921 research outputs found

    Piezoelectric Transducers Based on Aluminum Nitride and Polyimide for Tactile Applications

    Get PDF
    The development of micro systems with smart sensing capabilities is paving the way to progresses in the technology for humanoid robotics. The importance of sensory feedback has been recognized the enabler of a high degree of autonomy for robotic systems. In tactile applications, it can be exploited not only to avoid objects slipping during their manipulation but also to allow safe interaction with humans and unknown objects and environments. In order to ensure the minimal deformation of an object during subtle manipulation tasks, information not only on contact forces between the object and fingers but also on contact geometry and contact friction characteristics has to be provided. Touch, unlike other senses, is a critical component that plays a fundamental role in dexterous manipulation capabilities and in the evaluation of objects properties such as type of material, shape, texture, stiffness, which is not easily possible by vision alone. Understanding of unstructured environments is made possible by touch through the determination of stress distribution in the surrounding area of physical contact. To this aim, tactile sensing and pressure detection systems should be integrated as an artificial tactile system. As illustrated in the Chapter I, the role of external stimuli detection in humans is provided by a great number of sensorial receptors: they are specialized endings whose structure and location in the skin determine their specific signal transmission characteristics. Especially, mechanoreceptors are specialized in the conversion of the mechanical deformations caused by force, vibration or slip on skin into electrical nerve impulses which are processed and encoded by the central nervous system. Highly miniaturized systems based on MEMS technology seem to imitate properly the large number of fast responsive mechanoreceptors present in human skin. Moreover, an artificial electronic skin should be lightweight, flexible, soft and wearable and it should be fabricated with compliant materials. In this respect a big challenge of bio-inspired technologies is the efficient application of flexible active materials to convert the mechanical pressure or stress into a usable electric signal (voltage or current). In the emerging field of soft active materials, able of large deformation, piezoelectrics have been recognized as a really promising and attractive material in both sensing and actuation applications. As outlined in Chapter II, there is a wide choice of materials and material forms (ceramics: PZT; polycrystalline films: ZnO, AlN; polymers and copolymers: PVDF, PVDF-TrFe) which are actively piezoelectric and exhibit features more or less attractive. Among them, aluminum nitride is a promising piezoelectric material for flexible technology. It has moderate piezoelectric coefficient, when available in c-axis oriented polycrystalline columnar structure, but, at same time, it exhibits low dielectric constant, high temperature stability, large band gap, large electrical resistivity, high breakdown voltage and low dielectric loss which make it suitable for transducers and high thermal conductivity which implies low thermal drifts. The high chemical stability allows AlN to be used in humid environments. Moreover, all the above properties and its deposition method make AlN compatible with CMOS technology. Exploiting the features of the AlN, three-dimensional AlN dome-shaped cells, embedded between two metal electrodes, are proposed in this thesis. They are fabricated on general purpose Kaptonℱ substrate, exploiting the flexibility of the polymer and the electrical stability of the semiconductor at the same time. As matter of fact, the crystalline layers release a compressive stress over the polymer, generating three-dimensional structures with reduced stiffness, compared to the semiconductor materials. In Chapter III, a mathematical model to calculate the residual stresses which arise because of mismatch in coefficient of thermal expansion between layers and because of mismatch in lattice constants between the substrate and the epitaxially grown ïŹlms is adopted. The theoretical equation is then used to evaluate the dependence of geometrical features of the fabricated three-dimensional structures on compressive residual stress. Moreover, FEM simulations and theoretical models analysis are developed in order to qualitative explore the operation principle of curved membranes, which are labelled dome-shaped diaphragm transducers (DSDT), both as sensors and as piezo-actuators and for the related design optimization. For the reliability of the proposed device as a force/pressure sensor and piezo-actuator, an exhaustive electromechanical characterization of the devices is carried out. A complete description of the microfabrication processes is also provided. As shown in Chapter IV, standard microfabrication techniques are employed to fabricate the array of DSDTs. The overall microfabrication process involves deposition of metal and piezoelectric films, photolithography and plasma-based dry and wet etching to pattern thin films with the desired features. The DSDT devices are designed and developed according to FEM and theoretical analysis and following the typical requirements of force/pressure systems for tactile applications. Experimental analyses are also accomplished to extract the relationship between the compressive residual stress due to the aluminum nitride and the geometries of the devices. They reveal different deformations, proving the dependence of the geometrical features of the three-dimensional structures on residual stress. Moreover, electrical characterization is performed to determine capacitance and impedance of the DSDTs and to experimentally calculate the relative dielectric constant of sputtered AlN piezoelectric film. In order to investigate the mechanical behaviour of the curved circular transducers, a characterization of the flexural deflection modes of the DSDT membranes is carried out. The natural frequency of vibrations and the corresponding displacements are measured by a Laser Doppler Vibrometer when a suitable oscillating voltage, with known amplitude, is applied to drive the piezo-DSDTs. Finally, being developed for tactile sensing purpose, the proposed technology is tested in order to explore the electromechanical response of the device when impulsive dynamic and/or long static forces are applied. The study on the impulsive dynamic and long static stimuli detection is then performed by using an ad hoc setup measuring both the applied loading forces and the corresponding generated voltage and capacitance variation. These measurements allow a thorough test of the sensing abilities of the AlN-based DSDT cells. Finally, as stated in Chapter V, the proposed technology exhibits an improved electromechanical coupling with higher mechanical deformation per unit energy compared with the conventional plate structures, when the devices are used as piezo-actuator. On the other hand, it is well suited to realize large area tactile sensors for robotics applications, opening up new perspectives to the development of latest generation biomimetic sensors and allowing the design and the fabrication of miniaturized devices

