be performed on
dynamic trees plus the creation of a new node. This can be accomplished in O(log n) time.

To perform an insert(x, y). not hing has to be accomplished. In fact. if there was a path from
x to y, then an edge (x,y) will not aJJ any useful information for our problem. Otherwise the
insert(x, y) itself is not supposed to do anything. Clearly, this takes O(1) time.

To handle undo operations. an oJXmtlOn SiclCk is maintained. which contains pointer(s) to nodf'S
in the forest of cd-trees. \Vhen cithpr a sprips operation or a parallel operation which introd UCI'S

two edges is performed, we push onto thp stack two pointers to the roots made non-root. \\'hen
a parallel operation introduce one I'd)!.c b"cause of the compacting rille. we push onto the stack a
pointer to the only root made non· foOt. \\'Iwn an insert operation is performed. a dummy record
without any pointer is pushed onto thp ~tack. Therefore, an undo operation is performed by first

popping the top record of the stack. Then the node(s) (if any) pointed to by this record are
accessed. If there is just one node x to be accessed. then it corresponds to a parallel compo::;itioll
with compacting rule and therefore the edge leaving I has to be deleted. If the nodes to be accessed
are two, say x and y, then both the two edges leaving x and yas well as the node they are entering
have to be deleted. As a consequence, each undo invoh'es at most two cut operations on dY'namic
trees plus the deletion of a node and therefore can be implemented in o (log n) time. Since the
above operations are the only ones which modify our data structure. we are now able to prove the
following invariants.

Lemma 1 There exists a path from t'ertex x to y (x f: y) if and only if the following two conditions
hold:

(i) lca(x.y) in the cd-tree is defined and labeled 5;

(ii) x and yare respectively in the left and right subtree rooted at lca(x. y).

Proof: By induction on the number of operations performed. 0

Lemma 2 In any cd-tree each 5 -node has exactly two children, while among the children of every
P-node there is either a leaf or an 5 -node.

Proof: By induction on the number of operations performed. 0

Because of lemma 1, a query(x,y) is performed by testing whether lca(x,y) is defined and
labeled S. Using dynamic trees, this can be implemented in O(log n) time. Paths between a given
pair of vertices x and yare reported as the following pseudo-code shows.

proced ure report(x, y, T);
begin
1. ifql1ery(x.y) then begin
2. initialize both the path T and a queue Q to 0;
3. u:=lca(x.y);
4. ascend from x to v inserting into Q all the right children of S-nodes entered from the left:
.5. descend from v to y inserting into Q all the left children of S·nodes leaved from the right:
I. while Q f: 0 do begin
8. remove a vertex u from Q: compute(u, T);

end;
end;

end;

procedure compute(u, T);

begin
1. case u of

leaf:
2. T:= Tu {u};

S-node:
3. let i and j denote respecti\'ply the left and right children of 11;

4. compute(i. T); comput£(j. T):

6

P-node:
·5. pick i. a non P-node child of u;

6. compute(i, T);
end case:

end:

The procedure report first checks whether there is a path from x to y in the GSP dag by means
of a query(x, y) operation. i.e. by checking whether lca(x. y) in a cd-tree exists and is labeled S. If
there is no such a path, then report stops. Otherwise, let us denote by left(x, y) and by right(x, y)
respectively the paths in the cd-tree between x and lca(x,y) and between y and lca.(x.y). If a
path from x to y exists, then part of the subtree rooted at lca(x.y) and in between left(x.y) and
right(x.y) is recursively visited with the following two rules:

(i) when an S-node v is visited, then both the two children of v are examined;

(ii) when a P-node v is visited, then a non P-node child of v is examined.

Because of lemma 2, the above rules are well defined.
As far as a reg-expr(x, y) operation is concerned. we apply the same technique of a report(x, y)

operation. with the only difference that now all the subtree rooted at lca(x, y) and in between
left(x,y) and right(x,y) is visited. Therefore rule (ii) above is substituted by the following rule:

(li) when a P-node is visited. then all of its children are examined.

We will prove the correctness of this approach as well its timing analysis in the next section.

4 Correctness and Time Complexity

Before proving the correctness of the data structure and its time complexity. we need the following
technical lemma.

Lemma 3 Procedures report and reg-expr correctly accomplish their task in an AlSP dag.

