

Abstract—Modeling a complex phenomenon such as the
mind presents tremendous computational complexity
challenges. Modeling field theory (MFT) addresses these
challenges in a non-traditional way. The main idea behind
MFT is to match levels of uncertainty of the model (also, a
problem or some theory) with levels of uncertainty of the
evaluation criterion used to identify that model. When a
model becomes more certain, then the evaluation criterion is
adjusted dynamically to match that change to the model.
This process is called the Dynamic Logic of Phenomena
(DLP) for model construction and it mimics processes of the
mind and natural evolution. This paper provides a formal
description of DLP by specifying its syntax, semantics, and
reasoning system. We also outline links between DLP and
other logical approaches. Computational complexity issues
that motivate this work are presented using an example of
polynomial models.

I. INTRODUCTION

There are two current trends within the modeling of
physical phenomena which are mirrored within logic. In
modeling physical phenomena, the trend is to add additional
logical structure to classical mathematical techniques,
whereas in logic it is to add “dynamics” to the logic [12-17],
with an aim to represent and reason about actions rather than
static propositions. The subjects in this area include Action
Logic, Arrow Logic, Game Logic, Semantic Games,
Dialogue Logic, Belief Revision, Dynamic Epistemic Logic,
Hoare logic, Dynamic Logic, Linear Logic, Labeled
Transition Systems, Petri Nets, Process Algebra, Automata
Theory, Game Semantics, Coalgebras, among others [13].

These two complimentary trends can be very beneficial
for both areas. In [13], “dynamification” of logic is
developed to model quantum phenomena, and this paper
develops the dynamic approach for modeling other problems
where the computational complexity of finding the solution
is a critical issue.

While at the global level these complimentary trends
exist, for one approach to benefit the other both need to be
close enough to each other in specific tasks and goals. For
example, consider a basic difference between dynamic
epistemic logic [16, 19] and DLP. H. Leitgeb has pointed out
that the aim of dynamic epistemic logic and the like is to put
logical operators with a dynamic interpretation into one’s
formal object language. The aim of DLP, however, is to
specify a particular dynamics of learning and related
concepts in the meta-language. So, since DLP locates the
dynamics in the meta-language and dynamic epistemic logic
locates them in the object language, the logical resources of
dynamic epistemic logic are not yet of help to DLP [18].

To illustrate this difference, consider an example from

[24]: “A man loves Annie. He is rich.” Two interpretations
are possible:
(1) (∃x)(man x & x loves Annie) & x is rich.
(2) (∃x)(man x & x loves Annie & x is rich).

In the first sentence, the existential quantifier is applied
only to the first sentence, but in the second sentence, it
ranges over both. The two interpretations of “A man loves
Annie. He is rich” show that the existential quantifier and
operations can be dynamic, that is, they can have different
interpretations within the object language. According to J.
van Benthem [20], DLP follows dynamic systems tradition.
This tradition can be traced to Ernst Mach who viewed
organisms as dynamic systems that have innate tendencies to
self-regulation and equilibrium. When equilibrium is
disturbed, which can happen on a variety of levels, the
organism works to form a new equilibrium [21]. Note that
the common tools to model such phenomena are differential
equations rather than logic. A related view of dynamic
systems comes from studies in the Computational Theory of
Mind (CMT) [22]. According to [23], cognitive processes
are not rule-governed sequences of discrete symbolic states,
but continuously evolving total states of dynamic systems
determined by continuous, simultaneous and mutually
determining states of the system’s components (i.e., state
variables or parameters). In section XI, we outline a way to
shrink the gap between these two basic approaches.

To provide a formal description of Dynamic Logic of
Phenomena (DLP), we start by comparing the background
definitions of DLP to logic model theory. Section II
establishes concepts of uncertainty, generality, and
simplicity for models, and defines evaluation criteria.
Section III defines a partial order of models. Section IV
provides examples of uncertainty and generality of
polynomial models. Section V formalizes similarity
maximization. Section VI defines DLP parameterization
using the theory of monotone Boolean functions. Section VII
defines the search process. Section VIII presents how DLP
processes can be visualized. Section IX provides a formal
description of DLP. Sections X and XI outline the links
between DLP and other dynamic logics. Section 12
summarizes the paper and discusses future research. The
Appendix describes computation complexity issues that
motivate the paper.

We start by defining the concept of empirical data
relevant to modeling field theory (MFT) [8], [9], and supply
an interpretation in logical terms.

Empirical data, E in MFT is any data to identify a
model.

In logical terms, we define empirical data as a pair,
E=<A, Ω>, where A is a set of objects, and Ω={Pi } is a set

Modeling of Phenomena and Dynamic Logic of Phenomena
Boris Kovalerchuk1, Leonid Perlovsky2, Gregory Wheeler3

Draft of September 1, 2011
1Central Washington University, Dept. of Computer Science, USA, borisk@cwu.du

2Harvard University and the Air Force Research Laboratory, USA, leonid@seas.harvard.edu
3New University of Lisbon, CENTRIA – AI Center, Dept. of Computer Science, Portugal, grw@fct.unl.pt

,Center for Artificial Intelligence
>> Department of Computer Science
>> The New University of Lisbon, FCT

>> 2829-516 Caparica, Portuga

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/11923005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of predicates Pi of arity ni, e.g., P1(x,y) means that length of
x is no less than the length of y, l(x)≥l(y).
 Definition. A pair <A, Ω> is called an empirical system
[6].
 Definition. A pair <A, Ω> is called a model in logic [7].
Often it is considered as a model of some system of axioms
T.
 Tarski proposed the name ‘model theory’ in 1954,
although a variety of other names are also used, including
relational system [6], and a protocol of the experiment. We
call Tarskian models logic models or Lmodels [10] to
distinguish them from models in MFT.

The concept of a model, M, in MFT concerns a model of
reality, which we will call a model of phenomena or
Pmodel. In logical formalization, a Pmodel can be matched
with an axiom system T.

Definition. A system of axioms T is a set of closed
formulas (sentences) in the signature of the underlying
language, e.g.,

∀ xi ∃xj P1(xi,xj).
The concept of model is treated very differently in MFT

than it is in mathematical logic. Logic may be thought to go
from a very formal (syntactical) axiomatic system T to a
more real or concrete model AT =<AT, Ω> of that formal
system T. MFT goes in the other direction, from a very
informal reality to more formal models. As a result, the
concepts of model are quite different in the two theories.
Empirical data in MFT is a model E=<A,Ω> in
mathematical logic, if we interpret empirical data as an
empirical system E [6]. On the other hand, the model of
phenomena is not a model in logic; instead, Pmodels are
akin to a set of axioms about the class of logic models. This
type of difference was well described in [10]:

“To model a phenomenon is to construct a formal
theory that describes and explains it. In a closely
related sense, you model a system or structure that
you plan to build, by writing a description of it.
These are very different senses of ‘model’ from that
in model theory: the ‘model’ of the phenomenon or
the system is not a structure but a theory, often in a
formal language.”

Thus, we will use terms that have been already introduced
above: Pmodel for a model of phenomenon and Lmodel for
a logic model.

The next MFT concept is a similarity (or
correspondence) measure, L(M,E), between empirical data
E and an a-priori model M that is assigned individually to
each pair (M,E):

L: {(M,E)} → R,
where R is a set or real numbers. In logic the closest to a
similarity measure is a statement that <A,Ω> is a model of
the system of the axioms T.
 In logical terms, L maps a theory M and Lmodel E to R.

Definition. Pair E =<A,Ω> is an Lmodel of the system
of the axioms T if every formula from T is true on E.

Definition. Boolean similarity measure B(T,E) is
defined to be equal to 1, B(T,E)=1, If M is an Lmodel of T,
else B(T,E)=0.

II. SEMANTIC CONCEPTS OF UNCERTAINTY,
GENERALITY AND SIMPLICITY

A. Uncertainty, generality, and simplicity relations
between P-models
Below we introduce the concepts of uncertainty,

generality, and simplicity relations. These concepts can be
specified for both logic and MFT models.

An uncertainty relation between Pmodels is denoted by
≥Mu, and the sentence Mi ≥Mu Mj is read: “Model Mi is equal
in uncertainty or more uncertain than model Mj”. In other
words, model Mj is equal in certainty or more certain than
model Mi, and model Mj is no less certain than model Mi.
This relation is a partial order. If Mi >Mu Mj then we simply
say that Mj is more certain than Mi.

A generality relation between Pmodels is denoted by ≥Mg
and relation Mi ≥Mg Mj is read: “Model Mj is a specialization
of the model Mi” or “Model Mi is a generalization of the
model Mj”. This relation also is a partial order.