    3D printed neuromorphic sensing systems

    Get PDF
    Thanks to the high energy efficiency, neuromorphic devices are spotlighted recently by mimicking the calculation principle of the human brain through the parallel computation and the memory function. Various bio-inspired \u27in-memory computing\u27 (IMC) devices were developed during the past decades, such as synaptic transistors for artificial synapses. By integrating with specific sensors, neuromorphic sensing systems are achievable with the bio-inspired signal perception function. A signal perception process is possible by a combination of stimuli sensing, signal conversion/transmission, and signal processing. However, most neuromorphic sensing systems were demonstrated without signal conversion/transmission functions. Therefore, those cannot fully mimic the function provides by the sensory neuron in the biological system. This thesis aims to design a neuromorphic sensing system with a complete function as biological sensory neurons. To reach such a target, 3D printed sensors, electrical oscillators, and synaptic transistors were developed as functions of artificial receptors, artificial neurons, and artificial synapses, respectively. Moreover, since the 3D printing technology has demonstrated a facile process due to fast prototyping, the proposed 3D neuromorphic sensing system was designed as a 3D integrated structure and fabricated by 3D printing technologies. A novel multi-axis robot 3D printing system was also utilized to increase the fabrication efficiency with the capability of printing on vertical and tilted surfaces seamlessly. Furthermore, the developed 3D neuromorphic system was easily adapted to the application of tactile sensing. A portable neuromorphic system was integrated with a tactile sensing system for the intelligent tactile sensing application of the humanoid robot. Finally, the bio-inspired reflex arc for the unconscious response was also demonstrated by training the neuromorphic tactile sensing system

    NiO-based electronic flexible devices

    Get PDF
    Personal, portable, and wearable electronics have become items of extensive use in daily life. Their fabrication requires flexible electronic components with high storage capability or with continuous power supplies (such as solar cells). In addition, formerly rigid tools such as electrochromic windows find new utilizations if they are fabricated with flexible characteristics. Flexibility and performances are determined by the material composition and fabrication procedures. In this regard, low-cost, easy-to-handle materials and processes are an asset in the overall production processes and items fruition. In the present mini-review, the most recent approaches are described in the production of flexible electronic devices based on NiO as low-cost material enhancing the overall performances. In particular, flexible NiO-based all-solid-state supercapacitors, electrodes electrochromic devices, temperature devices, and ReRAM are discussed, thus showing the potential of NiO as material for future developments in opto-electronic devices

    Objekt-Manipulation und Steuerung der Greifkraft durch Verwendung von Taktilen Sensoren

    Get PDF
    This dissertation describes a new type of tactile sensor and an improved version of the dynamic tactile sensing approach that can provide a regularly updated and accurate estimate of minimum applied forces for use in the control of gripper manipulation. The pre-slip sensing algorithm is proposed and implemented into two-finger robot gripper. An algorithm that can discriminate between types of contact surface and recognize objects at the contact stage is also proposed. A technique for recognizing objects using tactile sensor arrays, and a method based on the quadric surface parameter for classifying grasped objects is described. Tactile arrays can recognize surface types on contact, making it possible for a tactile system to recognize translation, rotation, and scaling of an object independently.Diese Dissertation beschreibt eine neue Art von taktilen Sensoren und einen verbesserten Ansatz zur dynamischen Erfassung von taktilen daten, der in regelmĂ€ĂŸigen ZeitabstĂ€nden eine genaue Bewertung der minimalen Greifkraft liefert, die zur Steuerung des Greifers nötig ist. Ein Berechnungsverfahren zur Voraussage des Schlupfs, das in einen Zwei-Finger-Greifarm eines Roboters eingebaut wurde, wird vorgestellt. Auch ein Algorithmus zur Unterscheidung von verschiedenen OberflĂ€chenarten und zur Erkennung von Objektformen bei der BerĂŒhrung wird vorgestellt. Ein Verfahren zur Objekterkennung mit Hilfe einer Matrix aus taktilen Sensoren und eine Methode zur Klassifikation ergriffener Objekte, basierend auf den Daten einer rechteckigen OberflĂ€che, werden beschrieben. Mit Hilfe dieser Matrix können unter schiedliche Arten von OberflĂ€chen bei BerĂŒhrung erkannt werden, was es fĂŒr das Tastsystem möglich macht, Verschiebung, Drehung und GrĂ¶ĂŸe eines Objektes unabhĂ€ngig voneinander zu erkennen

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in GerĂ€ten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese FĂ€higkeiten nutzen, ist allerdings problematisch. HierfĂŒr sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter InteraktivitĂ€t und KompatibilitĂ€t mit vielfĂ€ltigen Materialien erforderlich. Zudem sollten solche Technologien zugĂ€nglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als SchlĂŒsseltechnologie, um diese Probleme zu adressieren. Sie trĂ€gt vier neue Design- und FabrikationsansĂ€tze fĂŒr das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugĂ€ngliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfĂ€ltigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der FĂ€higkeit ihre Form und Materialeigenschaften zu Ă€ndern. Insgesamt trĂ€gt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des grĂ¶ĂŸeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei
    • 

    corecore