
Connecticut College
Digital Commons @ Connecticut College

Computer Science Faculty Publications Computer Science Department

10-2007

Learning Navigation for Recharging a Self-
Sufficient Colony Robot
Gary Parker
Connecticut College, parker@conncoll.edu

Richard Zbeda

Follow this and additional works at: http://digitalcommons.conncoll.edu/comscifacpub
Part of the Computer Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science Department at Digital Commons @ Connecticut
College. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of Digital Commons @
Connecticut College. For more information, please contact bpancier@conncoll.edu.
The views expressed in this paper are solely those of the author.

Recommended Citation
Parker, G.; Zbeda, R., "Learning navigation for recharging a self-sufficient colony robot," Systems, Man and Cybernetics, 2007. ISIC.
IEEE International Conference on , vol., no., pp.734,740, 7-10 Oct. 2007 doi: 10.1109/ICSMC.2007.4413695

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/46706417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.conncoll.edu?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/mathcomsci?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu

Learning Navigation for Recharging a Self-Sufficient Colony Robot

Keywords
genetic algorithms, intelligent robots, learning systems, mobile robots, multi-robot systems, navigation path
planning

Comments
©2007 IEEE

DOI:10.1109/ICSMC.2007.4413695

This conference proceeding is available at Digital Commons @ Connecticut College: http://digitalcommons.conncoll.edu/
comscifacpub/25

http://dx.doi.org/10.1109/ICSMC.2007.4413695
http://digitalcommons.conncoll.edu/comscifacpub/25?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.conncoll.edu/comscifacpub/25?utm_source=digitalcommons.conncoll.edu%2Fcomscifacpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages

Abstract— It is advantageous for colony robots to be
autonomous and self-sufficient. This requires them to
perform their duties while maintaining enough energy to
operate. Previously, we reported the equipping of power
storage for legged robots with high capacitance capacitors, the
configuration of one of these robots to effectively use its power
storage in a colony recharging system, and the learning of a
control program that enabled the robot to navigate to a
charging station in simulation. In this work, we report the
learning of a control program that allowed the simulated
robot to perform area coverage in a self-sufficient framework
that made available the best pre-learned navigation behavior
module.

I. INTRODUCTION
OR robots and their respective systems to perform long-
term and independent colony tasks, they must have two

properties: autonomy and self-sufficiency [1]. Autonomy
means that the robots independently govern their own
behavior and make their own decisions. Self-sufficiency
implies a system’s ability to maintain such robots in an
operational state for long periods of time by directing them
to maintain their own power supply. In particular, the
system must include rechargeable batteries and a self-
recharge mechanism; additionally, it must also rely on
procedures that enable the robots to constantly examine
their power supply and to travel to and use a charging
station. To be effective, autonomous and self-sufficient
robots must balance these two competing requirements
through the basic work - find fuel - refuel cycle [2].

The increasingly recognized field of autonomous and
self-sufficient robotics has been an area of interesting
research. Yuta and Hada [3] achieved a “sport” record by
creating a robot that recharged its battery every ten minutes
and operated continuously for a week. Sempé, Muñoz, and
Drogoul [4] devised and contrasted various robot group
strategies for sharing a charging station where only one
robot could recharge its batteries at it at a time. Individual
robots would begin wandering and would then navigate
towards a power station when their go-and-recharge power
threshold was reached. Birk [5] reports a problem of using

Manuscript received October 27, 2008.
G. B. Parker is with Connecticut College, New London, CT, 06320

USA (phone: 860-439-5208; e-mail: parker@conncoll.edu).
R. Zbeda is a graduate student at University of Pennsylvania,

Philadelphia, PA, 19104 USA (e-mail: rzbeda@seas.upenn.edu).

batteries for a robot by showing that cell chemistry may
impede consistent behavior. It was proposed to alternate
the use of multiple rechargeable battery packs. Kouzoubov
and Austin [6] constructed an inexpensive and effective
recharging station and docking algorithm for recharging
mobile robots. The system utilized a particle filter to
extract the recharging station location from laser range
sensor data. Silverman, Jung, Nies and Sukhatme [7]
effectively developed a recharging control architecture for
a mobile robot to perform door monitoring and obstacle
avoidance tasks for long periods of time.