A simplicity relation between Pmodel is denoted by ≥Ms
and relation Mi ≥Ms Mj is read: “Model Mi is equal in
simplicity or simpler than Model Mj”. This relation also is a
partial order.

For Pmodels that are represented as a system of axioms,
the generality relation can be defined as follows.

Definition. Ti ≥ gen Tj if and only if Ti ⊆ Tj , i.e., system
of axioms Ti is equal to, or an extension of, the system of
axioms Tj if and only if every axiom in Ti is an axiom in Tj.

B. Uncertainty, generality and simplicity relations
between similarity measures
An uncertainty relation between similarity measures is

denoted by ≥Lu, and Li ≥Lu Lj is read: “Measure Li is equal
in uncertainty or more uncertain than measure Lj”. This is a
partial order.

A generality relation between similarity measures is
denoted by ≥Lg, and Li ≥Lg Lj is read either: “Measure Lj is
a specialization of measure Li”, or equivalently, “measure Li
is a generalization of the measure Lj”. This relation also is a
partial order.

A simplicity relation between similarity measures is
denoted by ≥Ls, and relation Li ≥Ls Lj is read: “Measure Lj is
equal in simplicity or simpler than measure Li”. This relation
also is a partial order.

Definition. Mapping F between a set of Pmodels {M} and
a set of similarity measures {L},

F: {M} → {L},
is called a match mapping if F preserves uncertainty,
generality, and simplicity relations between models and
measures in the form of homomorphism from a relational
system < {M}, ≥Mg, ≥Mu , ≥Ms > to a relational system
< {L}, ≥Lg, ≥Lu , ≥Ls > , i.e.,

 ∀ Ma , Mb (Ma ≥ Mg Mb ⇒ F(Ma)≥Lg F(Mb)),

 ∀ Ma , Mb (Ma ≥Mu Mb ⇒ F(Ma)≥Lu F(Mb)),

 ∀ Ma , Mb (Ma ≥Ms Mb ⇒ F(Ma)≥Ls F(Mb)).

Order of
Pmodels/
theories

Order of
similarity
measures

Figure 1. Mapping of Pmodels/logic theories and similarity
measures

III. PARTIAL ORDER OF PMODELS

Two different Pmodels can be at the same level of
uncertainty (M1 =u M2), one Pmodel can be more uncertain
than another (M1 >u M2), or Pmodels can be incomparable
for uncertainty. We may define model uncertainty in such a
way that two different models,

 M1: ∀ x,y 2x2 +3y = 0
and

M2: ∀ x,y 5x+4y2 = 0
have the same level of uncertainty M1 =u M2. The number of
unknown coefficients is one of the possible ways to define
the level of uncertainty. For M1 and M2, these numbers m1
and m2 are equal to zero. All coefficients are known and
models are certain. In contrast, model

M3: ∀ x,y 5x + by2 =0.
has one unknown coefficient b and its measure of
uncertainty is equal to 1.

 Definition. NUC measure of polynomial model
uncertainty is defined as the Number of Unknown
Coefficients (NUC) in the model.

Consider Pmodel M3. Based on the NUC measure, this
Pmodel is more uncertain than Pmodel M2, M3 >Mu M2,
because coefficient b in M3 is unknown. NUC for M2 is n2=0
and NUC for M3 is n3=1 and n3>n2. In logical terms these
Pmodels can be described as logic statements

M1: ∀ x,y P1(x,y),

M2: ∀ x,y P2(x,y),

M3: ∀ x,y P3(x,y,b).

The generality relation between Pmodels M1 and M2 can
also be defined. For instance, it can be the highest power n
of the polynomial model. Both models M1 and M2 are
quadratic with n1=n2=2 and, thus, both have the same
generality.

Definition. HP measure of polynomial model generality is
defined as the Highest Power n of the polynomial model.

Alternatively, we may look deeper and notice that M1
contains x2 and M2 contains y2. We may then define the
generality of a polynomial model as its highest polynomial
variable, which are x2 for M1 and y2 for M2.

If the interpretations of x and y are fixed and cannot be
swapped, then we cannot say that one is more general than
the other and we can call them incomparable in generality.

The described measures are computed separately for each
individual model rather than for a pair of models to be
compared. As a result, the measures may not represent an
intuitive generality order relation between models. For
instance, we can call model M3 more general than model M2,
M3 >Mg M2, because M2 is a specialization of M3 with b=4.
Similarly, intuitively the Pmodel

M4 : ∀ x,y ax+cx2+by2=0
is more general than Pmodels M1, M2, and M3, because
coefficients in M1, M2 and M3 are different numeric
specializations of a, b, and c in M4.

However,
HP(M1)= HP(M2)= HP(M3)=HP(M4)=2;

that is, all of these Pmodels have the same HP generality,
while M4 is intuitively more general than the other models.

Thus, alternatively, we may define the generality of a
polynomial model as its highest polynomial variable, which
is x2 for M1 and y2 for M2. If the interpretations of x and y
are fixed and we cannot swap symbols x and y, then we
cannot say that one of them is more general than the other.
Thus, they would be incomparable in generality.

Definition. HPV measure of polynomial model generality
is defined as the Highest Power Variable (HPV) of the
polynomial model.

For models M1 and M2 we have HPV(M1)=x2 and
HPV(M2)=y2. If there are two HPV as in model
M=2x2+4x+3y2 +5y=0, then HPV(M) is a pair (x2,y2). In the
case with more than two HPVs we will have an n-
dimensional vector of HPVs.

Below we discuss the advantages and disadvantages of
HP and HPV measures. If we cannot fix the meaning of the
variables x and y, or if we cannot even agree to use only the
symbols x and y, then HPV may not be an appropriate
measure.

Swapping symbols will lead to HPV(M1)=y2 and
HPV(M2)=x2. Using other symbols such as z and v instead
of x and y will make a use of HPV even more questionable.

As we discussed above, intuitively M3 seems more general
than M2,, and M4 seems more general than models M1, M2,
and M3.

The HPV measure captures this better with
HPV(M1)=x2, HP(M2)=y2, HP(M3)=y2, HP(M4)=(x2,y2).

M4 is more general than the other models in HPV, but
model M3 is more general than M2, which is a special case of
M3 with b=4.

This is not captured by HPV,
HPV(M2)=HPV(M3)=y2.

Therefore, we introduce another generality characteristic that
is defined on pairs of models.

Definition. Polynomial model Mi is a coefficient
specialization (C-specialization) of a polynomial model Mj
if coefficients of Mi are specializations of coefficients of Mj.
In other words, Mj is a C-generalization of model Mi.

 For instance, Pmodel M3 is a C-specialization of model
M4. Similarly, M2 is a C-specialization of M3, but M1 is not
C-specialization of M2.

Note that model M4 is more uncertain than models M1,
M2, and M3, because all coefficients in M4 are uncertain, but
none of the coefficients are uncertain in M1, M2, and only
one coefficient is uncertain in M3.

Definition. SP measure of polynomial model simplicity is
defined as the sum of powers of its variables. For instance,
SP(M3)=3 having powers 1 and 2 in 5x1 + by2

. One model is
SP-simpler than the other if its SP measure is smaller. Here
M3 is simpler than M4 , which has SP=5.

Uncertainty, generality, and simplicity relations can be
isomorphic (produce the same order of Pmodels), or be quite
different. In the next section, we provide a parameterization
mechanism that highlights the difference.

IV. PARAMETERIZATION

Below we parameterize uncertainty and generality of
polynomial models.
 The first block in Table 1 shows a chain of models with
increasing NUC uncertainty, (from 0 to 2), fixed HP
generality, (2), fixed HPV generality, (y2), and increasing C-
generality: that is, from all known coefficients to two
unknown coefficients, a and b, that substitute coefficients 3
and 4, respectively.
 All these models have HP level 2 and SP simplicity
level equal to 4. Other blocks in Table 1 illustrate other
relations between these characteristics of the models.

Consider another example of the five models with
increasing NUC uncertainty levels from 0 to 4:

 M0: ∀x,y x2 +3y+7x+0 =10
 M1 : ∀x,y x2 +3y+7x+d =10
 M2: ∀x,y ax2+3y+7x+d =10

M3: ∀x,y ax2+by+7x+d =10
 M4: ∀x,y ax2+by+cx+d =10

Models M4, M3, M2, M1 and M0 form an uncertainty
decreasing chain on the NUC uncertainty relation defined
above: M4 >Mu M3 >Mu M2 >Mu M1 >Mu M0. These models
also form a generality decreasing chain

 M4 >Mg M3 >Mg M2 >Mg M1 >Mg M0.
Each model has four parameters, p1, p2, p3, and p4. For

instance, for model M2, parameter p1=1 represents
uncertainty of ax2, with an unknown coefficient a. Similarly,

p2=p3=0, because further coefficients b and c are known, but
p4=1 because d is unknown.

