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Abstract. The Web is likely to be a central platform for software de-
velopment in the future. We investigate how Semantic Web technologies,
in particular ontologies, can be utilised to support software component
development in a Web environment. We use description logics, which
underlie Semantic Web ontology languages such as DAML+OIL, to de-
velop an ontology for matching requested and provided components. A
link between modal logic and description logics will prove invaluable for
the provision of reasoning support for component and service behaviour.

1 Introduction

Component-based Software Engineering (CBSE) increases the reliability and
maintainability of software through reuse [1, 2]. Providing reusable software
components and plug-and-play style software deployment is the central objec-
tive. CBSE originates from the area of object-oriented software development,
but tries to overcome some of the problems associated with object-orientedness
[1]. Components are software artefacts that can be individually developed and
tested. Constructing loosely coupled software systems by composing components
is a form of software development that is ideally suited for development in dis-
tributed environments such as the Web. Distributed component-based software
development is based on component selection from repositories and integration.

Reasoning about component descriptions and component matching is a crit-
ical activity [3]. Ontologies are knowledge representation frameworks defining
concepts and properties of a domain and providing the vocabulary and facilities
to reason about these. Two ontologies are important for the component context:

– Application domain ontologies describe the domain of the software applica-
tion under development.

– Software development ontologies describe the software development entities
and processes.

The need to create a shared understanding for an application domain is long
recognised. Client, user and developer of a software system need to agree on
concepts for the domain and their properties. Domain modelling is a widely used
requirements engineering technique. However, with the emergence of distributed
software development and CBSE also the need to create a shared understanding
of software entities and development processes arises. We will present here a
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software development ontology providing the crucial matching support for CBSE
that is a substantial step ahead compared to the reasoning capabilities of current
matching approaches such as DAML-S for Web Services [4, 5].

Component matching techniques are crucial in Web-based component devel-
opment. Providing component technology for the Web requires to adapt to Web
standards. Since semantics are particularly important, ontology languages and
theories of the Semantic Web initiative [6] need to be adopted. Formality in
the Semantic Web framework facilitates machine understanding and automated
reasoning. The ontology language DAML+OIL is equivalent to a very expressive
description logic [7, 8]. This fruitful connection provides well-defined semantics
and reasoning systems. Description logics provide a range of class constructors
to describe concepts. Decidability and complexity issues – important for the
tractability of the technique – have been studied intensively.

Description logic is particularly interesting for the software engineering con-
text due to a correspondence between description logics and modal logic [8, 9].
The correspondence between description logics and dynamic logic (a modal logic
of programs) is based on a similarity between quantified constructors (express-
ing quantified relations between concepts) and modal constructors (expressing
safety and liveness properties of programs). We aim to enable the specification
of transition systems in description logic. This enables us to reason about ser-
vice and component behaviour. We present a novel approach to Web component
matching by encoding transitional reasoning about safety and liveness properties
– essentially from dynamic logic which is a modal program logic [10] – into a
description logic and ontology framework.

We focus on the description of components and their services and their rela-
tion to the Semantic Web in Section 2. Reasoning about matching is the content
of Section 3. We end with a discussion of related work and some conclusions.

2 Service and Component Description

2.1 The Component Model

Different component models are suggested in the literature [1, 2, 11, 12]. Here is
an outline of the key elements of our component model:

– Explicit export and import interfaces. In particular explicit and formal import
interfaces make components more context independent. Only the properties
of required services and components are specified.

– Semantic description of services. In addition to syntactical information such
as service signatures, the abstract specification of service behaviour is a
necessity for reusable software components.

– Interaction patterns. An interaction pattern describes the protocol of service
activations that a user of a component has to follow in order to use the
component in a meaningful way.

