13,340 research outputs found

    Formalizing alternating-time temporal logic in the coq proof assistant

    Get PDF
    This work presents a complete formalization of Alternating-time Temporal Logic (ATL) and its semantic model, Concurrent Game Structures (CGS), in the Calculus of (Co)Inductive Constructions, using the logical framework Coq. Unlike standard ATL semantics, temporal operators are formalized in terms of inductive and coinductive types, employing a fixpoint characterization of these operators. The formalization is used to model a concurrent system with an unbounded number of players and states, and to verify some properties expressed as ATL formulas. Unlike automatic techniques, our formal model has no restrictions in the size of the CGS, and arbitrary state predicates can be used as atomic propositions of ATL. Keywords: Reactive Systems and Open Systems, Alternating-time Temporal Logic, Concurrent Game Structures, Calculus of (Co)Inductive Constructions, Coq Proof Assistant

    Concrete Semantics with Coq and CoqHammer

    Full text link
    The "Concrete Semantics" book gives an introduction to imperative programming languages accompanied by an Isabelle/HOL formalization. In this paper we discuss a re-formalization of the book using the Coq proof assistant. In order to achieve a similar brevity of the formal text we extensively use CoqHammer, as well as Coq Ltac-level automation. We compare the formalization efficiency, compactness, and the readability of the proof scripts originating from a Coq re-formalization of two chapters from the book

    Semi-simplicial Types in Logic-enriched Homotopy Type Theory

    Full text link
    The problem of defining Semi-Simplicial Types (SSTs) in Homotopy Type Theory (HoTT) has been recognized as important during the Year of Univalent Foundations at the Institute of Advanced Study. According to the interpretation of HoTT in Quillen model categories, SSTs are type-theoretic versions of Reedy fibrant semi-simplicial objects in a model category and simplicial and semi-simplicial objects play a crucial role in many constructions in homotopy theory and higher category theory. Attempts to define SSTs in HoTT lead to some difficulties such as the need of infinitary assumptions which are beyond HoTT with only non-strict equality types. Voevodsky proposed a definition of SSTs in Homotopy Type System (HTS), an extension of HoTT with non-fibrant types, including an extensional strict equality type. However, HTS does not have the desirable computational properties such as decidability of type checking and strong normalization. In this paper, we study a logic-enriched homotopy type theory, an alternative extension of HoTT with equational logic based on the idea of logic-enriched type theories. In contrast to Voevodskys HTS, all types in our system are fibrant and it can be implemented in existing proof assistants. We show how SSTs can be defined in our system and outline an implementation in the proof assistant Plastic

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools
    • 

    corecore