Proof: By induction on the number of operations performed. 0

Theorem 1 The data structure correctly implements any sequence of create, remove, series, par­
allel, insert, undo, query, report and reg-expr opemtions.

Proof: The correctness of the create, remove, series. and parallel operations derives from l h.,
definition of decomposition tree. Insert operations are correctly performed since in any case w.'

do not have to add any new information to the reachability in the GSP dag. The correctnf'SS o(

each undo is a consequence of how the operation stack is handled. Finally. report and reg-expr art'
implemented correctly because of lemma. 3. 0

\Ve now turn to the time analysis of our algorithm. We notice that in the implementation "I

procedure report(x,y} we have still to specify how to traverse the pa.ths in the cd-tree betw('('n r
and lca(x,y) and between lca(x.y) a.nd y (lines.5. and 6. of procedure report). This is crllCl.I!.

since there can be as many as O(n) nodes in these paths. Therefore. a trivial implementation .. (
this traversal would infringe the desired bound for report. Uefore describing the details on II"

7

to speed up the search on these paths, we need a few more terminology. For any GSP dag G we
defi He a canonical .source and a ca non ical 8i1lk c hosl'n a I110ng t he set of sou rces and sin ks of C. The
canonical source and canonical sink of G are associated to t.he root of the cd-tree corresponding to
G. Since each subtree of the cd-tree defines a GSP dag, \ve can associate inductively a canonical
source and a canonical sink to each node z of a cd-tree. as follows.

• If z is a leaf, then the canonical source (sink) of z is z itself.

• If z is an S-node, then the canonical source (sink) of z is the same as the canonical source
(sink) of the left (right) subtree rooted at z.

• If z is a P-node, then the canonical source (sink) of z is the same as the canonical source
(sink) of an arbitrarily chosen child w of z which is not a P-node. In this case, w is said to
be the canonical child of z.

The correctness of this definition hinges on lemma 2 which states that each S-node has exactly two
children and that among all the children of a P-node, there is always a non P-node. Given any
cd-tree T corresponding to a GSP dag G, we define the left (right) ancestor of any leaf l of T as
the highest node w in T such that l is the canonical sink (source) of w. By using these definitions.
we are able to speed up the search on the path from x to lca(x. y), as follows. Assume that we
are considering a node z in such a path. If z is the left child of an S-node v (v ::j:lca(x,y»), then
we have to insert the right sibling of z into the queue Q defined in procedure report. Otherwise,
we would like to skip to the least ancestor of z which can possibly enjoy the above property. The
previous definitions give us a shortcut to this node. which indeed can be located as the left ancestor
of the canonical source of the parent of z. As a result, line 4. of procedure report(x,y) can be
implemented as follows.

z:= x;
while z is not a child oflca(x.y) do begin

while z is the left child of an S-node different from 1ca(x,y) do begin
insert the right sibling of z into Q;
z := parent(z);

end;
if z is not a child of 1ca(x, y) then

z := LeftAncestor(CanonicaISource(parent(z»);
end;

The search in the path from 1ca(x,y) to y (line 5. of procedure report) can be sped up in a
similar way and therefore the details are omitted.

To perform the search efficiently. to each node z of a cd-tree we need to associate a pointer to its
parent, a pointer to its canonical source and a pointer to its canonical sink. tvforeover. depending
on z, we have the following additional pointers. If z is a leaf. there are two pointers to the left and
right ancestors of z. If z is a P-node. there is a pointer to the canonical child and a pointer to thp
list of the remaining children of z. Finally, if z is an S-node, there are two pointers to the left and
right children of z. To maintain all these pointers we need to perform some bookkeeping durin~
the different operations. Indeed. if a s('fies operation combines two GSP dags G 1 and G2 . then thp
canonical SOurce (sink) of the newly created root T will be the canonical source of G 1 (canonical
sink of G2). Moreover, r will be tllp new left (right) ancestor of its canonical source (sink). If <t

parallel operation is performed, WI' ran have the following two cases. If no new root is created. thf>n

8

no pointer will be affected. Otherwise, denote b~' r the newly created root. Because of lemma 2.
r ha.s a non P-node which will be chosen as the canonical child of r. The canonical source (sink)
of r will then be set to the canonical source (sink) of the canonical child of r. }'loreover. r will be
the new left ancestor (right ancestor) of its canonical source (sink). In case of an undo operation
which will delete a root r, we need only to update the left (right) ancestor of the canonical sink
(source) of r. By using these pointers. the speed up achieved in the procedure report allows us to
prove the following theorem.

