
Computational Statistics and Data Analysis 144 (2020) 106844

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

A comparison of general-purpose optimization algorithms for
finding optimal approximate experimental designs
Ricardo García-Ródenas a,∗, José Carlos García-García a, Jesús López-Fidalgo b,
José Ángel Martín-Baos a, Weng Kee Wong c

a Departamento de Matemáticas, Escuela Superior de Informática, Universidad de Castilla la Mancha, 13071–Ciudad Real, Spain
b Universidad de Navarra, ICS, Campus Universitario, 31080–Pamplona, Spain
c Department of Biostatistics, University of California, Los Angeles, USA

a r t i c l e i n f o

Article history:
Received 9 October 2018
Received in revised form 1 August 2019
Accepted 21 September 2019
Available online 10 October 2019

Keywords:
Approximate design
Efficiency
Equivalence theorem
Information matrix
Metaheuristics
Optimality criteria

a b s t r a c t

Several common general purpose optimization algorithms are compared for finding
A- and D-optimal designs for different types of statistical models of varying complexity,
including high dimensional models with five and more factors. The algorithms of interest
include exact methods, such as the interior point method, the Nelder–Mead method, the
active set method, the sequential quadratic programming, and metaheuristic algorithms,
such as particle swarm optimization, simulated annealing and genetic algorithms.
Several simulations are performed, which provide general recommendations on the
utility and performance of each method, including hybridized versions of metaheuristic
algorithms for finding optimal experimental designs. A key result is that general-purpose
optimization algorithms, both exact methods and metaheuristic algorithms, perform well
for finding optimal approximate experimental designs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Optimal design of experiments as a subfield of statistics has a long history and dates back to the early 1900s (Smith,
1918). Historically, the focus was on polynomial models and optimal designs were found from theoretical considerations.
Beyond homoscedastic polynomial models, esoteric theory from mathematical subfields is frequently required to find
theoretical optimal designs. Because of the mathematical complexity, the bulk of the theoretically developed optimal
designs invariably have one or two factors or models are assumed to be additive when there are multiple factors. Some
closed-form designs can be found in Johnson and Nachtsheim (1983), López-Fidalgo and Wong (2002) or Amo-Salas et al.
(2016), to mention a few.

High dimensional models are of increasing interest because they reflect studies more realistically and aided by increase
in computer power. For definiteness, we call models high dimensional if it has 5 or more factors in the model. The problem
to find an analytical description of the optimal design for a high dimensional model becomes more challenging because
they have many variables to optimize. The implications are that relying solely on theory to find optimal designs can be
limiting in a number of ways. First, the theory developed for finding an optimal design or a class of optimal designs
is frequently very dependent on the model assumptions. For example, if the mean function is slightly changed, the
mathematical derivation of the optimal design becomes invalid and may not provide clues for modifications or extensions
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to tackle the new optimization problem. Second, some assumptions required in the proof may be unrealistic and are
merely imposed to arrive at an analytical description of the optimal design. Third, the theory may apply to a particular
setup only. As an example, when the design criterion is convex, the elegant equivalence theorem verifies whether a design
is optimal among all designs on the design space but it is not applicable when one is only interested to confirm whether
a design is optimal within a smaller non-convex class.

Algorithms are a practical way to find optimal designs for a specific criterion and model. They are appealing because
the practitioner can run an algorithm and use the generated design quickly without having to resort to theory to derive the
design. There are several types of algorithms. Some are specific for a particular problem and others are general purpose
optimization algorithms. Some are exact with mathematical proofs of convergence and others are based on heuristics.
Some of the challenges with an algorithmic approach are that some algorithms may not work when the criterion is non-
differentiable or non-convex. This means that algorithms that utilize gradient-based methods or convexity properties of
the problems may no longer apply. Similarly, algorithms that work well for small dimensional problems may not work well
when a model incorporates more factors in the model because the number of design variables that need to be optimized
can increase quickly. For example, a model with 5 factors and all pairwise interaction terms requires at least 16 design
points to estimate all parameters. This implies we have to optimize at least 95 design variables because we do not know
how many points the optimal design has.

In the last few decades, a special class of heuristic algorithms called nature-inspired metaheuristics algorithms has
emerged as particularly powerful and effective for tackling various types of optimization problems. This class does not
require assumptions to perform well, is flexible and easy to implement and use. Many of these are not widely used in
mainstream statistics even though they are already widely used in engineering and computer science. A motivation for
this paper is to describe some of these newer types of algorithms and use simulations to compare their performances
with traditional algorithms used in statistics for finding optimal designs. We focus on design problems but many of these
heuristic algorithms are general purpose and can be used for solving other types of design problems and non-design
statistical problems. For example, nature-inspired algorithms were used in Chen et al. (2013) to optimize Latin Hypercube
designs and in Leatherman et al. (2014) to construct optimal computer experiments. Such algorithms have also been used
to provide optimal estimates for investigating efficacy of dual lung cancer screening by chest X-ray and sputum cytology
(Kim et al., 2012) and estimating parameters in a nonlinear mixed PK/PD model for a pharmaceutical application (Kim
and Li, 2011). These algorithms are versatile and each has their own appeal; for example, Genetic Algorithms (Lin et al.,
2015) or robust optimization techniques (Mak and Wu, 2019) are excellent algorithms for solving optimization problems
over a discrete search space.

The main purpose of this paper is to conduct a broad evaluation of the relative usefulness of deterministic algorithms
and nature-inspired metaheuristic algorithms and their hybrids for finding various optimal experimental designs. We
also compare their relative performances, in terms of speed and ability to find an optimal design for linear and nonlinear
models with varying complexity of the optimization problem. Previous work typically compared algorithms of the same
type. For example, Cook and Nachtsheim (1980) compared deterministic algorithms, and Hassan et al. (2005) compared
among metaheuristic algorithms. The scope of our work is therefore broader and more ambitious in that we compare
performances across different types of algorithms and ascertain whether nature-inspired metaheuristic algorithms or
their hybrids tend to outperform deterministic algorithms, on average, for searching optimal designs.

The main contributions in this paper are:

1. We provide a brief review of algorithms for finding optimal designs, including nature-inspired metaheuristic
algorithms.

2. We perform an empirical analysis of the convergence of heuristic methods, such as, Particle Swarm Optimization
(PSO), Simulated Annealing (SA) and Genetic Algorithms (GA) for finding D-optimal and A-optimal designs.

3. We hybridize each of the heuristic algorithms with the Nelder–Mead algorithm and evaluate whether the hybridized
versions are more effective for finding the optimal designs.

4. We implement three exact optimization methods: Sequential Quadratic Programming (SQP), the Active-Set (AS)
method and the Interior Point Method (IPM) and compare their ability for finding optimal designs in high
dimensional problems with many variables to optimize.

In Section 2, we review the statistical background, different types of designs and various design criteria. Section 3
concerns optimizing a convex functional of the Fisher information matrix, reviews equivalence theorems and discusses
a theoretical lower bound for the efficiency for a design without knowing the optimum. This tool is useful because a
search algorithm can use it as a stopping rule to terminate the search as soon as it finds a design with the specified
minimum efficiency requirement. The section ends with a reformulation of the design problem that is more appropriate for
direct applications of many algorithms. Section 4 discusses different types of algorithms for optimization and they include
exact methods and nature-inspired metaheuristic algorithms, and concludes with a subsection on how the latter may be
hybridized for better performance. Section 5 describes the scope of our simulation study using different types of statistical
models, optimality criteria and algorithms. We conclude the section with results from the simulation study. Section 6
presents a summary of our results and general recommendations concerning the choice of algorithms for generating
optimal experimental designs.
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2. Approximate design, information matrix and optimality criteria

Our statistical models have the form

Y = η(x, θ ) + ε, x ∈ X, (1)

where Y is a univariate response and x is a vector of design factors defined on a given compact design space X . The mean
response function is η and is assumed known apart from an unknown vector of parameters θ of dimension k. Observations
may be correlated and, if so, we assume the covariance structure is known and depends only on θ . The typical goal in the
study is to estimate parameters in the model or to estimate a meaningful function of the model parameters. For instance,
in a dose response study with a curvilinear mean response, there may be interest in estimating the dose at which the
turning point occurs. In this case, one finds a design that minimizes the asymptotic variance of the estimated dose of the
turning point.

Throughout, we assume we have a statistical model, design criterion and a given number, n, of observations for the
study. The design problem is to optimize the number of design points, their locations within a user-defined design
space and the number of replicates to be taken at these design points. If the optimization is over all such designs in
the design space, the resulting designs are called exact optimal designs. There is no unified framework for finding them
and confirming whether a design is an exact optimal design; see, for example, Esteban-Bravo et al. (2016), who applied
algorithms to find exact optimal designs with constraints.

