
 
 

 

  

 
Abstract—Modeling a complex phenomenon such as the 
mind presents tremendous computational complexity 
challenges. Modeling field theory (MFT) addresses these 
challenges in a non-traditional way.  The main idea behind 
MFT is to match levels of uncertainty of the model (also, a 
problem or some theory) with levels of uncertainty of the 
evaluation criterion used to identify that model. When a 
model becomes more certain, then the evaluation criterion is 
adjusted dynamically to match that change to the model. 
This process is called the Dynamic Logic of Phenomena 
(DLP) for model construction and it mimics processes of the 
mind and natural evolution. This paper provides a formal 
description of DLP by specifying its syntax, semantics, and 
reasoning system. We also outline links between DLP and 
other logical approaches. Computational complexity issues 
that motivate this work are presented using an example of 
polynomial models.  

I. INTRODUCTION 

There are two current trends within the modeling of 
physical phenomena which are mirrored within logic. In 
modeling physical phenomena, the trend is to add additional 
logical structure to classical mathematical techniques, 
whereas in logic it is to add “dynamics” to the logic [12-17], 
with an aim to represent and reason about actions rather than 
static propositions. The subjects in this area include Action 
Logic, Arrow Logic,  Game Logic,  Semantic Games, 
Dialogue Logic, Belief Revision, Dynamic Epistemic Logic, 
Hoare logic, Dynamic Logic, Linear Logic, Labeled 
Transition Systems, Petri Nets, Process Algebra, Automata 
Theory, Game Semantics, Coalgebras,  among others [13]. 

These two complimentary trends can be very beneficial 
for both areas. In [13], “dynamification” of logic is 
developed to model quantum phenomena, and this paper 
develops the dynamic approach for modeling other problems 
where the computational complexity of finding the solution 
is a critical issue.  

While at the global level these complimentary trends 
exist, for one approach to benefit the other both need to be 
close enough to each other in specific tasks and goals.  For 
example, consider a basic difference between dynamic 
epistemic logic [16, 19] and DLP. H. Leitgeb has pointed out 
that the aim of dynamic epistemic logic and the like is to put 
logical operators with a dynamic interpretation into one’s 
formal object language. The aim of DLP, however, is to 
specify a particular dynamics of learning and related 
concepts in the meta-language. So, since DLP locates the 
dynamics in the meta-language and dynamic epistemic logic 
locates them in the object language, the logical resources of 
dynamic epistemic logic are not yet of help to DLP [18].  
 
 
 

 
 
To illustrate this difference, consider an example from 

[24]: “A man loves Annie. He is rich.” Two interpretations 
are possible:  
(1) (∃x)(man x & x loves Annie) & x is rich. 
(2)  (∃x)(man x & x loves Annie & x is rich). 

In the first sentence, the existential quantifier is applied 
only to the first sentence, but in the second sentence, it 
ranges over both. The two interpretations of “A man loves 
Annie. He is rich” show that the existential quantifier and 
operations can be dynamic, that is, they can have different 
interpretations within the object language. According to J. 
van Benthem [20], DLP follows dynamic systems tradition. 
This tradition can be traced to Ernst Mach who viewed 
organisms as dynamic systems that have innate tendencies to 
self-regulation and equilibrium. When equilibrium is 
disturbed, which can happen on a variety of levels, the 
organism works to form a new equilibrium [21]. Note that 
the common tools to model such phenomena are differential 
equations rather than logic. A related view of dynamic 
systems comes from studies in the Computational Theory of 
Mind (CMT) [22]. According to [23], cognitive processes 
are not rule-governed sequences of discrete symbolic states, 
but continuously evolving total states of dynamic systems 
determined by continuous, simultaneous and mutually 
determining states of the system’s components (i.e., state 
variables or parameters). In section XI, we outline a way to 
shrink the gap between these two basic approaches. 

To provide a formal description of Dynamic Logic of 
Phenomena (DLP), we start by comparing the background 
definitions of DLP to logic model theory. Section II 
establishes concepts of uncertainty, generality, and 
simplicity for models, and defines evaluation criteria. 
Section III defines a partial order of models. Section IV 
provides examples of uncertainty and generality of 
polynomial models. Section V formalizes similarity 
maximization. Section VI defines DLP parameterization 
using the theory of monotone Boolean functions. Section VII 
defines the search process. Section VIII presents how DLP 
processes can be visualized. Section IX provides a formal 
description of DLP. Sections X and XI outline the links 
between DLP and other dynamic logics. Section 12 
summarizes the paper and discusses future research. The 
Appendix describes computation complexity issues that 
motivate the paper.  

We start by defining the concept of empirical data 
relevant to modeling field theory (MFT) [8], [9], and supply 
an interpretation in logical terms. 

Empirical data, E in MFT is any data to identify a 
model.   

In logical terms, we define empirical data as a pair, 
E=<A, Ω>, where A is a set of objects, and Ω={Pi } is a set 
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of predicates Pi  of arity ni, e.g., P1(x,y)  means that length of 
x is no less than the length of y, l(x)≥l(y).  
 Definition. A pair <A, Ω> is called an empirical system 
[6].  
 Definition. A pair <A, Ω> is called a model  in logic [7]. 
Often it is considered as a model of some system of axioms 
T.  
 Tarski proposed the name ‘model theory’ in 1954, 
although a variety of other names are also used, including  
relational system [6], and a protocol of the experiment.  We 
call Tarskian models logic models or Lmodels [10] to 
distinguish them from models in MFT.  

The concept of a model, M, in MFT concerns a model of 
reality, which we will call a model of phenomena or 
Pmodel. In logical formalization, a Pmodel can be matched 
with an axiom system T. 

Definition. A system of axioms T is a set of closed 
formulas (sentences) in the signature of the underlying 
language, e.g.,  

∀ xi ∃xj P1(xi,xj). 
The concept of model is treated very differently in MFT 

than it is in mathematical logic. Logic may be thought to go 
from a very formal (syntactical) axiomatic system T to a 
more real or concrete model AT =<AT, Ω> of that formal 
system T. MFT goes in the other direction, from a very 
informal reality to more formal models. As a result, the 
concepts of model are quite different in the two theories. 
Empirical data in MFT is a model E=<A,Ω> in 
mathematical logic, if we interpret empirical data as an 
empirical system E [6]. On the other hand, the model of 
phenomena is not a model in logic; instead, Pmodels are 
akin to a set of axioms about the class of logic models. This 
type of difference was well described in [10]:  

“To model a phenomenon is to construct a formal 
theory that describes and explains it. In a closely 
related sense, you model a system or structure that 
you plan to build, by writing a description of it. 
These are very different senses of ‘model’ from that 
in model theory: the ‘model’ of the phenomenon or 
the system is not a structure but a theory, often in a 
formal language.”   

Thus, we will use terms that have been already introduced 
above: Pmodel for a model of phenomenon and Lmodel for 
a logic model.    

The next MFT concept is a similarity (or 
correspondence) measure, L(M,E), between empirical data 
E and an a-priori model M that is assigned individually to 
each pair (M,E):   

L:   {(M,E)} → R, 
where R is a set or real numbers.  In logic the closest to a 
similarity measure is a statement that <A,Ω> is a model of 
the system of the axioms T. 
 In logical terms, L maps a theory M and Lmodel E to R.  

Definition.  Pair E =<A,Ω> is an Lmodel of the system 
of the axioms T if every formula from T is true on E.  

Definition. Boolean similarity measure B(T,E) is 
defined to be equal to 1, B(T,E)=1, If M is an Lmodel of T, 
else B(T,E)=0.  

II.  SEMANTIC CONCEPTS OF UNCERTAINTY, 
GENERALITY AND SIMPLICITY 

A. Uncertainty, generality, and simplicity relations 
between P-models 
Below we introduce the concepts of uncertainty, 

generality, and simplicity relations. These concepts can be 
specified for both logic and MFT models. 

An uncertainty relation between Pmodels is denoted by   
≥Mu, and the sentence Mi ≥Mu Mj is read: “Model Mi is equal 
in uncertainty or more uncertain than model Mj”. In other 
words, model Mj is equal in certainty or more certain than 
model Mi, and model Mj is no less certain than model Mi. 
This relation is a partial order.  If Mi >Mu Mj then we simply 
say that Mj is more certain than Mi.  

A generality relation between Pmodels is denoted by ≥Mg 
and relation Mi ≥Mg Mj is read: “Model Mj is a specialization 
of the model Mi” or “Model Mi is a generalization of the 
model Mj”.  This relation also is a partial order.   

A simplicity relation between Pmodel is denoted by  ≥Ms 
and relation Mi ≥Ms Mj is read: “Model Mi is equal in 
simplicity or simpler than Model Mj”. This relation also is a 
partial order.   

For Pmodels that are represented as a system of axioms, 
the generality relation can be defined as follows. 

Definition. Ti  ≥ gen Tj   if and only if  Ti  ⊆  Tj , i.e.,  system 
of axioms Ti is equal to, or an extension of, the system of 
axioms Tj  if and only if every axiom in Ti is an axiom in Tj.  