Theorem 2 The data structure is able to support each create, remove and insert in O(1) time,
each series, parallel, undo and query in O(log n) time. Each report operation takes O(k + log n) in
returning a path of length k. while reg-exp(x. y) can be supported in O(h + log n) time, with h being
the total number of vertices in paths from x to y. The total space required is O(n).

Proof: Create and remove operations require the initialization or the deletion of a singleton node
in the forest of cd-trees and therefore can be accomplished in constant time. Each insert does
nothing and therefore can be supported in 0(1) time. Series, parallel, undo and query operations
can be performed in O(log n) since they require that at m06t a constant number of link, cut and
lea operations be performed on dynamic trees and that a constant number of pointers be updated.

To bound the total time required by a report operation, we notice the following two facts.
First, the total time spent by report(x.y} in the paths from x to lca(x,y) and from lca.(x,y) to y is
proportional to the total number of nodes inserted into the queue Q during this step. The latter
is clearly bounded by the total number of nodes visited in the cd-tree. Second, the total number
of nodes visited in the cd-tree can be analyzed as follows. Because of rule (li) (line 5. in procedure
compute), the number of P-nodes examined is bounded above by the total number of S-nodes and
leaves examined. As a consequence, the number of S-nodes examined is no more than the number
of leaves examined. Since when a leaf is considered, it is inserted into the path to be reported (line
2. of procedure compute), the total number of nodes considered in the cd-tree while reporting a
path of length k is O(k). Therefore, the total time required by a report operation is O(k) plus the
time required by a query operation. This gives the claimed bound.

The analysis of procedure reg-exp can be carried out in a very similar vein and therefore it ha.s
been omitted. 0

5 Dynamic looped SP digraphs

\Ye now show how to maintain a collection of looped SP digraphs under an intermixed sequence of
the following operations.

• create(G, s, t) : return a looped SP digraph G consisting of one edge (s. t).

• remove(G) : delete from the collection the looped SP digraph G. This operation asSUffif>ll
that G consists of one edge.

• series(G1 ,G2 .G) : given two looped SP digraphs C\ and G 2 , return G as the series comp<~
sition of G1 and C 2 • This operation destroys C t and G2 •

• paralIel(G\,G2 .G) : given two looped SP digraphs G\ and G 2 • return G as the parallr4
composition of G1 and G2 • This operation destroys G\ and G2 •

• reverse(Gt , G2 ,C) : given two looped SP digraphs C\ and C 2 . return G as the reverse parallr4
composition of C1 and C 2 • This operation destroys G\ and G2 •

9

• undo: undo the last update operation (i.e., series. parallel or re\'erse) not yet undone .

• query(x,y): return true if there is a path from x to y: return fal.,e otherwise .

• reTX)rt(x, y) : return an arbitrarily chosen path from x to y, if one exists.

The update operations form a complete set. in the sense that any looped SP digraph can be
assembled or disassembled by a suitable sequence of such operations.

The undo operations can be performed with the help of an auxiliary stack. as shown for GSP
dags. Therefore, in the following we will omit the details of such operation in our description.

Very recently, Afrati [1] proposed a fast parallel algorithm to check connectivity in looped
SP digraphs. She uses two data structures. a decomposition tre€ of the shrunk digraph (Le., the
digraph obtained by shrinking each strongly connected component into a single node) and the forest
of decomposition trees of the strongly connected components. Again, it is possible to check whether
there is a path from a vertex x to a vertex y. by performing least common ancestor queries either
in the shrunk digraph or in the forest of strongly connected components [1]. In fact, although the
leaves of decomposition trees are now corresponding to edges (not to vertices) of the SP digraph.
in order to decide whether a vertex x reaches a vertex y, it suffices to decide whether an edge
entering x reaches an edge leaving y. By using dynamic trees. each query operation can therefore
be accomplished in O(logn) time. It is not difficult to Se€ that these two data structures can be
dynamically maintained at the cos t of O(log n) per update d Ilri ng series. parallel. reverse and undo
operations. The details are substantially the same as those given in the previous sections and there
is only some extra bookkeeping due to reverse operations.

