
B
R

IC
S

R
S

-97-32
H

usfeldt&
R

auhe:
E

xtensions
ofthe

C
hronogram

M
ethod

BRICS
Basic Research in Computer Science

Hardness Results for Dynamic Problems by
Extensions of
Fredman and Saks’Chronogram Method

Thore Husfeldt
Theis Rauhe

BRICS Report Series RS-97-32

ISSN 0909-0878 November 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233661683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/32/



HARDNESS RESULTS FOR DYNAMIC PROBLEMS BY
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Abstract We introduce new models for dynamic computation based on the cell
probe model of Fredman and Yao. We give these models access to nondetermin-
istic queries or the right answer ±1 as an oracle. We prove that for the dynamic
partial sum problem, these new powers do not help, the problem retains its lower
bound of Ω(log n/ log logn).

From these results we easily derive a large number of lower bounds of order
Ω(logn/ log log n) for conventional dynamic models like the random access ma-
chine. We prove lower bounds for dynamic algorithms for reachability in directed
graphs, planarity testing, planar point location, incremental parsing, fundamental
data structure problems like maintaining the majority of the prefixes of a string of
bits and range queries. We characterise the complexity of maintaining the value
of any symmetric function on the prefixes of a bit string.
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1. Introduction

Update versus query time. For dynamic problems, two trivial solutions are immediate: Either the
algorithm spends time after each update reorganising the data structure to anticipate every future
query, or the algorithm spends time after each query to read the entire history of updates. However,
a crucial property of many hard problems is that these two cannot be optimised simultaneously.
This tradeoff between update time and query time was studied using the chronogram method by
Fredman and Saks [13], a result that has proved extremely useful for lower bounds for dynamic
algorithm and data structures.

The method of [13] is an information-theoretic argument formalising the idea that not all relevant
information about the updates can be passed on to a typical query. The present paper takes a
closer look at this information, asking what kind of information is responsible for the hardness
of the problem. Our approach is to provide the query algorithm with well-defined aspects of the
information for free, e.g., we consider nondeterministic query algorithms.

Example: Range queries. We can illustrate our approach using range query problems. The object
is to maintain a set S ⊆ {1, . . . , n}2 of points in the plane, the updates insert and remove points
from S. An existential range query asks whether a given rectangle R contains a point from S.
This problem requires time Ω(log logn/ log log logn) [4, 19].

With nondeterministic queries, this problem becomes trivial: guess a point and verify that it
is in S ∩ R. In other words, the sole reason for the hardness of this problem lies in maintaining
precisely the kind of information that nondeterminism provides for free. However, this is not
true for all problems; our main result implies that reporting the parity of |R ∩ S| remains just
as hard as without nondeterminism, so the hardness of this problem hinges on information of a
fundamentally different kind.

Main contribution. We state our two main results in terms of the signed partial sum problem. The
problem is to maintain a string x∈{−1, 0,+1}n under updates that change the letters of x and
queries of the form

query(i): return x1 + · · ·+ xi mod 2.

We prove two theorems about this problem. Theorem 1 shows that even in models with non-
deterministic queries, the partial sum problem requires time Ω(logn/ log log) per operation with
logarithmic cell size. It is known that this is also the deterministic complexity of the problem [7, 13],
so nondeterminism does not help.

Our second main result studies the same problem in a promise setting, where the query algorithm
receives almost the correct answer for free. The updates are as before, and the query is

parity(i, s): return x1+· · ·+xi mod 2 provided that |s−
∑i
j=1 xj | ≤ 1 (otherwise the behaviour

of the query algorithm is undefined).

Theorem 2 shows that this problem still requires Ω(log n/ log logn) per operation.
We reason within the cell probe model of Fredman [10] and Yao [27], with some extensions to

cope with our stronger modes of computation. This can be viewed as a nonuniform version of
the random access computer with arbitrary register instructions. Especially, our lower bounds are
valid on random access machines with unit-cost instructions on logarithmic cell size. The success
of this model is partly due to the validity of these bound in light of schemes like hashing, indirect
addressing, bucketing, pointer manipulation, or recent algorithms that exploit the parallelism
inherent in unit-cost instructions. For these reasons the cell probe model has arguably become
the model of choice for lower bounds for dynamic computation.

Theorems 1 and 2 are proved by extending the chronogram method, which was introduced by
Fredman and Saks [13] and got its name in [5].

Lower bounds for dynamic algorithms. Our results suggest a new general technique for proving
lower bounds for dynamic algorithm and data structure problems. Because Thms. 1 and 2 hold
in very strong models of computation, we can exploit these strengths in our reductions—this
yields simple proofs. We support our claims about the versatility of this technique by exhibiting
a number of new lower bounds for well-studied problems.
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For example, we prove optimality or near-optimality of a number of dynamic algorithms in
the literature from various fields like dynamic string and graph algorithms and computational
geometry. These include planar point location in monotone subdivisions [3, 23], reachability in
upward planar digraphs [25], and incremental parsing of balanced parentheses [9]. We show that
all these problems require time Ω(log n/ log logn) per operation.