Given a statistical model with normally distributed and independent errors with means 0 and constant variances, the
normalized Fisher information matrix of an approximate design ξ for model (1) is proportional to

I(ξ, θ ) =

m∑
i=1

ωiI(xi, θ ), (2)

where

I(xi, θ ) =
∂η(xi, θ )

∂θ

∂η(xi, θ )
∂θ T

is the information matrix from an observation at the point xi. The inverse of the information matrix is asymptotically
proportional to the covariance matrix of the estimators of the parameters of the model. Clearly, for one covariate the
information matrix is nonsingular if there are as many distinct design points as the number of parameters in the model,
i.e. k ≤ m. It is worth mentioning that this condition is not required for experiments with multivariate response (see
e.g. Yang et al., 2017). This matrix is then maximized in some ways if one wishes to estimate the model parameters
accurately by an appropriate choice of the number of design points, the locations of the design points and the weights
at each of these points. Kiefer (1974) proposed a class of design criteria that seems quite adequate for many practical
problems in which the sample size is large. For a model with k parameters, the class is indexed by a single parameter p
with different values of p representing various design criteria:

Φp(I(ξ, θ )) =

(
1
k
Tr

(
I−p(ξ, θ )

)) 1
p

, 0 ≤ p ≤ ∞. (3)

When p = 1, we have A-optimality and the optimal design minimizes the average of the variances of the parameter
estimates. When p is very large, limp→∞ Φp(I(ξ, θ )) = λmax, the maximum eigenvalue of the information matrix, and
we obtain E-optimality. This criterion minimizes the longest axis of the confidence ellipsoid of the parameters. When p
is close to 0, limp→0 Φp(I(ξ, θ )) = |I(ξ, θ )| and we have D-optimality. This criterion provides the design producing the
minimum volume of the confidence ellipsoid. The D-, A- and E-optimality criteria make the information matrix large
in various ways and result in different design criteria for estimating model parameters. D-optimality is by far the most
popular in practice.

Some criteria, in particular A-optimality, have been criticized by researchers because there is a scale-dependence on
the parameters in nonlinear models (see e.g. Stallings and Morgan, 2015). Thus, when appropriate a weighted criterion
must be used to standardize the corresponding variances and covariances of the estimators of the parameters. In our
examples, there are some differences of magnitude in the nominal values of the parameters, but not particularly large,
so this problem is not a big issue here. In any case the main goal of the paper is to compare the efficiency of the various
algorithms for computing optimal designs. For more practical computations, some weighted criteria should be used.

For nonlinear models, the design criterion contains the unknown parameter θ which we want to estimate. The simplest
approach is to assume nominal values for θ are available from previous or similar studies; these values replace the
unknown parameters and so the criterion can be optimized by choice of the number and locations of the design points
and the number of replications required at each design point. Such optimal designs are termed locally optimal (Chernoff,
1953) because they depend on the nominal value of θ . Clearly, locally optimal designs depend on the nominal values θ

and can be sensitive to its value. This means a small mis-specification of the nominal value of θ can result in a noticeable
drop in efficiency of the design. Minimax or Bayesian approaches are alternative ways to overcome such issues but are
outside the scope of this paper. Throughout, we focus on locally optimal designs.
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3. Efficiencies, equivalence theorems, efficiency lower bounds and a reformulation

This section discusses basic tools in optimal design theory. The first subsection describes the concept of design
efficiency to measure the worth of a design, the second subsection reviews how a design can be verified to be optimum
among all designs when the design criterion is convex (or concave) and the third subsection provides a tool for evaluating
how close a design is to the optimum without knowing the optimum in terms of efficiency. The last subsection describes
a reformulation of the design problem that is generally helpful to consider before applying an algorithm. For expository
purposes in this section, we assume the model is linear since extension to nonlinear models is straightforward; the
information matrix below therefore does not contain θ .

3.1. Design efficiencies

We recall that a function Φ is positive homogeneous if, for every positive δ, Φ(δξ ) = Φ(ξ )/δ. Throughout, we denote
our design criterion by Φ(ξ ), sometimes Φ(I(ξ )), and assume it is both positive homogeneous and convex over the design
space. We measure the worth of a design ξ by its Φ-efficiency effΦ (ξ ) = Φ(ξ ⋆)/Φ(ξ ), where ξ ⋆ is a Φ-optimal design.
The efficiency is always between 0 and 1 and it is frequently multiplied by 100 and reported as a percentage. The higher
the efficiency, the closer the design ξ is to the optimum. The positive homogeneity of the criterion provides a practical
interpretation, i.e. if the efficiency of ξ is 50%, then the design ξ needs to be replicated twice to perform as well as the
optimal design ξ ⋆. To ensure this simple interpretation, the D-efficiency of a design ξ is appropriately modified to be
(|I(ξ )|/|I(ξD)|)1/k, where ξD is the D-optimal design and k is the dimension of θ .

3.2. Equivalence theorems

When the design criterion is a convex or concave function of the information matrix, one can directly use directional
derivative considerations to obtain an equivalence theorem and verify the optimality of a design. As an example, consider
D-optimality, where we want to find a design that minimizes the convex functional ΦD(ξ ) = − log |I(ξ )|. Let s(x, ξ ∗) be
the directional derivative of Φ at a given design ξ ∗ in the direction toward a degenerate design at the point x. Using
convex analysis argument, one arrives at the following equivalence theorem for a homoscedastic linear model: a design
ξD is D-optimal for all x in the design space, if and only if

s(x, ξD) = f (x)T I−1(ξD)f (x) − k ≤ 0,

with equality at the support points of ξD. We note that each convex criterion has its own equivalence theorem; see details
in Berger and Wong (2009), Fedorov (1972), Silvey (1980) and Atwood (1976).

3.3. Efficiency lower bounds

The equivalence theorems are also helpful in that they provide a lower bound of the efficiency of any design without
requiring the optimum to be known. To this end, we first solve the optimization problem

ε0 = max
x∈X

s(x, ξ ). (4)

Following Pazman (1986), an efficiency lower bound for a convex criterion Φ is:

effΦ (ξ ) ≥ 1 −
ε0

Φ(I(ξ ))
.

Given a design ξ , many algorithms solve (4) by discretizing the design space. The reformulation of the design problem
allows the use of general purpose algorithms for searching over the whole continuous design space to find a solution
close to the optimum or the optimum itself. When the search space has a large dimension, discretizing the search space
is problematic because it can take a long time to generate and to evaluate a fine grid (see Table 10). For this reason, we do
not recommend using algorithms that require the search space to be discretized to solve a high dimensional optimization
problem, such as in (4).

3.4. Reformulation of the optimization problem

The common algorithms for finding optimal experimental designs work by adding or deleting points iteratively from
the current design. A new point is added to the current design by using a convex combination of the single point design
and the current design. The single point is specially selected and the weights used in the convex combination can be
chosen to achieve monotonic convergence or the fastest convergence. Some algorithms require the search space for the
support points to be discretized and others do not. Caratheodory’s theorem gives an upper bound on the number of
support points an optimal design needs; this upper bound is k(k + 1)/2 + 1, where k is the number of parameters in
the mean function (Fedorov, 1972). For strictly decreasing criteria, such as D- and A-optimality, this upper bound can be
decreased by one.
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Suppose an optimal approximate design ξ ∗ is supported at x1, . . . , xm and let ω be the vector of weights at the
corresponding points. We represent ξ by z = (ωT , xT1, . . . , x

T
m)

T and optimize the variables in the vector subject to
constraints

l ≤ xi ≤ u, i = 1, . . . ,m, (5)

where l and u are user-defined vectors of lower and upper bounds for the different factors in the model. Putting them
together as L = (0T , lT , . . . , lT )T and U = (1T ,uT , . . . ,uT )T , the constraints in our optimization problem are

L ≤ z ≤ U, (6)

with the additional constraint that the weights sum to one. The design problem we wish to solve becomes

Minimize Φ̂(z)
subject to: L ≤ z ≤ U

1Tω = 1,
(7)

where Φ̂ is Φ in this new context. The above formulation is versatile because most algorithms are able to handle a set
of linear constraints.

If we have n observations for the study and an exact optimal design is sought, the weight ωi at each support point is
constrained to be a multiple of 1

n and subject to the requirement that the total number of observations at all the points
sums to n. Mathematically,

ωi =
qi
n

m∑
i=1

qi = n

qi ∈ N ∪ {0}, i = 1, . . . ,m.

We use the following technique to avoid the integer nature of the variables q1, . . . , qm. We consider as optimization
variables of the problem (7) a support point for each observation, that is, we find a design with the number of support
points equal to the number of experimental units. It follows that the variable z in the problem (7) is now defined by
z = (xT1, . . . , x

T
n )

T , and the weights at each support point is ωi =
1
n . The resulting formulation is a continuous optimization

problem and avoids use of the integer optimization methods. We also observe that the optimal solution of the problem
(7) may be such that xi = xj for some pairs of observations i ̸= j. Consequently, general purpose algorithms for continuous
nonlinear optimization may be used for both exact and approximate designs.

4. Algorithms

Effective algorithms should be flexible, fast, easy to implement, usable in a variety of contexts and for the purpose
intended. They should find the optimal designs in an efficient way in terms of number of evaluations of Φ̂ and CPU time.
We do not expect that there is a single algorithm that performs well for all types of optimal designs but we would like
to identify the types of algorithms that seem efficient for solving optimal design problems.

All algorithms require a starting design to initiate the search before they start updating the current design using a
procedure that varies from one algorithm to another. They also require a user-specified stopping rule for the algorithm to
terminate its search and some popular choices are the maximum number of allowed iterations or successive values of the
criterion or efficiencies which do not change by more than a pre-specified amount. Algorithms for generating an optimal
design can be deterministic or based on metaheuristics. Mandal et al. (2015) provided a recent overview of algorithms
for finding optimal designs.