This gives a total of 0(1) time for create and remove operations, and O(logn) time for each
series, parallel, reverse and query operations. However. given these only two data structures. it
does not seem possible to trace out paths in less than O(n) time. To achieve the O(k + log n)
bound, where k is the length of the returned path, we need a novel technique based upon ear
decompositions [33] recently developed by Eppstein [11].

An ear decomposition is a partition of the edges of a graph. A (directed) ear is a (directed) path
in the graph. An ear is open if its two endpoints are different. The first vertex of a directed ear E
will by denoted by start(E), while the last vertex will be denoted by end(E). An ear decomposition
consists of a partition of the edges of a graph into an order sequence of ears E 1 , E2 , ••• , E q • such
that the endpoints of an ear E" i > 1, appear in a previous ear EJ , j < i. but such that the internal
vertices of each ear did not appear in any other previous ear. An open ear decomposition contains
only open ears. Given a digraph and an open ear decomposition D = {E1 .E2 ,Eq }. Ei is said
to be nested in Ej if j < i and both the endpoints of E, appears in E)' We denote the path in EJ

between the two endpoints of E, as the nesting range of E, in EJ • An ear decomposition D is said
to be nested if both the following conditions hold:

(1) for each i > 1, there exists a j < I such that E, is nested in E):

(2) no two nesting ranges in any par cross each other.

Eppstein showed that TTSP undirected graphs admit a nested open ear decomposition [11].
His proof can be easily extended (0 the class of looped SP digraphs, and by using nested orH'n
ear decompositions of looped SP dii?;raphs. we are able to r('port efficiently paths between pairs of
vertices. Before showing how the information about a nested ear decomposition can be maintain(,(j
during a sequence of series. parallt'l. r,,\'NSf> and undo opNations and how it can be used to perform
report operations in the claimed bOllnd". we need some more terminology.

10

Given two ears Ei and Ek nested in the same ear Ej, we say that Ek dominates Ei (or equiva­
lently that Ei is dominated by Ek) if and only if the nesting; range of Ei is properly included in th€'
nesting range of Ek' Ek directly dominates Ei (Ei is directly dominated by Ek) if there is no other
ear Eh nested in Ej which is dominating Ei and dominated by Ek. Ek is a dominating ear if it
is not dominated by any other ear .. -\11 these definitions can be extended to the nesting ranges ni

and nk of Ei and Ek in Ej. Therefore we will indifferently say that the nesting range nk (directly)
dominates the nesting range ni and we will talk about dominating ranges. Figure.5 shows a looped
SP digraph and an associated ear decomposition. Ear {l. 2, 6, 8.11, 12} is not dominated by any
other ear, while ear ill, 10,9, 6} is nested in {I, 2. 6,8.11, 12} and is dominated by {ll, 5, 4, 2}.

[Figure 5]

We maintain information about a nested open ear decomposition as follows. Given a looped SP
digraph with terminals sand t, we define as ear E1 a path from s to t (El is the only ear which
is not nested in any other ear). We do not maintain explicitly the relative ordering of the ears in
the sequence, but rather we maintain information about the ear nesting. In fact, we associate to
each ear Ej a rooted tree T(Ej) of all the ears nested in E). The root rj of T(Ej) corresponds to
Ej. The children of rj correspond to the dominating ears nested in Ej (the dominating ranges in
Ed and are sorted in a left-to-right fashion according to the increasing distance of their endpoints
from start(Ej). In other words. a vertex corresponding to Ei precedes a vertex corresponding to
Ek in the left-ta-right order if and only if start(E;) precedes start(Ek) in the directed path E)'
Furthermore, if different ears share the same range in E), then there will be just one vertex in
T(Ej) corresponding to all of them. The definition of the tree T(Ej) is recursively completed as
follows. The children of a non-root vertex v of T(Ej) corresponding to an ear Ev. correspond to
all and only the ears directly dominated by Ev, again sorted in a left-ta-right fashion according to
their distance from start(Ev). In each tree T(Ej), the edges are directed from a child to the parent.