It is known [8, 12, 15, 20] that this is also a lower bound for reachability in grid graphs. However,
grid graphs of constant width allow a reachability algorithm in time O(log log n) per operation [2],
an exponential improvement. Our technique is sufficiently versatile to prove a lower bound that
is parameterised by the width w of the graph: Prop. 6 states that dynamic reachability for grid
graphs of width w = O(logn/ log logn) requires time Ω(w) per operation, bridging the gap between
the two results.

Partial sum problems. The partial sum problem was introduced by Fredman as a ‘toy problem
which is both tractable and surprisingly interesting’ [11] and has been the focal point of many
investigations of dynamic complexity in a variety of models [28, 13]. The problem is to maintain
a string x of n bits under updates that change the bits of x and queries for the prefix sums of x.
It was shown in [13] that the parity query

parity(i): return x1 + · · ·+ xi mod 2,

requires time Ω(logn/ log logn), so even the least significant bit is hard to maintain.We turn to
two other natural and potentially easier variants, where the query operations are

majority(i): return 1 iff x1 + · · ·+ xi ≥
⌈

1
2n
⌉
,

equality(i): return 1 iff x1 + · · ·+ xi =
⌈

1
2n
⌉
.

These problems arise in many data structures, e.g. when following paths towards heavy subtrees
in balanced search trees. We can also dress up these problems as database queries like ‘did as
many male as female guests arrive before noon?’ or ‘are more French than English talks scheduled
between Tuesday and Friday?’ Similarly, these problems can be viewed as natural range query
problems in Computational Geometry.

No nontrivial lower bounds for these two problems follow from [13]. The results from [4, 18,
19, 26] can be seen to imply Ω(log logn/ log log logn) lower bounds using an entirely different
technique based on Ajtai’s result [1]; and [16] reports Ω((logn/ log logn)1/2) for equality and
Ω(logn/(log logn)2) for the majority.

Proposition 7 of the present paper shows that both problems require time Ω(logn/ log logn)
per update, just as parity. Again, the proof is a simple application of our main results. We then
extend our analysis of the majority problem to the class of threshold functions, and characterise the
complexity of the resulting partial sum problem in terms of the size of the threshold in Prop. 8. We
can generalise this even further, to the entire class of symmetric functions in Prop. 9. Intriguingly,
the resulting bounds closely resemble the corresponding results from Boolean circuit complexity,
where these problems have been studied intensively, hinting a connection between the dynamic
and parallel realms.

Limitations of the chronogram method. A large number of hardness results for dynamic problems
employ the chronogram method, usually by constructing a reduction from a partial sum problem.
Our results imply in some precise sense that this method is unable to distinguish deterministic
from nondeterministic computation. In particular, this method cannot prove lower bounds for a
problem that are better than the best nondeterministic algorithm. This is an important guide in
the search for lower bounds for a large class of problems, including for example existential range
searching and convex hull.

Outline of paper. Section 2 introduces dynamic algorithms with nondeterministic queries and
contains the statement of Thm. 1; the proof of this result, which is the main technical contribution
of this paper, takes up Sect. 3. Our lower bounds for dynamic algorithms and partial sum problems
are presented in Sect. 4. Finally, Sect. 5 introduces the notion of refinement and presents Thm. 2
and Prop. 8.
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2. Nondeterminism in Dynamic Algorithms

2.1. Nondeterministic query algorithms. We now introduce our notion of nondeterministic query
algorithms for dynamic decision problems. We allow query algorithms to nondeterministically load
a value into a memory cell. The semantics is as usual: The value returned by a nondeterministic
query is 1 unless all nondeterministic choices return 0. For example, the following program solves
the existential range query problem from the introduction, storing all points from S in a two-
dimensional array M :

update(i, j):
M [i, j] := ¬M [i, j]

query(R):
guess (i, j) ∈ R
return M [i, j]

We should mention that we have not defined the side-effects of a nondeterministic query algo-
rithm, i.e., the effect of its assignments to memory. This can be done in a number of ways; for
example we might say that if there are computations (i.e., sequences of nondeterministic choices)
that result in ‘1’, the algorithm will execute one of these computations; otherwise it will execute
a computation leading to ‘0’. We mention that our lower bound is immune to precisely how these
effects are defined, since the hard operation sequence constructed in the proof needs only a single
query, which happens at the very end.

Nondeterministic queries are a powerful tool for a number of well-studied problems. A good
example from Computational Geometry is dynamic convex hull, the problem of maintaining the
convex hull of a set of points S, where points are inserted and removed. The query operation
asks whether the query point q lies inside or outside the convex hull of S. Again, we can solve
this problem with a trivial update algorithm that simply stores S in a large table (in the cell
probe model we do not worry about memory space, otherwise we can use standard dictionaries).
The nondeterministic query guesses three points from S and verifies that the query point lies in
the triangle spanned by these points—a well known result in plane geometry asserts that this is
necessary and sufficient.

In general, a problem is amenable to nondeterminism, if the outcome of each query depends on
only a bounded number of updates. Contrast this with the problems identified in [13], where each
update affects only a bounded number of queries, e.g., dictionary problems.