4.1. Deterministic and exact method algorithms

There are many algorithms proposed for finding optimal designs; some guarantee theoretical convergence to the
optimal design and others do not. For example, the classic and well known Fedorov–Wynn types of algorithms can
be proved to converge to the optimal design (Fedorov, 1972; Wynn, 1972). After a starting design is selected, at each
iteration, the algorithm includes a specially selected point into the current design. The selected point depends on the
design criterion; for D-optimality, it is a point that maximizes the variance function of the current design. The new design
is formed by taking a convex combination of the current design and the selected point, which is a degenerate design. One
common sequence of weights used in the convex combination is 1/i, i = 2, 3, . . . The sum of this sequence tends to infinity
and the sum of the squared terms is finite. These specifications ensure the sequence converges but not too quickly. More
specialized sequences are available to accelerate the convergence or to ensure the largest possible increase or decrease
in the criterion value.

Deterministic algorithms for finding optimal designs produce the same design when they are run repeatedly using
the same set of input parameters. There is no randomness built into the algorithms and they are generally efficient
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because they exhibit linear and super-linear rates of convergence. These algorithms typically have a proof of convergence
to the theoretical optimum and examples are the Wynn (1972) and Fedorov (1972) algorithms. Exchange algorithms, or
coordinate exchange algorithms fall into this category and are effective for finding exact optimal designs when the model
has several discrete factors, see for example, Meyer and Nachtsheim (1995) and the references therein. Advances in such
algorithms continue to this day. Huang et al. (2019) is a most recent example that illustrates well the utility of such an
approach to find a D-optimal exact design for estimating the response surface of a nonlinear model.

Multiplicative algorithms like those described in Yu (2011) also can be shown to generate D-optimal designs. These
algorithms require the design space to be discretized, implying that only the weights at the user-specified grid points
have to be optimized. Points with positive weights become support points of the optimal design. An earlier application of
multiplicative algorithms to find marginally and conditionally restricted optimal designs was described in Martín-Martín
et al. (2007). A faster version of the multiplicative algorithm called cocktail algorithm was proposed by Yu (2011) for
finding D-optimal designs.

Our experience is that traditional algorithms like those mentioned above may stall at a local optimum or break down
because of the huge computational burden even though it can be proved mathematically that they converge to the
optimum. We provide three citations who reported similar experiences with traditional algorithms for finding optimal
designs. An early one is Chaloner and Larntz (1989) who found both the Wynn (1972) and Fedorov (1972) algorithms
very slow when they tried to find A- and c-Bayesian optimal designs for the two-parameter logistic model and the prior
distributions are vague. They used the general optimization algorithm proposed by Nelder and Mead (1965) and found
it to be adequate. Similarly, Broudiscou et al. (1996) claimed that traditional algorithms, such as Fedorov–Wynn types
of algorithms or exchange algorithms for finding optimal designs cannot be used to find non-standard designs, such
as asymmetrical D-optimal designs. They found the algorithms performed poorly and were difficult to handle and so
cannot be used. They abandoned them for genetic algorithms instead. Similarly, Royle (2002) reported that the traditional
exchange algorithms are not practical for finding large spatial designs when the criterion is computationally expensive
to evaluate or the discretized design space is too large. These may be reasons why the bulk of the optimal experimental
designs reported in the literature concern a small number of factors. However, there are newer versions of coordinate
exchange algorithms that do not require the search space to be discretized. Examples are those implemented in JMP 14
(SAS Institute Inc) and in Huang et al. (2019) where they both use a continuous search space.

Exact methods form another class of optimization tools. An exact optimization procedure ensures an optimal solution
is found. They include interior point methods (IPMs), the active set method (ASM) and sequential quadratic programming
(SQP) and can also be shown to converge to a local optimum. IPMs calculate the Hessian by a dense quasi-Newton
approximation. The use of derivatives allows the algorithm to achieve super-linear convergence rates to stationary points
of the Lagrangian function. Each evaluation of the objective function usually requires solving a new optimizing problem. Lu
and Pong (2013) used an IPM to find optimal experimental designs. Exact methods require assumptions for them to work
well. If these are satisfied, they are known to be powerful for solving various kinds of optimization problems. Sun and
Yuan (2006) discussed assumptions for various exact methods with examples. For both the ASM and SQP, a quasi-Newton
approximation to the Hessian of the Lagrangian has to be computed; details of these programming tools are available from
the support pages at www.SAS.com.

4.2. Nature-inspired metaheuristic algorithms

Heuristic algorithms usually have a stochastic component that helps them to avoid or escape from a local optimum.
Heuristic algorithms usually do not guarantee convergence to the global optimum but have advantages over deterministic
algorithms. For instance, these methods do not require the user to make assumptions on the criterion to be optimized.
Moreover, this criterion does not have to be differentiable. A drawback of heuristic algorithms is that they involve tuning
parameters, which can have a real impact on the algorithm performance. Typically, there are many suggestions for choices
for tuning parameters which can improve performance considerably, see for example Cuervo et al. (2014) and Lin et al.
(2015). The algorithms can also be slow to converge and, when this happens, hybridization strategies (described below) are
used to speed them up. Some algorithms can be self adaptive meaning that, with repeated runs over time, they improve
their own tuning parameters (Qin et al., 2009).

A recent class of heuristic algorithms that has shown exceptional promise for solving a broad class of optimization
problems is the class of nature-inspired metaheuristic algorithms. These algorithms are motivated by observing nature.
They are marked by a simple algorithm that is easy to implement yet flexible to adapt to solve many types of optimization
problems. Such algorithms are widely used in engineering and computer science research and they are constantly being
improved. The more recent ones have not made it to mainstream statistical research. We now briefly review some of them
below; Yang (2010) provided a broader review of nature-inspired metaheuristic algorithms, including computer codes.

We now briefly discuss three metaheuristic algorithms, namely, simulated annealing, genetic algorithm and particle
swarm optimization because there is already a huge literature on them. In each case, we provide a pseudo code for the
heuristic algorithm before we mention some of their hybridizations in the next subsection. We let Φ̂ denote the criterion
value to be optimized.

https://www.sas.com/en_us/home.html
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Table 1
The simulated annealing method.
Step 1. (Initialization). Determine the number of iterations (N) and set the counter t to 1. Choose an initial solution

z0 . Initialize the temperature T .
Step 2. Randomly select z′

∈ V (zt ), where V is a neighborhood of zt .
Step 3. If Φ̂p(z′) ≤ Φ̂(zt ) then zt = z′ . Otherwise, set zt = z′ with probability qt = exp

(
−

Φ̂(z′)−Φ̂(zt )
T

)
Step 4. Decrease the temperature T .
Step 5. (Stopping criterion). If the current iteration is t = N , Stop; otherwise set t = t + 1 and go to Step 2.

Table 2
A prototype genetic algorithm.
Step 1. (Initialization). Determine the number of iterations (N) and set the counter t to 1. Randomly choose a set of

solutions (population of individuals).
Step 2. Select a set of pairs of parents to recombine.
Step 3. Mutate the resulting offspring.
Step 4. Evaluate the new individuals.
Step 5. Select the new individuals for the next generation.
Step 6. (Stopping criterion). If the current iteration is t = N , Stop; otherwise set t = t + 1 and go to Step 2.

4.2.1. Simulated annealing
The simulated annealing (SA) procedure was proposed independently by Kirpatrick et al. (1983) and Černý (1985). SA

is inspired by the cooling techniques used in metallurgy for obtaining a ‘‘well ordered’’ solid state of minimal energy. SA
is a probabilistic method, which means that each time the algorithm runs a different solution may be obtained. The main
ingredients of the algorithm are: (i) the definition of the neighborhood, (ii) the probability distribution of the neighborhood
and (iii) the cooling rule. Table 1 shows a generic scheme of the SA. To the best of our knowledge, the first to apply SA to
find optimal designs for linear regression models was Haines (1987). Most recently, López-García et al. (2014) proposed
a variant of SA consisting of using as neighborhood of z all points z′ which differ from z in a single component of the
vector. When the probability distribution on the neighborhood is uniform, we denote the variant by SA∗. SA can be shown
to converge to the theoretical optimum if the tuning parameters are appropriate.

4.2.2. Genetic algorithms
The Genetic Algorithm (GA) was introduced by Holland (1975) and Goldberg (1989). This book considers a probabilistic–

heuristic type of algorithms integrated in so-called population-based procedures of searching for the global optimum
within a set of solutions (population). The rules operation on the population are based on Darwinian principles simulating
the evolution of individuals. Each iteration of the algorithm corresponds to a generation. A generation is obtained using
two main mechanisms. One is the so-called recombination, also called cross-over, where two or more solutions (the so-
called parents) are combined to get new descendants (the so-called offspring ). These new solutions are subject tomutations
that modify their features. There are also rules to select the individuals among the new and old solutions that will remain
in the next generation. Table 2 displays a basic GA pseudo code. Hamada et al. (2001) applied GA to find near-optimal
Bayesian experimental designs and Latif and Brunner (2016) used GA to design micro-array experiments.

GA is probably one of the most widely used general purpose algorithms for optimization in statistics. There are many
applications of GAs in statistics, including for finding different types of optimal designs; see for example, Broudiscou et al.
(1996), Su and Chen (2012), etc.