Thus, each model is parameterized as a Boolean vector,
vi =(vi1,vi2,..,vik,…,vin): M4: v4=(1111); M3: v3=(1101); M2:
v2=(1001); M1: v1=(0001), M0: v0=(0000).

Table 1
1. Chain of models with increasing
both NUC uncertainty and C-
generality, with fixed HP and HPV
generalities and fixed SP simplicity.

∀x,y 3x+4y+5y2=0
∀x,y ax+4y+5y2=0
∀x,y ax+by+5y2=0

2. Chain of models with increasing
NUC uncertainty, with increasing C-
generality, and with fixed HP and
HPV generalities.

∀x,y 3x+4y+5y2=0
∀x,y ax+9y+5y2=0

∀x,y ax+by+7y2=0

3. Chain of models with increasing
NUC uncertainty, without increasing
C-generality, and fixed HP
generality, but with incomparable
HPV generality.

∀x,y 3x+4y+5y2=0
∀x,y 3x2+by =0

∀x,y ax+7y+by2=0

4. Chain of models with increasing
NUC uncertainty and SP simplicity,
but with decreasing HP generality,
incomparable HPV generality and
without increasing C-generality (ax
does not generalize 3x2).

∀x,y 3x+4y+5y2=0
∀x,y 3x2+by =0

∀x,y ax +by =0

Definition. Parametric model Mi is no less general than

model Mj if vi ≥ vj, i.e., ∀k vik ≥ vjk.
In accordance with this definition, we have

(1111) ≥ (1101) ≥ (1001) ≥ (0001)≥ (0000),
which is isomorphic to

M4 ≥ Mg M3≥ Mg M2 ≥ Mg M1≥ Mg M0.
In other words, the model with parameters (0000) is a

specialization of all previous models.
Learning Operator. The intuitive idea of learning

Pmodels from data is to get a more specialized model from a
given Pmodel M.

Definition. Mapping C is called a learning (adaptation)
operator C,

C(Mi,E)= Mj.
This operation represents a cognitive learning process C

of a new model Mj from a given model Mi and data E. In
other words, the process is an adaptation of model Mi to data
E to produce model Mj.

A learning operator C(Mi,E) is applied multiple times to
produce a chain of models, where each subsequent model is
more specific than the previous model.

 Mi > Mg Mi+1 > Mg Mi+2 …. Mi+k-1 > Mg Mi+k

Theoretically here we may have “≥” relation instead of “>”,
but non-trivial learning operator should produce more
specific models, e.g., we might start from the model with all
parameters uncertain (111111) and end up with a more
certain model parameterized with a Boolean vector
(101010):

(111111) > (011111) > (011110) > (101010).

Definition. Parametric model Mi is no less general than
model Mj if ui ≥ uj, i.e., ∀k uik ≥ ujk.

Above we encoded known parameters as 1 and unknown
as 0. A more detailed uncertainty parameterization is when
Boolean vectors are substituted by k-valued vectors ui =
(ui1, ui2,.., uik,…,uin+m) with

uij∈U={0,1/(k-1),2/(k-1),…k-2/(k-1),1}.

V. SIMILARITY MAXIMIZATION
A similarity maximization problem is a major

mechanism of DLP that is formalized below.
 Definition. A similarity Lfin measure is called a final
similarity measure if:

∀ M, E, Li Li (M, E) ≥Lu Lfin(M, E).
The final similarity measure specifies the level of certainty
of model similarity to the data that we want to reach.

Definition. The static model optimization problem
(SMOP) is to find a model Ma such that

Lfin(Ma, E) = max j∈J Lfin(Mj,E) (1)

subject to conditions (2) and (3):

 ∀ Mj ∈U(Ma) Lfin(Ma,E) = Lfin(Mj, E) ⇒ Ma ≥Mu Mj (2)

 ∀ Mj ∈G(Ma) Lfin(Ma,E) = Lfin(Mj, E) ⇒ Ma ≥Mg Mj (3)

 The goal of (2) and (3) is to prevent model overfitting
with data E. Sets U(Ma) and G(Ma) contain Pmodels that are
comparable with Ma relative to uncertainty and generality,
respectively. Condition (2) means that if Ma and Mj have the
same similarity measure with E, then uncertainty of Ma
should be no less than uncertainty of Mj. Condition (3)
expresses an analogous condition for the generality relation.
Too specific models can lead to overfitting.

Definition. The dynamic logic model optimization
(DLPO) problem is to find a Pmodel Ma such that

 La(Ma, E) = max j∈J Lj(Mj,E) (4)

subject to conditions (5) and (6):

∀ Mj ∈U(Ma) La(Ma,E) =Lj(Mj, E) ⇒ Ma ≥Mu Mj (5)

∀ Mj ∈G(Ma) Lj(Ma,E) = Lj(Mj, E) ⇒ Ma ≥Mg Mj (6)

This is a non-standard optimization problem. In standard
optimization problems, only models Mi are changed but the
optimization criterion L is held fixed, since it does not
depend on the model Mi. In DLP, however, the criterion L
changes dynamically with Pmodels Mj.

Since the focus of DLP is cutting computational
complexity (CC) of model optimization, a dual
optimization problem can be formulated.

Definition. An optimization problem of finding a shortest
sequence of matched pairs (Mi,Li) of Pmodels Mi and
optimization criteria (similarity measures) Li that solves the
optimization problem (4)-(6) for the given data E is called a
dual dynamic logic model optimization (DDLMO)
problem, which finds a sequence of n matching pairs

(M1, L1), (M2, L2),…, (Mn, Ln),

such that
Ln (Mn,E) = max i∈I Li(Mi,E)

and
∀ Mi Li=F(Mi), C(Mi,E)= Mi+1,

Mi ≥Mu Mi+1, Mi ≥Mg Mi+1, Mn =Ma, Ln=La.
 This means finding a sequence of more specific and
certain Pmodels for the given (1) data E, (2) matching
operator F, and (3) learning operator C to maximize
similarity measure Li(Mi,E).

VI. MONOTONE BOOLEAN FUNCTIONS
Definition. A Boolean function f: {0,1}n → {0,1} is a

monotone Boolean function if: vi ≥ vj ⇒ f(vj) ≥ f(vi).
This means that (vi ≥ vj & f(vi)=0) ⇒ f(vj)=0 and

(vi ≥ vj & f(vj)=1) ⇒ f(vi)=1. Function f is non-decreasing.
Consider fixed E and Mi that are parameterized by vi and
interpret L(Mi,E) as f(vi), i.e., L(Mi,E)=f(vi). Assume that
L(Mi,E) has only two values (unacceptable 0, and acceptable
1). It can be generalized to a k-value case if needed. If
L(Mi,E) is monotone, then vi ≥ vj ⇒ L(Mi,E) ≥ L(Mj,E),
e.g., if L(M3-1110,E)=L(M2-1100,E)=0, then
 (vi ≥ vj & L(M3-1110,E)=0) ⇒ L(M2-1100,E)=0 (7)

 (vi ≥ vj & L(M2-1100,E)=1) ⇒ L(M3-1110,E)=1 (8)
This means that if a model with more unknown parameters
vi failed, then a model with less unknown parameters vj will
also fail. If we conclude that a quadratic polynomial model
(M2) is not acceptable, L(M2,E)=0, then a more specific
quadratic model M3 also cannot be acceptable, L(M3,E)=0.
Thus, we do not need to test model M3. This monotonicity
property helps to decrease computational complexity. We
use

(vi ≥ vj & f(vi)=0) ⇒ f(vj)=0 (9)

for rejecting models, and

(vi ≥ vj & f(vj)=1) ⇒ f(vi)=1 (10)

for confirming models. In the case of a model rejection test
for data E, the focus is not to quickly build a model but
rather to quickly reject a model M—in the spirit of Popper’s
falsification principle. In essence, the test L3(M3,E)=0 means
that the whole class of models M3 with 3 unknown
parameters fails. Testing M3 positively for data E requires
finding 4 correct parameters. This may mean searching in a
large 4-D parameter space [-100, +100]4 for a single vector,
say (p1, p2, p3, p4) = (9, 3, 7, 10), if each parameter varies in
the interval [-100,100]. For rejection we may need only 4
training vectors (x,y,u) from data E and 3 other test vectors.
The first four vectors allow us to build a quadratic surface in
3-D as a model. We then simply test whether three test
vectors from E fail to fit this quadratic surface.

