45,506 research outputs found

    Bindings and RESTlets: a novel set of CoAP-based application enablers to build IoT applications

    Get PDF
    Sensors and actuators are becoming important components of Internet of Things (IoT) applications. Today, several approaches exist to facilitate communication of sensors and actuators in IoT applications. Most communications go through often proprietary gateways requiring availability of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway does some processing of the sensor data before triggering actuators. Other approaches put this processing logic further in the cloud. These approaches introduce significant latencies and increased number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of sensors and actuators. This flexible binding solution is utilized further to build IoT applications through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted on any device) through the flexible binding mechanism we introduced. This approach facilitates decentralized IoT application development by placing all or part of the processing logic in Low power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution with existing solutions and found out that our solution reduces communication delay and number of packets in the LLN

    MonALISA : A Distributed Monitoring Service Architecture

    Full text link
    The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) system provides a distributed monitoring service. MonALISA is based on a scalable Dynamic Distributed Services Architecture which is designed to meet the needs of physics collaborations for monitoring global Grid systems, and is implemented using JINI/JAVA and WSDL/SOAP technologies. The scalability of the system derives from the use of multithreaded Station Servers to host a variety of loosely coupled self-describing dynamic services, the ability of each service to register itself and then to be discovered and used by any other services, or clients that require such information, and the ability of all services and clients subscribing to a set of events (state changes) in the system to be notified automatically. The framework integrates several existing monitoring tools and procedures to collect parameters describing computational nodes, applications and network performance. It has built-in SNMP support and network-performance monitoring algorithms that enable it to monitor end-to-end network performance as well as the performance and state of site facilities in a Grid. MonALISA is currently running around the clock on the US CMS test Grid as well as an increasing number of other sites. It is also being used to monitor the performance and optimize the interconnections among the reflectors in the VRVS system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, pdf. PSN MOET00

    Improving the Scalability of DPWS-Based Networked Infrastructures

    Full text link
    The Devices Profile for Web Services (DPWS) specification enables seamless discovery, configuration, and interoperability of networked devices in various settings, ranging from home automation and multimedia to manufacturing equipment and data centers. Unfortunately, the sheer simplicity of event notification mechanisms that makes it fit for resource-constrained devices, makes it hard to scale to large infrastructures with more stringent dependability requirements, ironically, where self-configuration would be most useful. In this report, we address this challenge with a proposal to integrate gossip-based dissemination in DPWS, thus maintaining compatibility with original assumptions of the specification, and avoiding a centralized configuration server or custom black-box middleware components. In detail, we show how our approach provides an evolutionary and non-intrusive solution to the scalability limitations of DPWS and experimentally evaluate it with an implementation based on the the Web Services for Devices (WS4D) Java Multi Edition DPWS Stack (JMEDS).Comment: 28 pages, Technical Repor

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201
    • 

    corecore