4.2.3. Particle swarm optimization
Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart (1995). It is a probabilistic population-

based method and the rules operating in the population are inspired by the flock behavior of birds or swarms of bees. In
this algorithm, the elements are called particles and each particle movement is autonomous with a random component
and connected to a subset of particles of the population, which is known as the neighborhood of the particle. The velocity
of a particle is determined by (i) its current velocity; (ii) the experience of the particular particle (personal best), i.e. the
best obtained position in its whole evolution and (iii) the best position found by the particles of its neighborhood. These
factors are weighted and randomly modified to determine the resulting velocity of the particle.

Table 3 displays a pseudo code for the basic PSO. The algorithm depends on three parameters: (i) the inertia weight ω,
(ii) the cognition acceleration coefficient C1 and (iii) the social acceleration coefficient C2. The trajectory of an individual
particle would converge contingent upon meeting the following condition (see Sengupta et al., 2018)

1 > ω >
C1 + C2

2
− 1 ≥ 0. (8)

These parameters have been set ω =
1

2 log(2) , C1 = 0.5 + log(2) and C2 = 0.5 + log(2) in the numerical simulations
to assure that each particle converges. This point may not be an optimum and particles may prematurely converge to it.
However, one appealing property of PSO is that a wide range of values for the parameters in PSO work well for a wide



8 R. García-Ródenas, J.C. García-García, J. López-Fidalgo et al. / Computational Statistics and Data Analysis 144 (2020) 106844

Table 3
Pseudocode for particle swarm optimization.
Step 1. (Initialization). Fix the number of iterations (N) and set the counter t to 1. Initialize the population of particles with random positions

{z0i } and velocities {v0i }. Set pi = z0i and g = arg miniΦ̂(z0i )
Step 2. For each particle i do

- Update the velocity of the particle i using the following equation
vti = ωvt−1

i + C1ϕ1(pi − zt−1
i ) + C2ϕ1(g − zt−1

i ), (9)
where ϕ1 and ϕ2 are two random numbers uniformly distributed on [0, 1], C1 and C2 are two parameters known as acceleration
coefficients, and ω is the inertia weight.

- Update the position of particle i using the following equation:
zti = zt−1

i + vti . (10)
- Evaluate the fitness Φ̂(zti ) of zti . If Φ̂(zti ) < Φ̂(pi) then pi = zti .
- If Φ̂(zti ) < Φ̂(g) then g = zti .

Step 3 (Stopping criterion). If the current iteration is t = N , Stop; otherwise set t = t + 1 and go to Step 2.

spectrum of optimization problems (Yang, 2010). In contrast, SA and GA tend to work well only if the right choice set for
the tuning parameters is used, but the choice can be problematic in practice; see, for example, Ingber (1993). Marini and
Walczak (2015) provided a tutorial on PSO. PSO has been recently used to find various types of optimal designs, see for
example, Qiu et al. (2014), Wong et al. (2015) and more recently, Chen et al. (2017), Lukemire et al. (2019) and Mak and
Joseph (2018). The first set of authors provide numerous types of optimal designs found by PSO for different biomedical
problems and the second set of authors found optimal designs for several types of mixture models. Chen et al. (2017)
found standardized maximin optimal designs for several inhibition models. Lukemire et al. (2019) solved several D-optimal
design problems involving binary responses using an improved version of PSO.

4.3. Hybridization of metaheuristics

Global optimization methods should balance acquiring information from the unexplored feasible region and searching
in promising areas of the design space. From a global optimization view, these phases are known as exploration and
exploitation stages. The metaheuristic methods used different exploration phases allowing them to escape from local
minima, but they are slower since they may not search the promising areas properly.

Hybridization is a common theme in research on metaheuristic algorithms to speed up the performance. As suggested
by the ‘‘No Free Lunch Theorem’’ (Wolpert and Macready, 1997), no algorithm is best for solving all types of optimization
problems. Consequently, we can expect problems with any one algorithm. When an algorithm fails to converge to the
optimum or becomes too slow, a common resort is to hybridize it with one or more specially chosen algorithms. The
idea is to combine the best features from different algorithms to come up with a more effective algorithm. This issue is
presently undergoing intensive research and has been repeatedly shown to be more powerful and successful than the
algorithms being hybridized. Some examples are Kirian and Gunduz (2013), Huang et al. (2013) and Wang and Si (2010),
who showed hybridization is especially needed for solving high dimensional problems or in problems with multiple levels
of optimization. In particular, Kirian and Gunduz (2013) showed that combining the global solutions from particle swarm
optimization and artificial bee colony optimization (Karaboga, 2005) can provide superior or competitive performance
when compared not only with either one of them alone but also with 12 other benchmark algorithms. Huang et al. (2013)
hybridized continuous ant colony optimization (Dorigo, 1992; Socha and Dorigo, 2008) and particle swarm optimization to
solve a data clustering problem and showed the hybridized version can prevent traps in local optima. A similar finding is
reported in Wang and Si (2010) who hybridized a genetic algorithm and particle swarm optimization in mobile computing
and showed the hybridized version required a shorter time to find the optimum than either one of the algorithms. Most
recently, Wei and Tian (2017) hybridized particle swarm optimization and genetic algorithms for a more effective search
for solutions to a multi-objective optimization problem.

Hybridized algorithms are used when it has been verified that they perform better than without the hybridization. The
task is to select the best algorithm to hybridize with and usually this means finding an algorithm that has complementary
properties with respect to the one another. Espinosa-Aranda et al. (2013) introduced a framework for the hybridization
of metaheuristic algorithms. Table 4 shows a simplified version. Typically, an undetermined number of iterations is
performed with an algorithm with good exploration properties, called AG, until Nc improvements of the objective function
were reached. The other algorithm, say AL, with nice exploitation properties is then run Nr iterations to optimize
the objective function. The strategy is to detect when the algorithm should change exploring the neighborhood. The
hybridized algorithm continues to run the AL method with good exploitative properties for a fixed number of iterations
starting from the best current solution. This hybridization strategy has been applied to solve train time-tabling problems
(Espinosa-Aranda et al., 2015) and segmentation of temporal series (López-García et al., 2014).

5. Numerical simulations

We now study the behavior and relative performances of various algorithms for finding different types of optimal
designs for statistical models of increasing complexity. The objectives are to assess the viability and the relative merit of
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Table 4
Hybridization of metaheuristic algorithms.
Step 1. (Initialization). Let AG and AL be two optimization algorithms. Initialize the parameters of the algorithms

AG and AL and the number of iterations (N). Fix the number of
iterations Nc and Nr associated to AG and AL , respectively. Set the counter t to 1 and s to 0 and let Φ̂∗

aux = +∞.
Step 2. (AG method). Apply one iteration of the AG algorithm to the current population.

Let zt−1 be the current best solution and Φ̂∗ its objective value.
If Φ̂∗

aux > Φ̂∗, then let s = s + 1 and Φ̂∗
aux = Φ̂∗ .

Step 3. (AL method). If s = Nc apply Nr iterations of the AL algorithm starting from zt−1 .
Let zt−1

L be the obtained solution, then replace the best solution by zt−1
= zt−1

L and set s to 0. If s ̸= Nc , go to Step 4.
Step 4. (Stopping criterion). If the current iteration is t = N , Stop; otherwise

set t = t + 1 and go to Step 2.

the algorithms mentioned in the previous sections. To facilitate the use of these algorithms in practice, we implement
computer codes on a user-friendly website to compare and assess quality of the different designs generated from various
algorithms. Our intention here is not to identify a state-of-art algorithm that works best for finding all types of optimal
designs but what types of algorithms are likely to perform better than others for finding optimal designs.

To this end, we have assessed several general purpose optimization programs. GAMS (The General Algebraic Modeling
System) implements general purpose constrained optimization solvers for linear programming, mixed-integer program-
ming, quadratic programming and nonlinear programming, which can be applied for large scale optimization problems.
However, GAMS requires a formula to compute the inverse of the information matrix as a function of the input variables,
which can be problematic for our purposes here. We chose Matlab as a viable alternative because it is widely used and
allows us to express the inverse of a matrix symbolically. Because our comparisons involve algorithms with different
motivations, configurations and approaches, it is very hard to have an entirely fair comparison of their performance. This
is more so for heuristic algorithms each of which can have very different numbers of tuning parameters and defining
equations. For these reasons, in all our work, we used default values for the tuning parameters that came with the
algorithms in Matlab or in the original code.

We conducted three numerical simulations, each with a specific purpose. We work with selected statistical models
and at the end of each numerical simulation, we present our results and observations. The three numerical simulations
are:

- Simulation 1: The goal is to assess the viability of using metaheuristic algorithms to find optimal designs by
analyzing their behavior, chance of convergence and whether hybridization improves their performance and
accelerates convergence.

- Simulation 2: The goal is to assess the relative performance of both metaheuristic and exact algorithms for finding
D- and A-optimal designs.

- Simulation 3: The goal is to evaluate which types of algorithms seem to be more useful for finding optimal designs
for models with many factors.

Our main software is Matlab R2017b and all numerical simulations are performed using a MSI Laptop with Processor
Intel R⃝ CoreTM i7-6700 HQ (2.6 GHz) and RAM 16 GB DDR4 2133 MHz.

