27,190 research outputs found

    Computation of inverse magnetic cascades

    Get PDF
    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed

    On orthogonal projections for dimension reduction and applications in augmented target loss functions for learning problems

    Get PDF
    The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does usually not satisfy both objectives at once. In a standard classification problem we determine projections on the input data that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy

    A three-dimensional wavelet based multifractal method : about the need of revisiting the multifractal description of turbulence dissipation data

    Full text link
    We generalize the wavelet transform modulus maxima (WTMM) method to multifractal analysis of 3D random fields. This method is calibrated on synthetic 3D monofractal fractional Brownian fields and on 3D multifractal singular cascade measures as well as their random function counterpart obtained by fractional integration. Then we apply the 3D WTMM method to the dissipation field issue from 3D isotropic turbulence simulations. We comment on the need to revisiting previous box-counting analysis which have failed to estimate correctly the corresponding multifractal spectra because of their intrinsic inability to master non-conservative singular cascade measures.Comment: 5 pages, 3figures, submitted to Phys. Rev. Let
    corecore