2.2. Signed partial sum. The signed partial sum problem is to maintain a string x ∈ {−1, 0,+1}n,
initially 0n, under updates that change the letters of x and queries about the parity of the prefix
sums of x

update(i, a): change xi to a ∈ {−1, 0,+1},
query(i): return x1 + · · ·+ xi mod 2.

The data structure of Dietz [7] solves this problem, deterministically, in time O(logn/ log logn)
per operation with logarithmic cell size. The next theorem states that nondeterministic queries
can do no better. We state theorem as a trade-off between update and query time.

Theorem 1. Every nondeterministic algorithm for the signed partial sum problem with cell size
logn, update time tu, and query time tq must satisfy

tq = Ω
( logn

log(btu logn)

)
.(1)

The lower bound holds even if the algorithm requires

0 ≤ x1 + · · ·+ xi ≤
⌈ logn

log(btu logn)

⌉
(2)

for all i after each update.

The balancing condition (2) continues previous work [16] on extending the chronogram method,
which is implicit in the constructions in the present paper. In Sect. 4.2 we state a further gener-
alisation of Thm. 1, relating the terms in (1) and (2).
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3. Proof of Theorem 1

The proof of Theorem 1 follows the same line as previous applications of the chronogram
method [13, 5], but several concepts are changed. We give a self-contained presentation for com-
pleteness.

We consider a specific sequence of operations that consists of a number of updates followed by a
single query. The update sequence is chosen at random from a set U defined in Sect. 3.5.

3.1. Model of computation. The computational model is an extension of the cell-probe model [10,
27]; since there is only a single query, which happens at the very end of the sequence, we can
model query algorithms by nondeterministic decision trees.

More precisely, a cell probe algorithm consists of a family of trees, one for each operation, and a
memory M ∈ {0, . . . , 2b − 1}∗. We refer to the elements of M as cells, each of which can store a
b-bit number. To each update we associate a decision–assignment tree as in [13]. There are two
types of nodes: Read nodes are 2b-ary and labelled by a memory address, computation proceeds
to the child identified at that address; write nodes are unary and labelled by a memory address
and a b-bit value, with the obvious semantics.

To each query we associate a nondeterministic decision tree of arity 2b whose internal nodes are
labelled by a memory address or by ‘∃’. The leaves are labelled 0 or 1 to represent the possible
answers to the query. We define the value qM ∈ {0, 1} computed by a query tree q on memory M
to be 1 if there exists a path from the root to a leaf with label 1. A witness of such an accepting
computation is the description of the choices for the ∃ nodes. We let qi denote the query tree
corresponding to query(i). The query time tq is the height of the largest query tree and the update
time tu is the height of the largest update tree; we account only for memory reads and writes and
for nondeterministic choices, all other computation is for free.

3.2. Updates and epochs. Each update sequence in U is described by a binary string u ∈ {0, 1}∗.
Each bit represents an update update(j, a). The parameters for these updates will be specified in
Sect. 3.5. The update sequences u ∈ U are split into d substrings each corresponding to an epoch.
It turns out to be convenient that time flows backwards, so epoch 1 corresponds to the end of u.
In general the update string is an element in

U = UdUd−1 · · ·U1, where Ut = {0, 1}e(t),

where e(t) is the length of epoch t given by

e(t) + · · ·+ e(1) =
⌊nt/d
d

⌋
.(3)

The length of the entire update sequence is bn/dc. The size of d and hence the growth rate of e(t)
is given by

d =
⌈ logn

log(btu logn)

⌉
(4)

The goal is to establish that tq ∈ Ω(d).

3.3. Time stamps and nondeterminism. To each cell we associate a time stamp when it is written.
A cell receives time stamp t if some update during epoch t writes to it, and none of the subsequent
updates during epochs t− 1 to 1 write to it.

For an update sequence u ∈ U let Mu denote the memory resulting from these updates (recall
that updates are restricted to perform deterministically), starting with some arbitrary initial
contents corresponding to the initial instance 0n.

For index i and update string u let T (i, u) denote the set of time stamps that are found on every
accepting computation path of qi on Mu. If there are no accepting computations, the set is empty.
More formally, let w denote a witness for a computation path of qi on Mu, and let A(i, u) denote
the set of witnesses that lead to accepting computations of qi on Mu. Let for a moment T (i, u, w)
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denote the set of time stamps encountered by the computation of qi on Mu that is witnessed by
w. Then

T (i, u) =
⋂

w∈A(i,u)

T (i, u, w), if A(i, u) 6= ∅,

and T (i, u) = ∅ otherwise.
The simple lemma below is the tool to identify a read of a cell with time stamp t by nondeter-

ministic queries.

Lemma 1. If Mu and Mv differ only on cells with time stamp t then

qiM
u 6= qiM

v implies t ∈ T (i, u)∪ T (i, v).

Proof. Suppose on the contrary qiM
u 6= qiM

v and t /∈ T (i, u)∪ T (i, v). Assume without loss of
generality that qiM

u = 1 and qiM
v = 0. Since q /∈ T (i, u) and qiM

u = 1 there is an accepting
computation path that avoids cells with time stamp t. However, this computation might as well
be executed on Mv, by the premise. Hence qi has an accepting computation on Mv as well,
contradicting qiM

v = 0.

