251 research outputs found

    Reporting Skyline on Uncertain Dimension with Query Interval

    Get PDF
    Naturally, users sometimes specify their preference in an imprecise way (i.e. query with an interval/range). To report results that satisfy the imprecise query as well as interesting would be easy on dataset with atomic values. The challenge is when the dataset being queried consists of both atomic values as well as continuous range of values. For a set of objects with uncertain dimension and given a query interval

    Efficient Web Service Discovery and Selection Model

    Get PDF
    Selection of an optimal web service is a challenging task due to the uncertainty of Quality of Service, which is the deciding factor to identify the accurate web service. Several discovery mechanisms have proposed but most of the research work does not consider the non-functional characteristics called Quality of service. The proposed model for web service selection combines two techniques. First, with Skyline method reduce the search space by filtering the redundant service and secondly to calculate the Relevancy function to normalize the skyline services. The experimental results show that the proposed technique outperforms the existing method

    Skyline computation of uncertain database: A survey

    Get PDF
    Conducting advance skyline analysis over certain and uncertain databases is still an evolving research area in the field of database, despite several research works that have been conducted in this area. This paper conducts a survey on research issues on computing skyline for uncertain databases, with the view of providing interested researchers with an overview of the most recent research directions in this area.It further suggests possible research direction on skyline processing for uncertain databases.Taxonomy of the existing approaches is also presented

    Skyline queries computation on crowdsourced- enabled incomplete database

    Get PDF
    Data incompleteness becomes a frequent phenomenon in a large number of contemporary database applications such as web autonomous databases, big data, and crowd-sourced databases. Processing skyline queries over incomplete databases impose a number of challenges that negatively influence processing the skyline queries. Most importantly, the skylines derived from incomplete databases are also incomplete in which some values are missing. Retrieving skylines with missing values is undesirable, particularly, for recommendation and decision-making systems. Furthermore, running skyline queries on a database with incomplete data raises a number of issues influence processing skyline queries such as losing the transitivity property of the skyline technique and cyclic dominance between the tuples. The issue of estimating the missing values of skylines has been discussed and examined in the database literature. Most recently, several studies have suggested exploiting the crowd-sourced databases in order to estimate the missing values by generating plausible values using the crowd. Crowd-sourced databases have proved to be a powerful solution to perform user-given tasks by integrating human intelligence and experience to process the tasks. However, task processing using crowd-sourced incurs additional monetary cost and increases the time latency. Also, it is not always possible to produce a satisfactory result that meets the user's preferences. This paper proposes an approach for estimating the missing values of the skylines by first exploiting the available data and utilizes the implicit relationships between the attributes in order to impute the missing values of the skylines. This process aims at reducing the number of values to be estimated using the crowd when local estimation is inappropriate. Intensive experiments on both synthetic and real datasets have been accomplished. The experimental results have proven that the proposed approach for estimating the missing values of the skylines over crowd-sourced enabled incomplete databases is scalable and outperforms the other existing approaches

    Knowledge Rich Natural Language Queries over Structured Biological Databases

    Full text link
    Increasingly, keyword, natural language and NoSQL queries are being used for information retrieval from traditional as well as non-traditional databases such as web, document, image, GIS, legal, and health databases. While their popularity are undeniable for obvious reasons, their engineering is far from simple. In most part, semantics and intent preserving mapping of a well understood natural language query expressed over a structured database schema to a structured query language is still a difficult task, and research to tame the complexity is intense. In this paper, we propose a multi-level knowledge-based middleware to facilitate such mappings that separate the conceptual level from the physical level. We augment these multi-level abstractions with a concept reasoner and a query strategy engine to dynamically link arbitrary natural language querying to well defined structured queries. We demonstrate the feasibility of our approach by presenting a Datalog based prototype system, called BioSmart, that can compute responses to arbitrary natural language queries over arbitrary databases once a syntactic classification of the natural language query is made

    Parallel and progressive approaches for skyline query over probabilistic incomplete database

    Full text link
    The advanced productivity of the modern society has created a wide range of similar commodities. However, the descriptions of commodities are always incomplete. Therefore, it is difficult for consumers to make choices. In the face of this problem, skyline query is a useful tool. However, the existing algorithms are unable to address incomplete probabilistic databases. In addition, it is necessary to wait for query completion to obtain even partial results. Furthermore, traditional skyline algorithms are usually serial. Thus, they cannot utilize multi-core processors effectively. Therefore, a parallel progressive skyline query algorithm for incomplete databases is imperative, which provides answers gradually and much faster. To address these problems, we design a new algorithm that uses multi-level grouping, pruning strategies, and pruning tuple transferring, which significantly decreases the computational costs. Experimental results demonstrate that the skyline results can be obtained in a short time. The parallel efficiency for an Octa-core processor reaches 90% on high-dimensional, large databases.<br /

    Processing Incomplete k Nearest Neighbor Search

    Get PDF

    Item Retrieval as Utility Estimation

    Get PDF
    Retrieval systems have greatly improved over the last half century, estimating relevance to a latent user need in a wide variety of areas. One area that has not enjoyed such advancements is searching for items by attribute values, a common activity in e-commerce and science, particularly given numeric values. Existing item retrieval systems assume the user has a firm grasp of their own desires and can formulate a good Boolean or SQL-style query to retrieve items, as one would do with a database. A contrasting approach would be to estimate how well items match the user?s latent desires and return items ranked by this estimation. Towards this end, we present a retrieval model inspired by multi-criteria decision making theory, concentrating on numeric attributes. We evaluate our novel approach, the de-facto standard of Boolean retrieval, and several models proposed in the literature, in two user studies using Amazon Mechanical Turk. We use a competitive game to motivate test subjects and compare methods based on the results of the subjects? initial query and their success in the game. In our experiments, our new method signi cantly outperformed the others, whereas the Boolean approaches had the worst performance
    corecore