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Abstract A model of traveller behaviour should recognise the exogenous and endogenous

factors that limit the choice set of users. These factors impose constraints on the decision

maker, which constraints may be considered implicitly, as soft constraints imposing

thresholds on the perception of changes in attribute values, or explicitly as hard con-

straints. The purpose of this paper is twofold: (1) To present a constrained nested logit-type

choice model to cope with hard constraints. This model is derived from the entropy-

maximizing framework. (2) To describe a general framework to deal with (dynamic) non-

linear utilities. This approach is based on Reproducing Kernel Hilbert Spaces. The

resulting model allows the dynamic aspect and the constraints on the choice process to be

represented simultaneously. A novel estimation procedure is introduced in which the

utilities are viewed as the parameters of the proposed model instead of attribute weights as

in the classical linear models. A discussion on over-specification of the proposed model is

presented. This model is applied to a synthetic test problem and to a railway service choice

problem in which users choose a service depending on the timetable, ticket price, travel

time and seat availability (which imposes capacity constraints). Results show (1) the

relevance of incorporating constraints into the choice models, (2) that the constrained

models appear to be a better fit than the counterpart unconstrained choice models; and (3)

the viability of the approach, in a real case study of railway services on the Madrid–Seville

corridor (Spain).
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Introduction

Discrete choice models have long been recognized for their ability to capture a broad range

of transport-related choice phenomena. For quite some time, there has been a growing

interest in research into traveller behaviour, to explore the choice set formation and its

representation. A proper modelling of user behaviour requires including the endogenous

and exogenous factors that affect the decision-making process, as they induce constraints in

the choice set formation. The endogenous factors are inherent to the user, limiting the

universal choice set. The exogenous factors are instead originated by the decisions of other

users and by the existing supply of goods or services.

Constraints imposed by endogenous or exogenous factor are called soft if they reduce

the probability to choose a given alternative but does not completely exclude it from the

choice set. Hard constraints instead cannot be violated and impose the exclusion of the

alternative. For example in the choice of residential location, a user can eliminate from the

choice set alternatives whose price is above a threshold (hard constraint due to endogenous

factors), or it can be that the utility of an alternative drops if an attribute takes a value

above or below a given threshold, but the alternative is still available (soft constraint due to

endogenous factors). Analogously the allocation of seats between railway services and the

choices of other passengers (exogenous constraint) may define the latent choice set for a

specific user (hard constraint). Note that exogenous factors may induce soft constraints,

e.g., the vehicle capacity in transit services (subway or bus) does not impose an upper

bound in the number of passengers but represents a factor of discomfort.

As will be clarified in the next section, the literature review, most work concentrates on

the use of soft constraints applied to model endogenous factors. Hard constraints have

received less attention, despite their importance in modelling such endogenous factors as

the interaction of supply and demand. If we are analysing a supply and demand equilibrium

problem and we wish to estimate a demand model, the data available about demand is the

result of choices made by that demand and the limitations imposed by the current supply.

Most applications simply ignore these effects; thus, forecasts of demand for a different

supply scenario from that used in the estimation are likely to violate constraints and

miscalculate demand.

A notable example of the interaction of supply and demand can be seen in the problem

of rolling out a refuelling infrastructure for Alternative Fuel Vehicles (AFV). This effect is

known as the Chicken-or-Egg dilemma. The refuelling infrastructure imposes hard con-

straints on the user choice set. Users with no effective access to a refuelling station will not

contemplate buying an AFV. Most discrete choice models designed to analyse the intro-

duction of AF vehicles up to now have considered infrastructure as just another attribute

(soft constraint). Fúnez-Guerra et al. (2016) show the problem for the Spanish case, and

underlines that a discrete choice model that does not consider the refuelling infrastructure

as a hard constraint significantly overestimates sales of AF vehicles as against a model

which does. The hard constraints separate the effects of supply from those associated with

demand allow changes in supply to be properly accounted for when making estimations.

The main aim of this study is to explore an approach that can handle hard constraints in the
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decision-making process to find a mathematical formulation for the specific case of

(nested) logit models.

A second problem addressed in this study is how to introduce general nonlinear utilities

into this type of constrained model. This is especially important when considering dynamic

phenomena. The machine learning community has made extensive and successful use of

Reproducing Kernel Hilbert Spaces. This paper adapts these techniques to the second

problem. The challenge lies in its estimation, since there may be a parameter for each

observation, rather than one for each attribute considered. For this reason, and because

constrained nested logit model do not allow a closed formula, we have created a novel

estimation method for this problem.

Literature review

As mentioned before most of the literature concentrates on the use of soft constraints

applied to model endogenous factors. Several theoretical frameworks have been proposed

to account for these constraints. A rough taxonomy classifies the approaches followed in

the literature into:

1. Implicit choice-set approaches: These methods incorporate thresholds in the percep-

tion/availability of an alternative in the random utility choice model; this has typically

been carried out by introducing thresholds (cut-offs) as penalties in the utility function

(see Swait 2001; Cascetta and Papola 2001; Elrod et al. 2004; Martı́nez et al. 2009;

Bierlaire et al. 2010 among others).

2. Explicit choice-set approaches: These methods consist in a two-stage representation of

decision making. In the first stage, the choice-set generation is simulated. The

decision-makers screen alternatives and eliminate those that do not reach the relevant

attribute cut-off levels from their choice sets. In the second stage, the decision makers

choose, applying compensatory decision rules, only from the alternatives remaining in

the reduced choice set (see Manski 1977; Swait and Ben-Akiva 1987; Ben-Akiva and

Boccara 1995; Cantillo and Ortúzar 2005; Cantillo et al. 2006 among others).

The implicit approaches propose an extension to the linear compensatory utility model,

which accommodates both the use of attribute cut-offs and cut-off violations in choice

modelling. The major advantage of these methods is related to the computational time

required. In particular Swait (2001) incorporates attribute cut-offs into the utility maxi-

mization problem formulation. It makes it possible for the consumer to treat the constraints

as soft by violating them at some cost. This approach assumes a linear penalty function.

Cascetta and Papola (2001) propose the implicit availability/perception model (IAP).

The choice-set of alternatives is a fuzzy set where each element has a degree of mem-

bership of the choice set.

Elrod et al. (2004) propose and test a model of decision making that integrates varia-

tions of a compensatory and two non-compensatory (i.e., conjunctive and disjunctive)

decision strategies which is capable of providing probabilistic predictions for objects

anywhere on a closed interval.

Martı́nez et al. (2009) formulate a constrained multinomial logit (CMNL). This model

implements cut-offs as a binomial logit function embedded in multinomial logit models.

CMNL model is a heuristic that is based on convenient assumptions about the functional

form of the utility function. CMNL model allows the choice domain to be constrained by

as many cut-offs as required, limiting both an upper and a lower level of variables.
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Therefore, Castro et al. (2013) study the estimation of the CMNL model using the max-

imum likelihood approach. The CMNL model appears to be suitable for general appli-

cations. Using real data, these authors found significant differences in the elasticities

between compensatory MNL and semi-compensatory CMNL models.

In the explicit approach, the endogenous factors are brought together in the latent choice

set models which consider a set of alternatives for each decision maker. The Manski model

(Manski 1977) has served as the standard workhorse model for discrete choice modelling

with latent choice sets. The problem with this approach is that it leads to the need to

enumerate (exponentially) the set of all alternatives. The estimation of the two-stage

models is computationally intensive and their severely restrictive assumptions impede their

practical application. Several studies (see Kaplan et al. 2009, 2012) are relaxing the

assumptions embedded in these models with respect to the number of alternatives and

choice sets, the representation of threshold selection and independently and identically

distributed error terms across alternatives at the choice stage.

Bierlaire et al. (2010) show on simple examples that CMNL model is not adequate for

modelling the choice set generation process consistently with Manski’s framework.

Although Li et al. (2015) results are consistent with Bierlaire et al. (2010) findings, they

differ in the fact that the CMNL model can successfully recover cut-off and scale

parameters in the choice set probability function, while Bierlaire et al. (2010) finds that at

the most only one can be recovered. Moreover, Paleti (2015) proposes higher-order

approximations of the Manski approach in which the CNML model constitutes a first order

approximation. That work also carries out a simulation study and shows additional order of

approximation offering incremental improvement in the quality of the parameter estimates.

Less attention is paid to the exogenous factors. This problem is studied in the analysis of

endogeneity in choice modelling (Louviere et al. 2005). The concept of endogeneity refers

to the fact that the individual choice decisions may depend on themselves. Ding et al.

(2012) show in a behavioural experiment that some respondents are willing to take a utility

penalty (soft cut-off) rather than eliminate an alternative when a cut-off violation occurs

(hard cut-off). However, with exogenous constraints, such as social, temporal, spatial and

resource constraints, their fulfilment is mandatory.

Endogeneity may appear for a variety of reasons such as the omission of unobservable

variables or the ability of individuals to influence the formation of the choice sets. In this

paper, the second reason is analysed. Recently De Grange et al. (2015) have proposed a

logit model to explicitly include endogeneity in attributes (explanatory variables) due to

network externalities or social interactions. This approach tackles endogeneity with a

fixed-point equation.