VII. SEARCH PROCESS
In the optimization process, we want to keep track of

model rejections and to dynamically guide what model will
be tested next in order to minimize the number of tests.
Formulas (9) and (10) are key equations to minimize tests,
but we need the whole strategy for how to minimize the
number of tests and to formalize it. This strategy is
formalized as minimization of Shannon function ϕ, which
was proposed in [1]:

min A∈A max f∈F ϕ(f,A),

where A is a set of algorithms, F is a set of monotone
functions, and ϕ(f,A) is a number of tests that algorithm A
does to fully restore function f. Each test means computing a
value f(v) for a particular vector v. In the theory of
monotone Boolean functions it is assumed that there is an
oracle that is able to produce the value f(v), thus each test is
equivalent to a request to the oracle [1,4,5]. Minimization of
the Shannon function means that we search for the algorithm
that needs the smallest number of tests for its worst case
(function f that needs maximum number of tests relative to
other functions). This is a classic min-max criterion. It was
proved in [1] that

 min A∈A max f∈F ϕ(f,A) = ,

where ⎣x⎦ is the floor of x. The proof is based on the
structure called Hansel chains. These chains cover the whole
n-dimensional binary cube {1,0}n. The steps of the algorithm
are presented in detail in [3,5]. The main idea of these steps
is building Hansel chains, starting from testing the smallest
chains, expanding each tested value using formulas (7) and
(8), testing values that are left unexpanded on the same
chains, then moving to larger chains until no chains are left.
The goal of the search is to find a smallest lower unit v, i.e.,
a Boolean vector such that f(v)=1, and for every w<v
f(w)=0, and for every u>v |u|>|v|. A simpler problem could
be to find any lower unit of f.

The search problem in logical terms can be formulated as
a satisfiability problem: Find a system of axioms Ta such
that La(Ta, E)=1 subject to the condition
∀ Tj La(Ta,E) =Lj(Tj, E) ⇒ Tj ≥Mu Ta ,

i.e., if Ta and Tj have the same similarity with E, then Ma
should have a lower uncertainty than Tj, e.g., Tj≥Mu Ta. If a
similarity measure L is defined as a probabilistic measure
in [0,1] then the probabilistic version of the task of finding a
system of axioms T for model A that maximizes a
probabilistic similarity measure is:
 Max i∈I L(Mi,E).

VIII. DYNAMIC LOGIC VISUALIZATION
Visualization of DL helps to monitor, control, and
understand the DL search process. It allows us to explore
visually the relations between the verified and refuted
models, and to discover dynamic patterns of model search.
A model to be tested is shown as a highlighted bar (see

Figure 2). When the answer (verified or refuted) is provided,
this bar changes its color to red (refuted) or black (verified).
Next, these bars are expanded using monotonicity
automatically or by a user. A user can see simultaneously all
models that have been currently tested as bars. A red bar
(marked as model M1) is a refuted model M1 and yellow bars
under M1 are models refuted using monotonicity. Similarly,
model M2 and M3 were tested next and refuted, which is
indicated by their red bar. Colored bars below them are also
refuted using monotonicity. Then model M4 was verified and
encoded by a black bar with all models verified using
monotone expansion of M4 are shown above M4 as grey bars.
Using technique from [Kovalerchuk, Delizy, 2005], bars can
be rearranged to reveal their pattern as a Pareto set/border
(see Figure 2).

Figure 2. Dynamic logic process visualization

The border is dynamically developed as more models are
tested. Finally, a user will see a border between verified and
refuted models and can impose additional requirements to
monitor border models that satisfy such additional
requirements.

IX. FORMAL DESCRIPTION OF P-DYNAMIC LOGIC
Below we describe formally our dynamic logic of models of
phenomena (DLP) as a summarization of concepts
introduced above. As with any logic, DLP consists of three
parts: (1) a semantic part, (2) a syntactic part, and (3) a
reasoning part.

A. Semantic part of DLP

At first, we define the semantic part of DLP. It consists of
two related algebraic systems. The first one is a three-sort
algebraic system [7], where {E} are sets of data, {M} are
sets of Pmodels, R is the set of real numbers,

 EM = < {E}, {M}, R; ΩEM>. (11)

ΩEM consists of sets of relations, ΩE, ΩPM, ΩR on {E}, {M}
and R, respectively, and operators {L} and C that connect
{E}, {M} and R,

 ΩEM = <ΩE, ΩPM, ΩR , {L}, C >. (12)

Here ΩPM = { ≥Mg, ≥Mu , ≥Ms } presents partial order relations
between Pmodels relative to their generality, uncertainty and
simplicity as described above. Each similarity
(correspondence) measure Li ∈ {L} is a mapping:

Li: {M}×{E} → R. (13)
A similarity measure captures numerically the similarity
between data and P-models. A higher value of Li(M,E)
indicates a higher consistency between data E and the
Pmodel M in the aspect that was captured by Li. Having a
set of such measures {L} allows us to choose appropriate
measures dynamically.

Next, a Pmodel enhancement (learning) operator C is
C: {M, E} → {M} (14)

that changes a P-model. This operator brings us dynamics of
model changes. Thus, we have two types of dynamics and
we need a formal way to express the change of L similar to
(14) for models. This is done by introducing a two-sort
algebraic system

ML = < {M}, {L}; ΩPM, ΩL, F >, (15)

with

ΩPM = { ≥Mg, ≥Mu, ≥Ms }, ΩL = { ≥Lg, ≥Lu },

and F as a mapping between sets {M} and {L} that preserves
relations on {M},

 F: {M} → {L}. (16)
Algebraic systems (11) and (15) have several common
components, but {L} has very different roles in each. In
(11), {L} is part of Ω, i.e., it is an operator; but in (15) {L}
is one of two base sets of the algebraic system, where the
operator is F: {M} → {L}.

Thus, we cannot simply join systems (11) and (15)
together to a single algebraic system because of the different
roles played by {L} in (11) and (15). We would need a
generalized multi-sort algebraic system in second order-
logic to do this. Note that separately (11) and (15) are much
simpler systems in first-order logic (FOL).

In addition, we can build (15) without a specific dataset
E∈{E}, because (15) does not require {E}. To construct (11)
for a specific dataset E, we would need to define ΩE. See an
extensive discussion of these issues and examples in [6,4].
Thus, the semantic part of the DLP is

EMML = <EM, ML; W>,

where W(Mi, E, Mj) is the following relation that consists of
three parts (17)-(19):

W(Mi, E, Mj) ≡
 ([C ∈ ΩEM & C(Mi,E) = Mj] & (17)

 {[(Mi >u Mj)∨(Mi >g Mj) ∨ (Mj>sMi)] ∨ (18)

 [Li=F(Mi)& Lj=F(Mj) & Lj(Mj,E) > Li(Mi ,E)]}). (19)

Relation W(Mi, E, Mj) is true if and only if C produces a

Pmodel Mj using E that is better than the input P-model Mi
in at least one of its characteristics (i.e., more certain, more

specific, simpler, or better fit data relative to similarity
measures). In other words, a Boolean predicate W(Mi, E,
Mj)=1 if C(Mi,E)=Mj produces an improved model Mj,
otherwise W(Mi, E, Mj)=0.

In accordance with the definitions in previous sections, in
(18) Mi >Mu Mj means that Mj is a more certain model than
Mi. Similarly, Mi >Mg Mj means that Mj is a more specific,
and Mj >s Mi means that Mj is simpler than Mi. Property (19)
means that model Mj better fits data E than model Mi
relative to measures Lj and Li, which are dynamically
assigned to Mj and Mi by applying F to them.

Not every operator that produces another model can be
called a learning operator. Relation W sets up a semantic
criterion for operator C to be a learning operator for P-
models Mi, Mj and data E. Note that (17) and (18) in W can
be checked having only EM, but (19) requires ML too.

Now we want to discuss how to compute truth-values of
predicates and outputs of operators in EM and ML. For EM
and ML we gave some examples of ΩM and ΩL, {L}, C and
F. An extensive set of examples of similarity measures L and
learning operators C are given in [8]. For ML in addition we
need to compute F. For instance, if M(c,r) is a model that
represents a circle with center c and radius r, then L(c,r)
could be the same, F(M(c,r)) = L=M(c,r). This means that L
tests exactly model M(c, r). An alternative F could be
F(M(c,r))= L=M(c, r+e) that accepts all models with
radiuses no greater than r+e.

In general a library of such matching operators F and
relations ΩM and ΩL should be created that will be available
to researchers. Thus, we have a semantic part of the P-
dynamic logic identified.