5.1. Statistical models

In this section, we test and compare performances of several types of algorithms for finding various optimal designs
using different models of varying complexity. To fix ideas, we focus on D- and A-optimality. Problem 1 concerns a design
problem for a two-compartmental model widely used in pharmacokinetics and pharmacodynamics. Finding a locally D-
optimal design for such a model is notoriously difficult because as the number of nonlinear parameters increases, the
determinant of the information matrix tends to 0 (Dette et al., 2006). Problem 2 is a linear model with one factor included
up to a quadratic term and another up to a linear term and an interaction term. The two factors are defined on different
design spaces. Problems 3 and 12 are logistic models often used for studying a binary outcome and discussed in King and
Wong (2000). The difference between these models is that one has 10 factors and the other has 3, the design space for
each factor in the same model is the same but between models, the design spaces are different with one that is larger
than the other. Problem 4 finds a c-optimal design to estimate the derivative of a function at a chosen point for the model
discussed as Example 4.a in Yang et al. (2013) and from a more theoretical perspective in Dette and Melas (2011). Table 5
lists all statistical models with a few factors and Table 6 lists several generalized linear models with a larger number of
factors. In this tables g(θ ) is the function to be estimated.

Table 7 lists features of the 12 optimization problems and assumes that an upper bound of the number of support
points in the optimal design is known before the number of variables to be optimized in the problem is calculated. It is
not necessary to know the exact number of support points m∗ but an upper bound m for this value should be known,
(i.e. m∗

≤ m). The algorithms calculate the weights for the m support points. The weights of the m − m∗ (unnecessary)
support points are negligible (zero or near zero). Of course, in practice the number of support points m∗ is unknown and
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Table 5
Models with small or moderate number of factors.
Problem Model References

Problem 1

Y ∼ θ1e−θ2x + θ3e−θ4x + N(0, σ 2),
x ∈ [0, 3]
g(θ ) = (θ1, θ3)
nominal values θ = (1, 1, 1, 2)T

Dette et al. (2006) and Example 1 in Yang et al.
(2013);

Problem 2
Y ∼ θ1 + θ2x1 + θ3x21 + θ4x2 + θ5x1x2 + N(0, σ 2),
(x1, x2) ∈ [−1, 1] × [0, 1]
g(θ ) = θ

Example 2 in Yang et al. (2013);

Problem 3

Y ∼ πi(x) = P(Yi = 1|x) =
eh(x)

T θi

1+eh(x)
T θ1 +eh(x)

T θ2
i = 1, 2

x ∈ [0, 6]3

h(x) = [1, xT ]T ; g(θ ) = (θ T
1 , θ T

2 )
T

nominal values θ1 = (1, 1, −1, 2)T ; θ2 = (−1, 2, 1, −1)T

Multinomial Logistic model with 3 categories and
3 factors as in Example 3 in Yang et al. (2013);

Problem 4

Y ∼ θ1eθ2x + θ3eθ4x + N(0, σ 2),
x ∈ [0, 1]
g(θ ) =

∂
∂x

(
θ1eθ2x + θ3eθ4x

)
|x=0= θ1θ2 + θ3θ4

nominal values θ = (1, 0.5, 1, 1)T
Example 4.a in Yang et al. (2013) and Dette and
Melas (2011)

Problem 5

Y ∼
θ1θ3x1

1+θ1x1+θ2x2
+ N(0, σ 2)

(x1, x2) ∈ [0, 3] × [0, 3]
g(θ ) = θ

nominal values θ = (2.9, 12.2, 0.69)T ;

Kinetics of the catalytic dehydrogenation of
n-hexil alcohol mode in Box and Hunter (1965)

Problem 6

Y ∼
θ1x

θ2+x + N(0, σ 2)
x ∈ [0, 5]
g(θ ) = θ

nominal values θ = (1, 1)T ;

Michaelis–Menten Model in López-Fidalgo and
Wong (2002)

Problem 7

Y ∼
θ1x1(

1+ x2
θ3

)
θ2+

(
1+ x2

θ4

)
x1

+ N(0, σ 2)

(x1, x2) ∈ [0, 30] × [0, 60]
g(θ ) = θ

nominal values θ = (1, 4, 2, 4)T ;

Mixed-type Inhibition Model in Bogacka et al.
(2011)

Problem 8

Y ∼ θ1x1 + θ2x2 + θ3x3 + θ4x1x2 + θ5x1x3 + θ6x2x3+
θ7
x1

+
θ8
x2

+
θ9
x3

+ N(0, σ 2)
(x1, x2, x3) ∈ [0.5, 2] × [0.5, 2] × [0.5, 2]
g(θ ) = θ

Three-factor model in Johnson and Nachtsheim
(1983)

Table 6
Generalized linear models with a large number of factors.
Problem Model References

Problem 9

Y ∼ Binomial(1, µ); µ = Φ(h(x)T θ )
Φ(·) is the normal cumulative distribution function
h(x) = [1, xT ]T ; x ∈ [−2, 2]5
g(θ ) = θ

nominal values θ = (0.5, 0.7, 0.18, −0.20, −0.58, 0.51)T ;

Probit regression
model with 5 factors

Problem 10

Y ∼ Binomial(1, µ); µ =
1

1+e−h(x)T θ

h(x) = [1, xT ]T ; x ∈ [−2, 2]5
g(θ ) = θ

nominal values θ = (0.5, 0.7, 0.18, −0.20, −0.58, 0.51)T ;

Logistic regression
model with 5 factors

Problem 11

Y ∼ Γ (1, µ)

µ =

(
θ1x1 +

∑5
i=2 xi−1xiθi

)2

x ∈ [0, 10]5
g(θ ) = θ

nominal values θ = (0.25, 0.5, 0.20, 0.58, 0.51)T ;

Gamma regression
model with 5 factors
and pairwise
interaction terms

Problem 12

Y ∼ πi(x) = P(Yi = 1|x) =
eh(x)

T θi

1+eh(x)
T θ1 +eh(x)

T θ2
i = 1, 2

h(x) = [1, xT ]T ; x ∈ [0, 3]10

g(θ ) = (θ T
1 , θ T

2 )
T

nominal parameters
θ1 = (1, 1, −1, 2, −2, 1, 0.5, −0.25, 0.5, −0.75, 2)T ;
θ2 = (−1, 2, 1, −1, −1, −1, −0.5, 1, 0.75, 0.25, −2)T

Multinomial Logistic
regression model
with 10 factors
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the algorithm finds it. As an illustration, Problem 9 in the table has 5 factors and, if we believe the number of support
points required by the optimal design is m = 25, then there are 150 variables to optimize. This follows because there are
25 × 5 components in each of the support points to optimize along with the 25 weights.

5.2. Simulation 1: Compare performance of metaheuristics and their hybridized versions with the Nelder–Mead optimization
strategy

In this simulation, we implement codes for SA, SA∗, GA and PSO and compare their performances for finding optimal
designs. The SA∗ algorithm has been shown to be fast and so we also select this modified SA algorithm to include in
our comparison. We use the Standard Particle Swarm Optimization (SPSO) (Zambrano-Bigiarini et al., 2013) and find
optimal designs using its code from Particle Swarm Central at www.particleswarm.info. The Nelder–Mead Method (NM)
is a derivative-free method commonly used to optimize an objective function directly but it tends to converge to a local
optimum. For our purpose here, we hybridize each of the metaheuristic algorithms with NM and we examine whether
such hybridization improves performance. We denote their hybridized versions by SPSO+NM, GA+NM and SA+NM and
SA∗

+NM. Note that the framework given in Table 4 is conceptual and it allows several alternatives for the algorithm AL.
NM has been used in this numerical simulation but the SQP, IP or AM, among others can be used as AL. This type of
hybridization is named metaheuristic.

Qiu et al. (2014) and Wong et al. (2015) found a variety of optimal designs using this algorithm. The GA algorithm we
use is from the GA function in Matlab. Similarly, our simulated annealing algorithm uses the simulannealbnd function
in Matlab.

We recall that SPSO, GA and SA (or SA∗) are metaheuristics that do not guarantee convergence to the global optimum.
In the context of design of experiments the typical recombination idea of GAs has the interpretation of exchanging support
points among individuals in the population.

In what is to follow, we use the notation from Section 3.4 and for computational reasons let

ẑ = max(min(z,U), L),

where the minimum and the maximum are computed component by component. This transformation projects the points
out of the hyper-cube onto the boundary of the feasible region and allows us to use unrestricted optimization algorithms,
such as the NM method, to tackle the constrained optimization problem (7). For the optimal weights, we first optimize
a set of positive variables and then standardize them by dividing by their sum: ω̂i = ωi/

∑m
i=1 ωi. Such unconstrained

optimization problems are generally easier to solve than constrained ones.
We solved each of the problems 10 times because of the stochastic nature of the algorithms and report the average

results obtained. Throughout, we used the default values in GA and simulannealbnd subroutines in our computation.
The NM method plays the role of the algorithm AL in the hybridized algorithm (see Table 4) and the metaheuristic
represents the algorithm AG. A key parameter used in the hybridization is the value of Nc . If the number of improvements
obtained by the metaheuristic in previous iterates is equal to Nc then the NM is applied a number of iterations given from
the best solution of the population (at the Step 3). The population is updated by interchanging the obtained solution by
NM with the initial solution and this procedure is repeated. We used the values Nc = 1 and Nc = 5 and metaheuristic
algorithms like SA/SA*, SPSO and GA based on populations of size small (5), medium (25), and large (125). Table 8 lists
selected D- and A-optimal designs for our 12 problems. Each design has a horizontal line that separates the design support
points from the weights. Each column represents a design point with one or more components, depending on the number
of factors in the experiment. Fig. 2 shows the sensitivity function for the D-optimal design of problems 1 and 2 reported
in Table 8, showing that the optimality conditions are satisfied.

