4 research outputs found

    Constrained nested logit model: formulation and estimation

    Get PDF

    A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs

    Get PDF
    Several common general purpose optimization algorithms are compared for finding A- and D-optimal designs for different types of statistical models of varying complexity, including high dimensional models with five and more factors. The algorithms of interest include exact methods, such as the interior point method, the Nelder–Mead method, the active set method, the sequential quadratic programming, and metaheuristic algorithms, such as particle swarm optimization, simulated annealing and genetic algorithms. Several simulations are performed, which provide general recommendations on the utility and performance of each method, including hybridized versions of metaheuristic algorithms for finding optimal experimental designs. A key result is that general-purpose optimization algorithms, both exact methods and metaheuristic algorithms, perform well for finding optimal approximate experimental designs

    A framework for derivative free algorithm hybridization

    No full text
    Column generation is a basic tool for the solution of largescale mathematical programming problems. We present a class of column generation algorithms in which the columns are generated by derivative free algorithms, like population-based algorithms. This class can be viewed as a framework to define hybridization of free derivative algorithms. This framework has been illustrated in this article using the Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms, combining them with the Nelder-Mead (NM) method. Finally a set of computational experiments has been carried out to illustrate the potential of this framework
    corecore