B. Syntactic part of P-Dynamic Logic
Now we need to explore which part of this semantic

machinery can be transferred to the syntactic level so that we
can do reasoning without semantic knowledge to get at least
some non-trivial inferences and conclusions.

To distinguish the syntactic level from the semantic level,
we will use low-case notation em and ml to define the
syntactic structure of EM and ML, respectively. We do this
for all components; thus,

em = < {e}, {m}, r; ωem>. (20)

The ωem consists of sets of relations ωe, ωm, ωr on {e}, {m}
and r, respectively, and operators {l} and c that connect {e},
{m} and r,

ωem = <ωe, ωm, ωr , {l}, c > (21)
Similarly, we define

 ml = < {m}, {l}; ωm, ωl, f >, (22)

that includes

ωm = { ≥mg, ≥mu, ≥ms }, ωl = { ≥lg, ≥lu } f: {m} → {l} (23)

Similarly, we define emml = <em, ml; w >, where
w(mi, e, mj) ≡
([c ∈ ωem & c(mi,e) = mj] & (24)
{[(mi >mu mj)∨(mi >mg mj) ∨ (mj>msmi)] ∨ (25)
[li=f(mi)& lj=f(mj) & lj(mj,e) > li(mi ,e)]}). (26)

C. Reasoning part of DLP
Now we will discuss the reasoning part of DLP. To build a
reasoning deductive system for DL we need a set Λ of
logical axioms, a set Σ of non-logical axioms, and a set
{Γ,φ} of rules of inference.

It will be interesting to explore if it is complete, i.e., for all
formulas φ,

If Σ |=ϕ then Σ |- ϕ.

If this system is actually incomplete, then we will have
statement ϕ such that neither ϕ nor ¬ϕ can be proved from
the given set of axioms. In contrast, in a complete system, all
true statements (made true by the set of axioms) are
provable.

We also need to know the validity of the inference rules;
that is, we need to establish that the conclusion follows from
the premises. The soundness of these rules needs to be
clarified, too; that is, it needs to be shown that the
conclusion follows from the premises when the premises are
in fact true.

While all these are interesting research issues, at this stage
of formalization of DLP it is more important to have first a
rich set of useful non-logical axioms Σ.

To clarify this issue we need to answer the following
questions: What reasoning is possible in DLP? What could
be the most interesting part of syntactic reasoning for a
specific practical problem?

Assume that we already have a knowledge base (KB).
This KB contains m1,…,mn, and e that are called facts in this
KB (m1,…mn are interpreted semantically as Pmodels and e
as data). KB also contains some expressions, e.g.,
w(mi, e, mj) (interpreted semantically as Pmodel mj is an
improved Pmodel mi).

For the first series of questions we have common first-
order reasoning with logical axioms Λ that use ∧, ∨, ¬, and
⇒ operators.

Non-logical axioms Σ include the disjunction axiom (DA)
and conjunction axiom (CA) and mixed CDA axiom:
 CA: w(mi, e1, mk) ∨ w(mi, e2, mk) ⇒ w(mi, e1∪e2, mk),
 DA: w(mi, e1, mk) ∧ w(mi, e2, mk) ⇒ w(mi, e1∩e2, mk),

DCA: w(mi, e1, mk) ∧ w(mi, e2, mk) ⇒ w(mi, e1∪e2, mk).
The last axiom is redundant if we add the inclusion axiom
(IA):
 IA: w(mi, e1∩e2, mk) ⇒ w(mi, e1∪e2, mk)

Together DA and IA produce DCA. The real world
interpretation of these axioms will assume some regularity in
data and learning operators.

Next we want to know if w(mi, e, mk) can be inferred
purely syntactically knowing that w(mi, e, mj) and w(mj, e,
mk) are in the KB but without using a semantic interpretation
of w(mi, e, mk). By having this we will have useful syntactic
reasoning in this DL. In fact, a transitivity axiom (TA) can
be established as part of a set of non-logical axioms Σ,

TA: w(mi, e, mj) ∧ w(mj, e, mk) ⇒ w(mi, e, mk).
It follows from the semantics of relation W that it is

transitive, thus we can postulate transitivity for w. As a

result of this postulate we can infer w(mi, e, mk) purely
syntactically having w(mi, e, mj) and w(mj, e, mk) in KB
without going to the semantic level and computing W(Mi, E,
Mk), which can be computationally challenging for a large
dataset E. This is a major advantage of using DLP syntactic
reasoning instead of computations at the semantic level.

The reasoning mechanism Tem in em is a first-order logic
with terms in its signature. Similarly, Tml in ml it is a first-
order logic in terms of its signature. In <em, ml; w > we
have Temml that is also a first-order logic reasoning with w,
but if we substitute w with its components (24)-(26), we will
have second-order logic reasoning. Thus, the complete
description of the dynamic logic of phenomena models is

DL = < DLEM, DLML, DLEMML >,
where
 DLEM = < em, Tem, EM>,

DLML = < ml, Tml, ML>,

 DLEMML = < emml, Temml, EMML>.

D. Learning operator
Now we want to elaborate the concept of a learning

operator, C. There is an important question about this
operator: How sophisticated should C be relative to a brute
force algorithm that computes L(M,E) for every P-model M
and selects M that provides min L(M,E)?

It will be advantageous to get a simple and quite universal
operator, C, which will allow us to use it for solving a wide
variety of problems. Let us consider a direct modification of
a brute force algorithm to the situation with dynamic change
of correspondence (similarity) measures Li, which is
assumed in the dynamic logic. The next assumption is that
the space of highly uncertain models is relatively small.
Thus, a brute force algorithm can work for these models in a
reasonable time. Next, the best model M1 found at this step
will produce a new correspondence measure L1 and this
measure will be applied to a new set of models produced by
M1 for evaluation (e.g., with a more dense grid around M1 or
in another location if L(M1) is low). To produce new models
we introduce a new operator, H, that we will call a
specialization operator, as follows:
Step 1. Select initial Pmodel M0.
Step 2. Produce set of Pmodels H(M0).
Step 3. Compute L0(M, E) for every M from H(M0) ={M}
and find model M1 = arg min{M} L0(M, E).
Step 4. Test if L0(M1,E) >T, i.e., is above the needed
correspondence threshold. Stop if it is true, else go to step 5.
Step 5. Repeat steps 1-4 until all models tested or time limit
reached.

More complex strategies for the H operator can be based
on breadth-first, depth-first, and branch-and-bound
strategies.

X. RELATIONS WITH OTHER DYNAMIC LOGICS
A link with the Dynamic Logic for Belief Revision [15] is

feasible to explore. The transition from model Mi to model

Mj using partial orders between models can be viewed as a
belief revision.

At a very general level, the link between Dynamic Logic
of Phenomena and either Propositional or First-Order
Dynamic Logic [26, 27] follows from the fact that Dynamic
Logic of Phenomena contains static components
(propositional/first-order formulas), and dynamic
components (actions/programs). A formula can change when
actions are applied, and actions can be repeated and applied
consecutively. Thus, the Dynamic Logic of Phenomena can
be viewed as a special case of Propositional or First-Order
Dynamic Logics with special types of “programs” described
in this paper.

Below we follow [13] in summarizing the Propositional
Dynamic Logic that has been useful for capturing important
properties of programs, such as correctness. The basic
concept of this logic is the state S of a system. Each state S
has its properties expressed as a propositional formula ϕ.
These properties are changed when a program (action) π is
applied to S with a given precondition a. Thus, program π
can produce S with property ψ starting with S with property
ϕ and precondition a,

π(S,a) = ψ.

Propositional formulas are static components of this logic
and actions/ programs are dynamic components. Actions can
be applied consecutively and repeated, which is expressed
syntactically as π, π’ and π*, respectively. An action also can
be taken randomly from a set of actions, π ∪ π’. One of the
actions is testing, which is denoted by ‘ϕ?’. It tests if
property ϕ is true or false for system S.

There is also an order relation (≥w) on the set of
preconditions {a}. It expresses the relative strength
(weakness) of the precondition. The statement a1 ≥w a2
means that a1 is weaker than a2. [π]ϕ is the weakest
precondition ψ that leads to postcondition ϕ after
performing π on S. Also [ϕ?]ψ denotes the classical
implication ψ → ϕ, that is if S satisfies ψ then it satisfies
ϕ, too.

In DLP, the concept similar to the concept of system S in
the Propositional Dynamic Logic is a Pmodel M and data E
pair, <M, E>. Actions are operations that allow us to
produce a new Pmodel from M and E,

π(Mi,E)=Mi+1

The concept of precondition is not defined in DLP, but
data E or properties of E can be interpreted as a
precondition. An alternative way to specify preconditions is
to introduce an additional concept of precondition to DLP
and to interpret it for specific tasks.