The previous models consider linear utility functions. In a dynamic choice modelling

context it is essential to consider non-linear utility functions when changes in demand trend

are to be captured. Other reasons to support the use of non-linear specifications of the

utility function are found in the work of Cherchi and Ortúzar (2002) where they test

different specifications of the utility function for a new train service design. These authors

found that the non-linear specifications appear to be more suitable as not only are better

model results obtained, but also the real distribution of the error terms is revealed. In the

context of health economics, Van Der Pol et al. (2014) show that welfare estimates are

sensitive to different utility function specifications. The results showed that the willingness

to wait for hip and knee replacement (WTW) for the different patient profiles varied

considerably. Assuming a linear utility function led to much higher estimates of marginal

rates of substitution (WTWs) than with non-linear specifications.
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Despite the importance of specifying the utility function, this matter has received

limited attention in the literature on dynamic choice modelling. Popuri et al. (2008)

introduced continuous (dynamic) systematic utility functions for departure time modelling,

via sinusoidal functions which interact with covariates.

Anas (1983) demonstrated that information minimizing (or entropy-maximizing mod-

elling) and utility maximizing (behavioural demand modelling) should be seen as two

equivalent views of the same problem. This author proves that the doubly-constrained

gravity model is identical to a multinomial logit model of joint origin-destination choice.

Donoso and de Grange (2010) give an interpretation of the entropy maximization problem

in the context of microeconomic modelling, attempting to explain the origin of the two

problems’ equivalence.

In this paper we adopt the entropy-maximizing approach, a recent literature review of

this area can be found in Swait and Marley (2013). The entropy-maximizing approach

makes possible the addition of non-linear constraints in its formulation. These constraints

introduce new information in the forecasting process in order to represent the complex

issue of interrelation modelling between the decisions of individuals. The key difference

between our entropy maximization problem and those presented in Anas (1983), Donoso

and de Grange (2010), Grange et al. (2013) and De Grange et al. (2015) is that general

utilities are considered, and they do not necessarily have linear attributes.

Summary and contributions of this paper

This paper makes two major contributions.

• The paper proposes a novel approach for modelling people’s behaviour through a

discrete choice process considering the existence of hard constraints. Specifically, we

propose a mathematical formulation of the nested logit model to cope with hard

constraints. We provide a Monte Carlo simulation study on an application with hard

constraints to show that the demand estimations performed by the logit-type models are

in error when they predict new scenarios in which the current hard constraints in the

base scenario of the estimation are modified. This disadvantage does not show up in the

constrained models.

• Secondly, we address the building of a general framework to specify dynamic non-

linear utilities. The main feature of this approach is that the specification of the utility

function is not centered on a specific functional form (linear, polynomial, sinusoidal,

etc) but on belonging to a specific space of functions, the so-called Reproducing Kernel

Hilbert Spaces (RKHS). The essential advantage of this design is the search for the

most suitable shape for the utility within the set of functions for the problem at hand.

Furthermore, we propose a method for estimating the constrained nested model with

general utilities based on the novel point of view of considering a subset of utilities as

parameters for the estimation instead of the classical weightings of the attributes. This

approach has been illustrated with the modelling of the selection of railway services.

The paper is organised as follows. ‘‘The constrained nested logit model’’ section formu-

lates the constrained nested logit model. In this section, the RKHS are defined to represent

generic utility functions. Furthermore the Tikhonov regularization method is explained for

the estimation of these functions. ‘‘Estimation of the CNL model’’ section discusses the

procedure followed to estimate the constrained nested logit model with this type of non-

linear utility. Fifth section analyses numerically the logit-type models with the constrained

counterparts and it illustrates the methodology by numerically solving a railway service
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selection problem. Finally, last section concludes with a discussion of our findings and

future work.

The constrained nested logit model

This section formulates the constrained nested logit model. The proposed scheme is uti-

lized to introduce constraints in the users’ individual decision-making processes which

may influence their behaviour.

Formulation of the constrained nested logit

Logit-type discrete choice models are developed using random utility models (see

McFadden 1974; Ortúzar and Willumsen 2011) or a maximum entropy optimization

problem (see Anas 1983; Donoso and de Grange 2010; Grange et al. 2013; De Grange

et al. 2015). The first approach obtains the multinomial logit model from the assumption

that the random component of each utility function is independent and identically Gumbel-

distributed. Anas (1983) gives a proof of the equivalence between both frameworks.

This section presents a constrained nested logit-type choice model derived from the

entropy-maximizing framework. A selection process similar to the one shown in Fig. 1 is

considered. This type of model represents a decision tree for the discrete choice problem,

in which the root of the tree represents the first choice users of type ‘ 2 L may make

between alternatives (denoted by the index m 2 S‘), and in each branch of the tree lies

another selection process in which users may select among the available sub-alternatives

(denoted by the index s 2 S‘
m). This type of model has been widely used in transport

modelling (see Oppenheim et al. 1995; Ortúzar and Willumsen 2011; Fernández et al.

1994; Garcı́a and Marı́n 2005).

It is assumed that there exist various types of individual ‘ 2 L. The parameter bg
‘

represents all the individuals of type ‘ who interact with the system, the variable gm‘ is the

number of individuals of type ‘ who choose alternative m in the first level, the variable gm‘
s

is the number of individuals of type ‘ who choose alternative s in the second level knowing

Fig. 1 Nested logit model
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that alternative m has been selected previously and Vm‘
s represents the deterministic part of

the indirect utility perceived by individual type ‘ conditioned upon choosing alternative

m in the first level and alternative s in the second level.

The entropy maximization problem allows the inclusion of constraints, leading to the

Constrained Nested Logit model (CNL). These constraints may introduce new factors in the

forecasting process which could influence the behaviour of the users. Therefore, the CNL
model is formulated as follows:

minimize
P

‘2L

P

m2S‘

gm‘
1 gm‘ðln gm‘ � 1Þ þ gm‘

2

P

s2S‘
m

gm‘
s ðln gm‘

s � 1Þ
"

�
P

s2S‘
m

Vm‘
s gm‘

s

#

;

subject to:
P

m2S‘

gm‘ ¼ bg‘; 8‘ 2 L ðU‘Þ
P

s2S‘
m

gm‘
s ¼ gm‘; 8‘ 2 L; 8m 2 S‘ ðHm‘Þ

bhrðgÞ� br; 8r 2 R ðlrÞ ðCNLÞ

where g ¼ ð� � � ; gm‘
s ; � � �Þ is the disaggregated demand by sub-alternatives, gm‘

1 ¼ 1

k‘1
� 1

km‘
2

,

gm‘
2 ¼ 1

km‘
2

, and k‘1 and km‘
2 are scalars associated with the variance of the error term of the

utilities. Moreover, U‘, Hm‘ and lr are dual variables associated with the constraints.

The first and second constraints of the model express the logical requirements that the

sum of the users across each branch of the first level must be the total number of users, and

that in each branch, the sum of the users in this particular branch must be the total number

of users who previously selected the sub-alternatives. The later constraints represent the

hard constraints which are imposed upon the choice process. These constraints are for-

mulated mathematically via the functions bhr and the parameters br; which are known and

depend on the problem to be solved.

We now see some examples of the possibilities made available by the inclusion of these

constraints. Suppose each class ‘ of users consists of only one individual i, ‘ ¼ fig. In this

case bg
‘ ¼ 1 and the variables gm‘; gm‘

s represent respectively the probability that individual

‘ chooses alternative m and that, having chosen alternative m, chooses sub-alternative

s. The first observation is that the model takes all user decisions collectively and so can

capture the interactions between the decisions of users.

Example 1 (Exogenous factors: capacity constraints) Suppose we are modelling flight

choices of airline users. At the higher level we decide between standard and low-cost

companies. At the lower level users can choose between the different flights available.

Each flight s has a capacity limit depending on the number of seats Ks. There exists a set of

users Ls, who are likely to choose flight s because of the origin-destination of their trip. In

this problem capacity constraints will be active on many flights, especially low-cost ones,

and this will significantly affect user choice. This leads to
X

‘2Ls

gm‘
s �Ks ð1Þ
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being imposed on the demand estimation, which shows that the expected number of

passengers (the left-hand side of the expression) on flight s cannot be greater than the

number of seats available on the flight. For some users the choice set will be affected by

capacity and they must choose from among available options. In this case, the demand

model embeds an equilibrium problem in which all users compete against one another to

get tickets.

Example 2 (Exogenous factors: limited availability products) Suppose a set of consumers

who make purchases over a period of time. We consider that these individuals are ordered

according to the instant at which they make the purchase ‘1\ � � �\‘n. If the available

resources of each product (alternative s) are limited, these products could run out after a

certain time, and that alternative is no longer available to other consumers. Let K‘
s be the

number of available units of product s when purchaser ‘ makes the purchase. The fol-

lowing must be satisfied:

gm‘
s �K‘

s ð2Þ

In this example, the optimization problem CNL is separable for each individual ‘, leading
to n independent problems in which there is no interaction between individuals.