An example that illustrates our component model – see Fig. 1 – consists of a
service requestor and a service provider component. The interface allows users to



Component DocInterface
import services

create(id:ID)

retrieve(id:ID):Doc

update(id:ID,upd:Doc)
preCond valid(upd)

postCond retrieve(id)=upd

export services
openDoc(id:ID)

saveDoc(id:ID, doc:Doc)

import interaction pattern
create;!(retrieve+update)

Component DocStorageServer
import services

. . .
export services

crtDoc(id:ID)

rtrDoc(id:ID):Doc

updDoc(id:ID,upd:Doc)

preCond wellFormed(upd)

postCond rtrDoc(id)=upd∧wellFormed(upd)
delDoc(id:ID)

export interaction pattern
crtDoc;!(rtrDoc+updDoc);delDoc

Fig. 1. Document Processing Example.

open and save documents; it requires services from a suitable server component to
create, retrieve, and update documents. The server provides a range of services.
An empty document can be created using crtDoc. The request service rtrDoc
retrieves a document, but does not change the state of the server component,
whereas the update service updDoc updates a stored document without returning
a value. Documents can also be deleted. A requirements specification of a service
user for an update service is given. If documents are XML-documents, these
can be well-formed (correct tag nesting) or valid (well-formed and conform to a
document type definition DTD). We have specified an import interaction pattern
for client DocInterface and for provider DocStorageServer an export pattern.
The import pattern means that the create service is expected to be executed
first, followed by a repeated invocation of either retrieve or update.

2.2 An Ontology for Component Description

The starting point in defining an ontology is to decide what the basic ontology
elements – concepts and roles – represent. Our key idea is that the ontology
formalises a software system and its specification, see Fig. 2. Concepts repre-
sent component system properties. Importantly, systems are dynamic, i.e. the
descriptions of properties are inherently based on an underlying notion of state
and state change. Roles represent two different kinds of relations. Transitional
roles represent accessibility relations, i.e. they represent processes resulting in
state changes. Descriptional roles represent properties in a given state.

We develop a description logic to define the component matching ontology.
A description logic consists of three types of entities. Individuals can be thought
of as constants, concepts as unary predicates, and roles as binary predicates.
Concepts are the central entities. They can represent anything from concrete
objects of the real world to abstract ideas.

Definition 1. Concepts are collections or classes of objects with the same
properties. Concepts are interpreted by sets of objects. Individuals are named
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Fig. 2. Software Development Ontology

objects. Concept descriptions are formed according to the following rules: A
is an atomic concept, and if C and D are concepts, then so are >, ⊥, ¬C, and
C uD. Combinators such as C tD or C → D are defined as usual. Roles are
relations between concepts.

Roles allow us to associate properties to concepts. Two basic forms of role ap-
plications are important for our context. These will be made available in form
of concept descriptions.

Definition 2. Value restriction and existential quantification extend the set of
concept descriptions1. A value restriction ∀R.C restricts the value of role R to
elements that satisfy concept C. An existential quantification ∃R.C requires
the existence of a role value. Quantified roles can be composed. Since ∀R2.C is
a concept description, the expression ∀R1.∀R2.C is also a concept description.

Example 1. An example for the value restriction is ∀preCond.wellFormed: all
conditions are well-formed. An existential quantification is ∃preCond.wellFormed:
there is at least one condition preCond that is well-formed.

The constructor ∀R.C is interpreted as either an accessibility relation R to a
new state C for transitional roles such as update, or as a property R satisfying
a constraint C for descriptional roles such as postCond.

Example 2. For a transitional role update and a descriptional role postCond,
the expression ∀update.∀postCond . equal(retrieve(id),doc) means that by
executing service update a state can be reached that is described by the post-
condition equal(retrieve(id),doc) – an element of a condition domain.

2.3 Interpretation of Concepts and Roles

We interpret concepts and roles in Kripke transition systems [10]. Kripke tran-
sition systems are semantical structures used to interpret modal logics that are
1 In description logic terminology, this language is called ALC, which is an extension

of the basic attributive language AL.



also suitable to interpret description logics. Concepts are interpreted as states.
Transitional roles are interpreted as accessibility relations.

Definition 3. A Kripke transition system M = (S,L, T , I) consists of a
set of states S, a set of role labels L, a transition relation T ⊆ S × L × S, and
an interpretation I. We write RT ⊆ S × S for a transition relation for role R.

