561 research outputs found

    Human-Agent Decision-making: Combining Theory and Practice

    Full text link
    Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Human Behavior Models for Agents in Simulators and Games: Part II Gamebot Engineering with PMFserv

    Get PDF
    Many producers and consumers of legacy training simulator and game environments are beginning to envision a new era where psycho-socio-physiologic models could be interoperated to enhance their environments\u27 simulation of human agents. This paper explores whether we could embed our behavior modeling framework (described in the companion paper, Part 1) behind a legacy first person shooter 3D game environment to recreate portions of the Black Hawk Down scenario. Section 1 amplifies the interoperability needs and challenges confronting the field, presents the questions that are examined, and describes the test scenario. Sections 2 and 3 review the software and knowledge engineering methodology, respectively, needed to create the system and populate it with bots. Results (Section 4) and discussion (Section 5) reveal that we were able to generate plausible and adaptive recreations of Somalian crowds, militia, women acting as shields, suicide bombers, and more. Also, there are specific lessons learned about ways to advance the field so that such interoperabilities will become more affordable and widespread

    Deep Reinforcement Learning for Complete Coverage Path Planning in Unknown Environments

    Get PDF
    Mobile robots must operate autonomously, often in unknown and unstructured environments. To achieve this objective, a robot must be able to correctly perceive its environment, plan its path, and move around safely, without human supervision. Navigation from an initial position to a target lo- cation has been a challenging problem in robotics. This work examined the particular navigation task requiring complete coverage planning in outdoor environments. A motion planner based on Deep Reinforcement Learning is proposed where a Deep Q-network is trained to learn a control policy to approximate the optimal strategy, using a dynamic map of the environment. In addition to this path planning algorithm, a computer vision system is presented as a way to capture the images of a stereo camera embedded on the robot, detect obstacles and update the workspace map. Simulation results show that the algorithm generalizes well to different types of environments. After multiple sequences of training of the Reinforcement Learning agent, the virtual mobile robot is able to cover the whole space with a coverage rate of over 80% on average, starting from a varying initial position, while avoiding obstacles by using relying on local sensory information. The experiments also demonstrate that the DQN agent was able to better perform the coverage when compared to a human

    Proceedings of the 2004 ONR Decision-Support Workshop Series: Interoperability

    Get PDF
    In August of 1998 the Collaborative Agent Design Research Center (CADRC) of the California Polytechnic State University in San Luis Obispo (Cal Poly), approached Dr. Phillip Abraham of the Office of Naval Research (ONR) with the proposal for an annual workshop focusing on emerging concepts in decision-support systems for military applications. The proposal was considered timely by the ONR Logistics Program Office for at least two reasons. First, rapid advances in information systems technology over the past decade had produced distributed collaborative computer-assistance capabilities with profound potential for providing meaningful support to military decision makers. Indeed, some systems based on these new capabilities such as the Integrated Marine Multi-Agent Command and Control System (IMMACCS) and the Integrated Computerized Deployment System (ICODES) had already reached the field-testing and final product stages, respectively. Second, over the past two decades the US Navy and Marine Corps had been increasingly challenged by missions demanding the rapid deployment of forces into hostile or devastate dterritories with minimum or non-existent indigenous support capabilities. Under these conditions Marine Corps forces had to rely mostly, if not entirely, on sea-based support and sustainment operations. Particularly today, operational strategies such as Operational Maneuver From The Sea (OMFTS) and Sea To Objective Maneuver (STOM) are very much in need of intelligent, near real-time and adaptive decision-support tools to assist military commanders and their staff under conditions of rapid change and overwhelming data loads. In the light of these developments the Logistics Program Office of ONR considered it timely to provide an annual forum for the interchange of ideas, needs and concepts that would address the decision-support requirements and opportunities in combined Navy and Marine Corps sea-based warfare and humanitarian relief operations. The first ONR Workshop was held April 20-22, 1999 at the Embassy Suites Hotel in San Luis Obispo, California. It focused on advances in technology with particular emphasis on an emerging family of powerful computer-based tools, and concluded that the most able members of this family of tools appear to be computer-based agents that are capable of communicating within a virtual environment of the real world. From 2001 onward the venue of the Workshop moved from the West Coast to Washington, and in 2003 the sponsorship was taken over by ONR’s Littoral Combat/Power Projection (FNC) Program Office (Program Manager: Mr. Barry Blumenthal). Themes and keynote speakers of past Workshops have included: 1999: ‘Collaborative Decision Making Tools’ Vadm Jerry Tuttle (USN Ret.); LtGen Paul Van Riper (USMC Ret.);Radm Leland Kollmorgen (USN Ret.); and, Dr. Gary Klein (KleinAssociates) 2000: ‘The Human-Computer Partnership in Decision-Support’ Dr. Ronald DeMarco (Associate Technical Director, ONR); Radm CharlesMunns; Col Robert Schmidle; and, Col Ray Cole (USMC Ret.) 2001: ‘Continuing the Revolution in Military Affairs’ Mr. Andrew Marshall (Director, Office of Net Assessment, OSD); and,Radm Jay M. Cohen (Chief of Naval Research, ONR) 2002: ‘Transformation ... ’ Vadm Jerry Tuttle (USN Ret.); and, Steve Cooper (CIO, Office ofHomeland Security) 2003: ‘Developing the New Infostructure’ Richard P. Lee (Assistant Deputy Under Secretary, OSD); and, MichaelO’Neil (Boeing) 2004: ‘Interoperability’ MajGen Bradley M. Lott (USMC), Deputy Commanding General, Marine Corps Combat Development Command; Donald Diggs, Director, C2 Policy, OASD (NII