The parameters K‘
s are unknown in many practical situations and in their place the initial

quantity Ks of product s is known. In this case we replace constraint (2) with the estimation

of available capacity:

gm‘jþ1

s �Ks �
X

j

k¼1

gm‘k

s ð3Þ

The decisions of consumers affect the decisions of those preceding them. This leads to an

iterative solution process for the CNL. Suppose the variable gm‘k with k ¼ 1; . . .; j, is known,
and we calculate the right side of Eq. (3) and solve the CNL problem to calculate the

probabilities of choice g
m‘jþ1
s of the consumer ‘jþ1, subsequently iterating the process again.

Example 3 (The polarized logit model) Grange et al. (2013) propose the so-called po-

larized logit model which consists of introducing one instrumental constraint in the MNL.

The motivation to introduce this constraint is to force the prediction of choice probabilities

towards values of 0 or 1. The polarized logit model may be extended to nested logit models

considering in the CNL the constraints

bhmðgÞ ¼
X

s2S‘
m

gm‘
s ð1� gm‘

s Þ� e; 8‘;m: ð4Þ

Example 4 (Endogenous factors) Martı́nez et al. (2009) discuss potential application of

constrained logit models. In modelling the transport system, the constraints taking into

account the endogenous factors associated with thresholds in the attributes, such as min-

imum activity level at destination for attracting trips, maximum waiting, maximum travel

expenditure, and access times to public transport. Examples in location and land use

modelling are housing choices which are constrained by the income budget or in relevant

location options where the cut-offs help to model the scope of the spatial search of an

individual.
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Assume that the utility function depends on a set of K attributes, denoted by vector X.

Each alternative s is characterised by the vector of attributes ð� � � ;Xs;k; � � �Þ. A user of type

‘ endogenously screens the universal choice set and eliminates all alternatives whose

attribute vector lies out of the consumer’s choice domain. For example, the user may

eliminate the alternatives with a price higher than a self-imposed maximum expenditure b‘
k.

The set of constraints

d‘sXs;k � b‘k ð5Þ

gm‘
s � d‘s ð6Þ

d‘s 2 f0; 1g ð7Þ

defines the individual’s feasible domain.

The binary variable d‘s indicates the validity of the alternative s for the the user type ‘.

The lower cut-offs can be analogously introduced in the CNL model.

Equilibrium issues

The CNL model represents an equilibrium between users. They compete for the existent

resources (alternatives) considering their preferences and the imposed constraints which

may affect their choices, like the capacity of the system. This fact leads to an equilibrium

situation in which each user cannot improve their utility by selecting a different alternative.

Therefore, ‘‘Appendix 1’’ proves that the solution of CNL satisfies the classic Nested

Logit probability equations, but show that the constraints introduced in the CNL model

penalize the utilities of the lower level, producing a modification to the forecasting of

demand depending on the active constraints. A function of the multipliers, the named Wm‘0
s ,

can be interpreted as the shadow price that the type of user ‘0 must pay for choosing the

alternative s. Alternative s consumes scarce resources that a set of users must compete for,

and this is the price, expressed in terms of utility, that users are prepared to pay to choose

that alternative.

Non-linear utility specifications using Reproducing Kernel Hilbert Spaces

Linear utility among attributes is the most commonly-used approach in literature. In this

paper the temporal nature of attributes is considered, so non-linear utilities appear to be

better suited to the problem. We propose a framework to specify non-linear utility func-

tions based on Reproducing Kernel Hilbert Spaces (RKHS). A quick introduction to RKHS

may be found at Daumé (2004). We shall begin by giving the following definition:

Definition 1 (Reproducing Kernel) LetH be a real Hilbert space of functions defined in a

compact set X � Rp with inner product \�; �[H. A function K : X � X 7!R is called a

Reproducing Kernel of H if:

1. Kð�; xÞ 2 H for all x 2 X.

2. f ðxÞ ¼ \f ;Kð�:xÞ[H for all f 2 H and for all x 2 X.

A Hilbert space of functions that admits a reproducing Kernel is called a RKHS. The

reproducing Kernel of a RKHS is uniquely determined. Conversely, if a function K :
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X � X 7!R is positive definite and symmetric (Mercer kernel), then it generates a unique

RKHS in which the given kernel acts like a Reproducing Kernel.

We assume that the systematic utility function V‘ : X � Rp 7!R, where X is the feasible

set for the attributes, belongs to a given RKHSHK . For simplicity only one type of user ‘ is
considered, thus this index is eliminated in this subsection. This assumption leads to the

relationship

VðxÞ 2 HK ð8Þ

The utility function can be expressed as a linear combination of the basis of the space HK .

The kernel function defines a basis fKðx; yÞgy2X of the vectorial space HK , and thus

VðxÞ ¼
X

y2Y�X

ayKðx; yÞ ð9Þ

Note that the choice of the kernel function K(x, y) plays the same role as the selection of

the specification of the functional form of a non-linear utility function. It is convenient to

consider reproducing kernels that lead to spaces HK which have a large range of functions

in order to represent the utility function V(x) appropriately.

The Eq. (9) gives the functional form of the utilities. Traditionally in the literature, the

weightings ay are the parameters of the model and the utilities are computed from the

estimated parameters. In this paper we interchange these roles. To illustrate this, consider

the linear utility function:

VðxÞ ¼ a0 þ aT � x ð10Þ

The most common steps followed in the estimation of the utilities are: firstly know the

attributes of the alternatives xs with s 2 [mSm, secondly estimate the parameters ða0; aTÞ of
the utility function (10) and thirdly calculate the utilities (see Ben-Akiva and Boccara

1995) by evaluating the utility function over the attributes, i.e

Vm
s ¼ VðxsÞ ¼ a0 þ aT � xs; s 2 Sm ð11Þ

In our approach the parameters to be calibrated are a subset of utilities Vm
s and the

weightings ay are computed from these estimated parameters. This view leads to a different

order in the estimation process of the utility function:

Step (i) know the attributes values of the alternatives xs with s 2 [mSm,

Step (ii) estimate the utilities Vm
s on a subset of alternatives D1 � [mSm, and

Step (iii) calculate the parameters ða0; aTÞ from the estimated utilities.

The fact that the CNL requires the parameters Vm
s in order to be used focuses the estimation

process on these parameters, and so for the alternatives D1 it is not necessary to know the

functional form and the attributes which are relevant for the decision maker. Moreover, the

parameters Vm
s have a clear interpretation but the interpretation of the weightings ay is

unclear.

The Tikhonov Regularization Theory allows the realization of Step (iii) for specifica-

tions of utilities based on RKHS. Now we briefly describe Tikhonov discrete regularization

theory by RKHS for the problem at hand. The General Theory of Tikhonov Regularization

is explained in the book of Tikhonov and Arsenin (1997) and the General Theory of RKHS

is defined in Aroszajn (1950).
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Assume that the utilities of a subset of alternatives D1 � [mSm are known and let n be

the cardinality of the set D1. We denote by fUsgs2D1
these estimates. Note that they have

not been denoted by V as they may contain certain random errors.

Let

Yn :¼ fxsgs2D1
� X

be the set of attributes of the utilities to be estimated and let Wn be a random sample. That

is:

Wn :¼ fðxs;UsÞ 2 X � Rgs2D1
:

Tikhonov Regularization Theory considers the function space

Vn :¼ span Kð�; xsÞ : s 2 D1f g ð12Þ

where span is the linear hull and projects V(x) onto this space by using the sample Wn.

Tikhonov Regularization Theory makes a stable reconstruction of V(x) by solving the

following optimization problem:

V� :¼ arg min
V2Vn

1

n

X

s2D1

VðxsÞ � Usð Þ2þckVk2HK ð13Þ

where c[ 0, and kVkHK
¼ \V;V [ 1=2

HK
represents the norm of V in HK . The solution V�

of (13) is called the Regularized c-Projection of V(x) onto HK associated with the sample

Wn.

The representation theorem gives a closed form solution of V�ðxÞ for the optimization

problem (13). This theorem was introduced by Kimeldorf and Wahba (1970) in a spline

smoothing context and has been extended and generalized to the problem of minimizing

risk of functions in RKHS, see Schölkopf et al. (2001) and Cox and O’Sullivan (1990).

Theorem 1 (Representation) Let Wn be a sample of V(x), let K be a (Mercer) kernel and

let c[ 0. Then there is a unique solution V� of (13) that admits a representation by

V�ðxÞ ¼
X

s2D1

asKðx; xsÞ; for all x 2 X; ð14Þ

where a ¼ ða1; . . .; anÞT
is a solution to the system of linear equations:

ðcnIn þ KxÞa ¼ U; ð15Þ

where In is the identity matrix n � n, U ¼ ðUs1 ; . . .;Usn
ÞT

and the matrix Kx is given by

Kxð Þs0s¼ Kðxs0 ; xsÞ. The expression (14) leads to the estimate of V(x) in Yn

bV
� ¼ Kxa ð16Þ

The following example illustrates numerically how to carry out step (iii) using

Tikhonov Regularization Theory.