Fig. 1 displays the evolution of the algorithms for generating D-optimal designs by plotting efficiencies of the generated
designs from different algorithms versus the number of evaluations required. There are two hybridization parameters: Nc
and the population size. We only present results of the best combination between the best choice of the value for the
parameter Nc and the 3 population sizes for the Problems 1–4. The left hand side of the figure shows the performance of
the basic metaheuristic algorithms and the right hand side shows the performance of their hybridized version for each
of the 4 problems after 1000 or 5000 function evaluations. A similar plot for A-optimal designs exists but is omitted for
space consideration. The efficiencies on the vertical axis in Fig. 1 were computed relative to the designs in Table 8.

Results from the left panel of the figure reveal that SA and its variant SA* do generally not perform as well as SPSO and
GA. The latter two are generally competitive with GA performing better than SPSO for small-sized optimization problems.
The right panel shows that results from the hybridized algorithms. They show SA still lags behind GA and SPSO when they
are hybridized with NM and SA+NM still underperforms SA*+NM. There does not appear to be a clear winner between
SPSO and GA when hybridized with NM, especially when results from the other problems are taken into account. There is
however a clear trend that hybridization generally results in a more efficient design eventually with a possible exception
in Problem 3. Our overall observations from Simulation 1 are the following:

1. The metaheuristic algorithms converge to the optimum and their rate of convergence is improved when they are
hybridized with the NM method. This strategy is particularly useful when the algorithm converges slowly. Problem
3 is difficult (see Yang et al., 2013) and it demands more iterations. The hybridization strategy generally speeds up

http://www.particleswarm.info
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Fig. 1. Performance of the metaheuristic algorithms and their hybridized versions with the Nelder–Mead Method for finding D-optimal designs in
Problems 1–4. The algorithms were run both for Nc = 1 and Nc = 5.
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Table 7
Features of the 12 design problems when the optimal design is assumed to have a known number of support points.
Dimensionality Problem # factors # parameters # support # of variables

points to optimize

Small and moderate

1 1 4 6 12
2 2 5 10 30
3 3 8 15 60
4 1 4 8 16
5 2 3 10 30
6 1 2 5 10
7 2 4 5 15
8 3 9 20 80

Large

9 5 6 25 150
10 5 6 25 150
11 5 5 25 150
12 10 22 17 187

the metaheuristic methods SPSO and SA/SA∗ but not the GA. This may be because GA changes just one element of
the population for the solution of the NM. This single individual is not essential in the evolution of the population
due to the limited offspring derived from it. However, in SPSO, the changed solution is the best position that is
used to update all particles.

2. No method clearly outperforms the others. This is not surprising due to the ‘‘No Free Lunch Theorem’’; the GA is
good for the linear model and the logit model (Problems 2 and 3) and the SPSO is a good alternative for the rest.
SA and SA∗ are never the best alternatives.

5.3. Simulation 2: Comparing performances of algorithms using different models

In this numerical simulation, we apply and compare performances of general purpose algorithms with heuristic
algorithms for computing D- and A-optimal designs with small to large numbers of factors. We use the term large to
refer to problems with many factors and quite arbitrarily use 5 factors as the cutoff. As shown in Table 7, such regression
models can become high dimensional quickly and we are then required to optimize many variables in the optimization
problem.

Our algorithms of interest are:

- Exact algorithms. We select the Active-set method (ASM), the Interior-point method (IPM) and Sequential Quadratic
Programming (SQP) in our comparison study. These algorithms are available in Matlab and they are implemented
in the fmincon function.

- Heuristic algorithms. We use SPSO and GA in our comparison study. For SPSO, we use the classic version and
not PSO with an improved topology to help the algorithm converge to the global optimum. One reason is that our
optimization problems are main convex optimization problems and so any local optimum found is also a global
optimum.

We note that as the IPM searches within the interior of the feasible region, the solution should not lie on the boundary
of the feasible region. To move iterates on the boundary to the interior, we introduced a perturbation to the current iterate
by letting

z′
= max{min{z,U − ε}, L + ε}, (11)

where z is the current iterate. We chose ε = 10−6 and z′ is now an interior point in the feasible region near iterate z.
Our stopping rules for these algorithms are based on the number of function evaluations. For all problems we limit that
number to 10 000. Each algorithm was run 25 times with different initial points and initial populations. In our work, all
the tuning parameters in the algorithms GA, ASM, IPM and SQP are set to their default values in Matlab. For this numerical
simulation, several caveats were employed and worth keeping in mind; among them they are:

1. To standardize results across algorithms and facilitate comparison, we evaluate the efficiency lower bound of the
design generated for each of our problems using Eq. (4). This means that we are required to find the global maximum
of the directional derivative function of each generated design on the design space. This problem is non-convex with
usually several local maxima and minima. In the literature, this problem is typically solved by computing the value
of the function at each point of a user-selected grid on the design space. For problems when there are only 3 or
fewer factors, such a procedure is likely to work satisfactorily. For example, we used a grid with 10 000 uniformly
spaced points for our problems with one factor and for models with 2 or 3 factors, we increased the grid set to
50 000 uniformly spaced points in the design space. For problems with more than 3 factors, we no longer discretize
the design space and use a few optimization methods to pick the maximum found. These methods include a second
PSO (using the Matlab function particleswarm), IPM, AS and SQP.
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Fig. 2. Sensitivity function of Problems 1 and 2 at the D-optimal design.

2. For each method, repeated runs were conducted to find the maximum of the directional derivative function. The
number of repeated runs depends on the size of the problems and the time it takes the search on average to
determine the optimum. Our decision was to use 150 runs for each small/medium scale problem and 25 for each
large scale problem. We then report the maximum value of the efficiency lower bounds found by the algorithm in
the table.

Table 9 shows computation results for finding D- and A-optimal designs in Simulation 2. The first column shows the
mean value of the objective function and the second column gives the efficiency lower bound attained by the design
generated by each algorithm. The third column displays the average CPU time in seconds and the fourth column provides
the average number of iterations performed. The extreme right column reports the percentage of successes in finding a
design that has an efficiency bound greater than 50% and the algorithm converges.

We observe from Table 9 that exact methods tend to converge faster than heuristic algorithms. The exact algorithms
converge to an optimal or highly efficient design usually in less than 1 s of CPU time for most of the problems we
investigated. Among the exact algorithms, AS and SQP require less computing time than IPM in all cases. Problem 3 was
posed by Yang et al. (2013) as an example of a design problem with many factors. They modified an existing algorithm
and showed that it outperformed many classic methods on a discretized search space using a Dell Laptop with 2.2 GHz
and 8 Gb RAM. It took 75 s when the grid size was 1003 and about 600 seconds when the grid size was 2003. They did not
report efficiency lower bounds for the design found which may be because of the very large grid size. In contrast, our CPU
times are decidedly smaller regardless of which of the 5 algorithms we used to find the optimal designs in Tables 10–11.
We observe that both SPSO and GA require many more iterations which is not surprising because they are population
based with many particles or genes. In contrast, the AS, SQP and IPM methods are all trajectory based that depend on a
single initiated particle or point.

In the literature it has been highlighted that the SQP may suffer from ill conditioning problems and improvements,
such as Morales et al. (2011), have been proposed to remedy it. Shahzad et al. (2012) emphasized that in each iteration of
an IPM, a system of linear equations needs to be solved to find the search direction. This system becomes increasingly ill-
conditioned as the IPM iterations converge. This effect has been numerically identified in the optimal experimental design
problems. Results from our numerical computation suggest that SQP and AS are very sensitive to ill-conditioned problems
and the IPM is least affected. In our work, some optimal designs have singular information matrices. This is common when
we want to estimate a function of the model parameters. In these numerical tests, Matlab reports warnings of Matrix is
singular, close to singular or badly scaled producing failures in convergence. One way to handle the ill-conditioning problem
is to add a small positive multiple of the identity matrix to the information matrix. For our case, we chose this positive
constant to be δ = 10−10 and add δIk to the information matrix. When the above trick is implemented, those errors stop
occurring and convergence is obtained. The success percentage column shows that this strategy solves the ill conditioning
issue most of the times. The upshot is that AM, SQP and IPM all seem to be good algorithms for finding efficient designs for
models with a small to moderate number of factors. Recently, Esteban-Bravo et al. (2016) also showed that IPM performs
well for finding exact optimal designs.