Common to the majority of these previous works is that
the robots’ on-board power supply consisted of batteries
and that robot behavior was preprogrammed. The work
reported in this paper is distinctive, firstly, because it builds
on a previous work in which we proposed the usage of
capacitors in place of batteries as an onboard power supply
for a legged colony robot [8]. Capacitors expend their
charge and recharge much faster than batteries do. This
property helps to obviate the requirement for long work
and recharge cycles and allows a more continuous pattern
of behavior in self-sufficient robots. In addition, capacitors
are effective due to resistance to old age [5], and
size/power. Secondly, our work is unique because robot
behavior is not preprogrammed, but is learned through a
means of evolutionary computation. Although one robot is
used in this work, a colony area is employed with the goal
of learning self-sufficient behavior for a colony of robots.

In past research, evolutionary computation used to learn
the weights of an artificial neural network, genetic
programming, and cyclic genetic algorithms have been
used to learn control programs for robots. The use of a
genetic algorithm to learn the connection weights and/or
architectures for artificial neural networks has been a
common method of learning robot control [9]. Floreanno
and Mondada [10] evolved neural networks to control self-
sufficient behavior on the Khepera robot. The robot’s task
was to perform navigation, obstacle avoidance and to
locate a charging station before the robot’s simulated
batteries lost power. Beer and Gallagher [11] showed that
genetic algorithms can be implemented to evolve effective
neural networks for chemo-taxis and legged locomotion
controllers. Lund and Orazio [12] evolved a neural
network control program for a Khepera robot to avoid
walls and obstacles in an enclosed space.

Learning Area Coverage for a Self-Sufficient Colony Robot
Gary B. Parker, Member, IEEE, and Richard Zbeda

F

Genetic programming (GP) is another common method
for learning robot control. Busch et al. [13] used GP to
evolve robot control programs to produce gaits for
simulated robots that were independently appropriate for
each specific robot’s morphology. Nordin et al [14]
evolved wall-following behavior for a Khepera robot that
was successful both in simulation and on the actual robot.
Lazarus and Hu [15] used GP to involve sensor input in the
development of controllers for simulated robots that
performed obstacle avoidance and wall-following tasks.

This paper reports the second of two segments of
research in learning autonomous and self-sufficient robot
behavior. The research involves the learning of the distinct
but related tasks of area coverage when the robot is
working, and navigation, for when the robot is finding fuel.
Incremental learning of the two separate behaviors is used
as method to learning the overall autonomous and self-
sufficient behavior. de Garis [16] proposed learning
behavior in incremental steps and the method is now a
well-established approach in evolutionary robotics [17]. In
a previous work, the navigation behavior was learned [18];
the best solution was then made into a module available to
the GA learning the area coverage task in this work. While
both tasks could have been learned at once, this
incremental approach was chosen because the pattern of
area coverage heavily relies on the robot’s effectiveness in
navigating and finding fuel.

Previous research in the area of coverage path planning

has involved preprogramming robot behavior to cover an
area and avoid obstacles. Several such works have been
documented in [19, 20]. In recent work, Parker created
learning methods for adaptation to specific capabilities in
inexpensive legged robots without precision of movement
performing area coverage. Parker [19] used a cyclic

genetic algorithm to learn turn cycles for a hexapod robot
that produced area coverage patterns. In addition, Parker
[20] tested the simulated behavior on a physical hexapod
robot. The learning method effectively produced patterns
of motion for both the simulated and actual robot.

In this work, we report the use of a cyclic genetic
algorithm to learn the area coverage task for the hexapod
robot equipped with capacitors, such that the area coverage
task is a part of the self-sufficient framework. Specifically,
the robot learns the best area coverage pattern subject to a
fuel/power constraint while our pre-learned navigation
behavior module is made available to the robot. The
learning of such self-sufficient area coverage takes place in
simulation and the actual robot tests confirmed the viability
of the resulting solution.