Example 1 (A numerical example of the use of Tikhonov Regularization Theory) Sup-

pose that the utilities have been estimated for a given set of attributes xs (in this case, the

time of departure t of a transit service), with the data shown in Table 1.
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In this approach a given functional expression is not specified for the utility function,

but it is assumed that it belongs to a RKHS. For example, we consider the RKHS HK1
with

a Gaussian reproducing kernel K1 and HK2
with a multi-quadratic kernel. Specifically for

this example the following kernels are defined where the values of the parameters are set:

K1ðx; yÞ ¼ expððx � yÞ2Þ ð17Þ

K2ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

jx � yj
p

ð18Þ

These selections allow the possibility of estimating two utility functions as follows:

V1ðtÞ ¼
X
4

s¼1

a1s K1ðt; tsÞ ¼ a11K1ðt; 9Þ þ a12K1ðt; 10Þ þ a13K1ðt; 12Þ þ a14K1ðt; 16Þ

V2ðtÞ ¼
X
4

s¼1

a2s K2ðt; tsÞ ¼ a21K2ðt; 9Þ þ a22K2ðt; 10Þ þ a23K2ðt; 12Þ þ a24K2ðt; 16Þ

Moreover, to calculate the parameters a, the linear system (15) must be solved. The value

of the parameter c ¼ 0:001 has been used. The values of a obtained by this method can be

seen in Table 2.

Figure 2 represents both utility functions. In the first case the space HK1
is considered,

while the second case considers the space HK2
, obtaining different utility functions starting

from the same set of data. In conclusion, this process allows a non-linear utility function to

be derived from a set of known utilities.

We end the section with the following remarks

• Remark 1. Functional expression It is worth noting that calculating the vector of

parameters a by solving the system of equations (15) allows the analytical expression

of V(x), Eq. (14), to be known, and it is possible to calculate the marginal utilities oV�

oxs
.

This allows the subjective values of travel time (SVT) to be calculated (see Jara-Dı́az

Table 1 Initial data
Set of alternatives s 2 D1

s1 s2 s3 s4

ts 9 10 12 16

Us 3 5 2 4

Table 2 Calculated parameters
a Gaussian coefficients Multi-quadratic coefficients

(i ¼ 1) (i ¼ 2)

ai
1

1.3582 1.4401

ai
2

4.4476 -1.1676

ai
3

1.9107 1.5238

ai
4

3.9841 0.5754
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2000; Amador et al. 2005). Moreover, it allows any utility VðxsÞ to be estimated if the

vector of attributes of the alternative s xs is known.

• Remark 2. Various user types If there were several users ‘ it could happen that one

alternative s were common to some of them. This may introduce ambiguities. We

modify the definition of set D1 to avoid this, considering that its elements are pairs of

the form ðs; ‘Þ, thus leaving nothing undefined. In the case where there are various user

types we would estimate a utility function for each of them in this way:

V�‘ðxÞ ¼
X

ðs;‘Þ2D1

a‘sKðx; x‘sÞ; for all x 2 X; ð19Þ

Estimation of the CNL model

CNL parameters are V; k ¼ ð� � � ; k‘1; � � � ; km‘
2 ; � � �Þ; br; bg

‘
. It is assumed that the upper

bounds br of the constraints and bg
‘
are known. The remaining parameters ðV; kÞ must be

estimated. In this section a generic estimation methodology is described. As CNL is a

strictly convex program (assuming that the functions bhr are convex) it poses a single

optimum and CNL implicitly defines a function, which obtains the disaggregation of the

demand by alternatives for each pair ðV; kÞ. This is depicted thus:

g ¼ CNLðV ; kÞ ð20Þ

The main idea of the approach presented in this paper for estimating the CNL model is

to select and estimate a subset of utilities bV1 which will be used for calculating the other

utilities bV2, repeating this process iteratively, changing the values of bV1 with the objective

of approximating the demand estimated by the CNL to the real known values.

Assume a sample of N decision-makers, N‘ is the number of individuals of type ‘. Also

suppose that the number of individuals of type ‘ who select alternative s 2 S‘
m is denoted

by Nm‘
s and it is known for a set of combinations ðs; ‘Þ 2 D0. Denote N ¼ ð� � � ;Nm‘

s ; � � �Þ
with ðs; ‘Þ 2 D0.

9 10 12 16

2
3
4
5

9 10 12 16

2

3

4

5

V(
t)

V(
t)

Gaussian kernel Multiquadratic kernel

yad-fo-emiTyad-fo-emiT

Fig. 2 Calculated utility functions
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Assume that the vector of attributes for each alternative s is known and is denoted by xs.

Let D1 be the alternative subset ðs; ‘Þ in which the utility will be estimated, and let D2 be

the alternatives in which the utility will be calculated from the estimated function V�‘ðxÞ
by using the Tikhonov regularization theory described in ‘‘Non-linear utility specifications

using Reproducing Kernel Hilbert Spaces’’ section. The set of alternatives is decomposed

in D ¼ D1 [ D2 with D1 \ D2 ¼ f;g.
As a first step, the utility vector is estimated

bV1 ¼ � � � ;Um‘
s � � �

� �

; ðs; ‘Þ 2 D1 ð21Þ

and in the second stage the utility function V�‘ð�Þ is calculated using Eq. (19) and the

Eq. (15) for each ‘ and all non-estimated utilities Um‘
s ¼ V�‘ðx‘sÞ with ðs; ‘Þ 2 D2 are

calculated. Denote

bV2 ¼ � � � ;V�‘ðx‘sÞ; � � �
� �

; ðs; ‘Þ 2 D2 ð22Þ

The above two stages are schematically represented by

bV2 ¼ HðbV 1Þ ð23Þ

Using Eq. (23), the Eq. (20) can be rewritten as:

g ¼ CNL bV 1;HðbV 1Þ
� �

; k
� �

ð24Þ

Finally the estimation problem can be stated as:

minimize
ðbV 1;kÞ

Fðg;NÞ

subject to: g ¼ CNLððbV 1;HðbV 1ÞÞ; kÞ
ð25Þ

where F is a similarity function between predicted demand by CNL model, g, and the

observed values, N. It is worth noting that the parameters to be estimated are the utility

vector bV 1 and the vector of scale parameters k.
An approach widely used for Fðg;NÞ is the minus log-likelihood (LL) function, and it

leads to the maximum likelihood (ML) estimation problem:

max
ðbV 1;kÞ

X

ðs;‘Þ2D0

Nm‘
s ln gm‘

s =N‘
� �

subject to: g ¼ CNLððbV 1;HðbV 1ÞÞ; kÞ:
ð26Þ

In some cases, as in the numerical Experiment 2 of this paper, disaggregated values by

alternatives Nm‘
s are not known. In these cases the least squares method can be adapted to

the data.

The likelihood maximization or generalized least squares technique is achieved by

embedding the computation of F within a non-linear optimization framework as shown in

Fig. 3. The estimation problem of the CNL is formulated as a bi-level optimization model

and Fig. 3 shows the application of free-derivative optimization methods to this problem.

This calculation scheme is conceptual and susceptible of many implementations. The

convergence to the optimal parameters is not guaranteed and it will depend on the free-

derivative optimization method applied.
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It is worth noting that there exist infinite solutions to the estimation problem (25). Ben-

Akiva and Lerman (1985) indicates that discrete choice models have two sources of over-

specification. The first source is due to the scale indeterminacy because the units of the

underlying latent utilities are not observed, and origin indeterminacy because the zero of

the latent utility scale is not observable, so one must be set. The sources of over-specifi-

cation of the parameters for the CNL proposed are explained in ‘‘Appendix 2’’.

Numerical analysis

This article describes a methodology for introducing constraints on the Nested Logit (NL)

model and a further methodology for estimating it. The first key question to be analysed is

how omitting the constraints where they are relevant to the problem affecting the accuracy

of predictions of the NL model. The second step is to assess the estimation methodology

set out in Sect. 4. The estimation problem to be solved has a bi-level nature in which, to

evaluate the objective function, the CNL model must be solved. The proposed method is

conceptual and does not specify any given optimization algorithm. The only assumption

about the algorithm is that it be derivative-free, as the problem is bi-level and the so there

is no guarantee of convergence. Moreover, the bi-level nature presents the challenge of

addressing the computational burden in real applications.

These questions have been analysed in the following two experiments.

• Experiment 1 This experiment was carried out on synthetic data. The objective is to

compare the logit model and the nested logit model with its constrained counterparts.

As well as checking numerically that the constrained models display better fitting to the

data, we show that the predictions of the unconstrained models may not be reliable in

scenarios where the constraints are changed.

• Experiment 2 This experiment is a real application consisting of fitting the CNL model

to the rail services choice problem. In this experiment we describe a metaheuristic

Fig. 3 Schematic representation of CNL estimation procedure
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methodology based on hybridization of the Particle Swarm Optimization with the

Nelder–Mead method. The main issue analysed in this experiment is the applicability

of the proposed method and its convergence.

A simulation study (Experiment 1)

An important class of problems in which constraints appear in the modelling of demand is

dynamic pricing with limited inventories, Boer (2015). This type of model enables certain

firms, such as in the airline industry, to increase revenue by better matching supply with

demand. Chen and Chen (2015) consider that most dynamic pricing problems share the

following three main characteristics: (1) products are typically time-sensitive with a fixed

selling season, (2) a given and finite amount of inventory of a product available at the

beginning of the selling season and (3) multiple prices in the selling season. Feature (2)

imposes (exogenous) capacity constraints for the consumers.