This definition is consistent, because the open ear decomposition is nested. Therefore. to each
ear of the decomposition D = {EJ, E2 , •••• Eq} a tree of nesting ranges is associated. Each ear E l ,

i > 1, of the decomposition D correspond to two vertices ri and Vi in two different trees of nesting
ranges, defined as follows. Vertex ri is the root of T(Ei). the tree of nesting ranges associated to
Ei. Furthermore. since D is nested. there is an ear E j such that Ei is nested in Ej. Therefore,
vertex Vi is defined as the internal vertex in the tree T(Ej) associated to the nesting range of E,
in Ej • As a consequence of the definition of trees of nesting ranges, we have that if Ei :I Ek then
Ti :I Tk. On the other hand. it can be that Vi = VI; if and only if Ei and EI; are nested in the sarnf>
ear and share the same nesting range. As for E\. VJ is undefined.

The q trees of nesting ranges can be combined together to form a unique rooted tree descrihinlZ:
the nested ear decomposition. by joining the trees along the q - 1 directed edges (ri. Vi), 2 ~ i ~ q.

The root of the resulting tree will therefore be rJ, the root of the tree of nesting ranges associated to

E1 • In order to distinguish the two different types of edges. we refer to the edges (ri. pd. 2 ~ i ~ q.

as dashed edges and to the edges in the trees of nesting ranges as solid edges. The global t r ... ·
obtained is referred to as the nested ear decomposition tree. Using this global tree. a path betwf'f'n
two vertices x and y can be traced according to the following steps.

1. Perform a query(x, y) operation. If there is no path from x to y. then stop.

2. Locate Ex and Ey, the ears in the decomposition containing respectively x and y. Let us d,·
note by rx and ry the vertices in the nested ear decomposition tree corresponding respecti\·,·!\
to Ex and Ey •

11

3. Starting from rx and ry and alternating bet ween them one at the time, we climb towards
the root of the nested ear decomposition tree. :\ccording to the tra\'f'fsal of the nested ear
decomposition tree, we trace out paths in the looped SP digraphs. The path from x is traced
forward and the path from y is traced backwards. At the beginning, we follow the path
from x (backwards from y) to the endpoint of Ex (Ey). Each time we go from a vertex lL

to its parent v along a solid edge in a tree of nesting ranges T(E)), we continue to trace the
directed path in Ej from the current endpoint of Eu to an endpoint of Ev. respectively the
ears corresponding to the ranges lL and v. If the edge (u. v) is dashed, then we continue to
trace the directed path of Eu up to one of its endpoints. In this traversal, we mark each
visited vertex in the nested ear decomposition tree.

4. The process terminates when we reach the same vertex of the nested ear decomposition tree
for the second time. This vertex will correspond to a range in a certain ear Ej, which was
reached by tracing paths forward from x and backward from y. Denote by x' the vertex in
Ej reached while tracing forward. and by y' the vertex in Ej reached while tracing backward.
)/'otice that as a consequence of the tracing procedure, x' and y' will be the two different
endpoints of the ear Ej. If Ei is directed from x' to y', then we join the achieved path from
x to x', the fragment of Ei from x' to y' and the achieved path from y' to y; the whole
path can be now returned. Otherwise, we keep on tracing a (forward) path from x' and a
(backward) path from y' in Ei and check whether there is a ear which spans the same range
so far considered in Ei but in the opposite direction.

As a consequence of the open ear decomposition being nested, the above procedure terminates
and correctly returns a path from vertex x to vertex y. It is possible to maintain on line the
nested ear decomposition tree while performing series. parallel, reverse and undo operations without
infringing the cost of O(logn) time per operation. In fact, after a series(G1 ,G2,G) operation.
the decomposition of G is obtained by joining the two non-nested ears in the decompositions
corresponding to G1 and G2 • As a consequence. we have to merge the children of the roots of the
two nested ear decomposition trees corresponding to G 1 and G2 • If all the children lLj of a node v
in the nested ear decomposition tree such that the edges (lLj, v) are solid, are doubly linked with
only the first and last item pointing to v, the merging of the children list can be accomplished in
constant time. This will not affect the time complexity of the report operation. In fact, although
the climbing phase will require more time. it can be shown that it is still bounded by the number of
edges traced out in the actual path. A parallel(G1,G2.G) or a reverse(G1.G2.G) operation mergps
the two nested ear decomposition trees Tl and T2 respectively corresponding to G 1 and G2 b~'

introducing the dashed edge (r2' rl), where rl and r2 are the roots of Tl and T2. Some bookkeepinll;
information is required to distinguish between a parallel and reverse operation. This requires an
extra constant time. As a result, a path of length k can be reported in O(k + logn) time without
increasing the time required for each update in the looped SP digraph. The above argument If.'aJs
to the following theorem.