    Strategically Revealing Intentions in General Lotto Games

    Get PDF
    Strategic decision-making in uncertain and adversarial environments is crucial for the security of modern systems and infrastructures. A salient feature of many optimal decision-making policies is a level of unpredictability, or randomness, which helps to keep an adversary uncertain about the system’s behavior. This paper seeks to explore decision-making policies on the other end of the spectrum – namely, whether there are benefits in revealing one’s strategic intentions to an opponent before engaging in competition.We study these scenarios in a well-studied model of competitive resource allocation problem known as General Lotto games. In the classic formulation, two competing players simultaneously allocate their assets to a set of battlefields, and the resulting payoffs are derived in a zero-sum fashion. Here, we consider a multi-step extension where one of the players has the option to publicly pre-commit assets in a binding fashion to battlefields before play begins. In response, the opponent decides which of these battlefields to secure (or abandon) by matching the pre-commitment with its own assets. They then engage in a General Lotto game over the remaining set of battlefields. Interestingly, this paper highlights many scenarios where strategically revealing intentions can actually significantly improve one’s payoff. This runs contrary to the conventional wisdom that randomness should be a central component of decision-making in adversarial environments

    Strategically Revealing Intentions in General Lotto Games

    Get PDF
    Strategic decision-making in uncertain and adversarial environments is crucial for the security of modern systems and infrastructures. A salient feature of many optimal decision-making policies is a level of unpredictability, or randomness, which helps to keep an adversary uncertain about the system’s behavior. This paper seeks to explore decision-making policies on the other end of the spectrum – namely, whether there are benefits in revealing one’s strategic intentions to an opponent before engaging in competition.We study these scenarios in a well-studied model of competitive resource allocation problem known as General Lotto games. In the classic formulation, two competing players simultaneously allocate their assets to a set of battlefields, and the resulting payoffs are derived in a zero-sum fashion. Here, we consider a multi-step extension where one of the players has the option to publicly pre-commit assets in a binding fashion to battlefields before play begins. In response, the opponent decides which of these battlefields to secure (or abandon) by matching the pre-commitment with its own assets. They then engage in a General Lotto game over the remaining set of battlefields. Interestingly, this paper highlights many scenarios where strategically revealing intentions can actually significantly improve one’s payoff. This runs contrary to the conventional wisdom that randomness should be a central component of decision-making in adversarial environments

    Integración de agentes deliberativos en la plataforma SPADE: Desarrollo de pGomas

    Full text link
    [ES] Este trabajo aborda y analiza la importancia de incorporar un comportamiento deliberativo BDI a la plataforma de sistemas multiagente SPADE. Este complemento le da a SPADE una ganancia potencial, ya que la plataforma ahora estará preparada para la programación de agentes híbridos. Como caso de estudio se desarrolla una nueva versión de PGOMAS, en la que los agentes reactivos se reemplazan con los nuevos híbridos implementados. La intención es desarrollar un entorno de sistemas multiagente para la enseñanza del trabajo práctico en asignaturas de IA que resulte atractivo para los estudiantes.[EN] This work addresses and discusses the importance of developing a deliberative BDI behaviour for the SPADE MultiAgent System Platform. This add-on gives SPADE a potential gain, as the platform will now be prepared for programming hybrid agents. A new version of PGOMAS is developed, in which the reactive agents are replaced with the new implemented hybrid ones. The aim is to develop a multiagent system environment for teaching practical work in AI subjects that results attractive to students.Frayle Pérez, S. (2019). Integración de agentes deliberativos en la plataforma SPADE: Desarrollo de pGomas. http://hdl.handle.net/10251/129903TFG
    • …
    corecore