II. THE ROBOT

The ServoBot is a small, inexpensive hexapod robot
developed by David Braun at Indiana University for legged
robot and colony robotics experimentation. It is
constructed out of Masonite wood and each of its six legs
has two degrees of freedom, vertical and horizontal. It has
two servos for each leg to provide the forward thrust and
vertical movement. Originally, the ServoBot was
constructed to carry one 9V battery and 4 AA batteries as a
power supply. The 9V battery powers the onboard BASIC
Stamp II microcontroller (which controls the robot) and the
4 AA batteries power the 12 servos.

It was determined in previous research [8] that non-
rechargeable batteries should not be used to power the
colony since they prohibit self-sufficiency. Our solution
was to use 6 pairs of capacitors at a total capacitance of 6 *
(50F * 50F)/(50F + 50F) = 150F (F stands for farads) and a
4.6V (limitation due to the high capacitance capacitors
used) level of charge. The capacitors expend their charge
by powering the servomotors and would recharge by
connecting to a power station (see Figure 1) via the robot’s
metallic probes. Tests were done to determine the run time
and charge time when the capacitors were charged at 4.6V.
It was determined that for the task of walking for
approximately 3 minutes the ServoBot had a charge time of
2min 20sec and had a run time of 2min 50sec [8] .

In previous work, we devised a control system in which
sensor information was made available to onboard BASIC
Stamp II controllers to guide robot behavior towards self-
sufficiency [22]. A voltage sensor (a microcontroller [PIC
12F675] functioning as an Analog-to-Digital voltage
converter [ADC]) was used to monitor power status.
Additionally, light sensors (two CdS [cadmium sulfide]
photocells) and a source were installed for the robot to
autonomously find and travel to the power station.

Fig. 1. The robot, its metallic probes, the power station, and the light
source. Six pairs of capacitors are attached underneath to power the
ServoBot.

III. LEARNING AREA COVERAGE
This research involved the learning of a control program

to direct a simulated hexapod colony robot towards
completing the dual self-sufficient tasks of area coverage
(i.e. work) and navigation (i.e. finding fuel). The learning
method used was a multi-loop cyclic genetic algorithm
with conditional branching with the training done on a
simulation of the actual robot. In this work, the successful
completion of a control program for area coverage is
reported. Because the simulation realistically and
accurately represented the physical colony robot and power
supply system, the evolved behavior could be effectively
transferred to the physical system.

A. Cyclic Genetic Algorithm (CGA)
The cyclic genetic algorithm (CGA) [23], a variant of

Holland’s genetic algorithm (GA) [24], was developed to
automatically generate code for cyclic control problems.
Instead of representing traits of a solution (as in a GA), the
genes in a CGA chromosome represent tasks to be
completed. The CGA chromosome contains a list of
instructions that may include loops to facilitate the
execution of a sequence of tasks (see Figure 2). Multiple
levels of looping such as loops of single actions, loops
covering loops of single actions, and loops of the entire
chromosome can be achieved.

Fig. 2. GA and CGA chromosomes.

CGAs are useful for learning actual and/or simulated

self-sufficient behavior since the learning of cyclic and
repetitive behavior is involved. Initially, the CGA was
used to evolve single-loop programs that directed hexapod
robots to execute gait cycles [23,25]. A large portion of the
chromosome was composed of a single loop to address one
repetitive overall task. With the introduction of dynamic
sensor input and subsequent need for different sub-tasks,
however, a single loop was inadequate. To address this
issue, a CGA with conditional branching [26] was

developed to allow branching to specified loops in
response to sensor inputs.

To accommodate the use of a particularly large number
of sensors, the CGA with conditional branching method
was further modified [27]. The key distinction was that the
CGA also had to learn what sensors to test, when to
execute sensor branching tests, and what chromosome
segment to jump to. In this way, the more significant
branch conditionals could be executed, thus reducing the
total number of loops/segments needed in the chromosome.
Such a multi-loop CGA with conditional branching is used
in this work to learn the robot tasks of area coverage and
navigation.

B. The Simulation
The simulation was modeled after the ServoBot’s gait

cycles, or, walking styles. A gait cycle is defined as a
single step where the robot’s legs begin moving and
eventually return to their original position after following a
full step cycle of positions. On the physical ServoBot, the
standard gait consists of a list of activations that the on-
board controller uses to continuously direct the
instantaneous movement of the 12 servo actuators.

