1,125 research outputs found

    Proposal of a health care network based on big data analytics for PDs

    Get PDF
    Health care networks for Parkinson's disease (PD) already exist and have been already proposed in the literature, but most of them are not able to analyse the vast volume of data generated from medical examinations and collected and organised in a pre-defined manner. In this work, the authors propose a novel health care network based on big data analytics for PD. The main goal of the proposed architecture is to support clinicians in the objective assessment of the typical PD motor issues and alterations. The proposed health care network has the ability to retrieve a vast volume of acquired heterogeneous data from a Data warehouse and train an ensemble SVM to classify and rate the motor severity of a PD patient. Once the network is trained, it will be able to analyse the data collected during motor examinations of a PD patient and generate a diagnostic report on the basis of the previously acquired knowledge. Such a diagnostic report represents a tool both to monitor the follow up of the disease for each patient and give robust advice about the severity of the disease to clinicians

    A Co-optimal Coverage Path Planning Method for Aerial Scanning of Complex Structures

    Get PDF
    The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to safety and inspection requirements. The result is a highly parallelizable algorithm that produces more efficient paths where quality of the useful image data is improved. The path optimization algorithm utilizes a particle swarm optimization (PSO) framework which iteratively optimizes the coverage paths without needing to discretize the motion space or simplify the sensing models as is done in similar methods. The core of the method consists of a cost function that measures both the quality and efficiency of a coverage inspection path, and a greedy heuristic for the optimization enhancement by aggressively exploring the viewpoints search spaces. To assess the proposed method, a coverage path quality evaluation method is also presented in this research, which can be utilized as the benchmark for assessing other CPP methods for structural inspection purpose. The effectiveness of the proposed method is demonstrated by comparing the quality and efficiency of the proposed approach with the state-of-art through both synthetic and real-world scenes. The experiments show that our method enables significant performance improvement in coverage inspection quality while preserving the path efficiency on different test geometries

    Middleware and Architecture for Advanced Applications of Cyber-physical Systems

    Get PDF
    In this thesis, we address issues related to middleware, architecture and applications of cyber-physical systems. The first problem we address is the cross-layer design of cyber-physical systems to cope with interactions between the cyber layer and the physical layer in a dynamic environment. We propose a bi-directional middleware that allows the optimal utilization of the common resources for the benefit of either or both the layers in order to obtain overall system performance. The case study of network connectivity preservation in a vehicular formation illustrates how this approach can be applied to a particular situation where the network connectivity drives the application layer. Next we address another aspect of cross-layer impact: the problem that arises when network performance, in this case delay performance, affects control system performance. We propose a two-pronged approach involving a flexible adaptive model identification algorithm with outlier rejection, which in turn uses an adaptive system model to detect and reject outliers, thus shielding the estimation algorithm and thereby improving reliability. We experimentally demonstrate that the outlier rejection approach which intercepts and filters the data, combined with simultaneous model adaptation, can result in improved performance of Model Predictive Control in the vehicular testbed. Then we turn to two advanced applications of cyber-physical systems. First, we address the problem of security of cyber-physical systems. We consider the context of an intelligent transportation system in which a malicious sensor node manipulates the position data of one of the autonomous cars to deviate from a safe trajectory and collide with other cars. In order to secure the safety of such systems where sensor measurements are compromised, we employ the procedure of “dynamic watermarking”. This procedure enables an honest node in the control loop to detect the existence of a malicious node within the feedback loop. We demonstrate in the testbed that dynamic watermarking can indeed protect cars against collisions even in the presence of sensor attacks. The second application of cyber-physical systems that we consider is cyber-manufacturing which is an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are a laser processing machine, a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data, a robotic arm manipulating the workpiece in the work space, and middleware supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result. Lastly, we address the problem of traffic management of an unmanned aerial system. In an effort to improve the performance of the traffic management for unmanned aircrafts, we propose a probability-based collision resolution algorithm. The proposed algorithm analyzes the planned trajectories to calculate their collision probabilities, and modifies individual drone starting times to reduce the probability of collision, while attempting to preserve high performance. Our simulation results demonstrate that the proposed algorithm improves the performance of the drone traffic management by guaranteeing high safety with low modification of the starting times

    Teleoperated visual inspection and surveillance with unmanned ground and aerial vehicles,” Int

    Get PDF
    Abstract—This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle) consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicles (UAV). The paper focuses on three topics of the inspection with the combined UGV and UAV: (A) teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B) the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C) the architecture and hardware of the UAV

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    Real-time Aerial Detection and Reasoning on Embedded-UAVs

    Full text link
    We present a unified pipeline architecture for a real-time detection system on an embedded system for UAVs. Neural architectures have been the industry standard for computer vision. However, most existing works focus solely on concatenating deeper layers to achieve higher accuracy with run-time performance as the trade-off. This pipeline of networks can exploit the domain-specific knowledge on aerial pedestrian detection and activity recognition for the emerging UAV applications of autonomous surveying and activity reporting. In particular, our pipeline architectures operate in a time-sensitive manner, have high accuracy in detecting pedestrians from various aerial orientations, use a novel attention map for multi-activities recognition, and jointly refine its detection with temporal information. Numerically, we demonstrate our model's accuracy and fast inference speed on embedded systems. We empirically deployed our prototype hardware with full live feeds in a real-world open-field environment.Comment: In TGR
    corecore