5.4. Simulation 3: High dimensional problems

We next compare the ability among general purpose algorithms to find optimal designs for this high dimensional
optimization problem. Problems 9–11 involve 5 factors and Problem 12 involves 10 factors. Problem 12 is an extension
of Problem 3 in Yang et al. (2013) from 3 to 10 factors. The state-of-the-art methods proposed by Yang et al. (2013) or Yu
(2011) are not appropriate for this problem because they require the design space to be discretized. With many factors, the
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Table 8
D- and A-optimal designs for Problems 1–7 and 11.
Problem D-optimal designs

Problem 1 ξD1 =

[
0.00000 0.20521 1.12108 3.00000

0.50000 0.11774 0.14915 0.23311

]

Problem 2 ξD2 =

⎡⎣ −1.00000 −1.00000 −0.00000 0.00000 1.00000 1.00000
0.00000 1.00000 1.00000 0.00000 0.00000 1.00000

0.18750 0.18750 0.12500 0.12500 0.18750 0.18750

⎤⎦

Problem 3 ξD3 =

⎡⎢⎢⎣
0.00000 0.00000 0.00000 0.00000 1.55387 6.00000 6.00000
0.00000 2.42633 6.00000 6.00000 0.00000 0.00000 6.00000
0.00000 0.00000 3.25231 3.41470 0.00000 1.32188 5.41874

0.19461 0.18966 0.05513 0.20825 0.18576 0.05324 0.11334

⎤⎥⎥⎦
Problem 4 ξD4 =

[
0.00000 0.33040 0.76914 1.00000

0.24977 0.25019 0.25070 0.24934

]

Problem 5 ξD5 =

⎡⎣ 0.28037 3.00000 3.00000
0.00000 0.00000 3.00000

0.33333 0.33333 0.33333

⎤⎦
Problem 6 ξD6 =

[
0.71429 5.00000

0.50000 0.50000

]

Problem 7 ξD7 =

⎡⎣ 3.15789 4.07934 30.00000 30.00000
0.00000 2.67542 0.00000 3.57895

0.25000 0.25000 0.25000 0.25000

⎤⎦

Problem 11 ξD11 =

⎡⎢⎢⎢⎢⎢⎣
0.00000 0.00000 0.00000 7.61183 9.93452
0.00000 3.14947 6.06868 10.00000 0.00000

10.00000 0.00000 9.61842 0.00000 0.15638
9.74706 8.98898 0.00000 0.00000 0.00000
0.00000 6.52986 8.86582 8.81591 0.02687

0.20000 0.20000 0.20000 0.20000 0.20000

⎤⎥⎥⎥⎥⎥⎦
Problem A-optimal designs

Problem 1 ξA1 =

[
0.00000 0.27119 0.78765 1.18375 1.21550 3.00000

0.07671 0.18280 0.00000 0.28999 0.00000 0.45051

]

Problem 2 ξA2 =

⎡⎣ −1.00000 −1.00000 −0.00000 −0.00000 1.00000 1.00000
0.00000 1.00000 1.00000 0.00000 0.00000 1.00000

0.18591 0.13991 0.11966 0.22870 0.18591 0.13991

⎤⎦

Problem 3 ξA3 =

⎡⎢⎢⎣
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.47576 1.58577 6.00000
0.00000 0.00000 1.22431 2.89391 6.00000 6.00000 0.97114 0.00000 6.00000
0.00000 0.52498 0.00000 0.00000 3.18762 3.78094 0.00000 0.00000 5.52336

0.23206 0.09296 0.08262 0.16852 0.02313 0.08555 0.06514 0.23019 0.01984

⎤⎥⎥⎦
Problem 4 ξA4 =

[
0.00001 0.30114 0.79254 1.00000

0.18855 0.35107 0.31199 0.14839

]

Problem 5 ξA5 =

⎡⎣ 0.20428 3.00000 3.00000
0.00000 0.00000 3.00000

0.65062 0.27194 0.07744

⎤⎦
Problem 6 ξA6 =

[
0.53727 5.00000

0.66956 0.33044

]

Problem 7 ξA7 =

⎡⎣ 2.44019 3.39189 30.00000 30.00000
0.00000 3.25160 0.00000 4.74092

0.26507 0.32336 0.13982 0.27175

⎤⎦

Problem 11 ξA11 =

⎡⎢⎢⎢⎢⎢⎣
0.00000 0.00000 0.00000 8.05372 9.58634
0.00000 0.65553 1.93390 10.00000 0.00000
4.59493 0.00000 6.03145 0.00000 8.92944
6.67427 6.40158 0.00000 0.00000 0.00000
0.00000 10.00000 9.23603 3.41055 9.23886

0.28070 0.24682 0.09679 0.25408 0.12160

⎤⎥⎥⎥⎥⎥⎦

computer will require time to generate the grid set. Table 10 shows the amount of time required by a modern computer
to generate the grid set when there are 10 factors and each of the 10 factor spaces is partitioned evenly into a number of
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Table 9
Results for Simulation 2.
Problem Algorithm D-optimal design A-optimal design

Φ0 D-Eff CPU (s) # Iter. Success Φ1 A-Eff CPU (s) # Iter. Success

1

AS 253.31 100.00 0.06 233 96.0 19409.21 99.98 0.14 532 100.00
SQP 253.31 100.00 0.06 303 100.0 19404.31 100.00 0.09 478 100.00
IPM 253.31 100.00 0.24 818 100.0 19404.30 100.00 0.22 735 100.00
SPSO 254.76 99.43 1.47 10000 100.0 19440.83 99.81 1.59 10000 100.00
GA 254.20 99.65 1.67 10050 100.0 19424.31 99.90 1.80 10050 100.00

2

AS 2.73 100.01 0.09 376 100.0 4.1905 100.02 0.16 571 100.00
SQP 2.74 99.81 0.11 534 100.0 4.1905 100.02 0.19 844 100.00
IPM 2.75 99.34 0.42 1932 100.0 4.2322 99.09 1.42 5848 100.00
SPSO 2.86 95.56 1.73 10000 100.0 4.4531 94.20 2.00 10000 100.00
GA 2.79 97.86 2.22 10050 100.0 4.3207 97.02 2.48 10050 100.00

3

AS 9.14 96.43 5.04 1703 100.0 35.5038 98.93 13.98 4702 100.00
SQP 9.23 95.66 6.53 2224 100.0 35.6142 98.63 13.73 4703 100.00
IPM 8.82 99.66 27.77 9580 100.0 35.4116 99.18 24.60 8609 100.00
SPSO 10.14 87.03 28.55 10000 100.0 40.0745 87.85 28.46 10000 100.00
GA 10.08 87.26 28.94 10050 100.0 42.9465 81.91 28.99 10050 100.00

4

AS 193.62 99.01 0.06 248 92.0 2387200.47 98.49 0.18 678 76.00
SQP 195.00 98.41 0.04 216 92.0 2434872.98 96.58 0.07 353 76.00
IPM 192.51 99.54 0.21 641 92.0 2461270.95 96.28 0.26 756 96.00
SPSO 192.04 99.78 1.51 10000 100.0 2378230.42 98.85 1.62 10000 100.00
GA 191.77 99.92 1.71 10050 100.0 2355457.84 99.79 1.83 10050 100.00

5

AS 45.93 100.20 0.25 461 100.00 367.44 100.02 0.68 1000 100.00
SQP 45.93 100.20 0.28 532 100.00 367.44 100.02 0.59 1006 100.00
IPM 46.07 99.90 3.18 5924 100.00 367.44 100.02 1.91 3122 100.00
SPSO 48.13 95.72 4.96 10000 100.00 399.25 92.28 5.73 10000 100.0
GA 47.83 96.24 5.42 10050 100.00 402.43 91.39 6.00 10050 100.00

6

AS 13.82 100.00 0.02 96 100.00 40.09 100.00 0.04 159 100.00
SQP 13.82 100.00 0.02 136 100.00 40.09 100.00 0.03 190 100.0
IPM 13.84 99.92 0.14 660 100.00 40.11 99.94 0.26 1134 100.00
SPSO 13.82 100.00 1.20 10000 100.00 40.09 100.00 1.33 10000 100.00
GA 13.82 100.00 1.41 10050 100.00 40.09 100.00 1.60 10050 100.00

7

AS 486.83 100.03 0.33 919 100.0 2467.83 100.01 0.37 1002 100.00
SQP 486.83 100.03 0.26 888 100.0 2486.60 99.30 0.32 1089 100.00
IPM 486.83 100.03 0.60 1665 100.0 2468.02 100.00 0.71 2017 100.00
SPSO 694.43 73.43 2.66 10000 84.0 3683.66 69.44 2.67 10000 52.00
GA 490.24 99.34 3.00 10050 100.0 2553.74 96.70 2.90 10050 100.00

8

AS 3.14 91.04 0.74 2072 100.00 11.98 82.02 1.32 3052 100.00
SQP 3.14 91.10 0.97 2965 100.00 11.98 82.02 1.39 4106 100.00
IPM 3.18 89.79 3.13 9108 100.00 12.06 81.55 3.39 9778 100.00
SPSO 4.09 70.40 3.17 10000 100.00 17.80 55.43 3.21 10000 76.00
GA 3.77 75.93 4.22 10050 100.0 16.09 61.24 4.33 10050 100.0

Table 10
CPU times in seconds required to generate a set of uniformly spaced points for 10 factors.
Points per factor space Number of points CPU to generate the grid (s)

of the grid, N

2 210
= 1024 0.0067

3 310
= 59 049 0.2302

4 410
= 1 048 576 3.1136

5 510
= 9 765 625 27.5529

6 610
= 60 466 176 172.2832

7 710
= 282 475 249 848.2922

points. We note that a simple refinement of 7 points for each of the 10 factors’ space will require a grid with more than
282 million points and about 15 minutes to generate the grid. If the design criterion is not differentiable, additional time
is required to compute the subgradient of the criterion at each candidate design and the computational time becomes
prohibitive. This suggests that promising algorithms like the YBT–Newton method proposed by Yang et al. (2013) may
become problematic for high dimensional design problems because it requires the design space to be discretized.