In this section we consider the fitting of a demand model to a dynamic pricing problem.

The aim is to assess how the constraints affect user choices. For this reason we have greatly

simplified the problem and we have considered fixed prices and thus constant utilities

during the selling period.

We consider that a given railway service has K1 ¼ 25 seats for first class and K2 ¼ 40

for second class. The users arrive according to a Poisson process with arrival rate k ¼ 0:8
min (mean time between arrivals). We assume that the sales process begins 60 min before

the departure time. The probability of a user desiring to travel in first class is 0.2 and to

travel in second class is 0.8 (i.e the utilities are not time-sensitive). If on buying the ticket

there were no seats available in the desired class, the user would choose, with probability

0.5, to change the class, and with the other 0.5 not to make the trip. By a Monte Carlo

simulation we have generated data for 25 different days which can be downloaded from

http://bit.ly/simData.

We have adjusted the MNL model and the NL shown in Fig. 4 to this problem.

These two models have been adjusted with and without capacity constraints (i.e number

of available seats). We have considered that the index ‘ represents one individual and these
are ordered according to the instant t‘ at which they buy the ticket. The decisions of the

individuals who arrive before instant t‘ affect the choice-set of individual ‘, since they may

have taken all the seats in one or other class. If we let K‘
i be the residual capacity (number

of available seats) of the i � th class when user ‘ buys his ticket, the constrained MNL and

NL models are formulated as:

minimize
P

‘

P

s2f1;2;Refg
g‘1g‘

sðln g‘s � 1Þ � V‘
s g‘

s

� �

;

subject to:
P

s2f1;2;Refg
g‘

s ¼ 1; 8‘

g‘
s �K‘

s ; s 2 f1; 2g; 8‘
½Constrained MNL	
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minimize
P

‘

P

m2f1;2g
gm‘
1 gm‘ðln gm‘ � 1Þ þ gm‘

2

P

s2f1;2;Refg
gm‘

s ðln gm‘
s � 1Þ

"

�
P

s2Sm

Vm‘
s gm‘

s

#

;

subject to:
P

m2f1;2g
gm‘ ¼ 1; 8‘

P

s2f1;2;Refg
gm‘

s ¼ gm‘;m 2 f1; 2g; 8‘

gm‘
s �K‘

s ;m; s 2 f1; 2g; 8‘
½Constrained NL	

We used the parameters g‘1 ¼ 1 in the the MNL and CMNL models and the values k‘1 ¼
1; k1;‘2 ¼ 2; k2;‘2 ¼ 3 and thus g1‘1 ¼ 1

2
; g2‘1 ¼ 2

3
; g1‘2 ¼ 1

2
; g2‘2 ¼ 1

3
for the NL and CNL models.

The first numerical trial has the aim of assessing the capacity of the models to describe

the data. To this end we estimate the models by maximum likelihood using the following

three classical functional specifications for the utilities:

ConstantV ‘
s ¼ as

LinearV ‘
s ¼ as þ bst‘

QuadraticV ‘
s ¼ as þ bst‘ þ csðt‘Þ2

and considering as; bs and cs the parameters to be estimated. The estimation model is

solved by using the Nelder–Mead algorithm implemented in MATLAB (fminsearch
function in MATLAB) and limiting the maximum number of iterations 2000. The con-

strained MNL and NL models were solved using the Sequential Quadratic Programming

algorithm implemented in MATLAB (fmincon function in MATLAB).

2nd class Refusal1st class

Logit model

User

Choice:
Ticket

m

2nd class Refusal1st class

Nested Logit model

User

1st class

2nd class Refusal1st class

2nd class

Choice:
Desired travel

Choice:
Ticket

m

Fig. 4 Adjusted models
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As regards the models’ goodness-of-fit, three indexes are reported in Table 3: log-

likelihood evaluated at the parameter estimate values (L�), rho-square (q2) and adjusted

rho-square �q2 where

q2 ¼ 1� L�

L0
; �q2 ¼ 1� L� � k

L0
ð27Þ

where k is the number of estimated parameters and L0is the log- likelihood evaluated at

zero. The values of L0 for the MNL and NL models are L0 ¼ �2170:85 and L0 ¼
�3694:94 respectively.

Table 3 shows two important facts. The first is that the constrained models also improve

on their unconstrained counterparts. It can even be seen that the constrained model with

constant utility has a better fit than the unconstrained with quadratic utilities. The second

conclusion is that the computational cost of the estimation of the constrained models is

high. This reveals the need to solve the estimation problem efficiently in order to apply the

methodology to real problems.

We now proceed to discuss how to test whether the improvement introduced by a

constrained model with respect to an unconstrained one is or is not statistically significant.

This was done using the likelihood ratio test. Let l�‘s be the optimal Lagrangian multipliers

of the constraints of the CMNL model; thus, these constraints can be penalized in the

objective function and the CMNL can be reformulated as:

minimize
P

‘

P

s2f1;2;Refg
g‘1g‘sðln g‘

s � 1Þ � V‘
s � l�‘s

� �

g‘
s

� �

þ K;

subject to:
P

s2f1;2;Refg
g‘

s ¼ 1; 8‘

½Penalised constrained MNL	

where K ¼ �
P

‘

P

s2f1;2g l
�‘
s K‘

s is a constant and we take l�‘Ref ¼ 0 to unify the notation.

This formulation allows the CMNL to be interpreted as an MNL in which the utilities are

given by the expression

Table 3 Goodness-of-fit and CPU time for MNL, NL, CMNL and CNL models

Utility MNL Constrained MNL

L� q2 �q2 CPU(s.) L� q2 �q2 CPU(s.)

Constant -2024.12 0.0676 0.0662 2.76 -1147.01 0.4716 0.4703 531.67

Linear -1438.96 0.3371 0.3344 10.17 -1074.19 0.5052 0.5024 1593.20

Quadratic -1334.08 0.3855 0.3813 36.17 -1060.68 0.5114 0.5073 1935.74

Utility NL Constrained NL

L� q2 �q2 CPU(s.) L� q2 �q2 CPU(s.)

Constant -2516.61 0.3188 0.3172 61.41 -1419.18 0.6159 0.6143 13,448.42

Linear -1705.44 0.5384 0.5352 133.75 -1362.27 0.6313 0.6280 64,126.07

Quadratic -1694.24 0.5414 0.5366 244.18 -1518.24 0.6323 0.6274 87,688.47

Number of observations = 1976
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eV
‘

s ¼ V‘
s � l�‘s

ð28Þ

The statistical hypothesis testing is:

H0 :l
�‘
s ¼ 0; ð‘; sÞ 2 ~S ðMNLmodel)

H1 :l
�‘
s 6¼ 0; ð‘; sÞ 2 ~S ðCMNLmodel)

In this experiment we have contrasted the hypothesis that the constraints 20 min before

the train leaves are active and we should, from that moment, consider the model con-

strained. That is

~S ¼ fð‘; sÞ : t‘s [ � 20g

We perform a likelihood ratio test. The test statistic is twice the difference in L� and these

values are shown in Table 4. It can be seen that the inclusion of the constraints is only

significant in models with constant utilities. When we estimate the linear and quadratic

utilities V‘
s in an unconstrained model, the real purpose of the adjustment is to determine

the best parameters to reproduce the penalized utilities eV
‘

s. The unconstrained models

consider the constraints implicitly via the fitting of the penalized utilities. The conclusion

of the hypothesis test is that in the case of linear and quadratic utilities the explicit

inclusion of the constraints does not significantly improve implicit knowledge of them.

Figures 5 and 6 show the estimated probabilities that a user will choose a given

alternative depending on the instant of ticket purchase. Figure 5 shows the estimates

obtained using the logit models and Fig. 6 using the nested logit models. These models use

quadratic utilities. The true probabilities estimated by Monte Carlo simulation have been

overlaid using a 10,000 day sample. All the models try to adjust the true probabilities.

The central question is to determine in what situations it is necessary to use the con-

strained models. The answer is when estimations are to be carried out for scenarios dif-

ferent from the adjusted situation. That is, when the initial constraints are going to vary.

Assume we wish to estimate the number of tickets that will be sold by the transport

operator if the rolling stock carrying out the service varies. For example we will assume 3

new types of rolling stock with different numbers of seats. Table 5 shows these estimations

Table 4 Hypothesis test for the
comparison of MNL, NL, CMNL
and CNL models

(*): Figures in parentheses are
statistical significance levels.
Degrees of freedom ¼ 1366

Utility MNL Constrained MNL

L� L� v2 p-value

Constant -2024.12 -1281.1 1486.0 0.0124(*)

Linear -1438.96 -1196.6 484.7 0.9999

Quadratic -1334.08 -1176.2 315.8 0.9999

Utility NL Constrained NL
L� L�

Constant -2516.61 -1634.51 1764.2 0.0000(*)

Linear -1705.44 -1534.94 341.0 0.9999

Quadratic -1694.24 -1516.92 354.6 0.9999
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for each scenario using the constrained models and the Monte Carlo simulation method.

