7,305 research outputs found

    An ontology for software component matching

    Get PDF
    The Web is likely to be a central platform for software development in the future. We investigate how Semantic Web technologies, in particular ontologies, can be utilised to support software component development in a Web environment. We use description logics, which underlie Semantic Web ontology languages such as DAML+OIL, to develop an ontology for matching requested and provided components. A link between modal logic and description logics will prove invaluable for the provision of reasoning support for component and service behaviour

    An ontology for software component matching

    Get PDF
    Matching is a central activity in the discovery and assembly of reusable software components. We investigate how ontology technologies can be utilised to support software component development. We use description logics, which underlie Semantic Web ontology languages such as OWL, to develop an ontology for matching requested and provided components. A link between modal logic and description logics will prove invaluable for the provision of reasoning support for component behaviour

    Modeling of Phenomena and Dynamic Logic of Phenomena

    Get PDF
    Modeling of complex phenomena such as the mind presents tremendous computational complexity challenges. Modeling field theory (MFT) addresses these challenges in a non-traditional way. The main idea behind MFT is to match levels of uncertainty of the model (also, problem or theory) with levels of uncertainty of the evaluation criterion used to identify that model. When a model becomes more certain, then the evaluation criterion is adjusted dynamically to match that change to the model. This process is called the Dynamic Logic of Phenomena (DLP) for model construction and it mimics processes of the mind and natural evolution. This paper provides a formal description of DLP by specifying its syntax, semantics, and reasoning system. We also outline links between DLP and other logical approaches. Computational complexity issues that motivate this work are presented using an example of polynomial models

    Dynamic Logic of Common Knowledge in a Proof Assistant

    Get PDF
    Common Knowledge Logic is meant to describe situations of the real world where a group of agents is involved. These agents share knowledge and make strong statements on the knowledge of the other agents (the so called \emph{common knowledge}). But as we know, the real world changes and overall information on what is known about the world changes as well. The changes are described by dynamic logic. To describe knowledge changes, dynamic logic should be combined with logic of common knowledge. In this paper we describe experiments which we have made about the integration in a unique framework of common knowledge logic and dynamic logic in the proof assistant \Coq. This results in a set of fully checked proofs for readable statements. We describe the framework and how a proof can beComment: 15

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Backwards State-space Reduction for Planning in Dynamic Knowledge Bases

    Full text link
    In this paper we address the problem of planning in rich domains, where knowledge representation is a key aspect for managing the complexity and size of the planning domain. We follow the approach of Description Logic (DL) based Dynamic Knowledge Bases, where a state of the world is represented concisely by a (possibly changing) ABox and a (fixed) TBox containing the axioms, and actions that allow to change the content of the ABox. The plan goal is given in terms of satisfaction of a DL query. In this paper we start from a traditional forward planning algorithm and we propose a much more efficient variant by combining backward and forward search. In particular, we propose a Backward State-space Reduction technique that consists in two phases: first, an Abstract Planning Graph P is created by using the Abstract Backward Planning Algorithm (ABP), then the abstract planning graph P is instantiated into a corresponding planning graph P by using the Forward Plan Instantiation Algorithm (FPI). The advantage is that in the preliminary ABP phase we produce a symbolic plan that is a pattern to direct the search of the concrete plan. This can be seen as a kind of informed search where the preliminary backward phase is useful to discover properties of the state-space that can be used to direct the subsequent forward phase. We evaluate the effectiveness of our ABP+FPI algorithm in the reduction of the explored planning domain by comparing it to a standard forward planning algorithm and applying both of them to a concrete business case study.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767
    corecore