94 research outputs found

    A Hybrid-Powered Wireless System for Multiple Biopotential Monitoring

    Get PDF
    Chronic diseases are the top cause of human death in the United States and worldwide. A huge amount of healthcare costs is spent on chronic diseases every year. The high medical cost on these chronic diseases facilitates the transformation from in-hospital to out-of-hospital healthcare. The out-of-hospital scenarios require comfortability and mobility along with quality healthcare. Wearable electronics for well-being management provide good solutions for out-of-hospital healthcare. Long-term health monitoring is a practical and effective way in healthcare to prevent and diagnose chronic diseases. Wearable devices for long-term biopotential monitoring are impressive trends for out-of-hospital health monitoring. The biopotential signals in long-term monitoring provide essential information for various human physiological conditions and are usually used for chronic diseases diagnosis. This study aims to develop a hybrid-powered wireless wearable system for long-term monitoring of multiple biopotentials. For the biopotential monitoring, the non-contact electrodes are deployed in the wireless wearable system to provide high-level comfortability and flexibility for daily use. For providing the hybrid power, an alternative mechanism to harvest human motion energy, triboelectric energy harvesting, has been applied along with the battery to supply energy for long-term monitoring. For power management, an SSHI rectifying strategy associated with triboelectric energy harvester design has been proposed to provide a new perspective on designing TEHs by considering their capacitance concurrently. Multiple biopotentials, including ECG, EMG, and EEG, have been monitored to validate the performance of the wireless wearable system. With the investigations and studies in this project, the wearable system for biopotential monitoring will be more practical and can be applied in the real-life scenarios to increase the economic benefits for the health-related wearable devices

    Piezoelectric Rainfall Energy Harvester Performance by Advanced Arduino based Measuring System

    Get PDF
    This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Different studies agree on the possibility of generating electricity from rainfall, but to date, a study on measuring the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes, finalized to measure the energy produced from a single raindrop, and concludes with an ad hoc Arduino-based measuring system, aimed to measure the actual amount of electrical energy produced by a piezoelectric transducer that is exposed to rainfall of variable durations

    Harvesting energy from non-ideal vibrations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 147-152).Energy harvesting has drawn significant interest for its potential to power autonomous low-power applications. Vibration energy harvesting is particularly well suited to industrial condition sensing, environmental monitoring and household environments where low-level vibrations are commonly found. While significant progress has been made in making vibration harvesters more efficient, most designs are still based on a single constant vibration frequency. However, most vibration sources do not have a constant frequency nor a single harmonic. Therefore, the inability to deal with non-ideal vibration sources has become a major technological obstacle for vibration energy harvesters to be widely applicable. To advance the state of vibration energy harvesting, this thesis presents a design methodology that is capable of dealing with two major non-ideal vibration characteristics: single harmonic frequency shifting and multi-frequency/broadband excitation. This methodology includes a broad-band impedance matching theory and a power electronics architecture to implement that theory. The generalized impedance matching theory extends the well known single frequency impedance matching model to a multi-frequency impedance matching model. By connecting LC tank circuits to the harvester output, additional resonant frequencies are created thereby enabling the energy harvesting system to effectively harvest energy from multi-harmonic vibration sources. However, the required inductors in the LC tank circuits are often too large (>10 H) to be implemented with discrete components. The power electronics proposed here addresses this issue by synthesizing the tank circuits with a power factor correction (PFC) circuit. This circuit mainly consists of an H-bridge, which contains four FETs, and a control loop that turns the FETs on and off at the right time such that the load voltage and current display the characteristics of the multiple tank circuits. By using this proposed power electronics, we demonstrate dual-frequency energy harvesting from a single mechanically resonant harvester. Simulation and experimental results match well and demonstrate that the proposed power electronics is capable of implementing higher order multi-resonant energy harvesting systems. In conclusion, this thesis presents both a theoretical foundation and a power electronics architecture that enables simultaneous effective multi-frequency energy harvesting with a single mechanically resonant harvester. The tunability of the power electronics also provides the possibility of dynamic real-time tuning which is useful to track non-stationary vibration sources.by Samuel C. Chang.Ph.D