In DLP we have a sequence of actions π1, π2,…,πn that can
be iterations π∗ of a fixed learning algorithm/program π. In
this iteration, the last model is the “best” one for data D. If
the desirable property ψ of the model Mi is defined, then we
can find the minimal (weakest) precondition [π]ψ that is
needed to convert the previous model Mi-1 to Mi. When we
interpret a precondition as data E, then [π]ψ will mean the

minimal dataset that is needed to get a model M with
property ψ. Thus, designing actions πk by using a learning
operator C(Mi-1,E) and then testing that the result of this
action/program ϕ implies ψ, [ϕ?]ψ, provides a link between
DLP and propositional dynamic logic.

In the Logic of Action [16, 28-30], models are
transformed based on the information communicated that
uses Kripke’s model of actions and Kripke models of states
[30]. The update of an epistemic model is done by an
epistemic action (i.e., an action that affects the epistemic
state of a group of agents). An epistemic model can be
matched with a phenomena model in DLP, and an epistemic
action will be a program that implements a learning operator
C(M,E).

The focus of epistemic logic is expressing the distributed,
localized information that is accessible only in parts of the
system. In Epistemic logic [31,32] we have ϕ! as an action
of learning the truth of proposition ϕ that is the result of the
truthful public announcement of ϕ. In DLP, we have a
learning operator C(M,E) that learns a new phenomena
model that is more complex than a single proposition. Thus,
the epistemic logic can be expanded for phenomena models.
Next, the actual process of getting ϕ! can be elaborated in
both DLP and epistemic logic.

Public announcements are presumed to be certain, but
often learning a parameter is uncertain. Qualitative logics for
“risky knowledge” [33,34] have been proposed, which
capture rational but uncertain acceptance of a proposition.
This approach, based on ε-acceptability [38], combines both
probability and modality to characterize tentative or
corrigible acceptance of a set of sentences. A sentence ϕ is
ε-accepted if the probability of ¬ϕ is at most ε, where ε is
taken to be a fixed small parameter.

Logics of rational acceptance are inspired by classical
statistical methods, such as Fisher’s exact test for detecting
non-random association between variables. Fisher’s exact
test specifies conditions under which a null, no-effect
hypothesis is rejected, which is nominally equivalent to
accepting that the association is non-random.

The probabilities associated with this approach are
evidential probabilities, developed in [38] and extended in
[39], which construes probability as a metalinguistic relation
between a set of sentences and a single sentence on analogy
to provability. Evidential probability is interval-valued,
defined in a first-order language with the capacity for
expressing known statistical frequencies. For example, the
language can express that a test of a hypothesis of size α that
yields a point in the rejection region supports the denial of
the null hypothesis H0 to degree [1-α, 1], or runs a risk error
at most α

Normal modal logics are inappropriate for qualitative
representations of ε-acceptance, since all instances of the
schema

are valid in normal Kripke models. However, if the box
modality [] is interpreted as ‘has high probability’,
distributing ‘has high probability’ across conjunction should

not be a valid principle. That event A has probability greater
than ε and event B has probability greater than ε does not
entail that the joint event of A and B has probability greater
than ε.

Fortunately, Schema (C) is not valid within the minimal
models of classical modal logic [35], and belief revision
operators can be defined for monotone classical systems
without (C) [36], as well as rudimentary measures of
robustness [37].

A connection between Dynamic Epistemic Logic,
expanded with ε-acceptability, and DLP can be expressed
through a similarity (or correspondence) measure, L:
{(M,E)} → R, which serves a role similar to probability in
Epistemic logic with ε-acceptability.

XI. CONSEQUENCES VERSUS CONDITIONALS
As we observed in the introduction, DLP locates dynamics

in the meta-language rather than in the object language,
which is in contrast to Dynamic Epistemic Logic. We
considered ways to bridge these two approaches in the last
section, closing with a description of a qualitative modeling
of ε-accepted “risky knowledge.” In that case the modal
techniques of revision, common to dynamic epistemic logic,
were harnessed for a specific purpose, to evaluate the
robustness of ε-accepted sentences. Here we observe reasons
for respecting the distinction.

The object-language/meta-language distinction is
important to observe [40], since there is a difference
between procedural rules and declarative sentences that
often needs to be preserved rather than ameliorated. For
while declarative sentences take truth values and can be
embedded in complex formulas, procedural rules often do
not. However, the question of whether an “if…then…”
construction is better viewed as a conditional formula than
as a conditional rule, or whether there is little difference
between the two and an analogue of the deduction theorem
can be used, is not always clear cut, and will depend on the
purpose of the formalization.

To illustrate, input/output logic [41, 42] was conceived as
a response to deontic logics handling of norms and
declarative statements. Norms, unlike statements, may be
respected or flouted, and may be judged from the standpoint
of other norms but are not typically evaluated as ‘true’ or
‘false’. Input/output logic conceives of a norm as an ordered
pair of formulas, and a normative system is a set G of norms.
The task for an input/output logic, then, is to prepare
information to be passed into G, and to unpack the resulting
output. So, abstractly, the set G is a transformation devise
for information, and we may characterize an ‘output’
operator ‘Out’ by logical properties typical of consequence
operators. A formula x is a ‘simple-minded output’ of G in
context a, written x ∈ Out(G,a), if there is a set of norms (a1,
x1),…,(an,xn) in G such that each ai ∈ Cn(a) and x ∈ Cn(x1 &
… & xn), where Cn(a)={ai| a╞ ai} is the classical semantic
consequence set of a that is a set of all contexts ai such that
every model of a is also a model of ai [41].

Out(G,a) satisfies three rules: writing (a,x) for x ∈
Out(G,a), they are strengthening input (SI), conjoining
output (AND), and weakening output (WO):
 From (a,x) to (b,x), whenever a ∈ Cn(b). (SI)
 From (a,x), (a,y) to (a, x∧y). (AND)
 From (a,x) to (a,y), whenever y ∈ Cn(x). (WO)
Strengthening input means that if context a leads to output x
then a stronger context b also leads to x. Similarly,
weakening output means that if context a leads to output x
then context a also leads to a weaker output y, x╞ y, that is
y∈Cn(x).

Here the idea is that, while classical logic may be used to
‘process’ the input and to ‘unpack’ the output, the operator
Out itself does not have either an associated language or a
proof theory. Even so, Out may enjoy structural properties
commonly attributed to consequence operators. Simple-
minded output is the most general characterization of Out,
but stronger input/output operators have been studied [41],
including a characterization of Poole’s default system [43]
and a system similar to Reiter’s default logic [25].

Example [44] Suppose there are two community norms
governing social benefits, one which maintains that poor
citizens receive a housing subsidy, and the other that elderly
citizens receive health insurance, i.e., G = {(Poor,
SubsidizedHousing), (Elderly, HealthInsurance)}. Then, the
community should also provide a housing subsidy if no-
income implies poor is included in the theory, i.e.,

SubsidizedHousing ∈ Out(G,(NoIncome → Poor) &
NoIncome), since
Poor ∈ Cn((NoIncome → Poor) & NoIncome) and
SubsidizedHousing ∈ Cn(SubsidizedHousing).
While one may agree that deontic logic has traditionally

mishandled norms, it is not clear that there is anything
essential about norms, which would preclude them from
being represented by a statement within a language [47]. The
point instead is that we must first understand the system we
wish to model before defining the language we need, rather
than the other way around.

A good illustration of this point is the theory of causal
modeling [45,46], since “if…then…” statements have long
been thought to express a causal relationship between
events. Whereas in normative systems the main issue is the
apparent non-truth-functional character of norms, the issues
with causal modeling concern the asymmetrical nature of
causal relationships and, more importantly, the role that
intervention plays in our understanding of causal
relationships. Certainly, logics of conditionals have
abounded; most attempt to ground conditionals of this kind
in the semantic features of the mood, aspect, and tense of
natural language conditional statements. And some
philosophical theories of causality have attempted to build
from these studies in formal semantics.

However, in the case of causal modeling, success came
once the order of inquiry was reversed. While both
equational and causal models rely upon symmetrical
equations to describe a system, causal models in addition
impose asymmetries by assuming that each equation
corresponds to an independent mechanism, which may be

manipulated. The theory of causal Bayesian networks
[45,46] supplied the mathematical framework for causal
modeling, and it did so by ignoring the task of formulating a
calculus and focused instead on getting the right
mathematical framework. Only recently has there been a
proposal for a calculus, and the clarity of Judea Pearl’s
causal algebra of ‘doing’ [44] relies upon this background
theory.