 

B. Uncertainty, generality and simplicity relations 
between similarity measures 
An uncertainty relation between similarity measures is 

denoted by  ≥Lu, and Li  ≥Lu Lj is read: “Measure Li is equal 
in uncertainty or more uncertain than measure Lj”.  This is a 
partial order.  

A generality relation between similarity measures is 
denoted by  ≥Lg,  and Li  ≥Lg Lj is read either: “Measure Lj is 
a specialization of measure Li”, or equivalently, “measure Li 
is a generalization of the measure Lj”. This relation also is a 
partial order.   

A simplicity relation between similarity measures is 
denoted by ≥Ls, and relation Li  ≥Ls Lj is read: “Measure Lj is 
equal in simplicity or simpler than measure Li”.  This relation 
also is a partial order.   

Definition. Mapping F between a set of Pmodels {M} and 
a set of similarity measures {L},  

F:  {M} → {L}, 
is called a match mapping if F preserves uncertainty, 
generality, and simplicity relations between models and 
measures in the form of homomorphism from a relational 
system < {M}, ≥Mg,  ≥Mu ,  ≥Ms  >  to a relational system    
< {L}, ≥Lg, ≥Lu , ≥Ls  > ,  i.e.,  



 
 

 

 ∀ Ma , Mb   ( Ma ≥ Mg Mb    ⇒     F(Ma )≥Lg F(Mb) ),  

 ∀ Ma , Mb   ( Ma ≥Mu Mb     ⇒     F(Ma )≥Lu F(Mb) ), 

 ∀ Ma , Mb   ( Ma ≥Ms Mb     ⇒     F(Ma )≥Ls F(Mb) ).  
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Figure 1.  Mapping of Pmodels/logic theories and similarity 
measures 

III. PARTIAL ORDER OF PMODELS 

Two different Pmodels can be at the same level of 
uncertainty (M1 =u M2), one Pmodel can be more uncertain 
than another (M1 >u M2), or Pmodels can be incomparable 
for uncertainty. We may define model uncertainty in such a 
way that two different models,  

 M1: ∀ x,y  2x2 +3y = 0 
and  

M2: ∀ x,y  5x+4y2 = 0 
have the same level of uncertainty M1 =u M2.  The number of 
unknown coefficients is one of the possible ways to define 
the level of uncertainty. For M1 and M2, these numbers m1 
and m2 are equal to zero. All coefficients are known and 
models are certain. In contrast, model 

M3: ∀ x,y  5x + by2 =0. 
has one unknown coefficient b and its measure of 
uncertainty is equal to 1.    
 
 Definition. NUC measure of polynomial model 
uncertainty is defined as the Number of Unknown 
Coefficients (NUC) in the model.  

Consider Pmodel M3. Based on the NUC measure, this 
Pmodel is more uncertain than Pmodel M2, M3 >Mu M2, 
because coefficient b in M3 is unknown. NUC for M2 is n2=0 
and NUC for M3 is n3=1 and n3>n2.  In logical terms these 
Pmodels can be described as logic statements  

M1: ∀ x,y P1(x,y), 

M2: ∀ x,y P2(x,y), 

M3: ∀ x,y P3(x,y,b). 

The generality relation between Pmodels M1 and M2 can 
also be defined. For instance, it can be the highest power n 
of the polynomial model. Both models M1 and M2 are 
quadratic with n1=n2=2 and, thus, both have the same 
generality.  

Definition. HP measure of polynomial model generality is 
defined as the Highest Power n of the polynomial model.  

Alternatively, we may look deeper and notice that M1 
contains x2 and M2 contains y2.  We may then define the 
generality of a polynomial model as its highest polynomial 
variable, which are x2 for M1 and y2 for M2.  

If the interpretations of x and y are fixed and cannot be 
swapped, then we cannot say that one is more general than 
the other and we can call them incomparable in generality.  

The described measures are computed separately for each 
individual model rather than for a pair of models to be 
compared. As a result, the measures may not represent an 
intuitive generality order relation between models. For 
instance, we can call model M3 more general than model M2, 
M3 >Mg M2, because M2 is a specialization of M3 with b=4.  
Similarly, intuitively the Pmodel  

M4 :  ∀ x,y ax+cx2+by2=0   
is more general than Pmodels M1, M2, and M3, because 
coefficients in M1, M2 and M3 are different numeric 
specializations of a, b, and c in M4.  

However,  
HP(M1)= HP(M2)= HP(M3)=HP(M4)=2; 

that is, all of these Pmodels have the same HP generality, 
while M4 is intuitively more general than the other models.  

Thus, alternatively, we may define the generality of a 
polynomial model as its highest polynomial variable, which 
is x2 for M1 and y2 for M2. If the interpretations of x and y 
are fixed and we cannot swap symbols x and y, then we 
cannot say that one of them is more general than the other. 
Thus, they would be incomparable in generality.  

Definition. HPV measure of polynomial model generality 
is defined as the Highest Power Variable (HPV) of the 
polynomial model.   

For models M1 and M2 we have HPV(M1)=x2 and 
HPV(M2)=y2. If there are two HPV as in model 
M=2x2+4x+3y2 +5y=0, then HPV(M) is a pair (x2,y2). In the 
case with more than two HPVs we will have an n-
dimensional vector of HPVs.  

Below we discuss the advantages and disadvantages of 
HP and HPV measures.  If we cannot fix the meaning of the 
variables x and y, or if we cannot even agree to use only the 
symbols x and y, then HPV may not be an appropriate 
measure.  

Swapping symbols will lead to HPV(M1)=y2 and 
HPV(M2)=x2. Using other symbols such as z and v instead 
of x and y will make a use of HPV even more questionable.   

As we discussed above, intuitively M3 seems more general 
than M2,, and M4 seems more general than models M1, M2, 
and M3.  

The HPV measure captures this better with  
HPV(M1)=x2, HP(M2)=y2,  HP(M3)=y2, HP(M4)=(x2,y2).  



 
 

 

M4 is more general than the other models in HPV, but 
model M3 is more general than M2, which is a special case of 
M3 with b=4.  

This is not captured by HPV,  
HPV(M2)=HPV(M3)=y2. 

Therefore, we introduce another generality characteristic that 
is defined on pairs of models.  

Definition. Polynomial model Mi is a coefficient 
specialization (C-specialization) of a polynomial model Mj 
if coefficients of Mi are specializations of coefficients of Mj. 
In other words, Mj is a C-generalization of model Mi.  

  For instance, Pmodel M3 is a C-specialization of model 
M4. Similarly, M2 is a C-specialization of M3, but M1 is not 
C-specialization of M2. 

Note that model M4 is more uncertain than models M1, 
M2, and M3, because all coefficients in M4 are uncertain, but 
none of the coefficients are uncertain in M1, M2, and only 
one coefficient is uncertain in M3.  

Definition.  SP measure of polynomial model simplicity is 
defined as the sum of powers of its variables. For instance, 
SP(M3)=3 having powers 1 and 2 in 5x1 + by2

. One model is 
SP-simpler than the other if its SP measure is smaller. Here 
M3 is simpler than M4 , which has SP=5.  

Uncertainty, generality, and simplicity relations can be 
isomorphic (produce the same order of Pmodels), or be quite 
different. In the next section, we provide a parameterization 
mechanism that highlights the difference.  

IV. PARAMETERIZATION 

Below we parameterize uncertainty and generality of 
polynomial models.  
 The first block in Table 1 shows a chain of models with 
increasing NUC uncertainty, (from 0 to 2), fixed HP 
generality, (2), fixed HPV generality, (y2), and increasing C-
generality: that is, from all known coefficients to two 
unknown coefficients, a and b, that substitute coefficients 3 
and 4, respectively.  
 All these models have HP level 2 and SP simplicity 
level equal to 4. Other blocks in Table 1 illustrate other 
relations between these characteristics of the models.  

Consider another example of the five models with 
increasing NUC uncertainty levels from 0 to 4:  

 
     M0:   ∀x,y     x2 +3y+7x+0 =10 
  M1 :  ∀x,y    x2 +3y+7x+d =10 
   M2:   ∀x,y   ax2+3y+7x+d =10 

M3:   ∀x,y   ax2+by+7x+d =10 
        M4:   ∀x,y   ax2+by+cx+d =10 
 

Models M4, M3, M2, M1 and M0 form an uncertainty 
decreasing chain on the NUC uncertainty relation defined 
above: M4 >Mu M3 >Mu M2 >Mu M1 >Mu M0. These models 
also form a generality decreasing chain  

    M4 >Mg M3 >Mg M2 >Mg M1 >Mg M0.  
Each model has four parameters, p1, p2, p3, and p4. For 

instance, for model M2, parameter p1=1 represents 
uncertainty of ax2, with an unknown coefficient a. Similarly, 

p2=p3=0, because further coefficients b and c are known, but 
p4=1 because d is unknown.  

Thus, each model is parameterized as a Boolean vector,  
vi =(vi1,vi2,..,vik,…,vin):  M4: v4=(1111);  M3: v3=(1101); M2: 
v2=(1001); M1: v1=(0001), M0: v0=(0000).   
 