The set S interprets the state domains pre, post, and inv – see Fig. 2. Later we
extend the set S of states by several auxiliary domains such as Cond, Sign, or
Literal that represent description domains for service and component properties.

Definition 4. For a given Kripke transition system M with interpretation I,
we define the model-based semantics of concept descriptions:

> = S
⊥ = ∅
(¬A)I = S\AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ S|∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ S|∃b.(a, b) ∈ RI ∧ b ∈ CI}

A notion of undefinedness or divergence exists in form of bottom ⊥. Some pre-
defined roles, e.g. the identity role id interpreted as {(x, x)|x ∈ S}, shall be in-
troduced. The predefined descriptional roles are defined as follows: preCondI ⊆
preI×CondI , inSignI ⊆ preI×SignI , postCondI ⊆ postI×CondI , outSignI ⊆
postI × SignI , servNameI ⊆ invI × LiteralI , servDescrI ⊆ invI × LiteralI .

The semantics of description logics is usually given by interpretation in mod-
els. However, it can also be defined by translation into first-order logic [8]. Con-
cepts C can be thought of as unary predicates C(x). Roles R can be thought of
as binary relations R(x, y). Then, ∀R.C corresponds to ∀x.R(y, x) → C(x).

2.4 Role Constructs and Component Behaviour

Expressive role constructs are essential for our application. Transitional roles RT
represent component services: (RT )I ⊆ S × S. They are interpreted as accessi-
bility relations on states. Descriptional roles RD are used to describe properties
of services dependant on the state: (RD)I ⊆ S×D for some auxiliary domain D.
These are interpreted as relations between states and property domains. In our
case, the set of descriptive roles is fixed (preCond, postCond, inSign, outSign,
etc.), whereas the transitive roles are application-specific services.

An ontology for component matching requires an extension of basic descrip-
tion logics by composite roles that can represent interaction patterns [8].

Definition 5. The following role constructors shall be introduced:

– R ;S sequential composition with (R ;S)I = {(a, c)∈SI×SI |∃b.(a, b) ∈ RI∧
(b, c) ∈ SI}; often we use ◦ instead of ; to emphasise functional composition

– !R iteration with !RI =
⋃

i≥1(R
I)i, i.e. the transitive closure of RI



– R + S non-deterministic choice with (R + S)I = RI ∪ SI

Expressions constructed from role names and role constructors are composite
roles. P (R1, . . . , Rn) is an abstraction refering to a composite role P based on
the atomic roles R1, . . . , Rn.

Example 3. The value restriction ∀ create;!(retrieve+update) . postState
is based on the composite role create;!(retrieve+update).

Definition 6. A role chain R1 ◦ . . . ◦ Rn is a sequential composition of func-
tional roles (roles that are interpreted by functions).

Axioms in our description logic allow us to reason about service behaviour.
Questions concerning the consistency and role composition with respect to pre-
and postconditions can be addressed.

Proposition 1. Selected properties of quantified descriptions: (i) ∀R.∀S.C ⇔
R ;S.C, (ii) ∀R.C uD ⇔ ∀R.C u ∀R.D, (iii) ∀R t S.C ⇔ ∀R.C t ∀S.C.

Proof. Follows from proofs from dynamic logic axioms such as [p][q]φ ⇔ [p;q]φ
for (i) – see [10] Theorem 3. ut

A special form of a role constructor is the existential predicate restriction.
This will be needed in conjunction with concrete domains – see Section 2.6.

Definition 7. The role expression ∃(u1, . . . , un).P is an existential predicate
restriction, if P is an n-ary predicate of a concrete domain – concepts can only
be unary – and u1, . . . , un are role chains. Analogously, we define the universal
predicate restriction ∀(u1, . . . , un).P .

∃(x, y).equal expresses that there are role fillers for the two roles x and y that
are equal. The expression ∀(x, y).equal requires all role fillers to be equal.

2.5 Names and Parameterisation

Individuals are introduced in form of assertions. For instance Doc(D) says that
individual D is a document Doc. length(D,100) says that the length of D is 100.

Definition 8. Individual x with C(x) is interpreted by xI ∈ S with xI ∈ CI .