3.4. Lower bound on query time. The update sequences are chosen such that even if two sequences
differ only in a single epoch, they still result in very different instances. To each update sequence
u ∈ U we associate the query vector qu = (q1M

u, q2M
u, . . . , qnM

u) ∈ {0, 1}n. Update sequences
that differ only in epoch t are called t-different.

Lemma 2. No Hamming ball of diameter 1
8n can contain more than |Ut|9/10 query vectors from

t-different update sequences, for large n.

The difficult part is constructing a set of update sequences for which the statement is true, which
we present in Sect. 3.5. The proof itself is as in [13] and provided in Sect. 3.5 for completeness.

Write U>t for Ud · · ·Ut+1, the set of updates sequences prior to epoch t, and U≤t for Ut · · ·U1,
the set of update sequences in epoch t to epoch 1. Assume for the rest of this section that
tq = O(logn), else there is nothing to prove. The worst-case query time tq is larger than the
average of |T (i, u)| over choices of i ∈ {1, . . . ,m} and u ∈ U , so

|U |ntq ≥
∑
u∈U

n∑
i=1

|T (i, u)| =
d∑
t=1

∑
u∈U>t

∑
w∈U<t

∑
v∈Ut

n∑
i=1

(
t ∈ T (i, uvw)

)
The next lemma tells us how many v ∈ Ut fail to make the last sum exceed 1

16n.

Lemma 3. Fix any epoch 1 ≤ t ≤ d and past and future updates x ∈ U<t, y ∈ U>t. For large n, at
least half of the update sequences u ∈ xUty satisfy∣∣{ 1 ≤ i ≤ n | t ∈ T (i, u) }

∣∣ ≥ 1
16n,

if tq = O(logn).

Proof. Consider the set V ⊆ xUty of updates after which fewer than 1
16n queries encounter time

stamp t, i.e., xuy for u ∈ Ut is in V if∣∣{ 1 ≤ i ≤ n | t ∈ T (i, xuy)}
∣∣ < 1

16n.

We will bound the size of V below 1
2 |Ut|.

To this end partition V into equivalence classes such that u and v are in the same class if and
only if Mu and Mv agree on all cells except maybe those with time stamp t. We first bound
the number of such classes. Since all cells with time stamp greater than t have identical content
(they depend only on the common prefix x), we only need to analyse the amount of information
distributed among cells with time stamps t− 1 to 1. The number of cells written during the last
t−1 epochs is at most r = tu ·

(
e(t−1)+ · · ·+e(1)

)
. Note that at most n2tqb different cells appear
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in the entire forest of query trees. The number of different ways we can choose such r cells and
fix their content to some value in {0, . . . , 2b − 1} is bounded by:(

n2tqb · 2b
)r ≤ |Ut|o(1)(5)

where the inequality uses (4). That is |Ut|o(1) bounds the number of equivalence classes of V .
It remains to bound the size of each class. Consider two query vectors qu and qv for u and v in

the same equivalence class. Then

|qu − qv| ≤ 1
8n,(6)

because 15
16n entries of each vector depend only on cells with other time stamps than t. On these

cells, the memories are indistinguishable and therefore yield the same result by Lem. 1. By (6),
all vectors from the same class end up in a Hamming ball of diameter 1

8n, so Lem. 2 tells us that

there can be only |Ut|
9
10 of them. We conclude that the size of V is bounded by |Ut|

9
10 · |Ut|o(1),

which is less than 1
2 |Ut| for large n.

By this lemma we obtain for large n:

|U |ntq ≥
d∑
t=1

|U>t| · |U<t| · 1
16n ·

1
2 |Ut| =

1
32nd|U |,

and hence tq ≥ 1
32d as desired.

3.5. Update scheme. The technical part that remains is to exhibit a set of update sequences U
satisfying Lem. 2. There are a number of ways to do this; the following construction is one which
simultaneously anticipates our needs in Sect. 5 and satisfies the balancing condition (2).

Define the number of epochs d was given by (4). To alleviate notation we assume that n/d is
an integer. Consider the updates in epoch t and index them as u1 · · ·ue(t) ∈ Ut. The ith update
performs update(j, a), where the update position j is given below. The new value a is given by

(−1)r, where r = 1 + u1 + · · ·+ ui mod 2,(7)

i.e., such that the nonzero updates in u alternate between −1 and +1, starting with +1. The
position of the affected letter is defined as follows. Write x as a table of dimension d × n/d like
this: 

x1 xd+1 xn−d+1

x2 xd+2 xn−d+2

...
... · · ·

...
xd x2d xn

 .

All updates in epoch t will affect only the letters in row t. The updates of an epoch are spread
out evenly from left to right across that row, so the distance between two of them is⌊n/d

e(t)

⌋
.(8)

In summary, the ith update in epoch t affects the letter in row t and the column given by

(i− 1) ·
⌊n/d
e(t)

⌋
+ 1.

This update scheme satisfies the statement in Lem. 2.