Theorem 3 It is possible to dynamically maintain looped SP digraphs with the following bound.,
Each create and remove requires O(1) time. u'hile each series. paralld. rCl'erse, undo and qU(rlj

can be performed in o (log n) time. Each report operation takes O(k + log n) in returning a path til
length k. The total space required is O(11).

12

6 Concluding Remarks

In this paper we have shown how to maintain dynamically GSP dags. TTSP dags and looped SP
digraphs. We have introduced data structures for updating (by both inserting and deleting either
a group of edges or vertices) GSP dags. TTSP dags and looped SP digraphs of m edges and n
vertices in O(logn) time. The time required to check on line whether there is a path between two
given vertices is O(logn), while a path of length k can be returned in O(k + logn) time. In case
of GSP and TTSP dags, a regular expression describing the set of all paths between two vertices x
and y can be reported in O(h + log n). where h ~ n is the number of vertices contained in any path
from x to y. By carefully exploiting the properties of series parallel digraphs. the space complexity
of the data structures presented is 0 (n).

There are several related and perhaps intriguing open questions. First of all, it seems worth
of further investigation to study whether there are other classes of digraphs for which the best
bound known for maintaining the transitive closure of general dynamic digraphs can be improved.
Furthermore, few results are known about the dynamic maintenance of shortest paths and related
problems [6, 12, 25]. All the algorithms so far presented are either not fully dynamic or far from
being optimal. Is it possible to improve these bounds for special classes of graphs, such as planar
st-digraphs or series parallel digraphs?

Acknowledgements
\Ve would like to thank David Eppstein for many useful suggestions and discussions. We are

also indebted to Giorgio Ausiello for his can tinuous support and encouragement.

References

[1] F. Afrati, An efficient parallel algorithm for directed reachability in series parallel graphs.
manuscript 1988.

[2] F. Afrati, D. Goldin, and P. Kanellakis, Efficient parallelism for structured data: directed
reachability in Sop dags, Technical Report. Brown University. 1988.

[3] A. V. Aha, M. R. Garey, and J. D. Ullman, The transitive red uction of a directed graph.
SIAM J. Comput. 1 (1972). 131-137.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-­
rithms, Addison-Wesley. Reading. ~I A. 197·L

[5] ~L Ajtai and R. Fagin, Reachability is harder for directed than for undirected graphs. Pmc.
29th Annual Symp. on Foundations of Computer Science, 1988, 3.58-36i.

[6] G. Ausiello, G. F. Italiano. :\. ~Iarchetti Spaccamela. and U. ~annj. On-line computation of
minimal and maximal length paths, in preparation.

13

[7] G. Ausiello, A. ~Iarchetti Spaccamela, and U. :; anni, Dynamic maintenance of paths and path
expressions in graphs, Proc. 1st Internat. Joint Conf. ISSAC 88 (Int. Symp. on Symbolic and
Algebraic Computation) and AAECC 6 (6th Int. Conf. on Applied Algebra, Algebraic Algo­
rithms and Error Correcting Codes), Lecture Notes in Computer Science, Springer-Verlag,
Berlin. 1989.

[8] M. W. Bern, E. 1. Lawler, and A. L. \-\long, Wby certain subgraph computations require only
linear time, Pmc. 26th Annual Symp. on Foundations of Computer Science. 1985. 117-125.

[9] M. Burke, and B. G. Ryder. Incremental iterative data flow analysis algorithms, Technical
Report LCSR-TR-96, Department of Computer Science, Rutgers University, August 1987.

[10] R. J. Duffin, Topology of series parallel networks, Journal of Mathematical Analysis and
A.pplications 10 (1965), 303-318.

[11] D. Eppstein, Parallel recognition of series-parallel graphs, manuscript, 1989.

[12] S. Even, and H. Gazit, l.: pdating distances in dynamic graphs, l\t/ethods of Operations Research
49 (1985),371-387.

[13] S. Even, and Y. Shiloach, An on-line edge deletion problem, J. Assoc. Comput. ,\-fach. 28
(1981), 1-4.

[14] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, SIAM
J. Comput. 14 (1985),781-798.

[15] N. Horspool, Incremental generation of LR parsers, Technical Report, Department of Com­
puter Science, University of Victoria, March 1988.