It is also possible to introduce individuals on the level of concepts and roles.

Definition 9. The set constructor, written {a1, . . . , an} introduces the indi-
vidual names a1, . . . , an. The role filler R : a is defined by (R : a)I = {b ∈
S|(b, aI) ∈ RI}, i.e. the set of objects that have a as a filler for R.

This means that R : a and ∃R.{a} are equivalent.
The essential difference between classical description logic and our variant

here is that we need names to occur in role and concept descriptions. A descrip-
tion logic expression ∀create.valid usually means that valid is a concept, or
predicate, that can be applied to some individual object; it can be thought of as



∀create(x).valid(x) for an individual x. If roles are services, then x should not
represent a concrete individual, but rather a name or a variable. For instance
the document creation service create has a parameter id.

Our objective is to introduce names into the description language. The role
filler construct provides the central idea for our definition of names.

Definition 10. We denote a name n by a role n[Name], defined by (n[Name])I

= {(nI , nI)}. A parameterised role is a transitional role R applied to a name
n[Name], i.e. R ◦ n[Name].

In first-order dynamic logic, names are identifiers interpreted in a non-abstract
state. These names would have associated values, i.e. a state is a mapping (bind-
ing of current values). However, since we are going to define names as roles this
explicit state mapping is not necessary.

Proposition 2. The name definition n[Name] is derived from the role filler
and the identity role definition: (n[Name])I(nI) = (id : n)I .

Proof. (n[Name])I(nI) = {(nI , nI)}(nI) = {nI} = {nI |(nI , nI) ∈ idI} =
{b|(b, nI) ∈ idI} = (id : n)I . ut

The idea of presenting names as roles is borrowed from category theory2.
We can now express a parameterised role ∀create ◦ id[Name].post de-

fined by {x|∀y.(x, y) ∈ (create ◦ id[Name])I → y ∈ postI} which is equal
to {idI |y ∈ postI}, where y is a postState element that could be further
described by roles such as y = ∀postCond.post u ∀outSign.out. The expres-
sion create ◦ id[Name] is a role chain, assuming that create is a functional
role: (create ◦ id[Name])I = {(a, c)|(a, b) ∈ id[Name]I ∧ (b, c) ∈ createI} =
{(idI , p)|(idI , idI) ∈ id[Name]I ∧ (idI , p) ∈ createI} = {(idI , p)}.

Example 4. With names and role composition the following parameterised role
chain can now be expressed:

∀ update ◦(id[Name], doc[Name]); postCond . equal(retrieve(id),doc)

Note, that we often drop the [Name] annotation if it is clear from the context
that a name is under consideration.

2.6 Concrete Domains and Property Types

Concrete domains and predefined predicates for these domains have been pro-
posed to add more concrete elements to descriptions [8]. A classical example is
to introduce a numerical domain with predicates such as ≤, ≥ or equality. These
predicates can be used in the same way as concepts – which can also be thought
2 A point in category theory [13] resembles our name definition. A point in the category

of finite sets is an arrow from a singleton set 1 to another object. This arrow can be
seen as a mapping giving a name to a target value.



of as unary predicates. An example is Doc u ∃length. ≥100 where the last el-
ement is a predicate {n|n ≥ 100}. length is a functional role, i.e. an attribute
which maps to a concrete domain. Binary predicates such as equality can be used
in conjunction with predicate restriction role constructors, e.g. ∃(x, y).equal.

Definition 11. Concrete domains are interpreted by algebraic structures with
a base set and predicates interpreted as n-ary relations on that base set.

Concrete domains are important in our context since they allow us to rep-
resent application domain-specific knowledge. These domains will be refered to
by type names. Concrete domains are needed for all application-oriented types
used in a component specification.

Example 5. The update service deals with two types of entities: documents and
identifiers. The document domain Doc ≡ ∃hasStatus . valid t wellFormed
and valid v wellFormed describes documents. Two predicates valid and
wellFormed exist, which are in a subsumption or subclass relation. For the
identifier domain ID only a binary predicate equal shall be assumed.

