120,335 research outputs found

    A framework for exploration and cleaning of environmental data : Tehran air quality data experience

    Get PDF
    Management and cleaning of large environmental monitored data sets is a specific challenge. In this article, the authors present a novel framework for exploring and cleaning large datasets. As a case study, we applied the method on air quality data of Tehran, Iran from 1996 to 2013. ; The framework consists of data acquisition [here, data of particulate matter with aerodynamic diameter ≤10 µm (PM10)], development of databases, initial descriptive analyses, removing inconsistent data with plausibility range, and detection of missing pattern. Additionally, we developed a novel tool entitled spatiotemporal screening tool (SST), which considers both spatial and temporal nature of data in process of outlier detection. We also evaluated the effect of dust storm in outlier detection phase.; The raw mean concentration of PM10 before implementation of algorithms was 88.96 µg/m3 for 1996-2013 in Tehran. After implementing the algorithms, in total, 5.7% of data points were recognized as unacceptable outliers, from which 69% data points were detected by SST and 1% data points were detected via dust storm algorithm. In addition, 29% of unacceptable outlier values were not in the PR.  The mean concentration of PM10 after implementation of algorithms was 88.41 µg/m3. However, the standard deviation was significantly decreased from 90.86 µg/m3 to 61.64 µg/m3 after implementation of the algorithms. There was no distinguishable significant pattern according to hour, day, month, and year in missing data.; We developed a novel framework for cleaning of large environmental monitored data, which can identify hidden patterns. We also presented a complete picture of PM10 from 1996 to 2013 in Tehran. Finally, we propose implementation of our framework on large spatiotemporal databases, especially in developing countries

    TEMPOS: A Platform for Developing Temporal Applications on Top of Object DBMS

    Get PDF
    This paper presents TEMPOS: a set of models and languages supporting the manipulation of temporal data on top of object DBMS. The proposed models exploit object-oriented technology to meet some important, yet traditionally neglected design criteria related to legacy code migration and representation independence. Two complementary ways for accessing temporal data are offered: a query language and a visual browser. The query language, namely TempOQL, is an extension of OQL supporting the manipulation of histories regardless of their representations, through fully composable functional operators. The visual browser offers operators that facilitate several time-related interactive navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or detecting and examining changes within temporal attributes and relationships. TEMPOS models and languages have been formalized both at the syntactical and the semantical level and have been implemented on top of an object DBMS. The suitability of the proposals with regard to applications' requirements has been validated through concrete case studies

    A logic programming framework for modeling temporal objects

    Get PDF
    Published versio

    Neogeography: The Challenge of Channelling Large and Ill-Behaved Data Streams

    Get PDF
    Neogeography is the combination of user generated data and experiences with mapping technologies. In this article we present a research project to extract valuable structured information with a geographic component from unstructured user generated text in wikis, forums, or SMSes. The extracted information should be integrated together to form a collective knowledge about certain domain. This structured information can be used further to help users from the same domain who want to get information using simple question answering system. The project intends to help workers communities in developing countries to share their knowledge, providing a simple and cheap way to contribute and get benefit using the available communication technology

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Managing contextual information in semantically-driven temporal information systems

    Get PDF
    Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the user’s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the user’s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to users‘ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information

    Publishing Linked Data - There is no One-Size-Fits-All Formula

    Get PDF
    Publishing Linked Data is a process that involves several design decisions and technologies. Although some initial guidelines have been already provided by Linked Data publishers, these are still far from covering all the steps that are necessary (from data source selection to publication) or giving enough details about all these steps, technologies, intermediate products, etc. Furthermore, given the variety of data sources from which Linked Data can be generated, we believe that it is possible to have a single and uni�ed method for publishing Linked Data, but we should rely on di�erent techniques, technologies and tools for particular datasets of a given domain. In this paper we present a general method for publishing Linked Data and the application of the method to cover di�erent sources from di�erent domains
    corecore