The sample size was 10,000 days, and as this is a large value, we take this estimation as the

true value with which to make the comparison.
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Fig. 5 Predictions of dynamic probabilities using the NML and CMNL models (quadratic utilities) and
Monte Carlo simulation
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Fig. 6 Predictions of dynamic probabilities using the NL and CNL models (quadratic utilities) and Monte
Carlo simulation
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The unconstrained models predict the same value for all scenarios and this is shown in

Table 6. If we observe the scenario which produces the worst estimation using the models

with quadratic utility, we see that the relative errors (expressed as percentages) are, for the

Table 5 Prediction of ticket demand for several scenarios using the constrained models and the Monte
Carlo simulation technique

Scenario Simultation Utility Constrained MNL Constrained NL

Average r Average r Average r

Original scenario Constant g1 ¼ 22:97 3.79 g1 ¼ 21:92 4.07

g2 ¼ 40:01 2.88 g2 ¼ 41:99 3.02

K1 ¼ 25, g1 ¼ 22:71 3.24 Linear g1 ¼ 23:63 4.31 g1 ¼ 23:08 3.27

K2 ¼ 40 g2 ¼ 39:99 0.12 g2 ¼ 40:00 2.90 g2 ¼ 40:62 2.98

Quadratic g1 ¼ 23:14 4.48 g1 ¼ 23:28 3.81

g2 ¼ 40:00 2.85 g2 ¼ 40:45 2.94

K1 ¼ 25, g1 ¼ 16:42 4.30 Constant g1 ¼ 14:16 3.66 g1 ¼ 14:42 3.44

K2 ¼ 60 g2 ¼ 56:88 4.45 g2 ¼ 58:11 3.91 g2 ¼ 60:99 4.11

Linear g1 ¼ 14:66 2.95 g1 ¼ 15:33 2.89

g2 ¼ 57:99 3.96 g2 ¼ 59:35 4.05

Quadratic g1 ¼ 15:76 3.21 g1 ¼ 15:97 2.92

g2 ¼ 57:37 3.96 g2 ¼ 58:40 4.06

K1 ¼ 10, g1 ¼ 9:86 0.58 Constant g1 ¼ 7:01 1.99 g1 ¼ 7:33 2.08

K2 ¼ 70 g2 ¼ 61:83 6.76 g2 ¼ 65:75 6.17 g2 ¼ 68:62 6.33

Linear g1 ¼ 8:99 1.91 g1 ¼ 9:17 2.01

g2 ¼ 65:23 6.57 g2 ¼ 66:52 6.44

Quadratic g1 ¼ 9:29 2.03 g1 ¼ 9:43 2.20

g2 ¼ 64:49 5.99 g2 ¼ 65:81 6.69

K1 ¼ þ1, g1 ¼ 15:05 3.91 Constant g1 ¼ 11:16 1.12 g1 ¼ 11:67 1.18

K2 ¼ þ1 g2 ¼ 59:99 7.70 g2 ¼ 63:09 6.37 g2 ¼ 66:21 6.69

Linear g1 ¼ 12:77 1.39 g1 ¼ 13:33 1.42

g2 ¼ 62:75 3.37 g2 ¼ 64:22 6.49

Quadratic g1 ¼ 13:47 1.44 g1 ¼ 14:14 1.47

g2 ¼ 62:07 6.34 g2 ¼ 62:98 6.42

Table 6 Prediction of ticket
demand using the unconstrained
models

Scenario Utility MNL NL

Average r Average r

ALL Constant g1 ¼ 23:64 2.39 g1 ¼ 23:63 2.39

g2 ¼ 40:00 4.04 g2 ¼ 40:00 4.04

Linear g1 ¼ 23:63 2.49 g1 ¼ 23:90 2.40

g2 ¼ 40:00 5.27 g2 ¼ 39:60 5.41

Quadratic g1 ¼ 23:64 2.35 g1 ¼ 24:22 2.38

g2 ¼ 40:00 5.51 g2 ¼ 39:56 5.44
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constrained models, 10.49 and 6.40% for the first and second class respectively, while for

the unconstrained models these errors are 145.63 and 36:01% respectively.

This shows the need to use the constrained models for this type of estimation. Finally

Fig. 7 shows the estimation of the ticket choice probabilities for the three new scenarios

using a constrained MNL model. A good fit is seen for these new scenarios, even though

they are different from the scenario used in the estimation model.

Application of the CNL model for railway service choice modelling
(Experiment 2)

Suppose there are various types of users depending on his/her origin-destination. Index

‘ ¼ ði; jÞ 2 L refers to a trip from station i to station j. Assume an origin-destination matrix

fbg‘g‘2L which defines the potential demand. Assume the total demand disaggregated in

two alternatives:

(a) (High-speed) train trips.

(b) Another means of transport.
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Fig. 7 Predictions of the dynamic probabilities using the CMNL model (quadratic utilities) and Monte
Carlo simulation for the three new scenarios
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Assume a logit model which divides the potential demand between alternatives (a) and (b):

gm‘ ¼ expðk1Vm‘Þ
P

m2fa;bg expðk1Vm‘Þ � bg
‘

m 2 fa; bg; ‘ 2 L ð29Þ

where Vm‘ is the utility of alternative m for the users of the origin-destination pair ‘:
Note that the index ‘ is deleted in the parameter k1, which means that this value is the

same for all origin-destination pairs ‘.
The model considers a nested logit model to disaggregate the demand considering the

feasible timetable for a trip type ‘. Denote as S‘
a the feasible set of railway services for

making a trip type ‘. The second level of the nested logit model disaggregates the demand

between the different railway services:

ga‘
s ¼ expðk2Va‘

s Þ
P

s02S‘
a
expðk2Va‘

s0 Þ
� ga‘ s 2 S‘

a; ‘ 2 L ð30Þ

Similarly to the upper decision level, the parameter k2 is assumed independent of the

origin-destination pair ‘.
Figure 8 shows the nested logit model combined with the capacity constraints of the

trains. When a train reaches station j the vehicle has picked up passengers from preceding

stations. The number of passengers that can take the train is then restricted by the capacity

of the vehicle. Denote by Lþ
sj the set of origin-destination pairs whose users take the service

s before station j and leave the vehicle after station j. Also denote by Lsj the set of origin-

destination pairs ‘ whose origin is station j and which use s. The capacity constraints of

service s in station j is formulated as:
X

‘02Lsj

ga‘0

s þ
X

‘2Lþ
sj

ga‘
s �Ks for all s 2 S; j 2 Js; ð31Þ

where Ks is the capacity of train s, S is the set of services and Js represents the set of

stations in which service s will stop. The demand model can be stated as:

Fig. 8 Hierarchical MNL demand for railway service choice
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minimize
P

‘2L

P

m2fa;bg
gmgm‘ðln gm‘ � 1Þ þ gc

P

s2S‘
a

ga‘
s ðln ga‘

s � 1Þ
"

�Vb‘gb‘ �
P

s2S‘
a

Va‘
s ga‘

s

#

;

subject to: ga‘ þ gb‘ ¼ bg‘; ‘ 2 L
ga‘ ¼

P

s2S‘
a

ga‘
s ; ‘ 2 L

P

‘02Lsj

ga‘0

s þ
P

‘2Lþ
sj

ga‘
s �Ks for all s 2 S; j 2 Js;

½CNL	

where ga ¼ 1
k1
� 1

k2
and gb ¼ 1

k1
, gc ¼ 1

k2
.

Espinosa-Aranda et al. (2015) apply this model to the high-speed train timetabling

problem.

Case study

To test the above model, a case study has been generated. The main objective is to study

the possibility of estimating its parameters. This numerical example looks at the Madrid–

Seville corridor of the Spanish High Speed Railway network. This corridor consists of 5

stations: Madrid (MAD), Ciudad Real (CR), Puertollano (PU), Córdoba (COR) and Sevilla

(SEV) which produces 20 origin-destination demand pairs (10 per direction of travel)

formed by 15,115 passengers/day. Currently this demand is completely covered by 100

services. Figure 9 shows the corridor used by these services, Table 7 indicates the route of

each type of service and Table 8 shows the maximum capacity of each type of train.

In this example, there will be 20 types of users (i.e, 20 origin-destination pairs ‘). Each
user type ‘ can travel using a set of services s. Considering the planned schedule, the set of

alternatives ð‘; sÞ 2 D consists of 298 possibilities. In this case the proposed model could

estimate 298 parameters.

To estimate the model 25 services have been selected randomly, generating a set D1

with 66 possibilities ð‘; sÞ and, consequently, 66 parameters Va;‘
s that should be estimated

to calculate the utility of each alternative as explained in ‘‘Non-linear utility specifications

using Reproducing Kernel Hilbert Spaces’’ section. Note that the solution of the linear

system (15) produces the values a‘s.
The attributes considered for each possible alternative ð‘; sÞ are: (1) the price x‘s;1, (2) the

travel time x‘s;2 and (3) the timetable x‘s;3. The vector of attributes is denoted as

x‘s ¼ ðx‘s;1; x‘s;2; x‘s;3Þ. The data used for the experiment can be downloaded from http://bit.ly/

1gCFw5e.