2.7 Contracts and Interaction Patterns

Axioms are introduced into description logics to reason about concept and role
descriptions.

Definition 12. Subconcept C1 v C2, concept equality C1 ≡ C2, subrole R1 v
R2, role equality R1 ≡ R2, and individual equality {x} ≡ {y} are axioms. The
semantics of these axioms is defined based on set inclusion of interpretations for
v and equality for ≡.

All forms of axioms are reducible to subsumption, i.e. subconcept or subrole [8].
Description logics often introduce an equivalence of concepts often as a definition
in a macro style – the left-hand side is a new symbol, e.g. Status ≡ valid t
wellFormed.

Contractual service descriptions form the basis of the matching of com-
ponent services represented by atomic roles. The specification of update using
axioms in description logic in Fig. 3 illustrates this. Interaction patterns can
be specified using composite roles, e.g. ∀create ◦ id; !(retrieve ◦ id+ update ◦
(id, doc)).post. It describes the interaction protocol that a component can en-
gage in. There is one import interaction pattern and one export interaction
pattern for each component.

The logic allows us to specify both safety and liveness properties of services.

Example 6. We can express that eventually after executing create, a document
will be deleted: (∀preCond.true) u (∀create.∃delete.∀postCond.true)3.



pre ≡ ∀preCond.valid(doc)
u ∀inSign.(id : ID, doc : Doc)
u ∀update ◦ (id, doc).post

post ≡ ∀postCond.equal(retrieve ◦ id, doc)
u ∀outSign.()

inv ≡ ∀servName.{"update"}
u ∀servDescr.{"updates document"}
u ∀update ◦ (id, doc).inv

Fig. 3. Contractual description of service update.

2.8 DAML+OIL and the Semantic Web

The Semantic Web initiative bases the formulation of ontologies on two Web
technologies for content description: XML and RDF/RDF Schema. RDF Schema
is an ontology language providing classes and properties, range and domain
notions, and a sub/superclass relationship. Web ontologies can be defined in
DAML+OIL – an ontology language whose primitives are based on XML and
RDF/RDF Schema, which provides a much richer set of description primi-
tives. DAML+OIL can be defined in terms of description logics [14]. However,
DAML+OIL uses a different terminology; corresponding notions are class/concept
or property/role. We present the DAML+OIL specification of formula ∀update◦
(id, doc).(∀postCond.equal(retrieve(id),doc) u ∀outSign.() ) in Figure 4.

3 Inference and Matching

The two problems that we are concerned with are component description and
component matching. Key constructs of description logics to support this are
equivalence and subsumption. In this section, we look at component matching
based on contracts and how it relates to subsumption reasoning.

3.1 Subsumption

Subsumption is defined by subset inclusions for concepts and roles.

Definition 13. A subsumption C1 v C2 between two concepts C1 and C2 is
defined through set inclusion for the interpretations CI

1 ⊆ CI
2 . A subsumption

R1 v R2 between two roles R1 and R2 holds, if RI
1 ⊆ RI

2.

Subsumption is not implication. Structural subsumption (subclass) is weaker
than logical subsumption (implication), see [8].

3 This corresponds to a dynamic logic formula true→ [create(id)]〈delete(id)〉 true
combining safety ([. . .]φ) and liveness (〈. . .〉ψ) properties.



<daml:Class>

<daml:Restriction>

<daml:onProperty rdf:resource="#update(id,doc)"/>

<daml:toClass>

<daml:unionOf rdf:parseType="daml:collection">

<daml:Restriction>

<daml:onProperty rdf:resource="#postCond"/>

<daml:hasClass rdf:resource="#equal(retrieve(id),doc)"/>

</daml:Restriction>

<daml:Restriction>

<daml:onProperty rdf:resource="#outSign"/>

<daml:hasClass rdf:resource="#()"/>

</daml:Restriction>

</daml:unionOf>

</daml:toClass>

</daml:Restriction>

</damL:Class>

Fig. 4. DAML+OIL specification.

Proposition 3. The following axioms hold for concepts C1 and C2: (i) C1 u
C2 v C1, (ii) C1 ∧ C2 → C1, (iii) C2 → C1 implies C2 v C1.

