7,724 research outputs found

    Supervisory Control of Fuzzy Discrete Event Systems: A Formal Approach

    Full text link
    Fuzzy {\it discrete event systems} (DESs) were proposed recently by Lin and Ying [19], which may better cope with the real-world problems with fuzziness, impreciseness, and subjectivity such as those in biomedicine. As a continuation of [19], in this paper we further develop fuzzy DESs by dealing with supervisory control of fuzzy DESs. More specifically, (i) we reformulate the parallel composition of crisp DESs, and then define the parallel composition of fuzzy DESs that is equivalent to that in [19]; {\it max-product} and {\it max-min} automata for modeling fuzzy DESs are considered; (ii) we deal with a number of fundamental problems regarding supervisory control of fuzzy DESs, particularly demonstrate controllability theorem and nonblocking controllability theorem of fuzzy DESs, and thus present the conditions for the existence of supervisors in fuzzy DESs; (iii) we analyze the complexity for presenting a uniform criterion to test the fuzzy controllability condition of fuzzy DESs modeled by max-product automata; in particular, we present in detail a general computing method for checking whether or not the fuzzy controllability condition holds, if max-min automata are used to model fuzzy DESs, and by means of this method we can search for all possible fuzzy states reachable from initial fuzzy state in max-min automata; also, we introduce the fuzzy nn-controllability condition for some practical problems; (iv) a number of examples serving to illustrate the applications of the derived results and methods are described; some basic properties related to supervisory control of fuzzy DESs are investigated. To conclude, some related issues are raised for further consideration

    Computational universes

    Full text link
    Suspicions that the world might be some sort of a machine or algorithm existing ``in the mind'' of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science have lent support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world view.Comment: Several corrections of typos and smaller revisions, final versio

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Retraction and Generalized Extension of Computing with Words

    Full text link
    Fuzzy automata, whose input alphabet is a set of numbers or symbols, are a formal model of computing with values. Motivated by Zadeh's paradigm of computing with words rather than numbers, Ying proposed a kind of fuzzy automata, whose input alphabet consists of all fuzzy subsets of a set of symbols, as a formal model of computing with all words. In this paper, we introduce a somewhat general formal model of computing with (some special) words. The new features of the model are that the input alphabet only comprises some (not necessarily all) fuzzy subsets of a set of symbols and the fuzzy transition function can be specified arbitrarily. By employing the methodology of fuzzy control, we establish a retraction principle from computing with words to computing with values for handling crisp inputs and a generalized extension principle from computing with words to computing with all words for handling fuzzy inputs. These principles show that computing with values and computing with all words can be respectively implemented by computing with words. Some algebraic properties of retractions and generalized extensions are addressed as well.Comment: 13 double column pages; 3 figures; to be published in the IEEE Transactions on Fuzzy System
    • 

    corecore