492 research outputs found

    Learning Area Coverage for a Self-Sufficient Colony Robot

    Get PDF
    It is advantageous for colony robots to be autonomous and self-sufficient. This requires them to perform their duties while maintaining enough energy to operate. Previously, we reported the equipping of power storage for legged robots with high capacitance capacitors, the configuration of one of these robots to effectively use its power storage in a colony recharging system, and the learning of a control program that enabled the robot to navigate to a charging station in simulation. In this work, we report the learning of a control program that allowed the simulated robot to perform area coverage in a self-sufficient framework that made available the best pre-learned navigation behavior module.

    Learning Navigation for Recharging a Self-Sufficient Colony Robot

    Get PDF
    It is advantageous for colony robots to be autonomous and self-sufficient. This requires them to perform their duties while maintaining enough energy to operate. Previously, we reported the equipping of power storage for legged robots with high capacitance capacitors, the configuration of one of these robots to effectively use its power storage in a colony recharging system, and the learning of a control program that enabled the robot to navigate to a charging station in simulation. In this work, we report the learning of a control program that allowed the simulated robot to perform area coverage in a self-sufficient framework that made available the best pre-learned navigation behavior module

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    An investigation of service degradation in long-term human-robot interaction with a particular reference to recharge behaviour

    Get PDF
    Autonomous long-term operation of social robots has always been a challenge in Human robot-interaction. Social mobile robots acting as companions or assistants will need to operate over a long-term period of time (days, weeks or even months) to perform daily tasks and interact with users. Therefore they should be capable of operating with a great degree of autonomy and will require sustainable social intelligence. Social robots are fallible and have their own limitations with the service they provide. One of the most important limitations of mobile robots is power constraints and the need for frequent recharging. Social mobile robots generally draw power from batteries carried on the robot in order to operate various sensors, actuators and perform tasks. However, batteries have a limited power life and take a long time to recharge via a power source. While the recharge behaviour is active, which may impede human-robot interaction and lead to service degradation. This thesis raises some important issues related to recharge behaviour of social mobile robots which appear to have been overlooked in social robotics research. This work investigated service degradation in long-term interaction due to recharge behaviour of autonomous social mobile robots and proposes an approach to manage service degradation due to recharge. First we performed a long-term study to investigate the service degradation caused by the recharging behaviour of a social robot. Second we conducted a more focused social study which helped to understand user’s attitudes towards a mobile robot with respect to recharge activity. We explored a social strategy by modifying the robot’s verbal behaviour to manage service degradation during recharge. The results obtained from our social study indicates the use of verbal strategies (transparency, apology, politeness) made the robot more acceptable to the users during recharge. We believe that social mobile robots should behave in a socially intelligent manner while managing service degradation. We also provide some recommendations for social mobile robots to manage their recharge behaviour in this thesis

    Automated Battery Swap and Recharge to Enable Persistent UAV Missions

    Get PDF
    This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery swap, thus allowing the vehicle to remain powered on throughout the battery changing process. Each drum consists of four battery bays, each of which is connected to a smart-charger for proper battery maintenance and charging. The hot-swap capability in combination with local recharging and a large 8-battery capacity allow this platform to refuel multiple UAVs for long-duration and persistent missions with minimal delays and no vehicle shutdowns. Experimental results from the RAVEN indoor flight test facility are presented that demonstrate the capability and robustness of the battery change/charge station in the context of a multi-agent, persistent mission where surveillance is continuously required over a speci ed region.Boeing Scientific Research LaboratoriesUnited States. Air Force Office of Scientific Research (FA9550-09-1-0522

    Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    Get PDF
    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization

    Design and implementation of an automated battery management platform

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from department-submitted PDF version of thesis. This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 95-99).This thesis describes the design and the implementation of the hardware platform for automated battery management with battery changing/charging capability for autonomous UAV missions with persistency requirement that extends the mission duration beyond the life of a single UAV battery. The platform is tested through a series of missions lasting at least 3 hours to prove it meets design requirements and to show its feasibility. This thesis also provides a method to modify existing scenarios to proactively plan for the battery maintenance so that the overall system performance is increased. The modifications made to the problem definition increased the state-space significantly, and means of solving a problem of that scale needed to be developed. To address this challenge, this thesis extends a previously developed approach called Incremental Feature Dependency Discovery (iFDD) by allowing to use caches from computer science literature to make conversion from basic features to extended features faster. By doing so, this method significantly reduces the computational complexity.by Tuna Toksoz.S.M

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues

    Environment and task modeling of long-term-autonomous service robots

    Get PDF
    Utilizing service robots in real-world tasks can significantly improve efficiency, productivity, and safety in various fields such as healthcare, hospitality, and transportation. However, integrating these robots into complex, human-populated environments for continuous use is a significant challenge. A key potential for addressing this challenge lies in long-term modeling capabilities to navigate, understand, and proactively exploit these environments for increased safety and better task performance. For example, robots may use this long-term knowledge of human activity to avoid crowded spaces when navigating or improve their human-centric services. This thesis proposes comprehensive approaches to improve the mapping, localization, and task fulfillment capabilities of service robots by leveraging multi-modal sensor information and (long- term) environment modeling. Learned environmental dynamics are actively exploited to improve the task performance of service robots. As a first contribution, a new long-term-autonomous service robot is presented, designed for both inside and outside buildings. The multi-modal sensor information provided by the robot forms the basis for subsequent methods to model human-centric environments and human activity. It is shown that utilizing multi-modal data for localization and mapping improves long-term robustness and map quality. This especially applies to environments of varying types, i.e., mixed indoor and outdoor or small-scale and large-scale areas. Another essential contribution is a regression model for spatio-temporal prediction of human activity. The model is based on long-term observations of humans by a mobile robot. It is demonstrated that the proposed model can effectively represent the distribution of detected people resulting from moving robots and enables proactive navigation planning. Such model predictions are then used to adapt the robot’s behavior by synthesizing a modular task control model. A reactive executive system based on behavior trees is introduced, which actively triggers recovery behaviors in the event of faults to improve the long-term autonomy. By explicitly addressing failures of robot software components and more advanced problems, it is shown that errors can be solved and potential human helpers can be found efficiently
    • …
    corecore