Proof of Lem. 2. Let xUty be any set of t-different update sequences. Pick any u ∈ Ut and
consider any Hamming ball of diameter 1

8n that contain query vector qxuy. We will bound the
number of v ∈ U t with query vector qxuy ending up in that Hamming ball.

Let w ∈ Ut record the difference between u and v, i.e., the ith letter of w is 1 if and only if u
and v differ on the ith letter. Now let w′ denote the string of prefix sum parities of w, i.e.

w′i = w1 + · · ·+ wi mod 2, 1 ≤ i ≤ e(t).

6



It is easy to see that w′ records the difference between the query vectors resulting from u and v.
Indeed, each 1 in w′ yields an interval of indices where the vectors differ, and the length of this
interval is d times the distance given by (8). In other words, each 1 in w′ contributes as many
points to the Hamming distance between the resulting query vectors. So if we let |w′|1 denote the
number of 1s in w′, the Hamming distance between two query vectors is at least

|w′|1 · d ·
⌊n/d
e(t)

⌋
≥ 1

2 |w
′|1 ·

n

e(t)
,(9)

where we have used that bac ≥ 1
2a for a ≥ 1.

By the triangle inequality, the maximum Hamming distance between two query vectors in the
same ball is 1

8n. This bounds the number of 1s in w′ to 1
4e(t) for large n. Hence the number of

choices for w′ is bounded by
1
4 e(t)∑
i=0

(
e(t)

i

)
< 2

9
10 e(t).(10)

for large n. This also bounds the number choices of v ∈ Ut, since there is a one–to–one correspon-
dence between v and w′.

The prefix sums of instances resulting from our scheme are small: Let x denote an instance
resulting from our scheme. Let xt denote the string resulting from only the updates in epoch t
and write x as x1 + · · ·+ xd; this works because no two epochs write in the same positions. Then

i∑
j=1

xj =
i∑

j=1

d∑
t=1

xtj =
d∑
t=1

i∑
j=1

xtj ∈ {0, . . . , d} ,

because the prefix sums of every xt is 0 or 1 by construction. It can be checked that the balancing
bound (2) holds at all times.

For later reference we also note that if x and y result from t-different updates then xr = yr for
r 6= t and hence ∣∣ i∑

j=1

xj −
i∑

j=1

yj
∣∣ ≤ 1,(11)

for all i.

4. Lower bounds for dynamic algorithms and partial sum problems

Theorem 1 suggests a new approach for proving lower bounds by employing nondeterminism in
the reduction from signed partial sum. We demonstrate this with a number of examples in this
section; our bounds are better than previous results and the proofs are simpler. The results are
presented for cell size b = logn for concreteness. Some of the reductions extend previous work of
the authors with Søren Skyum [16].

4.1. Nested brackets. Consider the problem of maintaining a nested structure, i.e., a string x with
round and square brackets under the following operations:

change(i, a): change xi to a, where a is a round or square opening or closing bracket, or
whitespace.

balance: return ‘yes’ if and only if the brackets in x are properly nested.

This problem was studied in [9], where an algorithm with polylogarithmic update time is presented.

Proposition 1. Maintaining a string of nested brackets requires time Ω(log n/ log logn) per opera-
tion.

Proof. Consider a deterministic algorithm for this problem and let x ∈ {0,−1,+1}n be an
instance to signed partial sum. Let bi be an encoding of xi given by:

+1 7→ ) )  , 0 7→ )   , −1 7→    ,

7



where ‘ ’ stands for space. Let c be the string ‘ (’. We maintain a balanced string of brackets uvw,
where u = c2n, v = b1 b2 . . . bn and w =)n−s s, where s = x1 + · · ·+xn. It is easy to see that uvw
balances and can be maintained by a constant number of updates per update in x. For any prefix
size i this construction enables efficient verification of a nondeterministic guess g of the prefix sum
x1 + · · ·+ xi: Place a closing square bracket on the last  of bi and an opening square bracket on
the  of the first c of suffix ci+g of u. This modification keeps uvw balanced iff g is the right guess
of prefix sum x1 + · · ·+ xi. Conclusion by Thm. 1.

4.2. Dynamic Graph Algorithms. Our techniques improve the lower bounds of a number of well-
studied graph problems considered in [16].

Tamassia and Preparata [25] present an algorithm for the class of upward planar source–sink
graphs that runs in time O(logn) per operation. These digraphs have have a planar embedding
where all edges point upward (meaning that their projection on some fixed direction is positive)
and where exactly one node has indegree 0 (the source) and exactly one node has outdegree 0 (the
sink). The updates are:

insert(u, v): insert an edge from u to v
delete(u, v): delete the edge from u to v if it exists
reachable(u, v): return ‘yes’ iff there is a path from u to v.

The updates have to preserve the topology of the graph, including the embedding.

Proposition 2. Dynamic reachability in upward planar source–sink graphs requires time Ω(log n/
log logn) per operation.