Proof. (i) C1 u C2 v C1 is true since CI
1 ∩ CI

2 ⊆ CI
1 . (ii) C1 ∧ C2 → C1 is

true since (C1 ∧ C2)I ⊆ CI
1 . (iii) C2 → C1 implies CI

2 ⊆ CI
1 since structural

subsumption is weaker than logical subsumption. ut

We can use subsumption to reason about matching of two service descriptions
(transitional roles).

3.2 Matching of Services

Subsumption is the central reasoning concept in description logics. We will in-
tegrate service reasoning and component matching with this concept.

A service is functionally specified through pre- and postconditions. Matching
of services is defined in terms of implications on pre- and postconditions and
signature matching based on the widely accepted design-by-contract approach4.
The CONS inference rule, found in dynamic logic [10], describes the refinement
of services. Based on the hypotheses φ → φ′, φ → [p] ψ, and ψ′ → ψ we can
conclude φ′ → [p]ψ′. A matching definition for services, i.e. transitional roles,
shall be derived from the CONS rule.

4 We ignore other descriptions such as invariants and possible improvements of our
refinement notion through subsignatures here.



Definition 14. A provided service P refines a requested service R, or service
P matches R, if

∀inSign.inR u ∀R.∀outSign.outR
∀inSign.inP u ∀P.∀outSign.outP

〈 inP ≡ inR ∧ outP ≡ outR

(signatures are compatible: types of corresponding parameters are the same) and

∀preCond.preR u ∀R.∀postCond.postR
∀preCond.preP u ∀P.∀postCond.postP

〈 preR v preP ∧ postP v postR

(requested service precondition is weakened and postcondition strengthened).

Matching of service descriptions is refinement. This is a contravariant inference
rule that captures service matching based on formal behaviour specification.

Example 7. The service updDoc of the document server matches the require-
ments of update – a service that might be called in methods provided by the
interface. Signatures are compatible. updDoc has a weaker, less restricted precon-
dition (valid(doc) implies wellFormed(doc)) and a stronger postcondition (the
conjunction retrieve(id)=doc∧wellFormed(doc) implies retrieve(id)=doc).
This means that the provided service satisfies the requirements.

Proposition 4. The matching rule for services defined in Definition 14 is sound.

Proof. (i) Assume that ∀preCond.preR and preR v preP . Then preCondI =
{(a, b)|b ∈ preI

R} and preI
R ⊆ preI

P implies preCondI = {(a, b)|b ∈ preI
P }

for ∀preCond.preP . (ii) Assume that ∀R; postCond.postR and postP v postR.
The former implies that (R; postCond)I = {(a, c)|(∃b.(a, b) ∈ RI ∧ (b, c) ∈
postCondI) ∧ c ∈ postIR} and postIP ⊆ postIR implies that (P ; postCond)I =
{(a, c)|(∃b′.(a, b′) ∈ P I∧(b′, c) ∈ postCondI)∧c ∈ postIP } for ∀P ; postCond.postP
for a role P that is syntactically compatible with R. ut

Matching implies subsumption, but is not the same. Refinement (matching
of services) is a sufficient criterion for subsumption.

Proposition 5. If service P refines (or matches) R, then P v R.

Proof. If P refines R, i.e. preI
R ⊆ preI

P and postIP ⊆ postIR, then for each (a, b) ∈
P I there is an (a, b) ∈ RI . Therefore, P I ⊆ RI , and consequently P v R. ut

If the conditions are application domain-specific, e.g. predicates such as
valid(doc), then an underlying domain-specific theory provided by an appli-
cation domain ontology can be integrated via concrete domains.

3.3 Matching of Interaction Patterns

Together with service matching based on contractual descriptions, interaction
pattern matching is the basis of component matching.

A notion of consistency of composite roles relates to the underlying service
specifications based on e.g. pre- and postconditions.



Definition 15. A composite role P (R1, . . . , Rn) is consistent, if the last state
is reachable. A concept description ∀P (R1, . . . , Rn).C with transitional role P is
reachable if {(a, b) ∈ P I |∃b.b ∈ CI} is not empty.