    Towards self-powered wireless sensor networks

    Get PDF
    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that continuously collect, process, share and transport information. The impact of such technologies in our everyday life is expected to be massive, as it will enable innovative applications that will profoundly change the world around us. Remotely monitoring the conditions of patients and elderly people inside hospitals and at home, preventing catastrophic failures of buildings and critical structures, realizing smart cities with sustainable management of traffic and automatic monitoring of pollution levels, early detecting earthquake and forest fires, monitoring water quality and detecting water leakages, preventing landslides and avalanches are just some examples of life-enhancing applications made possible by smart ubiquitous computing systems. To turn this vision into a reality, however, new raising challenges have to be addressed, overcoming the limits that currently prevent the pervasive deployment of smart devices that are long lasting, trusted, and fully autonomous. In particular, the most critical factor currently limiting the realization of ubiquitous computing is energy provisioning. In fact, embedded devices are typically powered by short-lived batteries that severely affect their lifespan and reliability, often requiring expensive and invasive maintenance. In this PhD thesis, we investigate the use of energy-harvesting techniques to overcome the energy bottleneck problem suffered by embedded devices, particularly focusing on Wireless Sensor Networks (WSNs), which are one of the key enablers of pervasive computing systems. Energy harvesting allows to use energy readily available from the environment (e.g., from solar light, wind, body movements, etc.) to significantly extend the typical lifetime of low-power devices, enabling ubiquitous computing systems that can last virtually forever. However, the design challenges posed both at the hardware and at the software levels by the design of energy-autonomous devices are many. This thesis addresses some of the most challenging problems of this emerging research area, such as devising mechanisms for energy prediction and management, improving the efficiency of the energy scavenging process, developing protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support. %, including the design of mechanisms for energy prediction and management, improving the efficiency of the energy harvesting process, the develop of protocols for harvesting-aware resource allocation, and providing solutions that enable robust and reliable security support

    Piezoelectric Energy Harvesting: Enhancing Power Output by Device Optimisation and Circuit Techniques

    Get PDF
    Energy harvesting; that is, harvesting small amounts of energy from environmental sources such as solar, air flow or vibrations using small-scale (≈1cm 3 ) devices, offers the prospect of powering portable electronic devices such as GPS receivers and mobile phones, and sensing devices used in remote applications: wireless sensor nodes, without the use of batteries. Numerous studies have shown that power densities of energy harvesting devices can be hundreds of ”W; however the literature also reveals that power requirements of many electronic devices are in the mW range. Therefore, a key challenge for the successful deployment of energy harvesting technology remains, in many cases, the provision of adequate power. This thesis aims to address this challenge by investigating two methods of enhancing the power output of a piezoelectric-based vibration energy harvesting device. Cont/d

    Piezoelectric energy harvesting utilizing metallized poly-vinylidene fluoride (PVDF)

    Get PDF
    The primary objective of the enclosed thesis was to identify and develop a viable concept for an autonomous sensor system that could be implemented onto the surface of a road. This was achieved by an analysis of combinations of materials, sensing methods, power sources, microsystems, energy storage options, and wireless data transmission systems; the sub-systems required for an autonomous sensor. Comparison of sensing methods for the application of an on-road, autonomous sensor yielded a piezoelectric material as the ideal choice. A 52ÎŒm thin film of poly- vinylidene fluoride (PVDF) was chosen and coated with Ag electrodes on both sides.This was due to many constraints imposed by the intended environment including: physical, electrical, thermal, and manufacturing characteristics. One major hurdle in providing an autonomous sensor is the power source for the sensing, encoding, and transmission of data. Research involved determining the option best suited for providing a power source for the combination of sensors and wireless telemetry components. An energy budget of 105ÎŒJ was established to determine an estimate of energy needed to wirelessly transmit data with the selected RF transmitter. Based on these results, several candidates for power sources were investigated, and a piezoelectric energy harvesting system was identified to be the most suitable. This is an ideal case as the sensor system was already based on a piezoelectric material as the sensing component. Thus, a harvesting circuit and the sensor can be combined into one unit, using the same material. By combining the two functions into a single component, the complexity, cost and size of the unit are effectively minimized. In order to validate the conclusions drawn during this sensor system analysis and conceptual research, actual miniaturized systems were designed to demonstrate the ability to sense and harvest energy for the applications in mind. This secondary aspect of the research was a proof-of-concept, developing two prototype energy harvesting/sensing systems. The system designed consisted of a PVDF thin film with a footprint of 0.2032 m x 0.1397m x 52ÎŒm. This film was connected to an energy-harvesting prototype circuit consisting of a full-wave diode bridge and a storage capacitor. Two prototypes were built and tested, one with a 2.2ÎŒF capacitor, the other with a 0.1mF capacitor. The film was first connected to an oscilloscope and impulsed in an open circuit condition to determine the sensor response to a given signal. Secondly, the energy harvesting circuits were tested in conjunction with the film to test the energy supply component of the system. Lastly, the film and both energy-harvesting systems underwent full scale testing on a road using a vehicle as the stimulus. Both systems showed excellent rectification of the double polarity input with an evident rise in voltage across the capacitor, meaning energy was harvested. Typical results from the tests yielded 600-800mV across the 2.2ÎŒF capacitor, harvesting only a few ÎŒJ of energy. The 0.1mF capacitor system yielded approximately 4V per vehicle axle across the capacitor, harvesting 400-800ÎŒJ of energy. This equates to 4-8 times the required energy for wireless data transmission of the measurement data, which was estimated by other research groups to be on the order of 105ÎŒJ for the given system, and therefore proves the concept both, for bench-top and full-scale on-road experiments under controlled laboratory conditions

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, 
) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    Energy harvesting from human and machine motion for wireless electronic devices

    No full text
    Published versio
    • 

    corecore