To simplify we have set V�‘ðxÞ ¼ V�ðxÞ for all origin-destination pairs ‘ in this

experiment, and the utility function V�ðxÞ is defined as:

V�ðxÞ ¼
X

ð‘;sÞ2D1

a‘sKðx; x‘sÞ; for all x 2 X; ð32Þ

where a Gaussian kernel Kðx; yÞ ¼ e�akx�yk2 is used in which k � k is the Euclidean norm

a 2 Rþ. In this case a ¼ 5 has been considered. The regularization parameter c has been
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set as 0.00001. The parameter c has the function of preventing the system of linear

equations (15) being singular. The parameter is chosen thus c ! 0þ. First a small value is

tested, as in this example, and if there are no numerical problems (an ill-conditioned

Fig. 9 Madrid–Seville corridor

Table 7 Types of railway services on Madrid–Seville corridor

Type Route Amount Type
of service of services of train

1 MAD ! CR ! PU 11 AVANT

2 MAD ! CR ! PU ! COR 3 AVE

3 MAD ! CR ! PU ! COR ! SEV 5 AVE

4 MAD ! COR 4 AVE

5 MAD ! COR ! SEV 9 AVE

6 MAD ! SEV 3 AVE

7 COR ! SEV 6 MD

8 COR ! SEV 9 AVANT

9 SEV ! COR 6 MD

10 SEV ! COR 9 AVANT

11 SEV ! COR ! PU ! CR ! MAD 5 AVE

12 SEV ! COR ! MAD 8 AVE

13 SEV ! MAD 3 AVE

14 COR ! PU ! CR ! MAD 3 AVE

15 COR ! MAD 5 AVE

16 PU ! MAD ! CR 11 AVANT
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problem) the value is acceptable. Otherwise the value of c is increased until it avoids ill-

conditioning.

Estimation methods

The data used as N are in the public domain and therefore show aggregated information

such as the total demand in a determined origin-destination pair or for a type of service. An

estimation procedure based on an ML approach is not available because the disaggregated

observations for each pair ð‘; sÞ are unknown. In this test we have adapted the generalized

least squares technique for comparing the known demand behaviour versus the demand

predicted by the CHL model. In this example the values of k1 and k2 have also been

estimated.

The optimization method selected for solving the estimation problem (25) is a

hybridization of the Standard Particle Swarm Optimization (SPSO) (Zambrano-Bigiarini

et al. 2013) and the Nelder–Mead (NM) (Nelder and Mead 1965) algorithm based on the

framework presented in Espinosa-Aranda et al. (2013). Hybrid algorithms try to make full

use of the merits of various optimization techniques in order to obtain an efficient method

in the search for global optima.

The SPSO has been used successfully in global optimization problems particularly in

transportation research (see Angulo et al. 2011, 2013). The main advantages of PSO

algorithms could be summarized as follows: they are capable of avoiding local optima,

Table 8 Capacity of each type
of train on Madrid–Seville
corridor

Type Train capacity
Ks (passengers)

AVE 308

AVANT 237

MD 190

Table 9 Solution found versus
amplitude of feasible region

Case -B B SPSO SPSOþ NM

1 -0.5 0.5 4.7276Eþ05 2.5866Eþ05

2 -1 1 3.2272Eþ05 2.5248Eþ05

3 -2 2 3.2828Eþ05 2.5988Eþ05

4 -5 5 4.8158Eþ05 2.7113Eþ05

5 -10 10 5.6018Eþ05 2.6979Eþ05

6 -30 30 1.1273Eþ06 1.1273Eþ06

7 -50 50 1.2238Eþ06 1.2238Eþ06

8 -100 100 1.4023Eþ06 1.4023Eþ06

9 -500 500 1.1742Eþ06 1.1742Eþ06

10 -1000 1000 1.0889Eþ06 1.0628Eþ06

11 -5Eþ03 5Eþ03 1.2428Eþ06 1.2428Eþ06

12 -1Eþ04 -1Eþ04 1.0640Eþ06 1.0640Eþ06

13 -5Eþ04 5Eþ04 1.3045Eþ06 1.3045Eþ06

14 -5Eþ05 5Eþ05 1.2318Eþ06 1.2318Eþ06

15 -1Eþ07 1Eþ07 2.2174Eþ06 2.2113Eþ06
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doing a search in the entire solution space, are robust against initialization parameters,

viable, efficient with a smaller computational burden and have a simple selection of the

right parameter values. The NM method is a direct search method that does not use

numerical or analytic gradients and has local convergence with a high exploitation

capacity.

The resolution procedure for the CNL model has been GAMS 24 with solver CONOPT,

showing that in an Intel I7 4 Cores 3.2 GHZ with 16 GB RAM computer the CPU time for

each problem is around 0.12 seconds.

The SPSOþ NM has been implemented in MATLAB, which calls GAMS to solve each

individual CNL problem. The stopping criterion is based on the total number of solved CNL
models. The SPSO algorithm was run for 50,000 objective function evaluations. A random

start on an interval defined by Eq. (33) was used. The size of the swarm was 40 particles.

The PSO-parameters w, c1 and c2 for updating velocity are defined as w ¼ 1=ð2 lnð2ÞÞ,
c1 ¼ 0:5þ lnð2Þ and c2 ¼ c1 (Zambrano-Bigiarini et al. 2013). NM is run for 50,000

function evaluations starting from the best solution found by the SPSO algorithm to

improve the solution.

‘‘Appendix 2’’ deals with over-specification based on two considerations. Firstly, the

non-observed utilities are set to Vb‘ ¼ 0 (the second source of over-specification). The

second issue considers that each interval
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Fig. 10 Evolution of the SPSOþ NM algorithm for all cases
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�B�Va‘
s �B ð33Þ

with B[ 0 contains optimal solutions of the estimation problem (the first source of over-

specification), thus the imposition of this constraint limits the search space without

reducing the quality of the fit. Selecting limits with very small B value (equivalent to

d‘ ! 0 in the first source of over-specification) could lead to large values of ki, causing a

more complex estimation. A trade-off between the range of the interval of the utilities and

the order of magnitude of the parameters ki must be achieved.

Table 9 shows the computational results depending on the feasible region considered

(33). The mean computational cost of each run of the SPSO algorithm was 1.7 h, and with

NM, 4.4 h. Therefore the estimation of the CNL model can be computed in an affordable

time.

As can be seen, the results show that with small intervals the algorithms are capable of

finding a better solution than when searching in a bigger feasible region. This can also be

seen in Fig. 10 which depicts the evolution of the objective function during the running of

the SPSO algorithm per case study. The red graphs represent case studies 1–5, the blue

6–14 and the black line 15.

Study of the best solution obtained

The best solution is obtained by using the interval ð�B;BÞ ¼ ð�1; 1Þ as the space of

parameters. This section shows this solution. Figures 11 and 12 depict the utility function

fixing respectively the departure time at 8:30 and the travel time to 63 min.

It can be seen in Fig. 11 that the specification of V ‘ðxÞ ¼ V�ðxÞ for each pair ‘ produces
the travel time attribute with which to consider the demand effect in each pair ‘. For
example, the largest travel time represents the largest trip ‘ ¼ ðMAD; SEVÞ while the

smallest time occur in pair ‘ ¼ ðCR;PUÞ. The utility function captures the demand in each

pair.
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Fig. 11 Utility estimation with fixed departure time (8:30)
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Figure 12 depicts the results obtained for a fixed travel time of 63 min (i.e. fixed a

origin-destination pair ‘). This case shows how the utility change depending on the

departure time coinciding with the demand peaks at specific times (8:30, 15:00 and 19:30).

Note that Figs. 11 and 12 show negative utility values. To avoid the problem of over-

specification we have set the utility of not making the trip by train at Vb‘ ¼ 0. The

estimates of the other utilities Va‘
s are calculated with respect to this choice. The fact that

these estimations give negative values means only that these utilities are less than the

utility of alternative b.

Conclusions

This paper describes the CNL to model both the dynamic and constrained decision spaces

in discrete choice contexts. This type of approach is suited to modelling problems in which

exogenous and endogenous factors limit the universal choice set of the decision-makers.

Applying the model requires additional data to specify the constraints and derivative-free

optimization methods for solving the estimation problem.

A key contribution of this paper is the use of Kernel Hilbert Spaces for the specifications

of non-linear utility functions. This paper presents a novel point of view for the model

estimation based on the consideration of utilities of a set of alternatives as parameters

instead of classical attribute weights. The over-specification issues associated with the CNL
formulation are also discussed. The introduction of the estimation method requires testing

its capacity to infer unbiased estimates of the true parameters. Further research into this

subject, and how to specify the type of kernels and its parametrization is necessary to

assess whether this methodology can give a perfect reconstruction of the original utility.

Experiment 1 is a simulation study on a constrained problem. The results obtained show

that the constrained models have a better fit than their unconstrained counterparts. The

unconstrained models take the constraints into account via non-linear utilities and thus for

the baseline case there are differences between constrained and unconstrained models only

when the utility function is linear. The key conclusion of Experiment 1 is that the
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Fig. 12 Utility estimation with fixed travel time (63 min)
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constrained models are robust with respect to the modifications in the baseline constraints.