Planarity testing is to maintain a planar graph where the query asks whether a new edge violates
the planarity of the graph. Italiano et al. [17] present an efficient algorithm for a version of this
problem, and a strong lower bound is exhibited by Henzinger and Fredman [12]. Our lower bound
holds also for upward planarity testing, where the topology is further restricted to upward planar
graphs. The updates insert and delete edges as above, and the query is

planar(u, v): return ‘yes’ if and only if the graph remains upward planar after insertion of
edge (u, v).

This problem was studied by Tamassia [24], who found an O(logn) upper bound.

Proposition 3. Upward planarity testing requires time Ω(logn/ log logn) per operation.

A classical problem in Computational Geometry is planar point location: given a subdivision
of the plane, i.e., a partition into polygonal regions induced by the straight-line embedding of
a planar graph, determine the region of query point q ∈ R2. An important restriction of the
problem considers only monotone subdivisions, where the subdivision consists of polygons that
are monotone (so no horizontal line crosses any polygon more than twice). In the dynamic version
of this problem updates manipulate the geometry of the subdivision. Preparata and Tamassia [23]
give an algorithm that runs in time O(log2 n) per operation, this was improved to query time
O(logn) by Baumgarten, Jung, and Mehlhorn [3]. The lower bound for this problem in [16]
applies only to algorithms returning the name of the region containing the queried point. The
techniques of the present paper extend this bound to work for simpler decision queries like

query(x): return ‘yes’ if and only if x is in the same polygon as the origin.

Proposition 4. Planar point location in monotone subdivisions requires time Ω(logn/ log logn) per
operation.

Traditionally, lower bounds in Computational Geometry are proved in an algebraic, comparison-
based model (see [22] for a textbook account) that is broken by standard RAM operations like
indirect addressing, bucketing, hashing, etc. Cell probe lower bounds for that field are lacking.

To explain our reduction we turn to the conceptually very simple class of grid graphs. The
vertices of a grid graph of width w and height h are integer points (i, j) in the plane for 1 ≤ i ≤ w
and 1 ≤ j ≤ h. All edges have length 1 and are parallel to the axes. The dynamic reachability
problem for these graphs is the following:
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Figure 1. Planar graphs corresponding to x = (0, 0, +1, +1, −1, 0, +1, 0).
Left: grid graph. Even grid points are marked •, odd grid points are marked ◦.
Middle: upward planar source–sink graph. Right: monotone planar subdivision.

flip(x, y): add an edge between x ∈ [w]× [h] and y ∈ [w]× [h] or remove it if it exists,
reachable(x, y): return ‘yes’ if and only if there is a path from x to y.

There are several well-known constructions that prove a lower bound for this problem [8, 12, 15, 20],
but our proof translates to the other problems in Props. 2 to 4. The details in these constructions
are omitted, Fig. 1 illustrates the structures arising in the reductions.

Proposition 5. Dynamic reachability in grid graphs requires time Ω(logn/ log log n) per operation.

Proof. From an instance x ∈ {0,±1}n to signed partial sum we build a grid graph on the
points {0, . . . , 2w} × {0, . . . , 2n}, where w =

⌈
logn/ log logn

⌉
. We will exploit the balancing

constraint (2) of Thm. 1 to keep the instance within this width.
For every i and j, consider any point with even coordinates (2i, 2j−2), drawn as • in Fig. 1, and

connect it to one of the three even grid points above it using
•
◦ ◦
◦ •

,
•
◦
•
, or

•
◦◦
◦•

, depending on whether
xj = +1, 0, or −1, respectively. The idea is that the path from (0, 0) mimics the prefix sums of x
in that it passes through (2s, 2j) if and only if x1 + · · · + xj equals s. Hence a guess of the sum
can be verified by a single reachability query in the graph.

It remains to note that the graph can be maintained efficiently. Any changed letter in x incurs
O(w) edges to be inserted or deleted. So if the update time of the graph algorithm is polylogarith-
mic then the graph can be maintained in polylogarithmic time. The bound follows from Thm. 1.

The width of the hard graph above is logarithmic in the height, while the graphs constructed
in [8, 12, 15, 20] are square. Hence narrow grid graphs are as hard as square ones. However,
this is not true for very narrow graphs: It is known that the reachability problem for grid graphs
of constant width can be solved in time O(log logn) by [2], an exponential improvement. This
leaves open the question of what happens for graphs of sublogarithmic width. To answer this, we
introduce a subtler statement of Thm. 1.

Theorem 1 (Parameterised version). Let d = O
(

logn/ log(btu logn)
)

be an integer function. Ev-
ery nondeterministic algorithm for signed partial sum with cell size b, update time tu, and query
time tq must satisfy tq = Ω(d). The lower bound holds even if the algorithm requires 0 ≤
x1 + · · ·+ xi ≤ d for all i after each update.

This result implies a lower bound for grid graphs that smoothly connects the two extremes
between linear and constant width. A similar parameterisation can be done for all our problems.

Proposition 6. For every w = O(logn/ log logn), dynamic reachability in grid graphs of width w
requires time Ω(w) per operation.
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4.3. Partial Sum Problems. The partial sum problem is to maintain a bit string x ∈ {0, 1}n under
the following operations

update(i): change xi to 1− xi,
sum(i): return x1 + · · ·+ xi.