There is clearly high computational cost for these problems and so we have just ran 5 runs per algorithm and limited
number of iterations allowed to be 50 000. For problem 12, the efficiency bounds are quite low and we remove the
constraint that the efficiency bound has to yield at least 50% before it is removed to ensure a timely success.
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Table 11
Results for comparing general purpose and metaheuristic algorithms for solving high-dimensional design problems with several factors.
Problem Algorithm D-optimal design A-optimal design

Φ0 D-Eff CPU (s) # Iter. Success Φ1 A-Eff CPU (s) # Iter. Success

9

AS 0.82 86.87 35.31 8154 100.0 1.25 92.17 69.53 16097 100.0
SQP 0.82 86.81 34.36 7762 100.0 1.24 92.32 91.24 20506 100.0
IPM 0.93 77.28 193.33 44239 100.0 1.26 91.37 215.90 49785 100.0
SPSO 0.95 74.83 217.23 50000 100.0 1.40 82.02 216.76 50000 100.0
GA 0.81 87.87 225.24 50050 100.0 1.27 90.17 225.37 50050 100.0

10

AS 1.90 94.77 9.82 7279 100.0 2.67 96.14 22.53 16853 100.0
SQP 1.93 93.44 10.58 8034 100.0 2.66 96.26 22.06 16610 100.0
IPM 2.15 84.34 62.03 45475 100.0 2.94 88.37 67.19 49373 100.0
SPSO 2.13 84.52 75.84 50000 100.0 2.98 86.22 65.48 50000 100.0
GA 1.99 94.82 83.23 50050 100.0 2.68 95.49 75.07 50050 100.0

11

AS 0.18 100.00 5.57 4863 100.0 0.2139 99.80 10.23 9026 80.0
SQP 0.18 100.00 5.18 4621 100.0 0.2135 100.00 11.83 10521 100.0
IPM 0.18 99.88 23.26 20373 100.0 0.2135 99.98 49.86 43632 100.0
SPSO 0.29 61.38 55.00 50000 100.0 0.3075 70.12 55.74 50000 100.0
GA 0.19 93.07 63.22 50050 100.0 0.2278 93.75 62.89 50050 100.0

12

AS 4.99 61.14 51.96 15175 100.0 14.1631 34.27 149.84 43560 100.0
SQP 4.92 61.97 61.87 18473 100.0 13.9885 34.69 163.99 49230 100.0
IPM 4.77 63.88 153.23 45762 100.0 15.8348 30.71 168.83 50039 100.0
SPSO 7.85 38.91 165.89 50000 100.0 26.9684 18.08 164.59 50000 100.0
GA 5.80 52.46 176.57 50050 100.0 19.5341 24.87 175.41 50050 100.0

Table 11 reports CPU times and success rates for the 5 algorithms for finding A-optimal and D-optimal designs for
models with a large number of factors. In Simulation 2 there appear to be no clear differences in the performances among
the exact algorithms. For high dimensional optimization problems, Simulation 3 has 3 takeaways: (i) AS and SQP are the
most efficient with respect to CPU time, (ii) metaheuristic methods have a very low convergence rate and they require
much more time to a solution, and (iii) all the designs have a large efficiency but for Problem 12. We believe that for
Problem 12 the design is efficient although the quality of the bound is rather low. This is because for obtaining this bound
the directional derivative is optimized over the design space. If this space is high dimensional, the maximum found for
the sensitive function can be unstable or sensitive.

5.5. Computational and numerical issues

There are 3 main issues we encountered when running these algorithms. The first is that sometimes the generated
information matrix is either singular or very close to being singular. This has been discussed for the Simulation 2 above
and may be applied in general. Moreover, the success of the algorithm depends very much on the initial points and the
random points generated during the process. This problem was recently addressed by Huang et al. (2019).

The second problem from the practical point of view is that the algorithms tend to produce clusters of support points
at some locations. Additionally, it is not clear each point found with a very small weight is a support point of the optimal
design or it should be merged with others and considered as one point. This requires a post-processing rule that specifies
how these clusters of points should be merged into a single point or not. The number of support points chosen is greater
than those of the optimal design. For this reason, the solution obtained at some steps has pairs of points very near
each other with significant weights. In the iterative procedure, such near points are replaced by their mean and the
corresponding weight is obtained summing the two weights. A threshold has to be tuned in the algorithm for determining
when two points are considered near enough.

A third problem is in the numerical computation of the efficiency lower bound, which requires solving the optimization
problem (4). Fig. 2 shows the sensitivity function for Problems 1 and 2, they are non-concave functions, causing that the
maximizing of this function is a hard task. If the optimization algorithm converges to a local optimum or some other
point, the efficiency lower bound will be incorrect. For this reason, we tackled the optimization problem (4) with a few
algorithms PSO, SQP, IPM and ASM and the best of the four solutions was chosen. If the problem has three or less factors
the optimization is performed over a grid set.

We have devoted a considerable amount of effort to develop a user-friendlyMatlab tool, called ODEm, that implements
the algorithms described in this paper for computing A- and D-optimal approximate designs, and more. This software has
also been used for computing the numerical simulations. This Matlab tool is available in a MethodsX companion paper
(García-Ródenas et al., 2019). Moreover, the ODEm installer, the source files .m and the manual can be downloaded from
github.com/JoseAngelMartinB/ODEm.

6. Conclusions

Our work compares a few commonly used general purpose optimization algorithms for finding A- and D-optimal
experimental designs. The algorithms include exact methods and an increasingly popular class of algorithms called nature

https://github.com/JoseAngelMartinB/ODEm
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inspired metaheuristic algorithms. Previous literature reviews on algorithms were less ambitious, either focusing on exact
methods or confined to finding only one type of optimal designs, or optimal designs for linear models only, as in Cook
and Nachtsheim (1980), Haines (1987), Meyer and Nachtsheim (1995) and Nguyen and Miller (1992).

Comparing the performance of algorithms can be problematic in many ways that have not been well discussed in the
literature. The important question to consider in such comparative work is whether algorithms are fairly compared. Even
among deterministic algorithms, such skepticism was recently echoed by Meng (2014), who questioned whether there
can be a truly fair comparison between algorithms. Comparing metaheuristic algorithms is especially difficult because
they generally come with very different motivations and one iteration may have a very different meaning in another
algorithm. Further, there is the constant question that if a metaheuristic algorithm under-performs another, it may just be
that the right set of tuning parameters was not used. One option is to tackle this issue to employ the recommended default
values that came with the original version of metaheuristic algorithms, which is what we did in this paper. Even then,
there is ongoing intensive work in coming up with more effective choice of tuning parameters for different metaheuristic
algorithms. Of course, a compounding issue that may further defy a fair comparison across these algorithms is that they
come with different number of tuning parameters. So, while our work represents a first step in comparing performances
across different types of algorithms to find optimal designs, there are some clear limitations in our work.

The general purpose optimization algorithms are desirable because they search for the optimal designs without having
the need to compute the sub-gradients, when applicable, or analyze the convergence properties of the generated designs
in the previous iterations. Using several models and optimality criteria, we have shown that heuristic algorithms such
as GA, SPSO and SA and their hybridizations generally converge to the D-optimal or A-optimal designs. For the types
of problems we have considered, the GA and the SPSO+NM algorithms appear to have better performance in terms of
computing efficiency for finding the optimal designs. Such results are especially helpful when the theoretical construction
of the optimal designs is not available. While the general-purpose optimization algorithms can be applied successfully to
solve many types of optimization problems, they may come with conditions such as requiring that the objective function
is differentiable or that the dimension of the optimization problem is not too large. Otherwise, they are powerful and
easily available for implementation after modifying them for the purpose at hand. For example, in our work, we modified
the IPM algorithm from Matlab and we showed it has a good performance for finding A- and D-optimal approximate
designs and also for obtaining an approximate optimal design for a nonlinear model with 10 factors. Esteban-Bravo et al.
(2016) used the IPM to find exact optimal designs for linear regression models and reached a similar conclusion.

There are two key conclusions from our paper. First, for exact algorithms, the SQP and AS are very sensitive to ill-
conditioned problems and frequently result in practical non-convergence due to numerical problems. This ill-conditioned
problem can sometimes be avoided by adding a small positive definite matrix to the Fisher information matrix before
inversion, in which case, both SQP and AS become very competitive and can find nearly optimal designs in less than
one second when the problems has a small or moderate number of factors. The IPM is generally less sensitive to ill-
conditioning issues and has a more robust convergence. Second, for metaheuristic algorithms, our results suggest that the
exact methods SQP, AS and IPM outperform metaheuristic algorithms like GA and SPSO in both efficiency and CPU time.
We also note that the rate of convergence of metaheuristic algorithms tends to be slower than that from exact methods.
The numerical results, in Simulation 1, have demonstrated that the hybridization strategy accelerates the convergence
of metaheuristic algorithms. For small to moderate sized problems, both types of algorithms find an optimal design in a
reasonable CPU time.

In summary, our view is that when the optimization problem is complex and no theory exists for finding and verifying
the optimality of a design, it is helpful to use various nature-inspired metaheuristic algorithms with different sets of
tuning parameters and hope that they all converge to the same design. When this happens, the solution is most likely
the optimal design that we sought.
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