Table 1 
1. Chain of models with increasing 
both NUC uncertainty and C-
generality, with fixed HP and HPV 
generalities and fixed SP simplicity. 

∀x,y 3x+4y+5y2=0 
∀x,y ax+4y+5y2=0 
∀x,y ax+by+5y2=0 

2. Chain of models with increasing 
NUC uncertainty, with increasing C-
generality, and with fixed HP and 
HPV generalities. 

∀x,y 3x+4y+5y2=0 
∀x,y ax+9y+5y2=0 

∀x,y ax+by+7y2=0 

3. Chain of models with increasing 
NUC uncertainty, without increasing 
C-generality, and fixed HP 
generality, but with incomparable 
HPV generality. 

∀x,y 3x+4y+5y2=0 
∀x,y 3x2+by      =0 

∀x,y ax+7y+by2=0 

4. Chain of models with increasing 
NUC uncertainty and SP simplicity, 
but with decreasing HP generality, 
incomparable HPV generality and 
without increasing C-generality (ax 
does not generalize 3x2). 

∀x,y 3x+4y+5y2=0 
∀x,y 3x2+by      =0 

∀x,y ax  +by      =0     

 
Definition. Parametric model Mi is no less general than 

model Mj if vi ≥ vj, i.e., ∀k vik  ≥ vjk.  
In accordance with this definition, we have  

(1111) ≥ (1101) ≥ (1001) ≥ (0001)≥ (0000), 
which is isomorphic to  

M4 ≥ Mg M3≥ Mg  M2 ≥ Mg  M1≥ Mg  M0. 
In other words, the model with parameters (0000) is a 

specialization of all previous models.   
Learning Operator. The intuitive idea of learning 

Pmodels from data is to get a more specialized model from a 
given Pmodel M.  

Definition. Mapping C is called a learning (adaptation) 
operator C,   

C(Mi,E)= Mj.  
This operation represents a cognitive learning process C 

of a new model Mj from a given model Mi and data E. In 
other words, the process is an adaptation of model Mi to data 
E to produce model Mj. 

A learning operator C(Mi,E) is applied multiple times to 
produce a chain of models, where each subsequent model is 
more specific than the previous model.  

      Mi > Mg Mi+1 > Mg Mi+2  ….  Mi+k-1 > Mg  Mi+k 

Theoretically here we may have “≥” relation instead of  “>”, 
but non-trivial learning operator should produce more 
specific models, e.g., we might start from the model with all 
parameters uncertain (111111) and end up with a more 
certain model parameterized with a Boolean vector 
(101010):  

(111111) > (011111) > (011110) > (101010). 



 
 

 

Definition. Parametric model Mi is no less general than 
model Mj if ui ≥ uj, i.e., ∀k uik  ≥ ujk.  

Above we encoded known parameters as 1 and unknown 
as 0. A more detailed uncertainty parameterization is when 
Boolean vectors are substituted by k-valued vectors   ui = 
(ui1, ui2,.., uik,…,uin+m) with  

uij∈U={0,1/(k-1),2/(k-1),…k-2/(k-1),1}. 

V. SIMILARITY MAXIMIZATION 
A similarity maximization problem is a major 

mechanism of DLP that is formalized below.  
 Definition. A similarity Lfin measure is called a final 
similarity measure if:   

∀ M, E, Li  Li (M, E)  ≥Lu  Lfin(M, E). 
The final similarity measure specifies the level of certainty 
of model similarity to the data that we want to reach.  

Definition. The static model optimization problem 
(SMOP) is to find a model Ma such that  

Lfin(Ma, E) = max j∈J Lfin(Mj,E)                         (1) 

subject to conditions (2) and (3): 

  ∀ Mj ∈U(Ma) Lfin(Ma,E) = Lfin(Mj, E)  ⇒  Ma  ≥Mu Mj       (2)                                           

 ∀ Mj ∈G(Ma)  Lfin(Ma,E) = Lfin(Mj, E) ⇒  Ma  ≥Mg Mj        (3) 

 The goal of (2) and (3) is to prevent model overfitting 
with data E. Sets U(Ma) and G(Ma) contain Pmodels that are 
comparable with Ma relative to uncertainty and generality, 
respectively. Condition (2) means that if Ma and Mj have the 
same similarity measure with E, then uncertainty of Ma 
should be no less than uncertainty of Mj. Condition (3) 
expresses an analogous condition for the generality relation. 
Too specific models can lead to overfitting.  

Definition. The dynamic logic model optimization 
(DLPO) problem is to find a Pmodel Ma such that  

              La(Ma, E) = max j∈J Lj(Mj,E)                                 (4)                                                                                                    

subject to conditions (5) and (6): 
 
∀ Mj ∈U(Ma) La(Ma,E) =Lj(Mj, E)  ⇒  Ma  ≥Mu Mj                  (5)                                 

∀ Mj ∈G(Ma) Lj(Ma,E) = Lj(Mj, E) ⇒  Ma  ≥Mg Mj                  (6)                                        

This is a non-standard optimization problem. In standard 
optimization problems, only models Mi are changed but the 
optimization criterion L is held fixed, since it does not 
depend on the model Mi. In DLP, however, the criterion L 
changes dynamically with Pmodels Mj.  

Since the focus of DLP is cutting computational 
complexity (CC) of model optimization, a dual 
optimization problem can be formulated. 

Definition. An optimization problem of finding a shortest 
sequence of matched pairs (Mi,Li) of Pmodels Mi and 
optimization criteria (similarity measures) Li that solves the 
optimization problem (4)-(6) for the given data E is called a 
dual dynamic logic model optimization (DDLMO) 
problem, which finds a sequence of n matching pairs  

(M1, L1 ),  (M2, L2 ),…, (Mn, Ln ),  

such that  
Ln (Mn,E) = max i∈I Li(Mi,E)  

and  
∀ Mi Li=F(Mi), C(Mi,E)= Mi+1, 

Mi ≥Mu Mi+1, Mi  ≥Mg Mi+1,  Mn =Ma, Ln=La. 
 This means finding a sequence of more specific and 
certain Pmodels for the given (1) data E, (2) matching 
operator F, and (3) learning operator C to maximize 
similarity measure Li(Mi,E). 

VI. MONOTONE BOOLEAN FUNCTIONS 
Definition. A Boolean function f: {0,1}n → {0,1} is a 

monotone Boolean function if:  vi ≥ vj   ⇒  f(vj) ≥ f(vi). 
This means that (vi ≥ vj  & f(vi)=0 ) ⇒  f(vj)=0   and            

(vi ≥ vj  & f(vj)=1 ) ⇒  f(vi)=1. Function f is non-decreasing. 
Consider fixed E and Mi that are parameterized by vi  and 
interpret L(Mi,E) as f(vi), i.e., L(Mi,E)=f(vi). Assume that 
L(Mi,E) has only two values (unacceptable 0, and acceptable 
1). It can be generalized to a k-value case if needed. If 
L(Mi,E) is monotone, then vi ≥ vj   ⇒   L(Mi,E) ≥ L(Mj,E), 
e.g., if  L(M3-1110,E)=L(M2-1100,E)=0, then 
    (vi ≥ vj  & L(M3-1110,E)=0 ) ⇒  L(M2-1100,E)=0             (7)                       

    (vi ≥ vj  & L(M2-1100,E)=1 ) ⇒  L(M3-1110,E)=1             (8)                               
This means that if a model with more unknown parameters 
vi failed, then a model with less unknown parameters vj will 
also fail. If we conclude that a quadratic polynomial model 
(M2) is not acceptable, L(M2,E)=0, then a more specific 
quadratic model M3 also cannot be acceptable, L(M3,E)=0. 
Thus, we do not need to test model M3. This monotonicity 
property helps to decrease computational complexity. We 
use 

(vi ≥ vj  & f(vi)=0 ) ⇒  f(vj)=0                           (9) 

for rejecting models, and  

(vi ≥ vj  & f(vj)=1 ) ⇒  f(vi)=1                          (10) 

for confirming models. In the case of a model rejection test 
for data E, the focus is not to quickly build a model but 
rather to quickly reject a model M—in the spirit of Popper’s 
falsification principle. In essence, the test L3(M3,E)=0 means 
that the whole class of models M3 with 3 unknown 
parameters fails. Testing M3 positively for data E requires 
finding 4 correct parameters. This may mean searching in a 
large 4-D parameter space [-100, +100]4 for a single vector, 
say (p1, p2, p3, p4) = ( 9, 3, 7, 10),  if each parameter varies in 
the interval  [-100,100]. For rejection we may need only 4 
training vectors (x,y,u) from data E and 3 other test vectors. 
The first four vectors allow us to build a quadratic surface in 
3-D as a model. We then simply test whether three test 
vectors from E fail to fit this quadratic surface.  



