57 research outputs found

    Tree-width and dimension

    Full text link
    Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.Comment: Updates on solutions of problems and on bibliograph

    A study of discrepancy results in partially ordered sets

    Get PDF
    In 2001, Fishburn, Tanenbaum, and Trenk published a pair of papers that introduced the notions of linear and weak discrepancy of a partially ordered set or poset. Linear discrepancy for a poset is the least k such that for any ordering of the points in the poset there is a pair of incomparable points at least distance k away in the ordering. Weak discrepancy is similar to linear discrepancy except that the distance is observed over weak labelings (i.e. two points can have the same label if they are incomparable, but order is still preserved). My thesis gives a variety of results pertaining to these properties and other forms of discrepancy in posets. The first chapter of my thesis partially answers a question of Fishburn, Tanenbaum, and Trenk that was to characterize those posets with linear discrepancy two. It makes the characterization for those posets with width two and references the paper where the full characterization is given. The second chapter introduces the notion of t-discrepancy which is similar to weak discrepancy except only the weak labelings with at most t copies of any label are considered. This chapter shows that determining a poset's t-discrepancy is NP-Complete. It also gives the t-discrepancy for the disjoint sum of chains and provides a polynomial time algorithm for determining t-discrepancy of semiorders. The third chapter presents another notion of discrepancy namely total discrepancy which minimizes the average distance between incomparable elements. This chapter proves that finding this value can be done in polynomial time unlike linear discrepancy and t-discrepancy. The final chapter answers another question of Fishburn, Tanenbaum, and Trenk that asked to characterize those posets that have equal linear and weak discrepancies. Though determining the answer of whether the weak discrepancy and linear discrepancy of a poset are equal is an NP-Complete problem, the set of minimal posets that have this property are given. At the end of the thesis I discuss two other open problems not mentioned in the previous chapters that relate to linear discrepancy. The first asks if there is a link between a poset's dimension and its linear discrepancy. The second refers to approximating linear discrepancy and possible ways to do it.Ph.D.Committee Chair: Trotter, William T.; Committee Member: Dieci, Luca; Committee Member: Duke, Richard; Committee Member: Randall, Dana; Committee Member: Tetali, Prasa

    Fiber polytopes for the projections between cyclic polytopes

    Full text link
    The cyclic polytope C(n,d)C(n,d) is the convex hull of any nn points on the moment curve (t,t2,...,td):tR{(t,t^2,...,t^d):t \in \reals} in Rd\reals^d. For d>dd' >d, we consider the fiber polytope (in the sense of Billera and Sturmfels) associated to the natural projection of cyclic polytopes π:C(n,d)C(n,d)\pi: C(n,d') \to C(n,d) which "forgets" the last ddd'-d coordinates. It is known that this fiber polytope has face lattice indexed by the coherent polytopal subdivisions of C(n,d)C(n,d) which are induced by the map π\pi. Our main result characterizes the triples (n,d,d)(n,d,d') for which the fiber polytope is canonical in either of the following two senses: - all polytopal subdivisions induced by π\pi are coherent, - the structure of the fiber polytope does not depend upon the choice of points on the moment curve. We also discuss a new instance with a positive answer to the Generalized Baues Problem, namely that of a projection π:PQ\pi:P\to Q where QQ has only regular subdivisions and PP has two more vertices than its dimension.Comment: 28 pages with 1 postscript figur

    Forbidden subposet problems in the grid

    Get PDF
    For posets PP and QQ, extremal and saturation problems about weak and strong PP-free subposets of QQ have been studied mostly in the case QQ is the Boolean poset QnQ_n, the poset of all subsets of an nn-element set ordered by inclusion. In this paper, we study some instances of the problem with QQ being the grid, and its connections to the Boolean case and to the forbidden submatrix problem

    The leafage of a chordal graph

    Full text link
    The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - (1/2) lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.Comment: 19 pages, 3 figure

    The polytope of non-crossing graphs on a planar point set

    Full text link
    For any finite set \A of nn points in R2\R^2, we define a (3n3)(3n-3)-dimensional simple polyhedron whose face poset is isomorphic to the poset of ``non-crossing marked graphs'' with vertex set \A, where a marked graph is defined as a geometric graph together with a subset of its vertices. The poset of non-crossing graphs on \A appears as the complement of the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face, of dimension 2ni+n32n_i +n -3 where nin_i is the number of points of \A in the interior of \conv(\A). The vertices of this polytope are all the pseudo-triangulations of \A, and the edges are flips of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or insertion of a single edge. As a by-product of our construction we prove that all pseudo-triangulations are infinitesimally rigid graphs.Comment: 28 pages, 16 figures. Main change from v1 and v2: Introduction has been reshape

    Lattice congruences, fans and Hopf algebras

    Get PDF
    We give a unified explanation of the geometric and algebraic properties of two well-known maps, one from permutations to triangulations, and another from permutations to subsets. Furthermore we give a broad generalization of the maps. Specifically, for any lattice congruence of the weak order on a Coxeter group we construct a complete fan of convex cones with strong properties relative to the corresponding lattice quotient of the weak order. We show that if a family of lattice congruences on the symmetric groups satisfies certain compatibility conditions then the family defines a sub Hopf algebra of the Malvenuto-Reutenauer Hopf algebra of permutations. Such a sub Hopf algebra has a basis which is described by a type of pattern-avoidance. Applying these results, we build the Malvenuto-Reutenauer algebra as the limit of an infinite sequence of smaller algebras, where the second algebra in the sequence is the Hopf algebra of non-commutative symmetric functions. We also associate both a fan and a Hopf algebra to a set of permutations which appears to be equinumerous with the Baxter permutations.Comment: 34 pages, 1 figur

    Poset Ramsey number R(P,Qn)R(P,Q_n). III. N-shaped poset

    Full text link
    Given partially ordered sets (posets) (P,P)(P, \leq_P) and (P,P)(P', \leq_{P'}), we say that PP' contains a copy of PP if for some injective function f ⁣:PPf\colon P\rightarrow P' and for any A,BPA, B\in P, APBA\leq _P B if and only if f(A)Pf(B)f(A)\leq_{P'} f(B). For any posets PP and QQ, the poset Ramsey number R(P,Q)R(P,Q) is the least positive integer NN such that no matter how the elements of an NN-dimensional Boolean lattice are colored in blue and red, there is either a copy of PP with all blue elements or a copy of QQ with all red elements. We focus on the poset Ramsey number R(P,Qn)R(P, Q_n) for a fixed poset PP and an nn-dimensional Boolean lattice QnQ_n, as nn grows large. It is known that n+c1(P)R(P,Qn)c2(P)nn+c_1(P) \leq R(P,Q_n) \leq c_2(P) n, for positive constants c1c_1 and c2c_2. However, there is no poset PP known, for which R(P,Qn)>(1+ϵ)nR(P, Q_n)> (1+\epsilon)n, for ϵ>0\epsilon >0. This paper is devoted to a new method for finding upper bounds on R(P,Qn)R(P, Q_n) using a duality between copies of QnQ_n and sets of elements that cover them, referred to as blockers. We prove several properties of blockers and their direct relation to the Ramsey numbers. Using these properties we show that R(N,Qn)=n+Θ(n/logn)R(\mathcal{N},Q_n)=n+\Theta(n/\log n), for a poset N\mathcal{N} with four elements A,B,C,A, B, C, and DD, such that A<CA<C, B<DB<D, B<CB<C, and the remaining pairs of elements are incomparable.Comment: 19 pages, 6 figure
    corecore