18,273 research outputs found

    Interactive Visualization on High-Resolution Tiled Display Walls with Network Accessible Compute- and Display-Resources

    Get PDF
    Papers number 2-7 and appendix B and C of this thesis are not available in Munin: 2. Hagen, T-M.S., Johnsen, E.S., Stødle, D., Bjorndalen, J.M. and Anshus, O.: 'Liberating the Desktop', First International Conference on Advances in Computer-Human Interaction (2008), pp 89-94. Available at http://dx.doi.org/10.1109/ACHI.2008.20 3. Tor-Magne Stien Hagen, Oleg Jakobsen, Phuong Hoai Ha, and Otto J. Anshus: 'Comparing the Performance of Multiple Single-Cores versus a Single Multi-Core' (manuscript)4. Tor-Magne Stien Hagen, Phuong Hoai Ha, and Otto J. Anshus: 'Experimental Fault-Tolerant Synchronization for Reliable Computation on Graphics Processors' (manuscript) 5. Tor-Magne Stien Hagen, Daniel Stødle and Otto J. Anshus: 'On-Demand High-Performance Visualization of Spatial Data on High-Resolution Tiled Display Walls', Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications (2010), pages 112-119. Available at http://dx.doi.org/10.5220/0002849601120119 6. Bård Fjukstad, Tor-Magne Stien Hagen, Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen and Otto Anshus: 'Interactive Weather Simulation and Visualization on a Display Wall with Many-Core Compute Nodes', Para 2010 – State of the Art in Scientific and Parallel Computing. Available at http://vefir.hi.is/para10/extab/para10-paper-60 7. Tor-Magne Stien Hagen, Daniel Stødle, John Markus Bjørndalen, and Otto Anshus: 'A Step towards Making Local and Remote Desktop Applications Interoperable with High-Resolution Tiled Display Walls', Lecture Notes in Computer Science (2011), Volume 6723/2011, 194-207. Available at http://dx.doi.org/10.1007/978-3-642-21387-8_15The vast volume of scientific data produced today requires tools that can enable scientists to explore large amounts of data to extract meaningful information. One such tool is interactive visualization. The amount of data that can be simultaneously visualized on a computer display is proportional to the display’s resolution. While computer systems in general have seen a remarkable increase in performance the last decades, display resolution has not evolved at the same rate. Increased resolution can be provided by tiling several displays in a grid. A system comprised of multiple displays tiled in such a grid is referred to as a display wall. Display walls provide orders of magnitude more resolution than typical desktop displays, and can provide insight into problems not possible to visualize on desktop displays. However, their distributed and parallel architecture creates several challenges for designing systems that can support interactive visualization. One challenge is compatibility issues with existing software designed for personal desktop computers. Another set of challenges include identifying characteristics of visualization systems that can: (i) Maintain synchronous state and display-output when executed over multiple display nodes; (ii) scale to multiple display nodes without being limited by shared interconnect bottlenecks; (iii) utilize additional computational resources such as desktop computers, clusters and supercomputers for workload distribution; and (iv) use data from local and remote compute- and data-resources with interactive performance. This dissertation presents Network Accessible Compute (NAC) resources and Network Accessible Display (NAD) resources for interactive visualization of data on displays ranging from laptops to high-resolution tiled display walls. A NAD is a display having functionality that enables usage over a network connection. A NAC is a computational resource that can produce content for network accessible displays. A system consisting of NACs and NADs is either push-based (NACs provide NADs with content) or pull-based (NADs request content from NACs). To attack the compatibility challenge, a push-based system was developed. The system enables several simultaneous users to mirror multiple regions from the desktop of their computers (NACs) onto nearby NADs (among others a 22 megapixel display wall) without requiring usage of separate DVI/VGA cables, permanent installation of third party software or opening firewall ports. The system has lower performance than that of a DVI/VGA cable approach, but increases flexibility such as the possibility to share network accessible displays from multiple computers. At a resolution of 800 by 600 pixels, the system can mirror dynamic content between a NAC and a NAD at 38.6 frames per second (FPS). At 1600x1200 pixels, the refresh rate is 12.85 FPS. The bottleneck of the system is frame buffer capturing and encoding/decoding of pixels. These two functional parts are executed in sequence, limiting the usage of additional CPU cores. By pipelining and executing these parts on separate CPU cores, higher frame rates can be expected and by a factor of two in the best case. To attack all presented challenges, a pull-based system, WallScope, was developed. WallScope enables interactive visualization of local and remote data sets on high-resolution tiled display walls. The WallScope architecture comprises a compute-side and a display-side. The compute-side comprises a set of static and dynamic NACs. Static NACs are considered permanent to the system once added. This type of NAC typically has strict underlying security and access policies. Examples of such NACs are clusters, grids and supercomputers. Dynamic NACs are compute resources that can register on-the-fly to become compute nodes in the system. Examples of this type of NAC are laptops and desktop computers. The display-side comprises of a set of NADs and a data set containing data customized for the particular application domain of the NADs. NADs are based on a sort-first rendering approach where a visualization client is executed on each display-node. The state of these visualization clients is provided by a separate state server, enabling central control of load and refresh-rate. Based on the state received from the state server, the visualization clients request content from the data set. The data set is live in that it translates these requests into compute messages and forwards them to available NACs. Results of the computations are returned to the NADs for the final rendering. The live data set is close to the NADs, both in terms of bandwidth and latency, to enable interactive visualization. WallScope can visualize the Earth, gigapixel images, and other data available through the live data set. When visualizing the Earth on a 28-node display wall by combining the Blue Marble data set with the Landsat data set using a set of static NACs, the bottleneck of WallScope is the computation involved in combining the data sets. However, the time used to combine data sets on the NACs decreases by a factor of 23 when going from 1 to 26 compute nodes. The display-side can decode 414.2 megapixels of images per second (19 frames per second) when visualizing the Earth. The decoding process is multi-threaded and higher frame rates are expected using multi-core CPUs. WallScope can rasterize a 350-page PDF document into 550 megapixels of image-tiles and display these image-tiles on a 28-node display wall in 74.66 seconds (PNG) and 20.66 seconds (JPG) using a single quad-core desktop computer as a dynamic NAC. This time is reduced to 4.20 seconds (PNG) and 2.40 seconds (JPG) using 28 quad-core NACs. This shows that the application output from personal desktop computers can be decoupled from the resolution of the local desktop and display for usage on high-resolution tiled display walls. It also shows that the performance can be increased by adding computational resources giving a resulting speedup of 17.77 (PNG) and 8.59 (JPG) using 28 compute nodes. Three principles are formulated based on the concepts and systems researched and developed: (i) Establishing the end-to-end principle through customization, is a principle stating that the setup and interaction between a display-side and a compute-side in a visualization context can be performed by customizing one or both sides; (ii) Personal Computer (PC) – Personal Compute Resource (PCR) duality states that a user’s computer is both a PC and a PCR, implying that desktop applications can be utilized locally using attached interaction devices and display(s), or remotely by other visualization systems for domain specific production of data based on a user’s personal desktop install; and (iii) domain specific best-effort synchronization stating that for distributed visualization systems running on tiled display walls, state handling can be performed using a best-effort synchronization approach, where visualization clients eventually will get the correct state after a given period of time. Compared to state-of-the-art systems presented in the literature, the contributions of this dissertation enable utilization of a broader range of compute resources from a display wall, while at the same time providing better control over where to provide functionality and where to distribute workload between compute-nodes and display-nodes in a visualization context