 
 

 

VII. SEARCH PROCESS  
In the optimization process, we want to keep track of 

model rejections and to dynamically guide what model will 
be tested next in order to minimize the number of tests. 
Formulas (9) and (10) are key equations to minimize tests, 
but we need the whole strategy for how to minimize the 
number of tests and to formalize it. This strategy is 
formalized as minimization of Shannon function ϕ, which 
was proposed in [1]:  

 
min A∈A max f∈F ϕ(f,A), 

 
where A is a set of algorithms, F is a set of monotone 
functions, and ϕ(f,A) is a number of tests that algorithm A 
does to fully restore function f. Each test means computing a 
value f(v) for a particular vector v. In the theory of 
monotone Boolean functions it is assumed that there is an 
oracle that is able to produce the value f(v), thus each test is 
equivalent to a request to the oracle [1,4,5]. Minimization of 
the Shannon function means that we search for the algorithm 
that needs the smallest number of tests for its worst case 
(function f that needs maximum number of tests relative to 
other functions). This is a classic min-max criterion. It was 
proved in [1] that  

   min A∈A max f∈F ϕ(f,A) = , 

where ⎣x⎦ is the floor of x. The proof is based on the 
structure called Hansel chains. These chains cover the whole 
n-dimensional binary cube {1,0}n. The steps of the algorithm 
are presented in detail in [3,5]. The main idea of these steps 
is building Hansel chains, starting from testing the smallest 
chains, expanding each tested value using formulas (7) and 
(8), testing values that are left unexpanded on the same 
chains, then moving to larger chains until no chains are left. 
The goal of the search is to find a smallest lower unit v, i.e., 
a Boolean vector such that f(v)=1, and for every w<v  
f(w)=0, and for every u>v  |u|>|v|. A simpler problem could 
be to find any lower unit of f.  

The search problem in logical terms can be formulated as 
a satisfiability problem: Find a system of axioms Ta such 
that La(Ta, E)=1 subject to the condition  
∀ Tj  La(Ta,E) =Lj(Tj, E) ⇒  Tj  ≥Mu Ta  ,   

i.e., if Ta and Tj have the same similarity with E, then Ma 
should have a lower uncertainty than Tj, e.g., Tj≥Mu Ta. If a 
similarity measure L is defined as a probabilistic measure 
in [0,1] then the probabilistic version of the task of finding  a 
system of axioms T for model A that maximizes a 
probabilistic similarity measure is:  
                        Max i∈I L(Mi,E). 

VIII. DYNAMIC LOGIC VISUALIZATION  
Visualization of DL helps to monitor, control, and 
understand the DL search process. It allows us to explore 
visually the relations between the verified and refuted 
models, and to discover dynamic patterns of model search.  
A model to be tested is shown as a highlighted bar (see 

Figure 2). When the answer (verified or refuted) is provided, 
this bar changes its color to red (refuted) or black (verified). 
Next, these bars are expanded using monotonicity 
automatically or by a user. A user can see simultaneously all 
models that have been currently tested as bars.  A red bar 
(marked as model M1) is a refuted model M1 and yellow bars 
under M1 are models refuted using monotonicity. Similarly, 
model M2 and M3 were tested next and refuted, which is 
indicated by their red bar. Colored bars below them are also 
refuted using monotonicity. Then model M4 was verified and 
encoded by a black bar with all models verified using 
monotone expansion of M4 are shown above M4 as grey bars.  
Using technique from [Kovalerchuk, Delizy, 2005], bars can 
be rearranged to reveal their pattern as a Pareto set/border 
(see Figure 2).  
 

 
Figure 2. Dynamic logic process visualization 
 
The border is dynamically developed as more models are 
tested. Finally, a user will see a border between verified and 
refuted models and can impose additional requirements to 
monitor border models that satisfy such additional 
requirements.  

IX. FORMAL DESCRIPTION OF P-DYNAMIC LOGIC 
Below we describe formally our dynamic logic of models of 
phenomena (DLP) as a summarization of concepts 
introduced above.  As with any logic, DLP consists of three 
parts: (1) a semantic part, (2) a syntactic part, and (3) a 
reasoning part.     

A. Semantic part of DLP 

At first, we define the semantic part of DLP. It consists of 
two related algebraic systems. The first one is a three-sort 
algebraic system [7], where {E} are sets of data, {M} are 
sets of Pmodels, R is the set of real numbers, 

      EM = < {E}, {M}, R; ΩEM>.                      (11) 

ΩEM consists of sets of relations, ΩE, ΩPM, ΩR on {E}, {M} 
and R, respectively, and operators {L} and C that connect 
{E}, {M} and R,  

       ΩEM = <ΩE,  ΩPM,  ΩR , {L}, C >.                (12) 



 
 

 

Here ΩPM  = { ≥Mg, ≥Mu , ≥Ms } presents partial order relations 
between Pmodels relative to their generality, uncertainty and 
simplicity as described above. Each similarity 
(correspondence) measure Li ∈ {L} is a mapping:  

Li:   {M}×{E} → R.                         (13) 
A similarity measure captures numerically the similarity 
between data and P-models. A higher value of Li(M,E) 
indicates a higher consistency between data E and the 
Pmodel M in the aspect that was captured by Li.  Having a 
set of such measures {L} allows us to choose appropriate 
measures dynamically.  

Next, a Pmodel enhancement (learning) operator C is 
C:  {M, E}  → {M}                           (14) 

that changes a P-model. This operator brings us dynamics of 
model changes. Thus, we have two types of dynamics and 
we need a formal way to express the change of L similar to 
(14) for models. This is done by introducing a two-sort 
algebraic system 

ML = < {M}, {L}; ΩPM, ΩL, F >,              (15) 

with  

ΩPM = { ≥Mg, ≥Mu, ≥Ms  },     ΩL = { ≥Lg, ≥Lu  },  

and F as a mapping between sets {M} and {L} that preserves 
relations on {M},  

   F:  {M} → {L}.  (16) 
Algebraic systems (11) and (15) have several common 
components, but {L} has very different roles in each. In 
(11), {L} is part of Ω, i.e., it is an operator;  but in (15) {L} 
is one of two base sets of the algebraic system, where the 
operator is F:  {M} → {L}.  

Thus, we cannot simply join systems (11) and (15) 
together to a single algebraic system because of the different 
roles played by {L} in (11) and (15).  We would need a 
generalized multi-sort algebraic system in second order-
logic to do this. Note that separately (11) and (15) are much 
simpler systems in first-order logic (FOL).   

In addition, we can build (15) without a specific dataset      
E∈{E}, because (15) does not require {E}. To construct (11) 
for a specific dataset E, we would need to define ΩE. See an 
extensive discussion of these issues and examples in [6,4]. 
Thus, the semantic part of the DLP is   

EMML = <EM, ML; W>, 

where W(Mi, E, Mj) is the following relation that consists of 
three parts (17)-(19):  

W(Mi, E, Mj) ≡  
 ([C ∈ ΩEM & C(Mi,E) = Mj  ]  &                           (17) 

 
    {[(Mi >u Mj)∨(Mi >g Mj ) ∨ (Mj>sMi)] ∨                     (18) 

 
    [Li=F(Mi)& Lj=F(Mj) & Lj(Mj,E ) > Li(Mi ,E )]}).      (19)  

 
Relation W(Mi, E, Mj) is true if and only if C produces a 

Pmodel Mj using E that is better than the input P-model Mi 
in at least one of its characteristics (i.e., more certain, more 

specific, simpler, or better fit data relative to similarity 
measures). In other words, a Boolean predicate W(Mi, E, 
Mj)=1 if C(Mi,E)=Mj produces an improved model Mj, 
otherwise W(Mi, E, Mj)=0.  

In accordance with the definitions in previous sections, in 
(18) Mi >Mu Mj means that Mj is a more certain model than 
Mi. Similarly, Mi >Mg Mj means that Mj is a more specific, 
and Mj >s Mi means that Mj is simpler than Mi. Property (19) 
means that model Mj better fits data E than model Mi 
relative to measures Lj and Li, which are dynamically 
assigned to Mj and Mi by applying F to them.   

Not every operator that produces another model can be 
called a learning operator. Relation W sets up a semantic 
criterion for operator C to be a learning operator for P-
models Mi, Mj and data E. Note that (17) and (18) in W can 
be checked having only EM, but (19) requires ML too. 

Now we want to discuss how to compute truth-values of 
predicates and outputs of operators in EM and ML. For EM 
and ML we gave some examples of ΩM and ΩL, {L}, C and 
F. An extensive set of examples of similarity measures L and 
learning operators C are given in [8]. For ML in addition we 
need to compute F. For instance, if M(c,r) is a model that 
represents a circle with center c and radius r, then L(c,r) 
could be the same, F(M(c,r)) = L=M(c,r). This means that L 
tests exactly model M(c, r). An alternative F could be 
F(M(c,r))= L=M(c, r+e) that accepts all models with 
radiuses no greater than r+e.  

In general a library of such matching operators F and 
relations ΩM and ΩL should be created that will be available 
to researchers. Thus, we have a semantic part of the P-
dynamic logic identified.  

B. Syntactic part of P-Dynamic Logic  
Now we need to explore which part of this semantic 

machinery can be transferred to the syntactic level so that we 
can do reasoning without semantic knowledge to get at least 
some non-trivial inferences and conclusions.   

