For any finite set \A of n points in R2, we define a
(3n−3)-dimensional simple polyhedron whose face poset is isomorphic to the
poset of ``non-crossing marked graphs'' with vertex set \A, where a marked
graph is defined as a geometric graph together with a subset of its vertices.
The poset of non-crossing graphs on \A appears as the complement of the star
of a face in that polyhedron.
The polyhedron has a unique maximal bounded face, of dimension 2ni+n−3
where ni is the number of points of \A in the interior of \conv(\A). The
vertices of this polytope are all the pseudo-triangulations of \A, and the
edges are flips of two types: the traditional diagonal flips (in
pseudo-triangulations) and the removal or insertion of a single edge.
As a by-product of our construction we prove that all pseudo-triangulations
are infinitesimally rigid graphs.Comment: 28 pages, 16 figures. Main change from v1 and v2: Introduction has
been reshape