We turn to two other natural variants, prefix majority and prefix equality whose query operations
are

majority(i): return 1 iff x1 + · · ·+ xi ≥
⌈

1
2n
⌉
,

equality(i): return 1 iff x1 + · · ·+ xi =
⌈

1
2n
⌉
.

The next result shows that these problems are just as hard as the parity query from [13]. The
proof is again a simple application of Thm. 1.

Proposition 7. The prefix equality and prefix majority problems both require time Ω(log n/ log logn)
per operation.

Proof. We give the proof for prefix equality. The proof for the prefix majority problem is almost
the same. Let d = dlogn/ log logne.

An instance x ∈ {−1, 0,+1}n of signed partial sum is encoded as the binary string x′ by

−1 7→ 00, 0 7→ 01, +1 7→ 11.

We maintain d+ 1 strings y(0), . . . , y(d) as

y(t) = (00)t(01)d−tx′.

Let tu denote the update time of our prefix equality algorithm. Whenever x is changed, we
make at most 2(d + 1) updates in the strings y(t), which is within polylogarithmic time if tu is
polylogarithmic.

Index the strings y(t) from −2d to 2n− 1. We then have

2i−1∑
j=−2d

y
(t)
j = d− t+ i+

i∑
j=1

xj , 0 ≤ t ≤ d, 1 ≤ i ≤ n.(12)

Hence in order to find the ith prefix sum of x our algorithm can nondeterministically guess the
sum s ∈ {0, . . . , d}, we can assume from the balancing condition (2) in Thm. 1 that the sum is

in that set, and verify y
(s)
−2d + · · · + y

(s)
2i−1 = d + i, which is the case iff equality(2d + 2i) on y(s)

returns 1. Conclusion by Thm. 1.

There are other partial sum problems that are far easier. Consider the query

or(i): return ‘yes’ iff x1 + · · ·+ xi ≥ 1.

This problem, prefix-or, can be solved in time O(log logn) per operation by a van Emde Boas tree.
To study this kind of problem in a general, let the threshold ϑ be an integer function such that
ϑ(i) ∈ {0, . . . , d 1

2 ie}. The query in the prefix threshold problem for ϑ is

threshold(i): return ‘yes’ iff x1 + · · ·+ xi ≥ ϑ(i).

Prefix majority is the special case ϑ(i) = d 1
2 ie, prefix-or is ϑ(i) = 1. Now for our lower bound. Our

assumption on ϑ is that there are integers p(1) < p(2) < · · · < p(i) < · · · such that ϑ(p(i)) = i. We
call such functions nice for lack of a better word. It is reasonable to assume that ϑ is monotonically
increasing, the niceness assumption also prevents it from skipping points.

Proposition 8. Let tu = tu(n) and tq = tq(n) denote the update and query time of any cell size b
implementation of the prefix threshold problem for a nice threshold ϑ. Then

tq = Ω
( logϑ

log(tub logϑ)

)
.(13)

The proof is not difficult but tedious. The idea is to stretch an instance for a threshold problem,
padding it with sufficiently many 0s or 1s to turn it into a majority problem.
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To gauge the strength of this result we mention that the problem can be solved on the unit-cost
RAM with logarithmic cell-size in time

O

(
logϑ

log logn
+ log logn

)
,(14)

per update (if ϑ(1), . . . , ϑ(n) can be computed in the preprocessing stage of the algorithm). The
left term in the expression stems from a search tree, the right term from a priority queue, which
vanishes for cell size b = Ω(log2 n); details are omitted. Comparing (13) with (14) shows that the

lower bound is tight for logarithmic cell size and ϑ = Ω(loglog logn n). For smaller thresholds, the
bounds leave a gap of size O(log log n). We consider a more general problem in Sect. 5.2.

5. Refinement

We now take a somewhat subtler approach to our basic question than in Sect. 2. Instead of
nondeterminism, we study the performance of query algorithms in a promise setting. We assume
that the query algorithm for signed partial sum receives a value s that is promised to be close to
(but not known to be equal to) the right sum and then decides between right and wrong values.

The partial sum refinement problem can be phrased as follows: Maintain a string x ∈ {0,±1}n,
initially 0n, under the following operations:

update(i, a): change xi to a ∈ {−1, 0,+1},
parity(i, s): return x1+· · ·+xi mod 2 provided that |s−

∑i
j=1 xj | ≤ 1 (otherwise the behaviour

of the query algorithm is undefined).

The problem gets its name from the following alternative definition, where the query operation is
replaced by

refine(i, s): return 1 if s =
∑i
j=1 xj and 0 if s 6=

∑i
j=1 xj , provided that |s −

∑i
j=1 xj | ≤ 1.

For other values of s, the answer is undefined.

The two problems reduce to each other.

Theorem 2. Let d be an integer function such that

d = O

(
logn

log(tub logn)

)
. Every algorithm for partial sum refinement with cell size b, update time tu and query time tq
must satisfy tq = Ω(d). Moreover, this is true even for algorithms that require 0 ≤ x1 + · · ·+xi ≤ d
for all i after each update.

