1,301 research outputs found

    Flexible Framework for Secret Handshakes (Multi-Party Anonymous and Un-observable Authentication)

    Get PDF
    In the society increasingly concerned with the erosion of privacy, privacy-preserving techniques are becoming very important. This motivates research in cryptographic techniques offering built-in privacy. A secret handshake is a protocol whereby participants establish a secure, anonymous and unobservable communication channel only if they are members of the same group. This type of ``private authentication is a valuable tool in the arsenal of privacy-preserving cryptographic techniques. Prior research focused on 2-party secret handshakes with one-time credentials. This paper breaks new ground on two accounts: (1) it shows how to obtain secure and efficient secret handshakes with reusable credentials, and (2) it represents the first treatment of group (or {\em multi-party}) secret handshakes, thus providing a natural extension to the secret handshake technology. An interesting new issue encountered in multi-party secret handshakes is the need to ensure that all parties are indeed distinct. (This is a real challenge since the parties cannot expose their identities.) We tackle this and other challenging issues in constructing GCD -- a flexible framework for secret handshakes. The proposed framework lends itself to many practical instantiations and offers several novel and appealing features such as self-distinction and strong anonymity with reusable credentials. In addition to describing the motivation and step-by-step construction of the framework, this paper provides a thorough security analysis and illustrates two concrete framework instantiations

    05411 Abstracts Collection -- Anonymous Communication and its Applications

    Get PDF
    From 09.10.05 to 14.10.05, the Dagstuhl Seminar 05411 ``Anonymous Communication and its Applications\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Private Handshakes

    Full text link
    Private handshaking allows pairs of users to determine which (secret) groups they are both a member of. Group membership is kept secret to everybody else. Private handshaking is a more private form of secret handshaking, because it does not allow the group administrator to trace users. We extend the original definition of a handshaking protocol to allow and test for membership of multiple groups simultaneously. We present simple and efficient protocols for both the single group and multiple group membership case. Private handshaking is a useful tool for mutual authentication, demanded by many pervasive applications (including RFID) for privacy. Our implementations are efficient enough to support such usually resource constrained scenarios

    A Multi-User, Single-Authentication Protocol for Smart Grid Architectures

    Get PDF
    open access articleIn a smart grid system, the utility server collects data from various smart grid devices. These data play an important role in the energy distribution and balancing between the energy providers and energy consumers. However, these data are prone to tampering attacks by an attacker, while traversing from the smart grid devices to the utility servers, which may result in energy disruption or imbalance. Thus, an authentication is mandatory to efficiently authenticate the devices and the utility servers and avoid tampering attacks. To this end, a group authentication algorithm is proposed for preserving demand–response security in a smart grid. The proposed mechanism also provides a fine-grained access control feature where the utility server can only access a limited number of smart grid devices. The initial authentication between the utility server and smart grid device in a group involves a single public key operation, while the subsequent authentications with the same device or other devices in the same group do not need a public key operation. This reduces the overall computation and communication overheads and takes less time to successfully establish a secret session key, which is used to exchange sensitive information over an unsecured wireless channel. The resilience of the proposed algorithm is tested against various attacks using formal and informal security analysis

    Secure service proxy : a CoAP(s) intermediary for a securer and smarter web of things

    Get PDF
    As the IoT continues to grow over the coming years, resource-constrained devices and networks will see an increase in traffic as everything is connected in an open Web of Things. The performance- and function-enhancing features are difficult to provide in resource-constrained environments, but will gain importance if the WoT is to be scaled up successfully. For example, scalable open standards-based authentication and authorization will be important to manage access to the limited resources of constrained devices and networks. Additionally, features such as caching and virtualization may help further reduce the load on these constrained systems. This work presents the Secure Service Proxy (SSP): a constrained-network edge proxy with the goal of improving the performance and functionality of constrained RESTful environments. Our evaluations show that the proposed design reaches its goal by reducing the load on constrained devices while implementing a wide range of features as different adapters. Specifically, the results show that the SSP leads to significant savings in processing, network traffic, network delay and packet loss rates for constrained devices. As a result, the SSP helps to guarantee the proper operation of constrained networks as these networks form an ever-expanding Web of Things

    Self-Verification Of Public-Key Agreement Over Voip Using Random Fusion Scheme

    Get PDF
    Telefoni Internet, yang dikenali juga sebagai Suara melalui Protokol Internet (VoIP), menjadi salah satu alternatif telekomunikasi yang popular disebabkan penggunaan Internet yang semakin meluas. Internet memperkaya cara sistem telefoni digunakan, tetapi dalam masa yang sama menimbulkan pelbagai kebimbangan, terutamanya keselamatan Internet telephony, also known as Voice over Internet Protocol (VoIP), has become one of popular alternatives in telecommunication due to the widespread of the Internet usage. The Internet enriches the way of telephony system is used, but in the meantime it elevates many concerns, particularly security

    PPAA: Peer-to-Peer Anonymous Authentication (Extended Version)

    Get PDF
    In the pursuit of authentication schemes that balance user privacy and accountability, numerous anonymous credential systems have been constructed. However, existing systems assume a client-server architecture in which only the clients, but not the servers, care about their privacy. In peer-to-peer (P2P) systems where both clients and servers are peer users with privacy concerns, no existing system correctly strikes that balance between privacy and accountability. In this paper, we provide this missing piece: a credential system in which peers are {\em pseudonymous} to one another (that is, two who interact more than once can recognize each other via pseudonyms) but are otherwise anonymous and unlinkable across different peers. Such a credential system finds applications in, e.g., Vehicular Ad-hoc Networks (VANets) and P2P networks. We formalize the security requirements of our proposed credential system, provide a construction for it, and prove the security of our construction. Our solution is efficient: its complexities are independent of the number of users in the system
    corecore