Proposition 6. A composite role P is consistent if the following (sufficient)
conditions are satisfied:
(i) for each sequence R; S in P : ∀postCond.postR v ∀preCond.preS

(ii) for each iteration !R in P : ∀postCond.postR v ∀preCond.preR

(iii) for each choice R + S in P : ∀preCond.preR u ∀preCond.preS and
∀postCond.postR u ∀postCond.postS

Proof. By definition (R; S)I = {(a, c) ∈ (R; S)I |∃b.(a, b) ∈ RI ∧ (b, c) ∈ SI}.
Then ∀postCond.postIR ⊆ ∀preCond.preI

S implies that each b ∈ ∀postCond.postIR
is also in ∀preCond.preI

S , i.e. b ∈ ∀postCond.postIR ⇒ b ∈ ∀preCond.preI
S . Sim-

ilarly for !R since !R = R; . . . ; R. For each R + S both pre- and postconditions
need to be enabled to guarantee successful execution. ut
Definition 16. A component interaction pattern is a consistent composite
role P (R1, . . . , Rn) constructed from transitional role names and the connectors ;
, | , and +5. Interaction patterns are interpreted by pattern transition graphs
for composite transitional roles, i.e. the graphs that represent all possible pattern
executions.

Both client and provider components participate in interaction processes
based on the services described in their import and export interfaces. The client
will show a certain import interaction pattern, i.e. a certain ordering of requests
to execute provider services. The provider on the other hand will impose a con-
straint on the ordering of the execution of services that are provided.

The specification of interaction patterns describes the ordering of observ-
able activities of the component process. Process calculi suggest simulations and
bisimulations as constructs to address the equivalence of interaction patterns.
We will use a notion of simulation between processes to define interaction pattern
matching between requestor and provider.

Definition 17. A provider interaction pattern P (S1, . . . , Sk) simulates a re-
quested interaction pattern R(T1, . . . , Tl), or pattern P matches R, if there ex-
ists a homomorphism µ from the transition graph of R to the transition graph

of P , i.e. if for each Rg
Ti−→ Rh there is a Pk

Sj−→ Pl such that Rg = µ(Pk),
Rh = µ(Pl), and Sj refines Ti.

Matching of interaction patterns is simulation. The form of this definition orig-
inates from the simulation definition of the π-calculus, see e.g. [15]. Note, that
simulation subsumes service matching. The provider needs to be able to simulate
the request, i.e. needs to meet the expected interaction pattern of the requestor.

The definition implies that the association between Si and Tj is not fixed,
i.e. any Si such that Si refines Tj for a requested service Tj is suitable. For a

5 We often drop service parameters in patterns since only the ordering is relevant.



given Tj , in principle several different provider services Si can provide the actual
service execution during the process execution.

Example 8. The provider requires crtDoc;!(rtrDoc+updDoc);delDoc and the
requestor expects create;!(retrieve+update) as the ordering. Assuming that
the service pairs crtDoc/create, rtrDoc/retrieve, and updDoc/update match
based on their descriptions, we can see that the provider matches (i.e. simulates)
the required server interaction pattern. The delDoc service is not requested.

As for service matching we expect interaction pattern matching not to be the
same as subsumption. Subsumption on roles is input/output-oriented, whereas
the simulation needs to consider internal states of the composite role execution.
For each request in a pattern, there needs to be a corresponding provided service.
However, matching is again a sufficient condition for subsumption.

Proposition 7. If the component interaction pattern P (S1, . . . , Sk) simulates
the interaction pattern R(T1, . . . , Tl), then R v P .

Proof. If P (S1, . . . , Sk) simulates R(T1, . . . , Tl), then for each (a, b) ∈ RI there
is a pair (a, b) ∈ P I . Therefore, RI ⊆ P I , and consequently R v P follow. ut
Note, that the provider might support more transitions, i.e. subsumes the re-
questor, whereas for service matching, the requestor subsumes the provider (the
provider needs to be more specific).