5.1. Proof of Thm. 2. Most of the technical work for this result was already done in Sect. 3.5, where
we found that the instances resulting from two t-different updates have close prefix sums (11).

The query trees in our computational model are now deterministic decision trees as in [13]. But
there are more of them: we associate a tree qsi to each query parity(i, s), yielding n(2n+ 1) trees.
(We could reduce this number to n(d+ 1) by the balancing constraint, but that does not improve
the bounds.)

For update string u we write qui for the query tree qsi corresponding to the ‘right guess’ s =
x1+· · ·+xi, where x is the instance resulting from updates u. The query vector is (qu1M, . . . , qunM),
i.e., the responses yielded by guessing right every time. We let T (i, u) denote the time stamps
encountered by qui on Mu, compare this with the construction in 3.3.

The next lemma corresponds to Lemma 1 and shows that our update scheme constructs different
instances whose prefix sums are so close that the query trees cannot use the (almost correct) value
given to them.

Lemma 4. For t-different update sequence u, v ∈ Ut, if Mu and Mv differ only on cells with time
stamp t then for all i:

quiM
u 6= qviM

v implies t ∈ T (i, u)∪ T (i, v)
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Proof. Assume to the contrary for some such t, u, v and i that t /∈ T (i, v) and quiM
u 6= qviM

v.

Let x and y denote the input instances resulting from u and v, respectively. Let s denote
∑i
j=1 xj .

By (11) and without loss of generality,
∑i
j=1 yj = s+ 1. By correctness, qsiM

u = qs+1
i Mu. Since

the computation path for qs+1
i Mv does not encounter time stamp t this computation might as

well be executed on Mu with the same result, i.e., qs+1
i Mu = qs+1

i Mv = qsiM
u = quiM

u. But this

contradicts our assumption quiM
u 6= qviM

v = qs+1
i Mv.

The rest of the proof can be reused almost ad verbatim.

5.2. The Dynamic Prefix Problem for Symmetric Functions. Thm. 2 acts as an important ingre-
dient in characterising the dynamic complexity of all the symmetric functions, generalising the
results for the threshold functions of last section. A Boolean function is symmetric if it depends
only on the number of 1s in the input x = (x1, . . . , xn). The symmetric functions include some
of the most well-studied functions in complexity theory, like parity, majority, and the threshold
functions.

In general, we can describe every symmetric function f in n variables by its spectrum, a string in
{0, 1}n+1 whose ith letter is the value of f on inputs where exactly i variables are 1. The boundary
of a spectrum s is the smallest value ϑ such that sbϑc = sbϑc+1 = · · · = sbn−ϑc. For instance the

boundary of the parity or majority functions is 1
2n, and for the threshold functions with threshold

ϑ, the boundary is min(ϑ, n− ϑ).
Let 〈fn〉 = (f1, . . . , fn) be a sequence of symmetric Boolean function where the ith function fi

takes i variables. The dynamic prefix problem for 〈fn〉 is to maintain a bit string x ∈ {0, 1}n under
the following operations:

update(i): change xi to ¬xi,
query(i): return fi(x1, . . . , xi).

For example, taking fi to be the parity function on i variables we have the prefix parity problem
of [13], and taking fi to be the threshold function for ϑ(i) we have the problem from Prop. 8.

Proposition 9. Let ϑ be a nice function and let 〈fn〉 be a sequence of symmetric functions where
fi : {0, 1}i → {0, 1} has boundary ϑ(i). Let tu and tq denote the update and query time of any cell
size b implementation of the dynamic prefix problem for 〈fn〉. Then tq = Ω

(
logϑ/ log(tub logϑ)

)
.

Proof. First assume that fi’s boundary is in the middle, i.e. ϑ(i) = 1
2 i. Let x ∈ {+1, 0,−1}n

denote an instance to prefix refinement and define d and maintain d + 1 strings as in the proof
for Prop. 7. Using the data structure for 〈fn〉 we perform refine(i, g) as follows. Let s be the
spectrum for f2i+2d. Since its boundary is in the middle it is the case that

sd+i−1sd+isd+i+1 ∈ {001, 010, 011, 100, 101, 110}.
We only consider the case 001 above—the other cases are treated similarly. Recall that we can
assume x1 + · · ·+ xi ∈ {g − 1, g, g + 1}. Let r−1, r0 and r+1 denote the answer of query(2d+ 2i)
on y(g−1), y(g) and y(g+1) respectively. By (12) in the proof of Prop. 7, if g = x1 + · · ·+ xi then
r−1r0r+1 = sd+i−1sd+isd+i+1 = 001. If instead g−1 is the correct sum then r−1r0 = 01 and finally
if g+ 1 is the correct sum then r0r+1 = 00. Hence these three cases for g can be distinguished by
the above three queries and hence determine the correct answer for refine(i, g). The bound then
follows from Thm. 2.

The rest of the proof is a padding argument that ‘stretches’ the above to work for smaller ϑ. We
omit the details.

Intriguingly, the bound in the proposition is precisely the same bound as for the size–depth
trade-off for Boolean circuits for these functions [14, 6, 21].
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