To distinguish the syntactic level from the semantic level, 
we will use low-case notation em and ml to define the 
syntactic structure of EM and ML, respectively. We do this 
for all components;  thus,   

em = < {e}, {m}, r; ωem>.                         (20) 

The ωem consists of sets of relations ωe, ωm, ωr on {e}, {m} 
and r, respectively, and operators {l} and c that connect {e}, 
{m} and r,  

ωem = <ωe,  ωm,  ωr , {l}, c >                 (21) 
Similarly, we define  

        ml = < {m}, {l}; ωm, ωl, f >,       (22) 

that includes  

ωm = { ≥mg, ≥mu, ≥ms  }, ωl = { ≥lg, ≥lu  } f: {m} → {l}  (23) 

Similarly, we define emml = <em, ml; w >, where 
w(mi, e, mj) ≡                                                   
( [c ∈ ωem & c(mi,e) = mj  ] &                       (24) 
{[(mi >mu mj)∨(mi >mg mj ) ∨ (mj>msmi)] ∨       (25)               
[li=f(mi)& lj=f(mj) & lj(mj,e ) > li(mi ,e )]}).     (26)       



 
 

 

C. Reasoning part of DLP 
Now we will discuss the reasoning part of DLP. To build a 
reasoning deductive system for DL we need a set Λ of 
logical axioms, a set Σ of non-logical axioms, and a set 
{Γ,φ} of rules of inference.  

It will be interesting to explore if it is complete, i.e., for all 
formulas φ, 

If Σ |=ϕ  then Σ |- ϕ. 

If this system is actually incomplete, then we will have 
statement ϕ  such that neither ϕ  nor ¬ϕ  can be proved from 
the given set of axioms. In contrast, in a complete system, all 
true statements (made true by the set of axioms) are 
provable.   

We also need to know the validity of the inference rules;  
that is, we need to establish that the conclusion follows from 
the premises. The soundness of these rules needs to be 
clarified, too; that is, it needs to be shown that the 
conclusion follows from the premises when the premises are 
in fact true. 

While all these are interesting research issues, at this stage 
of formalization of DLP it is more important to have first a 
rich set of useful non-logical axioms Σ.  

To clarify this issue we need to answer the following 
questions: What reasoning is possible in DLP?  What could 
be the most interesting part of syntactic reasoning for a 
specific practical problem?  

Assume that we already have a knowledge base (KB). 
This KB contains m1,…,mn, and e that are called facts in this 
KB (m1,…mn are interpreted semantically as Pmodels and e 
as data). KB also contains some expressions, e.g.,          
w(mi, e, mj) (interpreted semantically as Pmodel mj is an 
improved Pmodel mi).  

For the first series of questions we have common first-
order reasoning with logical axioms Λ that use ∧, ∨, ¬, and 
⇒ operators.   

Non-logical axioms Σ include the disjunction axiom (DA) 
and conjunction axiom (CA) and mixed CDA axiom: 
    CA:     w(mi, e1, mk) ∨ w(mi, e2, mk) ⇒ w(mi, e1∪e2, mk), 
    DA:      w(mi, e1, mk) ∧ w(mi, e2, mk) ⇒ w(mi, e1∩e2, mk), 

DCA:   w(mi, e1, mk) ∧ w(mi, e2, mk) ⇒ w(mi, e1∪e2, mk). 
The last axiom is redundant if we add the inclusion axiom 
(IA): 
  IA:     w(mi, e1∩e2, mk) ⇒ w(mi, e1∪e2, mk) 

Together DA and IA produce DCA. The real world 
interpretation of these axioms will assume some regularity in 
data and learning operators.  

Next we want to know if w(mi, e, mk) can be inferred 
purely syntactically knowing that w(mi, e, mj) and w(mj, e, 
mk) are in the KB but without using a semantic interpretation 
of w(mi, e, mk). By having this we will have useful syntactic 
reasoning in this DL.  In fact, a transitivity axiom (TA) can 
be established as part of a set of non-logical axioms Σ, 

TA: w(mi, e, mj) ∧ w(mj, e, mk) ⇒ w(mi, e, mk). 
It follows from the semantics of relation W that it is 

transitive, thus we can postulate transitivity for w. As a 

result of this postulate we can infer w(mi, e, mk) purely 
syntactically having w(mi, e, mj) and w(mj, e, mk) in KB 
without going to the semantic level and computing W(Mi, E, 
Mk), which can be computationally challenging for a large 
dataset E. This is a major advantage of using DLP syntactic 
reasoning instead of computations at the semantic level.  

The reasoning mechanism Tem in em is a first-order logic 
with terms in its signature. Similarly, Tml in ml it is a first-
order logic in terms of its signature. In <em, ml; w > we 
have Temml that is also a first-order logic reasoning with w, 
but if we substitute w with its components (24)-(26), we will 
have second-order logic reasoning. Thus, the complete 
description of the dynamic logic of phenomena models is  
 

DL = < DLEM, DLML, DLEMML >, 
where 
       DLEM   =  < em, Tem, EM>,    

DLML = < ml, Tml,  ML>,   

            DLEMML = < emml, Temml, EMML>. 

D. Learning operator   
Now we want to elaborate the concept of a learning 

operator, C. There is an important question about this 
operator: How sophisticated should  C be relative to a brute 
force algorithm that computes L(M,E) for every P-model M 
and selects M that provides min L(M,E)?  

It will be advantageous to get a simple and quite universal 
operator, C, which will allow us to use it for solving a wide 
variety of problems. Let us consider a direct modification of 
a brute force algorithm to the situation with dynamic change 
of correspondence (similarity) measures Li, which is 
assumed in the dynamic logic. The next assumption is that 
the space of highly uncertain models is relatively small. 
Thus, a brute force algorithm can work for these models in a 
reasonable time. Next, the best model M1 found at this step 
will produce a new correspondence measure L1 and this 
measure will be applied to a new set of models produced by 
M1 for evaluation (e.g., with a more dense grid around M1 or 
in another location if L(M1) is low). To produce new models 
we introduce a new operator, H, that we will call a 
specialization operator, as follows: 
Step 1. Select initial Pmodel M0. 
Step 2. Produce set of Pmodels H(M0). 
Step 3. Compute L0(M, E) for every M from H(M0) ={M} 
and find model M1 = arg min{M} L0(M, E).  
Step 4. Test if L0(M1,E) >T, i.e., is above the needed 
correspondence threshold. Stop if it is true, else go to step 5. 
Step 5. Repeat steps 1-4 until all models tested or time limit 
reached.   

More complex strategies for the H operator can be based 
on breadth-first, depth-first, and branch-and-bound 
strategies. 

X. RELATIONS WITH OTHER DYNAMIC LOGICS  
A link with the Dynamic Logic for Belief Revision [15] is 

feasible to explore. The transition from model Mi to model 



 
 

 

Mj using partial orders between models can be viewed as a 
belief revision.  

At a very general level, the link between Dynamic Logic 
of Phenomena and either Propositional or First-Order 
Dynamic Logic [26, 27] follows from the fact that Dynamic 
Logic of Phenomena contains static components 
(propositional/first-order formulas), and dynamic 
components (actions/programs). A formula can change when 
actions are applied, and actions can be repeated and applied 
consecutively. Thus, the Dynamic Logic of Phenomena can 
be viewed as a special case of Propositional or First-Order 
Dynamic Logics with special types of “programs” described 
in this paper.  

Below we follow [13] in summarizing the Propositional 
Dynamic Logic that has been useful for capturing important 
properties of programs, such as correctness. The basic 
concept of this logic is the state S of a system. Each state S 
has its properties expressed as a propositional formula ϕ. 
These properties are changed when a program (action) π is 
applied to S with a given precondition a. Thus, program π 
can produce S with property ψ  starting with S with property  
ϕ and precondition a,  

π(S,a) = ψ.    

Propositional formulas are static components of this logic 
and actions/ programs are dynamic components. Actions can 
be applied consecutively and repeated, which is expressed 
syntactically as π, π’ and π*, respectively. An action also can 
be taken randomly from a set of actions, π ∪ π’.  One of the 
actions is testing, which is denoted by ‘ϕ?’.  It tests if 
property ϕ is true or false for system S. 

There is also an order relation (≥w) on the set of 
preconditions {a}. It expresses the relative strength 
(weakness) of the precondition. The statement a1 ≥w a2 
means that a1 is weaker than a2.  [π]ϕ is the weakest 
precondition ψ that leads to postcondition ϕ after 
performing π on S. Also [ϕ?]ψ denotes the classical 
implication ψ → ϕ, that is if S satisfies ψ then it satisfies  
ϕ, too.  

In DLP, the concept similar to the concept of system S in 
the Propositional Dynamic Logic is a Pmodel M and data E 
pair, <M, E>. Actions are operations that allow us to 
produce a new Pmodel from M and E, 

  
π(Mi,E)=Mi+1 

The concept of precondition is not defined in DLP, but 
data E or properties of E can be interpreted as a 
precondition. An alternative way to specify preconditions is 
to introduce an additional concept of precondition to DLP 
and to interpret it for specific tasks.  

