544,855 research outputs found

    A Physical Model for Co-evolution of QSOs and of their Spheroidal Hosts

    Full text link
    At variance with most semi-analytic models, in the Anti-hierarchical Baryon Collapse scenario (Granato et al. 2001, 2004) the main driver of the galaxy formation and evolution is not the merging sequence but are baryon processes. This approach emphasizes, still in the framework of the hierarchical clustering paradigm for dark matter halos, feedback processes from supernova explosions and from active nuclei, that tie together star formation in spheroidal galaxies and the growth of black holes at their centers. We review some recent results showing the remarkably successful predictive power of this scenario, which allows us to account for the evolution with cosmic time of a broad variety of properties of galaxies and active nuclei, which proved to be very challenging for competing models.Comment: Invited talk at the Specola Vaticana Workshop on "AGN and Galaxy Evolution", Castel Gandolfo, 3-6 October 2005, 10 pages, 2 figure

    The cosmic dust rate across the Universe

    Get PDF
    We investigate the evolution of interstellar dust in the Universe by means of chemical evolution models of galaxies of different morphological types, reproducing the main observed features of present-day galaxies. We adopt the most updated prescriptions for dust production from supernovae and asymptotic giant branch stars as well as for dust accretion and destruction processes. Then, we study the cosmic dust rate in the framework of three different cosmological scenarios for galaxy formation: (i) a pure luminosity scenario, (ii) a number density evolution scenario, as suggested by the classical hierarchical clustering scenario and (iii) an alternative scenario, in which both spirals and ellipticals are allowed to evolve in number on an observationally motivated basis. Our results give predictions about the evolution of the dust content in different galaxies as well as the cosmic dust rate as a function of redshift. Concerning the cosmic dust rate, the best scenario is the alternative one, which predicts a peak at 2 < z < 3 and reproduces the cosmic star formation rate. We compute the evolution of the comoving dust density parameter \u3a9dust and find agreement with data for z < 0.5 in the framework of DE and alternative scenarios. Finally, the evolution of the average cosmic metallicity is presented and it shows a quite fast increase in each scenario, reaching the solar value at the present time, although most of the heavy elements are incorporated into solid grains, and therefore not observable in the gas phase

    Observational constraints on Chaplygin cosmology in a braneworld scenario with induced gravity and curvature effect

    Full text link
    We study cosmological dynamics and late-time evolution of an extended induced gravity braneworld scenario. In this scenario, curvature effects are taken into account via the Gauss-Bonnet term in the bulk action and there is also a Chaplygin gas component on the brane. We show that this model mimics an effective phantom behavior in a relatively wider range of redshifts than previously formulated models. It also provides a natural framework for smooth crossing of the phantom-divide line due to presence of the Chaplygin gas component on the brane. We confront the model with observational data from type Ia Supernovae, Cosmic Microwave Background and Baryon Acoustic Oscillations to constraint the model parameters space.Comment: 19 pages, 11 figures, Accepted for publication in MNRA

    Embedding of FRW Cosmology in DGP Scenario with a Non-Minimally Coupled Scalar Field on the Brane

    Full text link
    We construct a DGP inspired braneworld scenario where a scalar field non-minimally coupled to the induced Ricci curvature is present on the brane. We show that this model allows for an embedding of the standard Friedmann cosmology in the sense that the cosmological evolution of the background metric on the brane can be described by the standard Friedmann equation. The relation between our framework and the dark-energy formalism is explored.Comment: 14 pages, no figur

    Behaviour of Charged Collapsing Fluids after Hydrostatic Equilibrium in R^n Gravity

    Full text link
    The purpose of this paper is to study the transport equation and its coupling with Maxwell equation in the framework of R^n gravity. Using Muller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables are appeared in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star.Comment: Accepted for publication in European Physical Journal

    Screening Effects on 1S0^1S_0 Pairing in Neutron Matter

    Full text link
    The 1S0^1S_0 superfluidity of neutron matter is studied in the framework of the generalized Gorkov equation. The vertex corrections to the pairing interaction and the self-energy corrections are introduced and approximated on the same footing in the gap equation. A suppression of the pairing gap by more than 50% with respect to the BCS prediction is found, which deeply changes the scenario for the dynamical and thermal evolution of neutron stars.Comment: 5 pages, 5 figres, RevTeX4 styl

    Heterogeneous aging in spin glasses

    Full text link
    We introduce a set of theoretical ideas that form the basis for an analytical framework capable of describing nonequilibrium dynamics in glassy systems. We test the resulting scenario by comparing its predictions with numerical simulations of short-range spin glasses. Local fluctuations and responses are shown to be connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. Scaling relationships are uncovered for the slow evolution of heterogeneities at all time scales.Comment: Substantially reorganized to improve clarity of exposition. Accepted for publication in Physical Review Letters. 5 pages, 4 figure
    • …
    corecore