XII. CONCLUSION AND FUTURE WORK
This paper has introduced a formalization of the dynamic

logic of phenomena in the terms of first-order logic, logic
model theory, and the theory of Monotone Boolean
functions. This formalization covers the main idea of DLP:
matching levels of uncertainty of the problem/model to
levels of uncertainty of the evaluation criterion, which
dramatically decreases computation complexity of finding a
model.

The core of the formalization is a partial order on the
phenomena models and similarity measures with respect to
their uncertainty, generality, and simplicity. These partial
orders are represented using a set of Boolean parameters
within the theory of monotone Boolean functions and can be
visualized in line with [3] to monitor and guide the search in
the Boolean parameter space in the DL setting.

Further studies are needed to establish a richer set of non-
logic axioms and to explore validity, soundness, and
completeness of expanded DLP. Such studies may reveal
deeper links with classical logic problems such as
decidability, completeness, and consistency.

Further theoretical studies may find deeper links with
classical optimization search processes, and may
significantly advance them by adding an extra layer of
optimization criteria constructed dynamically. This work
also gives a new perspective for machine learning [2,4] to
develop learning algorithms that can learn evaluation criteria
and models simultaneously. We expect that deep links with a
known Dynamic Logic of programs [12] motivated by
logical analysis of computer programs will also be
established.

The proposed formalization creates a framework for
developing specific applications and modeling tools. We
envision a modeling tool that will consist of sets of models,
matching similarity measures, processes for testing them and
model learning processes for specific problems in pattern
recognition, data mining, optimization, cognitive process
modeling, and decision making.

From our viewpoint, the most interesting and useful future
DLP research is discovering a mechanism for changing
models and similarity measures. Humans have demonstrated
capabilities to switch evaluation criteria instantaneously in
dynamic environments [11]. This is the area where logic,
mathematical modeling, and cognitive science can provide
mutual benefits in discovering mechanisms for changing
models and changing similarity measures.

APPENDIX 1: COMPUTATIONAL COMPLEXITY

E. Polynomial complexity case
Below we describe two examples that give computational

motivation to our research on building a logical formalism
for representing the dynamic logic of phenomena. The first
example is about finding a model to fit a hidden circle in
noisy data when the level of noise is so high that a direct
human observation does not allow a visual clue about the
location of the circle within the image. In the second
example, the shape of the object (model) to be found is more
complex (see Figure 3 on the right). To identify the circle we
need two points, and to identify the second (parabolic) shape
we need 4 points A,B,D and G (see Figure 3), that is models
with 2 and 4 parameters, respectively.

To solve the first example we assume:
1. The hidden shape to be discovered is a circle.
2. The density of the points in the circle is higher than

outside of the circle W, but it is so subtle that it is below
of the human perception abilities.

3. The center c=(xc, yc) of the circle is not known, but its
range is known: xc ∈ [xmin,xmax], yc ∈ [ymin,ymax].

4. The resolution of x and y are known, ex and ey, that is x
has a finite set of nx values, xmin, xmin+ex,…,
xmin+kex,…xmax and y has a finite set of ny values, ymin,
ymin+ey,…,ymin+rey,…ymax

5. The radius R of W is not known.
6. The radius R accuracy resolution is er =min(ex,ey).
7. More than one circle can be in the area and the number of

the circles is not known.
8. Different circles may or may not overlap.
9. The circles’ area is less than 1/3 of the whole area.

 Figure 3. Modeled shapes

The brute force algorithm for example 1 conducts Density
Difference Test for every node C=(xc,yc) and every R on the
grid. It returns 1 if D(R) – D(¬R) >T, else 0, that is if
density D(W) in circle W is greater than D(¬W) with
threshold T, where D(¬W) is density outside W. Here

The Computational Complexity (CC) of this algorithm
with the base operation as Density Difference Test (C,R) is
O(n3) on a square grid n×n.

The CC of Density Difference Test function is defined by
the total number m of given points with the base operation as
testing (xi -xc)2+(yi -xc)2 ≤ R2, that is if the point is inside of
the circle. The total computational complexity of the brute
force algorithm is O(n3m). If input points covers the whole

B
W

A G D
C
R

W

grid, then m=n and CC is equal to O(n4). If fact m is a
fraction of n, thus if m=n/10, then we still have O(n4).

Now we will change our assumption 1, i.e., that the
hidden shape to be discovered is a circle. A more complex
shape to discover is produced by two quadratic curves
shown in Figure 3. Three points, A,B, and G, are sufficient
to identify the first curve, and three points, A,D, and G, are
sufficient to identify the second curve. Thus, in total 4 points
are sufficient to identify both curves. In the case of the
circle, we need only two points, center C, and any point H
on the circle. To solve the task for our new parabolic shape,
we keep the same assumptions as we had for the circle. We
assume the unknown number of shapes of unknown sizes,
locations, and orientations. Complexity of a brute force
algorithm is O(n4) which is greater than for Example 1 due
to a greater number of parameters involved. The density
difference test has the same complexity O(m) as above for
the circle, but is more complex for points inside of the shape.
However, this test’s time grows linearly with m. For each
point, it computes two quadratic forms and tests if the point
is in or out of the shape based on these values. This time is
limited by a constant for each given point. Thus, the total
complexity is O(n4m), and if m would reach n, then it will be
O(n5). While these algorithms are polynomial, they have
limited applicability for data of practical sizes as we show
below.

Assume that m=n/10, thus our complexity functions for
examples 1 and 2 are k1(n4/10) and k2(n5/1), respectively.
We also assumed 109 base operations/sec in these
computations. Note that this base operation is a part of the
Density Difference Test computed for each of m inputs.

Tables 1 and 2 show computational complexity under
these assumptions for search of circles and parabolic shapes.
A computer screen grid of pixels is about 1000×1000 and
images from current cameras are larger. Only for a single
screen with 100 input points, finding the circle has an
acceptable time (100 sec) which also can be too slow for real
time applications. Finding a more complex parabolic shape
needs 28 hours for the same 100 input points. Increasing m
to 1000 or 10000 input points leads to many years as table 2
shows. Real objects, such as aircrafts, have shapes that are
more complex. Thus, more critical points are needed to
identify their models and CC will be greater. Therefore,
fundamentally different approaches are needed to deal with
such huge computational complexity issues. This example
illustrates a computational motivation for this paper:
building the dynamic logic formalism for a computationally
efficient dynamic logic process.

F. Exponential complexity case
Above we considered a situation where we needed to test

a polynomial number of models. This was a result of the
assumption that models are simple circles or parabolic
shapes defined by n2 points on the grid.

Objects with more complex shapes (e.g., long and non-
linear tracks) may require identifying more parameters and
their combinations that can grow exponentially.

TABLE 1.

COMPUTATION TIME FOR SEARCH OF CIRCLES IN NOISY DATA

Circle Grid
size

n Points m
Computational
Complexity n3m

Time for 109 base
operations per sec

10 1 1000 0.000001 sec
100 10 1E+7 0.01 sec

1000 100 1E+11 100 sec
10000 1000 1E+15 277.8 hours

100000 10000 1E+19 126.8 years
1000000 100000 1E+23 1,27 million years

TABLE 2.

COMPUTATION TIME FOR SEARCH OF PARABOLIC SHAPES IN
NOISY DATA

Parabolic shape Grid
size

n Points m
Computational
Complexity n4m

Computational
Complexity n4m

10 1 10000 0.00001sec
100 10 1E+09 1 sec

1000 100 1E+14 28 hours
10000 1000 1E+19 317.1 years

100000 10000 1E+24 31.7 million years
1000000 100000 1E+29 3.17E+12 years

APPENDIX 2: EXAMPLE OF DLP PROCESS
 Consider a situation with a single unknown object that is
described as an interval [a,b] in the total interval [0,10]. We
need a process that will find a and b. The model of the
object is [a,b], which is highly uncertain because both values
a and b are unknown and only limited by the interval [0, 10].
Thus, the first class of models is M={[a,b]: a,b ∈ [0,10]}.
 To be specific, assume that the unknown object (model) is
the interval [0,4]. This model has center c=2 and radius r=2,
and can be written as [a,b]=m(c,r). Let also M(c,R)={m(c,r)}
be a set of all models with center c and radiuses r that are no
greater than R. Consider a set of all models (intervals)
M(c,5) with all radiuses r ≤ 5. Here c and r also are highly
uncertain.
 Now we build at first a very uncertain evaluation measure
(criterion) L0 for this class of models M(c,R) and data E as a
kernel function. For instance, consider a Gaussian
distribution, N(5,10), where c=5 is a mean and r=10 is a
standard deviation. This standard deviation is two times
greater than the largest R=5 in the [0, 10] interval, thus it
covers M(c,5) models (intervals) and should not fail for this
class of models. This means that the result of applying L0
based on N(5,10) to M(c,5) is positive, L0(M(c,5))=1. This
indicates that an object exists in [0,10], but its location is
uncertain. We still do not know exactly c and r, but the class
of models M(c,5) is confirmed because we have
L0(M(c,5))=1.
 Having this positive result, the next step is to change the
similarity measure L, to make it less uncertain, by
substituting L0=N(5,10) by, say, L1 based on N(5,7). This
substitution can be done by using a learning operator.
Testing L1 on M(c,5) is not a computational challenge. It can
be done quickly, which is a major benefit of DLP. This
quick process of changing L and M is repeated until it
reaches the level of maximum certainty of models that is
possible on available data. This process is much faster than a
brute force approach described in previous examples in this
appendix. Here for simplicity of exposition we assumed that
L takes binary values. For more complex non-binary L see

[8,9].
For the actual use of the DLP methodology, elaborated

classes of models and criteria need to be developed at the
matched level of uncertainty. Some of them are already
developed in likelihood function terms [8,9].