3.4 Complexity and Decidability

The tractability of reasoning about descriptions is a central issue for description
logic. The richness of our description logic has some negative implications for the
complexity of reasoning. However, some aspects help to reduce the complexity.
We can restrict roles to functional roles. Another beneficial factor is that for
composite roles negation is not required. We do not investigate this aspect in
depth [8] – only one issue shall be addressed.

A crucial problem is the decidability of the specification if concrete domains
are added. Admissible domains guarantee decidability.

Definition 18. A domain D is called admissible if the set of predicate names
is closed under negation, i.e. for any n-ary predicate P there is a predicate Q such
that QD = (SD)n\PD, there is a name >D for SD, and the satisfiability problem
is decidable; i.e. there exists an assignment of elements of SD to variables such
that the conjunction ∧k

i=1Pi(x
(i)
1 , . . . , x

(i)
ni ) of predicates Pi becomes true in D.

Proposition 8. We can show that our chosen concrete domains (documents
and identifiers) – see Example 5 – are admissible.

Proof. In [8], it is shown that the domain N with the set of nonnegative integers
and the predicates <,≤, >,≥ is admissible. We can map documents and iden-
tifiers to nonnegative numbers and lexicographical ordering predicates to the
binary predicates. Consequently, the domains are admissible. ut



4 Related Work

The formula ∀update ◦(id,doc).∀postCond.equal(retrieve(id),doc) in de-
scription logic corresponds to [update(id,doc)][postCond] retrieve(id)=doc
in dynamic logic. Schild [9] points out that some description logics are notational
variants of multi-modal logics. This correspondence allows us to integrate modal
axioms and inference rules about programs or processes into description logics.
We have expanded Schild’s results by addressing the problem of representing
names in the notation and by defining a matching inference framework.

Some effort has already been made to exploit Semantic Web and ontology
technology for the software domain [4, 5, 16]. All of these approaches have so
far focused on the restricted component-aspects of Web services. [16] addresses
the configuration of Web services; [5] presents solutions in the DAML-S context,
which is the closest project to our work.

DAML-S [4] is a DAML+OIL ontology for describing properties and capabil-
ities of Web services. DAML-S represents services as classes (concepts). Knowl-
edge about a service is divided into two parts. A service profile is a class that
describes what a service requires and what it provides, i.e. external properties.
A service model is a class that describes workflows and possible execution paths
of a service, i.e. properties that concern the implementation. DAML-S relies on
DAML+OIL subsumption reasoning to match requested and provided services.
DAML-S [4] provides to some extend for Web services what we aim at for Web
components. However, the form of reasoning and ontology support that we have
provided here is not possible in DAML-S, since services are modelled as concepts
and not rules in the DAML-S ontology. Only considering services as roles makes
modal reasoning about process behaviour possible.

5 Conclusions

Component development lends itself to development by distributed teams in a
distributed environment. Reusable components from repositories can be bound
into new software developments. The Web is an ideal infrastructure to support
this form of development. We have explored Semantic Web technologies, in par-
ticular description logics that underlie Web ontology languages, for the context of
component development. Ontologies can support application domain modelling,
but we want to emphasise the importance of formalising central development
activities such as component matching in form of ontologies.

Adding semantics to the Web is the central goal of the Semantic Web ac-
tivity. Our overall objective has been to provide advanced reasoning power for
a semantic Web component framework. We have presented description logic fo-
cussing on semantical information of components. The behaviour of components
is essentially characterised by the component’s interaction processes with its
environment and by the properties of the individual services requested or pro-
vided in these processes. The reasoning capabilities that we have obtained and
represented in form of a matching ontology go beyond current ontologies for ser-
vice matching. Even though description logics have been developed to address



knowledge representation problems in general, the connection to modal logics
has allowed us to obtain a rich framework for representing and reasoning about
components. Description logic is central for two reasons. Firstly, it is a framework
focusing strongly on the tractability of reasoning, and, secondly, it is crucial for
the integration of component technology into the Web environment.

Some questions have remained unanswered. Decidability and complexity re-
sults from description logic need to be looked at in more detail. We plan to adapt
exiting proof techniques and to use description logic systems such as FaCT.
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