In DLP we have a sequence of actions π1, π2,…,πn that can 
be iterations π∗ of a fixed learning algorithm/program π. In 
this iteration, the last model is the “best” one for data D. If 
the desirable property ψ of the model Mi is defined, then we 
can find the minimal (weakest) precondition [π]ψ that is 
needed to convert the previous model Mi-1 to Mi. When we 
interpret a precondition as data E, then [π]ψ will mean the 

minimal dataset that is needed to get a model M with 
property ψ. Thus, designing actions πk by using a learning 
operator C(Mi-1,E) and then testing that the result of this 
action/program ϕ implies ψ,  [ϕ?]ψ, provides a link between 
DLP and propositional dynamic logic.  

In the Logic of Action [16, 28-30], models are 
transformed based on the information communicated that 
uses Kripke’s model of actions and Kripke models of states 
[30].  The update of an epistemic model is done by an 
epistemic action (i.e., an action that affects the epistemic 
state of a group of agents). An epistemic model can be 
matched with a phenomena model in DLP, and an epistemic 
action will be a program that implements a learning operator 
C(M,E).  

The focus of epistemic logic is expressing the distributed, 
localized information that is accessible only in parts of the 
system. In Epistemic logic [31,32] we have ϕ! as an action 
of learning the truth of  proposition ϕ that is the result of the  
truthful public announcement of ϕ.  In DLP, we have a 
learning operator C(M,E) that learns a new phenomena 
model that is more complex than a single proposition.  Thus, 
the epistemic logic can be expanded for phenomena models.  
Next, the actual process of getting ϕ! can be elaborated in 
both DLP and epistemic logic.    

Public announcements are presumed to be certain, but 
often learning a parameter is uncertain. Qualitative logics for 
“risky knowledge” [33,34] have been proposed, which 
capture rational but uncertain acceptance of a proposition.  
This approach, based on ε-acceptability [38], combines both 
probability and modality to characterize tentative or 
corrigible acceptance of a set of sentences. A sentence ϕ is 
ε-accepted if the probability of ¬ϕ is at most ε, where ε is 
taken to be a fixed small parameter.  

Logics of rational acceptance are inspired by classical 
statistical methods, such as Fisher’s exact test for detecting 
non-random association between variables. Fisher’s exact 
test specifies conditions under which a null, no-effect 
hypothesis is rejected, which is nominally equivalent to 
accepting that the association is non-random.  

The probabilities associated with this approach are 
evidential probabilities, developed in [38] and extended in  
[39], which construes probability as a metalinguistic relation 
between a set of sentences and a single sentence on analogy 
to provability. Evidential probability is interval-valued, 
defined in a first-order language with the capacity for 
expressing known statistical frequencies. For example, the 
language can express that a test of a hypothesis of size α that 
yields a point in the rejection region supports the denial of 
the null hypothesis H0 to degree [1-α, 1], or runs a risk error 
at most α  

Normal modal logics are inappropriate for qualitative 
representations of ε-acceptance, since all instances of the 
schema 

 
are valid in normal Kripke models. However, if the box 
modality [] is interpreted as ‘has high probability’, 
distributing ‘has high probability’ across conjunction should 



 
 

 

not be a valid principle. That event A has probability greater 
than ε and event B has probability greater than ε does not 
entail that the joint event of A and B has probability greater 
than ε.  

Fortunately, Schema (C) is not valid within the minimal 
models of classical modal logic [35], and belief revision 
operators can be defined for monotone classical systems 
without (C) [36], as well as rudimentary measures of 
robustness [37].   

A connection between Dynamic Epistemic Logic, 
expanded with ε-acceptability, and DLP can be expressed 
through a similarity (or correspondence) measure, L:   
{(M,E)}  → R, which serves a role similar to probability in 
Epistemic logic with ε-acceptability. 

XI. CONSEQUENCES VERSUS CONDITIONALS 
As we observed in the introduction, DLP locates dynamics 

in the meta-language rather than in the object language, 
which is in contrast to Dynamic Epistemic Logic. We 
considered ways to bridge these two approaches in the last 
section, closing with a description of a qualitative modeling 
of ε-accepted “risky knowledge.”  In that case the modal 
techniques of revision, common to dynamic epistemic logic, 
were harnessed for a specific purpose, to evaluate the 
robustness of ε-accepted sentences. Here we observe reasons 
for respecting the distinction. 

The object-language/meta-language distinction is 
important to observe [40], since there is a difference 
between procedural rules and declarative sentences that 
often needs to be preserved rather than ameliorated. For 
while declarative sentences take truth values and can be 
embedded in complex formulas, procedural rules often do 
not. However, the question of whether an “if…then…” 
construction is better viewed as a conditional formula than 
as a conditional rule, or whether there is little difference 
between the two and an analogue of the deduction theorem 
can be used, is not always clear cut, and will depend on the 
purpose of the formalization. 

To illustrate, input/output logic [41, 42] was conceived as 
a response to deontic logics handling of norms and 
declarative statements. Norms, unlike statements, may be 
respected or flouted, and may be judged from the standpoint 
of other norms but are not typically evaluated as ‘true’ or 
‘false’. Input/output logic conceives of a norm as an ordered 
pair of formulas, and a normative system is a set G of norms. 
The task for an input/output logic, then, is to prepare 
information to be passed into G, and to unpack the resulting 
output. So, abstractly, the set G is a transformation devise 
for information, and we may characterize an ‘output’ 
operator ‘Out’ by logical properties typical of consequence 
operators. A formula x is a ‘simple-minded output’ of G in 
context a, written x ∈ Out(G,a), if there is a set of norms (a1, 
x1),…,(an,xn) in G such that each ai ∈ Cn(a) and x ∈ Cn(x1 & 
… & xn), where Cn(a)={ai| a╞ ai} is the classical semantic 
consequence set of a that is a set of all contexts ai such that 
every model of  a is also a model of ai [41].  

Out(G,a) satisfies three rules: writing (a,x) for x ∈ 
Out(G,a), they are strengthening input (SI), conjoining 
output (AND), and weakening output (WO): 
 From (a,x) to (b,x), whenever a ∈ Cn(b).  (SI) 
 From (a,x), (a,y) to (a, x∧y).        (AND) 
 From (a,x) to (a,y), whenever y ∈ Cn(x). (WO) 
Strengthening input means that if context a leads to output x 
then a stronger context b also leads to x. Similarly, 
weakening output means that if context a leads to output x 
then context a also leads to a weaker output y, x╞ y, that is 
y∈Cn(x).  

Here the idea is that, while classical logic may be used to 
‘process’ the input and to ‘unpack’ the output, the operator 
Out itself does not have either an associated language or a 
proof theory. Even so, Out may enjoy structural properties 
commonly attributed to consequence operators. Simple-
minded output is the most general characterization of Out, 
but stronger input/output operators have been studied [41], 
including a characterization of Poole’s default system [43] 
and a system similar to Reiter’s default logic [25]. 

Example [44] Suppose there are two community norms 
governing social benefits, one which maintains that poor 
citizens receive a housing subsidy, and the other that elderly 
citizens receive health insurance, i.e., G = {(Poor, 
SubsidizedHousing), (Elderly, HealthInsurance)}. Then, the 
community should also provide a housing subsidy if no-
income implies poor is included in the theory, i.e., 

SubsidizedHousing ∈ Out(G,(NoIncome → Poor) & 
NoIncome), since  
Poor ∈ Cn((NoIncome → Poor) & NoIncome) and  
SubsidizedHousing ∈ Cn(SubsidizedHousing). 
While one may agree that deontic logic has traditionally 

mishandled norms, it is not clear that there is anything 
essential about norms, which would preclude them from 
being represented by a statement within a language [47]. The 
point instead is that we must first understand the system we 
wish to model before defining the language we need, rather 
than the other way around.  

A good illustration of this point is the theory of causal 
modeling [45,46], since “if…then…” statements have long 
been thought to express a causal relationship between 
events. Whereas in normative systems the main issue is the 
apparent non-truth-functional character of norms, the issues 
with causal modeling concern the asymmetrical nature of 
causal relationships and, more importantly, the role that 
intervention plays in our understanding of causal 
relationships. Certainly, logics of conditionals have 
abounded; most attempt to ground conditionals of this kind 
in the semantic  features of the mood, aspect, and tense of 
natural language conditional statements. And some 
philosophical theories of causality have attempted to build 
from these studies in formal semantics.  

However, in the case of causal modeling, success came 
once the order of inquiry was reversed. While both 
equational and causal models rely upon symmetrical 
equations to describe a system, causal models in addition 
impose asymmetries by assuming that each equation 
corresponds to an independent mechanism, which may be 



 
 

 

manipulated. The theory of causal Bayesian networks 
[45,46] supplied the mathematical framework for causal 
modeling, and it did so by ignoring the task of formulating a 
calculus and focused instead on getting the right 
mathematical framework.  Only recently has there been a 
proposal for a calculus, and the clarity of Judea Pearl’s 
causal algebra of ‘doing’ [44] relies upon this background 
theory.  