REFERENCES
[1] G. Hansel, G., (1966) “Sur le nombre des fonctions Boolenes

monotones de n variables," C.R. Acad. Sci. Paris, 262(20) : 1088-
1090.

[2] Luc De Raedt. (2006), From Inductive Logic Programming to Multi-
Relational Data Mining. Springer.

[3] B. Kovalerchuk, F. Delizy, (2005), “Visual data mining using
monotone Boolean functions,” In: Visual And Spatial Analysis:
Advances In Data Mining, Reasoning, And Problem Solving,
Kovalerchuk, B, Schwing, J, (Eds), Springer, pp. 387-406.

[4] B. Kovalerchuk, Vityaev E., (2000), Data Mining in Finance:
Advances in Relational and Hybrid Methods, Kluwer.

[5] B. Kovalerchuk, Triantaphyllou, E., Despande, A., Vityaev, E.,
(1996), “Interactive Learning of Monotone Boolean Function,”
Information Sciences, 94(1-4): 87-118

[6] D. H. Krantz, R. D. Luce, P. Suppes, A. Tversky. Foundations of
Measurement. New York, London: Academic Press, 1971-1990

[7] A.Malcev. (1973), Algebraic Systems. Springer-Verlag.
[8] L. Perlovsky, (2000), Neural Networks and Intellect: Using Model-

Based Concepts, Oxford University Press.
[9] L. Perlovsky, (2006), “Toward physics of the mind: Concepts,

emotions, consciousness, and symbols,” Physics of Life Rev. 3, 23–55.
[10] W. Hodes (2005), “First-order Model Theory,” Stanford

Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/modeltheory-fo/

[11] L. Perlovsky, (2007), “Evolution of language, Consciousness, and
Cultures,” IEEE Computational Intelligence Magazine. 8, pp. 25-39.

[12] D. Harel, D. Kozen, and J. Tiuryn, (2000), Dynamic Logic, MIT Press.
[13] A. Baltag, S. Smets, (2008), “A Dynamic-Logical Perspective on

Quantum Behavior,” Studia Logica , 89: 187–211.
[14] J. van Benthem, (1996), “Exploring Logical Dynamics,” Studies in

Logic, Language and Information, CSLI Publications, Stanford..
[15] J. van Benthem, (2007), “Dynamic logic for belief revision,” Journal

of Applied Non-Classical Logics, 17(2).
[16] H.P. van Ditmarsch, W.,van der Hoek, B.P. Kooi, (2007), Dynamic

Epistemic Logic. Synthese Library, volume 337. Springer.
[17] H. Leitgeb, K.Segerberg, (2007) “Dynamic doxastic logic: why, how,

and where to?” Synthese 155:167–190.
[18] H. Leitgeb, (2009), personal communications.
[19] V.Hendricks, J. Symons, (2006), “Epistemic Logic,” Stanford

encyclopedia of philosophy, http://plato.stanford.edu/entries/logic-
epistemic/,

[20] J. van Benthem, (2009), personal communications.
[21] P. Pojman, (2009), “Ernst Mach,” Stanford encyclopedia of

philosophy, http://plato.stanford.edu/entries/ernst-mach/
[22] D.Pitt, (2008), “Mental Representation,” Stanford encyclopedia of

philosophy, 2008. http://plato.stanford.edu/entries/mental-
representation/

[23] T. Van Gelder, (1995), "What Might Cognition Be, if not
Computation?" Journal of Philosophy XCI: 345-381.

[24] J. C. King, (2004), “Context Dependent Quantifiers and Donkey
Anaphora,” New Essays in the Philosophy of Language and Mind,
Canadian Journal of Philosophy Supplementary Volume 30,
Ezcurdia, M., R. Stainton and C. Viger (eds.), University of Calgary
Press, Calgary, Alberta, Canada, 97-127.

[25] R. Reiter (1980). “A logical framework for default reasoning,”
Artificial Intelligence 13: 81-132.

[26] P. Balbiani , (2007), “Propositional Dynamic Logic,” Stanford
Encyclopedia of Philosophy, http://plato.stanford.edu/entries/logic-
dynamic/

[27] V. Pratt, (1978), “A practical decision method for propositional
dynamic logic,” In Proceedings of the 10th Annual ACM Symposium
on Theory of Computing, 326-337.

[28] K. Segerberg, J-J. Meyer, (2009), “The Logic of Action,” Stanford
Encyclopedia of Philosophy, http://plato.stanford.edu/entries/logic-
action/

[29] A. Baltag, =, (1999), “A Logic of Epistemic Actions,” in W. van der
Hoek, J.-J. Meyer, and C. Witteveen (eds.), Foundations and
Applications of Collective Agent-Based Systems (Proceedings of the
Workshop at the 11th European Summer School in Logic, Language,
and Computation, Utrecht, 1999), [Available online in PDF].

[30] A. Baltag, and Moss, L. S., (2004), “Logics for Epistemic Programs,”
Synthese, 139: 165–224.

[31] V.Hendricks, (2006), “Epistemic Logic,” Stanford Encyclopedia of
Philosophy, http://plato.stanford.edu/entries/logic-epistemic/

[32] Hintikka, J. and Halonen, I. (1998). “Epistemic Logic,” Routledge
Encyclopedia of Philosophy, volume 1. London: Routledge: 752-3

[33] H. Arlo-Costa, (2002). “First order extensions of classical systems of
modal logic: the role of the Barcan schemas,” Studia Logica 71(1):
87-118.

[34] H. E. Kyburg, Jr. and CM Teng (2001). “The Logic of Risky
Knowledge,” Electronic Notes in Theoretical Computer Science,
Elsevier, volume 67.

[35] B. Chellas,(1980). Modal Logic. Cambridge University Press.
[36] G. Wheeler (2010). “AGM belief revision in monotone modal logics,”

International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-16), Short paper proceedings, eds.
Ed Clarke and Andrei Voronkov.

[37] CM Teng and G. Wheeler (2010). “Robustness of Evidential
Probability,” International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR-16), Short paper
proceedings, eds. Ed Clarke and Andrei Voronkov.

[38] H. Kyburg and CM Teng (2001). Uncertain Inference. Cambridge
University Press.

[39] Haenni, R., J-W Romeijn, G. Wheeler, and J. Williamson (2011),
Probabilistic Logics and Probabilistic Networks, The Synthese
Library, Springer.

[40] H. E. Kyburg, Jr., CM Teng, CM, and G. Wheeler (2007).
“Conditionals and consequences,” Journal of Applied Logic: 5(4):
638-650.

[41] D. Makinson, and L. van der Torre, (2000) “Input/output logics,”
Journal of Philosophical Logic, 29: 383-408.

[42] D. Makinson, and L. van der Torre, (2001) “Constraints for
input/output logics,” Journal of Philosophical Logic, 30: 155-185.

[43] D. Poole (1988), “A logical framework for default reasoning,”
Artificial Intelligence 36: 27-47.

[44] G. Boella, G. Pigozzi, and L. van der Torre, (2009) “Normative
framework for normative system change,” Proc. of 8th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2009).

[45] J. Pearl (2000) Causality: Models, Reasoning, and Inference.
Cambridge University Press.

[46] P. Spirites, C. Glymour, R. Scheines, (2000), Causation, Prediction,
and Search (2nd Edition), MIT Press.

[47] G.Wheeler and M. Alberti, (2011), “NO revision and NO
contraction,” Minds and Machines, 21(3): 411-30.