If the unconstrained models are used in new scenarios, therefore, forecasts of demand are

likely to violate the new constraints and miscalculate the true demand.

In Experiment 2 a novel railway demand model is used to test the suitability of the

proposed approach. Experiment 2 is based on real data for the Madrid–Seville high-speed

corridor and proposes a metaheuristic methodology based on the hybridization of the

Particle Swarm Optimization and Nelder–Mead method to estimate the CNL. The com-

putational cost of solving the bi-level model is 4.4 h. The importance of eliminating over-

specification of the model can be seen in the quality of the results obtained. The results

show how the CNL model could represent the behaviour of users of the railway network.
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Appendix 1: Equilibrium issues of the CNL model

We shall assume that the functions fbhrðgÞgr2R are convex. The Karush–Kuhn–Tucker

conditions are necessary and sufficient for the optimal solution of CNL as it is a (strictly)

convex program. Moreover, in this case the model has a unique solution (assuming the

feasible region of CNL is not empty) and it is this which will now be characterized.

The Lagrangian function of the problem CNL is of the form

L ¼ Z þ
X

‘2L
U‘

X

m2S‘

gm‘ � bg‘

 !

þ
X

‘2L

X

m2S‘

Hm‘

X

s2S‘
m

gm‘
s � gm‘

0

@

1

A

þ
X

r2R
lr
bhrðgÞ � br

� �

where Z represents the objective function of CNL.
The Karush–Kuhn–Tucker conditions for CNL are stated as

oL

ogm‘
s

¼ 1

km‘
2

ln gm‘
s � Vm‘

s þHm‘ þ Wm‘
s ¼ 0; ‘ 2 L;m 2 S‘; s 2 S‘

m ð34Þ

oL

ogm‘
¼gm‘

1 ln gm‘ þ U‘ �Hm‘ ¼ 0; ‘ 2 L;m 2 S‘ ð35Þ

lr 
 0 and lr
bhrðgÞ � br

� �

¼ 0; r 2 R ð36Þ

where

Wm‘
s ¼

X

r2R
lr

obhr

ogm‘
s

: ð37Þ
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Next, this paper will focus on the value of the probabilities at the lower level of the CNL.

Therefore, solving for gm0‘0

s in (34),

gm0‘0

s ¼ exp km0‘0

2 ðVm0‘0

s � Wm0‘0

s �Hm0‘0 Þ
n o

¼ exp �km0‘0

2 Hm0‘0

� �

exp km0‘0

2 Vm0‘0

s � Wm0‘0

s

� �n o ð38Þ

and summing over s 2 S‘0

m0 , which is the set of sub-alternatives for the alternative m0 and
type of user ‘0, we get

gm0‘0 ¼
X

s2S‘0
m0

gm0‘0

s ¼ exp �km0‘0

2 Hm0‘0

� �
X

s2S‘0
m0

exp km0‘0

2 ðVm0‘0

s � Wm0‘0

s Þ
n o

ð39Þ

Finally, dividing (38) by (39) we get the probabilities at the lower level of the CNL

gm0‘0

s0

gm0‘0
¼

exp km0‘0

2 ðVm0‘0

s0 � Wm0‘0

s0 Þ
n o

P

s2S‘0
m0
exp km0‘0

2 ðVm0‘0
s � Wm0‘0

s Þ
	 
 ; s0 2 S‘0

m0 ð40Þ

At this point, the probabilities of the CNL in the upper level will be also calculated. Finding

Hm0‘0 from (39)

Hm0‘0 ¼
�1

km0‘0

2

ln gm0‘0 þ 1

km0‘0

2

ln
X

s2S‘0
m0

expfkm0‘0

2 ðVm0‘0

s � Wm0‘0

s Þg

2

6

4

3

7

5 ð41Þ

and by replacing it in (35), one obtains

gm0‘0

1 ln gm‘0þ 1

km0‘0

2

ln gm0‘0 þ U‘0 �
1

km0‘0

2

ln
X

s2S‘0
m0

expfkm0‘0

2 ðVm0‘0

s � Wm0‘0

s Þg

2

6

4

3

7

5 ¼ 0:

Now using the definition of gm0‘0
1 given in CNL

1

k‘
0

1

ln gm0‘0 þ U‘0 � Lm0‘0 ¼ 0 ð42Þ

where Lm0‘0 is the classical log-sum given by

Lm0‘0 ¼ 1

km0‘
2

ln
X

s2S‘0
m0

expfkm0‘
2 ðVm0‘

s � Wm0‘
s Þg

2

6

4

3

7

5: ð43Þ

Finding gm0‘0 from (42)

gm0‘0 ¼ expfk‘01 ðLm0‘0 � U‘0 Þg ð44Þ

and adding with respect to m

bg
‘0 ¼

X

m2S‘0
expfk‘1ðLm‘0 � U‘0 Þg ð45Þ
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Finally, the probability of selecting alternative m0 for the type of user ‘0 in the upper level

is:

gm0‘0

bg
‘0

¼ expfk‘01 ðLm0‘0 � U‘0 Þg
P

m2S‘0 expfk‘
0

1 ðLm‘0 � U‘0 Þg
¼ expðk‘01 Lm0‘0 Þ
P

m2S‘0 expðk‘
0

1 Lm‘0 Þ
ð46Þ

Appendix 2: Over-specification of the CNL model

In this Appendix we show that there exist infinite solutions for the estimation problem (25).

This is due to over-specification of the parameters (Garcı́a-Ródenas and Marı́n 2009;

Bierlaire et al. 1997; Daganzo and Kusnic 1993; Ben-Akiva and Lerman 1985). Parameter

over-specification must be avoided because although some of the more robust methods

succeed in solving the problem, their speed of convergence may be very slow. This

problem is due to the singularity of the second derivative matrix of the log-likelihood

function.

First source of over-specification

The first source of over-specification arises in the interaction between the structure of the

utilities and the parameters k‘j with j 2 f1; 2g and it becomes:

eV m‘
s ¼ d‘ bV

m‘

s

ek
‘

j ¼
k‘j
d‘

; j 2 f1; 2g

9

>

=

>

;

‘ 2 L

The above relationships are schematically denoted as eV ¼ dbV and ek ¼ k=d.

Let ðbV 1; kÞ be a vector of parameters for the CNL model and let

g ¼ CNLððbV 1;HðbV 1ÞÞ; kÞ ð47Þ

be the estimated demand.

The objective function of the CNL model is separable in ‘. If each term in ‘ is multiplied

by the constant d‘ [ 0 then the optimal solution associated with ‘ is not changed. More-

over, the system constraints hold. This leads to:

g ¼ CNL ðdV1; dHðbV 1ÞÞ; k=d
� �

¼ CNL ðeV 1; dHðbV 1ÞÞ; ek
� �

ð48Þ

It is worth noting that the utilities bV 1 are multiplied by d, the solution of system (15) is

multiplied by d and thus the utilities bV 2 are also multiplied by d because they are linear in

their parameters a. Mathematically

HðdbV 1Þ ¼ dHðbV 1Þ ð49Þ

Using (47), (48) and (49), we obtain

g ¼ CNL ðbV 1;HðbV 1ÞÞ; k
� �

¼ CNL ðeV 1;HðeV 1ÞÞ; ek
� �

ð50Þ
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As the objective function of the estimation model (25), Fðg;NÞ, depends only on g, both

solutions ðbV 1; kÞ and ðeV 1; ekÞ have the same objective value. This shows that there exist

infinite optimal solutions of the estimation model.

Thus the scale parameters of the Gumbel error terms are undetermined. In practice,

setting one Gumbel term for each ‘ is sufficient for the identification.

Second source of over-specification

The second source of over-specification in the CNL models is adding the same value to the

utilities of all the alternatives, which does not affect the log-likelihood of the sample. In

this case, we assume that D2 ¼ f;g: The set of utilities

eV
m‘

s ¼ bV
m‘

s þ c‘; ‘ 2 L ð51Þ

produces the same solution as the optimization model. If utilities bV of the objective

function CNML are replaced by utilities eV the same objective function value plus the

constant is obtained

�
X

s2Sm

eV
m‘

s gm‘
s ¼ �

X

s2Sm

ðbV m‘

s þ c‘Þgm‘
s ¼ �c‘bg‘ �

X

s2Sm

bV
m‘

s gm‘
s ð52Þ

Bierlaire et al. (1997) have analysed over-specification in nested logit models to the log-

likelihood function. These authors have analysed the relationship between any two arbi-

trary strategies to avoid over-specification, and shown that the two strategies are equivalent

under a linear transformation of the variables. Some algorithms are independent of such

transformations: Newton’s method and the quasi-Newton methods of the Broyden family

are combined with line searches. If these are used, then the way in which the over-

specification is eliminated is not important. Daganzo and Kusnic (1993) suggested

equating one parameter to zero for each set of parameters mixed up in every source of

over-specification, and estimating the rest in order to avoid over-specification in the nested

logit model.
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