XII. CONCLUSION AND FUTURE WORK 
This paper has introduced a formalization of the dynamic 

logic of phenomena in the terms of first-order logic, logic 
model theory, and the theory of Monotone Boolean 
functions. This formalization covers the main idea of DLP:  
matching levels of uncertainty of the problem/model to 
levels of uncertainty of the evaluation criterion, which 
dramatically decreases computation complexity of finding a 
model.  

The core of the formalization is a partial order on the 
phenomena models and similarity measures with respect to 
their uncertainty, generality, and simplicity. These partial 
orders are represented using a set of Boolean parameters 
within the theory of monotone Boolean functions and can be 
visualized in line with [3] to monitor and guide the search in 
the Boolean parameter space in the DL setting.   

Further studies are needed to establish a richer set of non-
logic axioms and to explore validity, soundness, and 
completeness of expanded DLP. Such studies may reveal 
deeper links with classical logic problems such as 
decidability, completeness, and consistency. 

Further theoretical studies may find deeper links with 
classical optimization search processes, and may 
significantly advance them by adding an extra layer of 
optimization criteria constructed dynamically. This work 
also gives a new perspective for machine learning [2,4] to 
develop learning algorithms that can learn evaluation criteria 
and models simultaneously. We expect that deep links with a 
known Dynamic Logic of programs [12] motivated by 
logical analysis of computer programs will also be 
established.  

The proposed formalization creates a framework for 
developing specific applications and modeling tools. We 
envision a modeling tool that will consist of sets of models, 
matching similarity measures, processes for testing them and 
model learning processes for specific problems in pattern 
recognition, data mining, optimization, cognitive process 
modeling, and decision making.   

From our viewpoint, the most interesting and useful future 
DLP research is discovering a mechanism for changing 
models and similarity measures. Humans have demonstrated 
capabilities to switch evaluation criteria instantaneously in 
dynamic environments [11]. This is the area where logic, 
mathematical modeling, and cognitive science can provide 
mutual benefits in discovering mechanisms for changing 
models and changing similarity measures.  

APPENDIX 1: COMPUTATIONAL COMPLEXITY  

E. Polynomial complexity case 
Below we describe two examples that give computational 

motivation to our research on building a logical formalism 
for representing the dynamic logic of phenomena. The first 
example is about finding a model to fit a hidden circle in 
noisy data when the level of noise is so high that a direct 
human observation does not allow a visual clue about the 
location of the circle within the image. In the second 
example, the shape of the object (model) to be found is more 
complex (see Figure 3 on the right). To identify the circle we 
need two points, and to identify the second (parabolic) shape 
we need 4 points A,B,D and G (see Figure 3), that is models 
with 2 and 4 parameters, respectively. 

To solve the first example we assume: 
1. The hidden shape to be discovered is a circle.  
2. The density of the points in the circle is higher than 

outside of the circle W, but it is so subtle that it is below 
of the human perception abilities.  

3. The center c=( xc, yc ) of the circle is not known, but its 
range is  known: xc ∈ [xmin,xmax], yc ∈ [ymin,ymax]. 

4. The resolution of x and y are known,  ex and ey, that is x 
has a finite set of nx values, xmin,   xmin+ex,…, 
xmin+kex,…xmax  and y has a finite set of ny values, ymin, 
ymin+ey,…,ymin+rey,…ymax  

5. The radius R of W is not known. 
6. The radius R accuracy resolution is er =min(ex,ey).   
7. More than one circle can be in the area and the number of 

the circles is not known.  
8. Different circles may or may not overlap.  
9. The circles’ area is less than 1/3 of the whole area.   

 
     Figure 3. Modeled shapes 

The brute force algorithm for example 1 conducts Density 
Difference Test for every node C=(xc,yc) and every R  on the 
grid. It returns 1 if D(R) – D(¬R) >T, else 0, that is if 
density D(W) in circle W is greater than D(¬W) with 
threshold T, where D(¬W) is density outside W. Here  

The Computational Complexity (CC) of this algorithm 
with the base operation as Density Difference Test (C,R) is  
O(n3) on a square grid n×n.  

The CC of Density Difference Test function is defined by 
the total number m of given points with the base operation as 
testing (xi -xc)2+(yi -xc)2 ≤ R2, that is if the point is inside of 
the circle. The total computational complexity of the brute 
force algorithm is O(n3m). If input points covers the whole 
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grid, then m=n and CC is equal to O(n4). If fact m is a 
fraction of n, thus if m=n/10, then we still have O(n4).   

Now we will change our assumption 1, i.e., that the 
hidden shape to be discovered is a circle. A more complex 
shape to discover is produced by two quadratic curves 
shown in Figure 3. Three points, A,B, and G, are sufficient 
to identify the first curve, and three points, A,D, and G, are 
sufficient to identify the second curve. Thus, in total 4 points 
are sufficient to identify both curves. In the case of the 
circle, we need only two points, center C, and any point H 
on the circle. To solve the task for our new parabolic shape, 
we keep the same assumptions as we had for the circle. We 
assume the unknown number of shapes of unknown sizes, 
locations, and orientations.  Complexity of a brute force 
algorithm is O(n4) which is greater than for Example 1 due 
to a greater number of parameters involved. The density 
difference test has the same complexity O(m) as above for 
the circle, but is more complex for points inside of the shape. 
However, this test’s time grows linearly with m. For each 
point, it computes two quadratic forms and tests if the point 
is in or out of the shape based on these values. This time is 
limited by a constant for each given point. Thus, the total 
complexity is O(n4m), and if m would reach n, then it will be 
O(n5).  While these algorithms are polynomial, they have 
limited applicability for data of practical sizes as we show 
below.   

Assume that m=n/10, thus our complexity functions for 
examples 1 and 2 are k1(n4/10) and k2(n5/1), respectively. 
We also assumed 109 base operations/sec in these 
computations. Note that this base operation is a part of the 
Density Difference Test computed for each of m inputs.  

Tables 1 and 2 show computational complexity under 
these assumptions for search of circles and parabolic shapes. 
A computer screen grid of pixels is about 1000×1000 and 
images from current cameras are larger.  Only for a single 
screen with 100 input points, finding the circle has an 
acceptable time (100 sec) which also can be too slow for real 
time applications. Finding a more complex parabolic shape 
needs 28 hours for the same 100 input points. Increasing m 
to 1000 or 10000 input points leads to many years as table 2 
shows. Real objects, such as aircrafts, have shapes that are 
more complex. Thus, more critical points are needed to 
identify their models and CC will be greater. Therefore, 
fundamentally different approaches are needed to deal with 
such huge computational complexity issues. This example 
illustrates a computational motivation for this paper: 
building the dynamic logic formalism for a computationally 
efficient dynamic logic process.  

F. Exponential complexity case 
Above we considered a situation where we needed to test 

a polynomial number of models.  This was a result of the 
assumption that models are simple circles or parabolic 
shapes defined by n2 points on the grid.  

Objects with more complex shapes (e.g., long and non-
linear tracks) may require identifying more parameters and 
their combinations that can grow exponentially. 

  
TABLE 1. 

COMPUTATION TIME FOR SEARCH OF CIRCLES IN NOISY DATA 

Circle Grid 
size 

n Points m 
Computational 
Complexity n3m 

Time for 109 base  
operations per sec 

10 1 1000 0.000001 sec 
100 10 1E+7 0.01 sec 

1000 100 1E+11 100 sec 
10000 1000 1E+15 277.8 hours 

100000 10000 1E+19 126.8 years 
1000000 100000 1E+23 1,27 million years 

 
TABLE 2. 

COMPUTATION TIME FOR SEARCH OF PARABOLIC SHAPES IN 
NOISY DATA 

Parabolic shape Grid 
size 

n Points m 
Computational 
Complexity n4m 

Computational 
Complexity n4m 

10 1 10000 0.00001sec 
100 10 1E+09 1 sec 

1000 100 1E+14 28 hours 
10000 1000 1E+19 317.1 years 

100000 10000 1E+24 31.7 million years 
1000000 100000 1E+29 3.17E+12 years 

APPENDIX 2: EXAMPLE OF DLP PROCESS  
    Consider a situation with a single unknown object that is 
described as an interval [a,b] in the total interval [0,10]. We 
need a process that will find a and b.  The model of the 
object is [a,b], which is highly uncertain because both values 
a and b are unknown and only limited by the interval [0, 10].  
Thus, the first class of models is M={[a,b]: a,b ∈ [0,10]}.  
    To be specific, assume that the unknown object (model) is 
the interval [0,4]. This model has center c=2 and radius r=2, 
and can be written as [a,b]=m(c,r). Let also M(c,R)={m(c,r)} 
be a set of all models with center c and radiuses r that are no 
greater than R. Consider a set of all models (intervals) 
M(c,5) with all radiuses r ≤ 5. Here c and r also are highly 
uncertain.  
    Now we build at first a very uncertain evaluation measure 
(criterion) L0 for this class of models M(c,R) and data E as a 
kernel function. For instance, consider a Gaussian 
distribution, N(5,10), where c=5 is a mean and r=10 is a 
standard deviation. This standard deviation is two times 
greater than the largest R=5 in the [0, 10] interval, thus it 
covers M(c,5) models (intervals) and should not fail for this 
class of models. This means that the result of applying L0 
based on N(5,10) to M(c,5) is positive, L0(M(c,5))=1. This 
indicates that an object exists in [0,10], but its location is 
uncertain. We still do not know exactly c and r, but the class 
of models M(c,5) is confirmed because we have 
L0(M(c,5))=1. 
     Having this positive result, the next step is to change the 
similarity measure L, to make it less uncertain, by 
substituting L0=N(5,10) by, say, L1 based on N(5,7).  This 
substitution can be done by using a learning operator. 
Testing L1 on M(c,5) is not a computational challenge. It can 
be done quickly, which is a major benefit of DLP. This 
quick process of changing L and M is repeated until it 
reaches the level of maximum certainty of models that is 
possible on available data. This process is much faster than a 
brute force approach described in previous examples in this 
appendix. Here for simplicity of exposition we assumed that 
L takes binary values. For more complex non-binary L see 



 
 

 

[8,9].   
For the actual use of the DLP methodology, elaborated 

classes of models and criteria need to be developed at the 
matched level of uncertainty. Some of them are already 
developed in likelihood function terms [8,9].  