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Player agency in interactive narrative: audience, actor & author

    Get PDF
    The question motivating this review paper is, how can computer-based interactive narrative be used as a constructivist learn- ing activity? The paper proposes that player agency can be used to link interactive narrative to learner agency in constructivist theory, and to classify approaches to interactive narrative. The traditional question driving research in interactive narrative is, ‘how can an in- teractive narrative deal with a high degree of player agency, while maintaining a coherent and well-formed narrative?’ This question derives from an Aristotelian approach to interactive narrative that, as the question shows, is inherently antagonistic to player agency. Within this approach, player agency must be restricted and manip- ulated to maintain the narrative. Two alternative approaches based on Brecht’s Epic Theatre and Boal’s Theatre of the Oppressed are reviewed. If a Boalian approach to interactive narrative is taken the conflict between narrative and player agency dissolves. The question that emerges from this approach is quite different from the traditional question above, and presents a more useful approach to applying in- teractive narrative as a constructivist learning activity

    TOWARDS A HOLISTIC RISK MODEL FOR SAFEGUARDING THE PHARMACEUTICAL SUPPLY CHAIN: CAPTURING THE HUMAN-INDUCED RISK TO DRUG QUALITY

    Get PDF
    Counterfeit, adulterated, and misbranded medicines in the pharmaceutical supply chain (PSC) are a critical problem. Regulators charged with safeguarding the supply chain are facing shrinking resources for inspections while concurrently facing increasing demands posed by new drug products being manufactured at more sites in the US and abroad. To mitigate risk, the University of Kentucky (UK) Central Pharmacy Drug Quality Study (DQS) tests injectable drugs dispensed within the UK hospital. Using FT-NIR spectrometry coupled with machine learning techniques the team identifies and flags potentially contaminated drugs for further testing and possible removal from the pharmacy. Teams like the DQS are always working with limited equipment, time, and staffing resources. Scanning every vial immediately before use is infeasible and drugs must be prioritized for analysis. A risk scoring system coupled with batch sampling techniques is currently used in the DQS. However, a risk scoring system only allows the team to know about the risks to the PSC today. It doesn’t let us predict what the risks will be in the future. To begin bridging this gap in predictive modeling capabilities the authors assert that models must incorporate the human element. A sister project to the DQS, the Drug Quality Game (DGC), enables humans and all of their unpredictability to be inserted into a virtual PSC. The DQG approach was adopted as a means of capturing human creativity, imagination, and problem-solving skills. Current methods of prioritizing drug scans rely heavily on drug cost, sole-source status, warning letters, equipment and material specifications. However, humans, not machines, commit fraud. Given that even one defective drug product could have catastrophic consequences this project will improve risk-based modeling by equipping future models to identify and incorporate human-induced risks, expanding the overall landscape of risk-based modeling. This exploratory study tested the following hypotheses (1) a useful game system able to simulate real-life humans and their actions in a pharmaceutical manufacturing process can be designed and deployed, (2) there are variables in the game that are predictive of human-induced risks to the PSC, and (3) the game can identify ways in which bad actors can “game the system” (GTS) to produce counterfeit, adulterated, and misbranded drugs. A commercial-off-the-shelf (COTS) game, BigPharma, was used as the basis of a game system able to simulate the human subjects and their actions in a pharmaceutical manufacturing process. BigPharma was selected as it provides a low-cost, time-efficient virtual environment that captures the major elements of a pharmaceutical business- research, marketing, and manufacturing/processing. Running Big Pharma with a Python shell enables researchers to implement specific GxP-related tasks (Good x Practice, where x=Manufacturing, Clinical, Research, etc.) not provided in the COTS BigPharma game. Results from players\u27 interaction with the Python shell/Big Pharma environment suggest that the game can identify both variables predictive of human-induced risks to the PSC and ways in which bad actors may GTS. For example, company profitability emerged as one variable predictive of successful GTS. Player\u27s unethical in-game techniques matched well with observations seen within the DQS

    A Systematic Review and Meta-Analysis of Player Motivations and Problematic Involvement in Multiplayer Online Games: Exploring an Alternative Diagnostic Approach that Minimizes the Risk of Pathologizing Healthy Gaming Behaviors

    Get PDF
    More than 80 million people in the United States play online video games, and this prevalent form of entertainment has enabled players from various geographic settings to interact in highly complex and realistic virtual worlds. However, despite the popularity of online gaming and the evolution of a socially oriented culture, the rapid growth of the industry has raised concerns among parents, educators, clinicians, and the general public about the potential consequences of online gaming. The proposal to classify Internet gaming disorder as a behavioral addiction has produced considerable debate as to whether the classification is empirically justified. Evidence suggests that problematic online gaming cannot be measured using addiction criteria because of its inability to distinguish problematic usage from high levels of healthy engagement. The purpose of this study was to explore an alternative, non-addiction approach that would minimize the risk of pathologizing healthy gaming behaviors. A systematic review and random-effects meta-analysis was conducted to measure the relationships between player motivations and gaming-related problems. Results indicated that escapism and advancement were strongly associated with gaming-related problems. Teamwork and discovery were found to be unassociated with gaming-related problems. Implications regarding the complexity of the escapism construct, the need for a deeper understanding of advancement, the relevance of motivations that are unassociated with problems, and methodological issues within the literature are discussed. Recommendations for researchers, parents, gamers, clinicians, policy makers, and executive leaders are also provided

    Emerging technologies for learning (volume 2)

    Get PDF

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work
    • …
    corecore