104,694 research outputs found

    Energy-efficient task allocation for distributed applications in Wireless Sensor Networks

    Get PDF
    We consider the scenario of a sensing, computing and communicating infrastructure with a a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. We then face the problem of setting up the desired application in case of hundreds of nodes, which consists in identifying which actions should be performed by each of the nodes so as to satisfy the ambient needs while minimizing the application impact on the infrastructure battery lifetime. We approach the problem by considering every possible decomposition of the application's sensing and computing operations into tasks to be assigned to the each infrastructure component. The contribution of energy consumption due to the performance of each task is then considered to compute a cost function, allowing us to evaluate the viability of each deployment solution. Simulation results show that our framework results in considerable energy conservation with respect to sink-oriented or cluster-oriented deployment approaches, particularly for networks with high node densities, non-uniform energy consumption and initial energy, and complex actions

    A Goal-based Framework for Contextual Requirements Modeling and Analysis

    Get PDF
    Requirements Engineering (RE) research often ignores, or presumes a uniform nature of the context in which the system operates. This assumption is no longer valid in emerging computing paradigms, such as ambient, pervasive and ubiquitous computing, where it is essential to monitor and adapt to an inherently varying context. Besides influencing the software, context may influence stakeholders' goals and their choices to meet them. In this paper, we propose a goal-oriented RE modeling and reasoning framework for systems operating in varying contexts. We introduce contextual goal models to relate goals and contexts; context analysis to refine contexts and identify ways to verify them; reasoning techniques to derive requirements reflecting the context and users priorities at runtime; and finally, design time reasoning techniques to derive requirements for a system to be developed at minimum cost and valid in all considered contexts. We illustrate and evaluate our approach through a case study about a museum-guide mobile information system

    Randomized Dynamic Mode Decomposition

    Full text link
    This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank matrix approximations at a fraction of the cost of deterministic algorithms, easing the computational challenges arising in the area of `big data'. The idea is to derive a small matrix from the high-dimensional data, which is then used to efficiently compute the dynamic modes and eigenvalues. The algorithm is presented in a modular probabilistic framework, and the approximation quality can be controlled via oversampling and power iterations. The effectiveness of the resulting randomized DMD algorithm is demonstrated on several benchmark examples of increasing complexity, providing an accurate and efficient approach to extract spatiotemporal coherent structures from big data in a framework that scales with the intrinsic rank of the data, rather than the ambient measurement dimension. For this work we assume that the dynamics of the problem under consideration is evolving on a low-dimensional subspace that is well characterized by a fast decaying singular value spectrum

    Extending Ambient Intelligence to the Internet of Things: New Challenges for QoC Management

    Get PDF
    International audienceQuality of Context (QoC) awareness is recognized as a key point for the success of context-aware computing solutions. At a time where the Internet of Things, Cloud Computing, and Ambient Intelligence paradigms bring together new opportunities for more complex context computation, the next generation of Multiscale Distributed Context Managers (MDCM) is facing new challenges concerning QoC management. This paper presents how our QoCIM framework can help application developers to manage the whole QoC life-cycle by providing genericity, openness and uniformity. Its usages are illustrated, both at design time and at runtime, in the case of an urban pollution context- and QoC-aware scenario

    Discrete Event Modeling and Simulation for IoT Efficient Design Combining WComp and DEVSimPy Framework

    Get PDF
    International audienceOne of today's challenges in the framework of ubiquitous computing concerns the design of ambient systems including sensors, smart-phones, interconnected objects, computers, etc. The major difficulty is to propose a compositional adaptation which aims to integrate new features that were not foreseen in the design, remove or exchange entities that are no longer available in a given context. In order to provide help to overcome this difficulty, a new approach based on the definition of strategies validated using discrete-event simulation is proposed. Such strategies make it possible to take into account conflicts and compositional adaptation of components in ambient systems. These are defined and validate using a discrete-event formalism to be integrated into a prototyping and dynamic execution environment for ambient intelligence applications. The proposed solution allows the designers of ambient systems to define the optimum matching of all components to each other. One pedagogical example is presented (switch-lamp system) as a proof of the proposed approach

    A Decentralized Lifetime Maximization Algorithm for Distributed Applications in Wireless Sensor Networks

    Get PDF
    We consider the scenario of a Wireless Sensor Networks (WSN) where the nodes are equipped with a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. We then address the problem of finding the optimal deployment of the target applications in terms of network lifetime. We approach the problem considering every possible decomposition of an application's sensing and computing operations into tasks to be assigned to each infrastructure component. The contribution of energy consumption due to the energy cost of each task is then considered into local cost functions in each node, allowing us to evaluate the viability of the deployment solution. The proposed algorithm is based on an iterative and asynchronous local optimization of the task allocations between neighboring nodes that increases the network lifetime. Simulation results show that our framework leads to considerable energy saving with respect to both sink-oriented and cluster-oriented deployment approaches, particularly for networks with high node densities and non-uniform energy consumption or initial battery charge

    Deployment of Distributed Applications in Wireless Sensor Networks

    Get PDF
    The increase in computation and sensing capabilities as well as in battery duration of commercially available Wireless Sensors Network (WSN) nodes are making the paradigm of an horizontal ambient intelligence infrastructure feasible. Accordingly, the sensing, computing and communicating infrastructure is set with a programmable middleware that allows for quickly deploying different applications running on top of it so as to follow the changing ambient needs. In this scenario, we face the problem of setting up the desired application in complex scenarios with hundreds of nodes, which consists of identifying which actions should be performed by each of the nodes so as to satisfy the ambient needs while minimizing the application impact on the infrastructure battery lifetime. Accordingly, we approach the problem by considering every possible decomposition of the application’s sensing and computing operations into tasks to be assigned to each infrastructure component. The contribution of energy consumption due to the performance of each task is then considered to compute a cost function, allowing us to evaluate the viability of each deployment solution. Simulation results show that our framework results in considerable energy conservation with respect to sink-oriented or cluster-oriented deployment approaches, particularly for networks with high node densities, non-uniform energy consumption and initial energy, and complex actions
    corecore