REFERENCES 
[1] G. Hansel, G., (1966) “Sur le nombre des fonctions Boolenes 

monotones de n variables," C.R. Acad. Sci. Paris, 262(20) : 1088-
1090. 

[2] Luc De Raedt.  (2006), From Inductive Logic Programming to Multi-
Relational Data Mining. Springer. 

[3] B. Kovalerchuk, F. Delizy, (2005), “Visual data mining using 
monotone Boolean functions,”  In: Visual And Spatial Analysis: 
Advances In Data Mining, Reasoning, And Problem Solving, 
Kovalerchuk, B, Schwing, J, (Eds), Springer,  pp. 387-406.  

[4] B. Kovalerchuk, Vityaev E., (2000), Data Mining in Finance: 
Advances in Relational and Hybrid Methods, Kluwer.   

[5] B. Kovalerchuk, Triantaphyllou, E., Despande, A., Vityaev, E., 
(1996), “Interactive Learning of Monotone Boolean Function,” 
Information Sciences, 94(1-4):  87-118 

[6] D. H. Krantz, R. D. Luce, P. Suppes, A. Tversky. Foundations of 
Measurement. New York, London: Academic Press, 1971-1990 

[7] A.Malcev. (1973), Algebraic Systems. Springer-Verlag. 
[8] L. Perlovsky, (2000), Neural Networks and Intellect: Using Model-

Based Concepts, Oxford University Press.   
[9] L. Perlovsky, (2006), “Toward physics of the mind: Concepts, 

emotions, consciousness, and symbols,” Physics of Life Rev. 3, 23–55. 
[10] W. Hodes (2005),  “First-order Model Theory,”  Stanford 

Encyclopedia of Philosophy,  
http://plato.stanford.edu/entries/modeltheory-fo/  

[11] L. Perlovsky, (2007), “Evolution of language, Consciousness, and 
Cultures,” IEEE Computational Intelligence Magazine. 8, pp. 25-39. 

[12] D. Harel, D. Kozen, and J. Tiuryn, (2000), Dynamic Logic, MIT Press. 
[13] A. Baltag, S. Smets, (2008), “A Dynamic-Logical Perspective on 

Quantum Behavior,” Studia Logica , 89: 187–211.  
[14] J. van Benthem, (1996), “Exploring Logical Dynamics,” Studies in 

Logic, Language and Information, CSLI Publications, Stanford.. 
[15] J. van Benthem,  (2007), “Dynamic logic for belief revision,” Journal 

of Applied Non-Classical Logics, 17(2). 
[16] H.P. van Ditmarsch, W.,van der Hoek, B.P. Kooi, (2007), Dynamic 

Epistemic Logic. Synthese Library, volume 337. Springer. 
[17] H. Leitgeb, K.Segerberg, (2007)  “Dynamic doxastic logic: why, how, 

and where to?” Synthese 155:167–190. 
[18] H. Leitgeb, (2009), personal communications.  
[19] V.Hendricks,  J. Symons, (2006), “Epistemic Logic,” Stanford 

encyclopedia of philosophy, http://plato.stanford.edu/entries/logic-
epistemic/,   

[20] J. van Benthem, (2009), personal communications. 
[21] P. Pojman, (2009), “Ernst Mach,” Stanford encyclopedia of 

philosophy,  http://plato.stanford.edu/entries/ernst-mach/ 
[22] D.Pitt, (2008), “Mental Representation,” Stanford encyclopedia of 

philosophy, 2008. http://plato.stanford.edu/entries/mental-
representation/ 

[23] T. Van Gelder,  (1995), "What Might Cognition Be, if not 
Computation?" Journal of Philosophy XCI: 345-381.  

[24] J. C. King, (2004), “Context Dependent Quantifiers and Donkey 
Anaphora,” New Essays in the Philosophy of Language and Mind, 
Canadian Journal of Philosophy Supplementary Volume 30, 
Ezcurdia, M., R. Stainton and C. Viger (eds.), University of Calgary 
Press, Calgary, Alberta, Canada, 97-127. 

[25] R.  Reiter (1980). “A logical framework for default reasoning,” 
Artificial Intelligence 13: 81-132. 

[26] P. Balbiani , (2007), “Propositional Dynamic Logic,” Stanford 
Encyclopedia of Philosophy,  http://plato.stanford.edu/entries/logic-
dynamic/ 

[27] V. Pratt, (1978), “A practical decision method for propositional 
dynamic logic,” In Proceedings of the 10th Annual ACM Symposium 
on Theory of Computing, 326-337.  

[28] K. Segerberg, J-J. Meyer, (2009), “The Logic of Action,” Stanford 
Encyclopedia of Philosophy, http://plato.stanford.edu/entries/logic-
action/ 

[29] A. Baltag, =, (1999), “A Logic of Epistemic Actions,” in W. van der 
Hoek, J.-J. Meyer, and C. Witteveen (eds.), Foundations and 
Applications of Collective Agent-Based Systems (Proceedings of the 
Workshop at the 11th European Summer School in Logic, Language, 
and Computation, Utrecht, 1999), [Available online in PDF].  

[30] A. Baltag, and Moss, L. S., (2004), “Logics for Epistemic Programs,” 
Synthese, 139: 165–224.  

[31] V.Hendricks, (2006), “Epistemic Logic,” Stanford Encyclopedia of 
Philosophy, http://plato.stanford.edu/entries/logic-epistemic/ 

[32] Hintikka, J. and Halonen, I. (1998). “Epistemic Logic,” Routledge 
Encyclopedia of Philosophy, volume 1. London: Routledge: 752-3 

[33] H. Arlo-Costa,  (2002). “First order extensions of classical systems of 
modal logic: the role of the Barcan schemas,” Studia Logica 71(1): 
87-118. 

[34] H. E. Kyburg, Jr. and CM Teng (2001). “The Logic of Risky 
Knowledge,” Electronic Notes in Theoretical Computer Science, 
Elsevier, volume 67. 

[35] B. Chellas,(1980). Modal Logic. Cambridge University Press. 
[36] G. Wheeler (2010). “AGM belief revision in monotone modal logics,” 

International Conference on Logic for Programming, Artificial 
Intelligence, and Reasoning (LPAR-16), Short paper proceedings, eds. 
Ed Clarke and Andrei Voronkov. 

[37] CM Teng and G. Wheeler (2010). “Robustness of Evidential 
Probability,” International Conference on Logic for Programming, 
Artificial Intelligence, and Reasoning (LPAR-16), Short paper 
proceedings, eds. Ed Clarke and Andrei Voronkov. 

[38] H. Kyburg and CM Teng (2001). Uncertain Inference. Cambridge 
University Press. 

[39] Haenni, R., J-W Romeijn,  G. Wheeler, and J. Williamson (2011), 
Probabilistic Logics and Probabilistic Networks, The Synthese 
Library, Springer.   

[40] H. E. Kyburg, Jr., CM Teng, CM, and G. Wheeler (2007). 
“Conditionals and consequences,” Journal of Applied Logic: 5(4): 
638-650. 

[41] D. Makinson, and L. van der Torre, (2000) “Input/output logics,” 
Journal of Philosophical Logic, 29: 383-408. 

[42] D. Makinson, and L. van der Torre, (2001) “Constraints for 
input/output logics,”  Journal of Philosophical Logic, 30: 155-185. 

[43] D. Poole (1988), “A logical framework for default reasoning,” 
Artificial Intelligence 36: 27-47. 

[44] G. Boella, G. Pigozzi, and L. van der Torre, (2009) “Normative 
framework for normative system change,” Proc. of 8th Int. Conf. on 
Autonomous Agents and Multiagent Systems (AAMAS 2009). 

[45] J. Pearl (2000) Causality: Models, Reasoning, and Inference. 
Cambridge University Press. 

[46] P. Spirites, C. Glymour, R. Scheines, (2000), Causation, Prediction, 
and Search (2nd Edition), MIT Press. 

[47] G.Wheeler and M. Alberti, (2011), “NO revision and NO 
contraction,” Minds and Machines, 21(3): 411-30.  