[16] T. Ibaraki, and N. Katoh, On-line computation of transitive closure for graphs, Inform.
Process. Lett. 16 (1983), 95-97.

[17] G. F. Italiano, Amortized efficiency of a path retrieval data structure. Theoret. Comput. Sci.
48 (1986), 273-281.

[18] G. F. Italiano, Finding paths and deleting edges in directed acyclic graphs, Inform. ProceM.
Lett. 28 (1988), 5-11.

[19] T. Kikuno, N. Yoshida, and Y. Kakuda, A linear time algorithm for the domination number
of a series parallel graph, Disc. Appl. Math . .) (1983). 299-311.

[20] J. A. La Poutre, and J. van Leeuwen, r-Iaintenance of transitive closure and transitive ftL

duction of graphs, Proc. International Workshop on Graph-Theoretic Concepts in Comp1JI~"
Science, Lecture Notes in Computer Science, vol. 314, Springer-Verlag. Berlin, 1988. 106-120

[21] E. 1. Lawler, Sequencing jobs to minimize total weight completion time subject to precedenc ..
constraints, Annals of Discrete .\/ath. 2 (1978), 75-90.

[22] C. 1. J'.lonma, and J. B. Sidney, Sequencing with series-parallel precedence constraints. :\Illlh

of Operations Research 4.215-22-1.

[23] F. P. Preparata, and R. Tamassia, Fully dynamic techniques for point location and transiti\f'
closure in planar structures. Proc. 29th Annual Symp. on Foundations of Computer Scien~
1988, .5.58-567.

14

[2-!] J. H. Reif. A topological approach to dynamic graph connectivity. Inform. Process. Lett. 2.5
(1987). 6.5-70.

[25] H. Rohnert, A dynamization of the all pairs least cost path problem. Proc. 2nd Annual Symp.
on Theoretical Aspects of Computer Science (STACS 85), Lecture Notes in Computer Science,
vol. 182, Springer- Verlag. Berlin. 198.5. 279-286.

[26] D. D. Sleator, and R. E. Tarjan. A data structure for dynamic trees. J. Comput. System Sci.
24 (1983). 362-381.

[27] K. Takamizawa, T. Nishizeki. and ~. Saito, Linear time computability of combinatorial prob­
lems on series parallel graphs. J. Assoc. Comput. Mach. 29 (1982), 623-641.

[28] R. Tamassia. and F. P. Preparata. Dynamic maintenance of planar digraphs, with applica­
tions, ~Ianuscript, 1988.

[29] R. E. Tarjan, Data structures and network algorithms, CB~IS-NSF Regional Conference Series
in Applied ~Iathematics, vol. H. SUM. 1983.

[30] R. E. Tarjan, Amortized computational complexity. SIA'\f J. Alg. Disc. Meth. 6 (1985).
306-318.

[31] R. E. Tarjan, and J. van Leeuwen. Worst-case analysis of set union algorithms. J. Assoc.
Comput. Mach. 31 (1984), 24,)-281.

[32] J. Valdes, R. E. Tarjan. and E. L. Lawler. The recognition of series parallel digraphs. SIAM
J. Comput. 11 (1982). 298-313.

[33] H. Whitney, Non-separable and planar graphs. Trans. Amer. Math. Soc. 34 (1932), 339-362.

[34] D. M. Yellin, A dynamic transitive 'closure algorithm, Research Report, IDM Research Divi­
sion, T. J. Watson Research Center. Yorktown Heights. ~Y 10598. February 1988.

[35] D. ~L Yellin, and R. Strom. I:-..'C: a language for incremental computations, Proc. ACM
SIGPLAN '88 Conference on Programming Language Design and Implementation. 1988. 11.')-
124.

1.5

F 1 gure 1: A TTSP dag.

Figure 2 A looped 5P digraph

Figure 3: A GSP dag

4 6 8 10

1 1

o

Figure 4 : An MSP dag and a decompositIOn tree

3 4 5

2

2 6 8 1 1 12

O......--~·O}----1~~OI---I~~Ot---I·~OI---~~ 0

11542

O~~~O~~~O~--~~O

1 1

2 3 4

O--~~O~~~O

678

Of--~~ Ol----... ~ 0

10 9 6

O~~~O~--~~O~--~~O

Flgure 5 : A looped SP dIgraph and lts nested ear decomposition