In previous work, a tripod gait was evolved with a cyclic
genetic algorithm to provide optimal speed for a specific
ServoBot [20]. 32 degrees of turn were provided in the
gait cycle through the use of affecters which could interrupt
activations to the thrust actuators for either the left or right
side of the robot. In this work we used 12 of the left or
right turns (gait cycles) developed in the previous work. In
addition, we created four preprogrammed gaits (no
movement, straight backwards, left rotate, and right rotate)
for the ServoBot for a total of 16 different gait cycles.

Fig. 3. Gait Cycle Turn Measurements. The left diagram shows F and T. F
is the distance moved forward. T is the distance moved in the turn
direction. The right diagram shows ΔH, the change in heading [20].

In both the previous work [20] and for the ServoBot
used in this research, each turn gait cycle was measured for
rate of turn and displacement resulting in a list of three
numbers: F, T, and ΔH. F was the distance in centimeters
that the robot moved forward. T was the distance traveled
perpendicular to the F axis, where left was negative and
right was positive. ΔH was a measurement (in degrees) of
the change in heading where left was negative and right
was positive. A diagram of F, T, and ΔH measurement is

shown in Figure 3. Turn rates, defined using F, T, and ΔH;
were stored for each gait cycle. Figure 4 shows the 16 gait
cycle measurements.

Fig. 4. The robot capabilities for each of the 16 gait cycles. The first
number indicates the gait cycle type, and the remaining list of three
numbers represents F, T, and ΔH respectively. Gaits 0-5 are right turn gait
cycles, gaits 8-13 are left turn gait cycles, gait 6 is the right rotate gait
cycle, gait 14 is the left rotate cycle, gait 7 is the no movement gait cycle
and gait 15 is the straight backwards gait cycle.

The robot’s gait cycle measurements were used to
calculate moves by the simulated robot in the simulation.
The robot’s position in the simulation area consisted of its
xy coordinates and a number between 0 and 359
representing its heading. Motion was determined by
applying a gait cycle from the chromosome. The new xy
position and heading of the robot were calculated by
applying the forward (F), left/right (T), and gait cycle
heading change (ΔH) gait cycle values to the current state.

The simulation area (500x500 units) defines the space in
which the simulated robot moves and models an 8x8 foot
colony area in the lab. The area includes a simulated
power station that models the actual power station. The
simulated robot’s charging mechanisms are also modeled
after the actual robot. The robot must direct its metal
probes to make contact with the power station at a feasible
angle to and distance from the wall. The physical light
source/sensor system is also modeled in the simulation. The
light emanates from two point coordinates and illuminates
the simulated colony space (see Figure 8). The simulated
robot can only see the light when its heading and placement
allow it to see the light source.

The actual robot sensors were closely modeled in
simulation. The robot is equipped with left and right object
detection sensors, left and right light sensors and, and a
power sensor. Each sensor has two possible states: 0
(inactive) and 1 (active). The object detection sensors each
have an activation distance and a 45 degree sensor span
while the left and right sensors spans overlap by 10
degrees. The simulated light sensors each have an infinite
activation distance and a span of 80 degrees while left and
right sensors overlap by 40 degrees. The robot’s power
sensor senses when the robot’s capacitor power level is
below the lower power threshold.

Physical power usage quantities and thresholds were
modeled in the simulation, specifically, the power usage
per gait cycle, the empty power threshold, the low power

threshold, and the high power threshold. The power usage
per cycle is a constant 0.0209V of charge unless the robot
remains motionless. The low power threshold was set at
4V. The empty power threshold marks the power level
below which the robot will not have enough power to
execute another gait cycle and was set at 2.7V. The high
power threshold marks the amount of energy held after
completing a charging routine at the charging station and
was set at 5V. A charging routine is a preprogrammed
routine in which the robot connects with the power station
(while in navigation mode), recharges up to the high power
threshold, executes 4 straight backwards gait cycles, and
then starts/continues its area coverage task.

C. Navigation Task
We used a multi-loop CGA with conditional branching

to learn the navigation task [18]. The chromosome
structure, fitness evaluation and training procedure were
highly analogous to the methods used in this work. The
resulting behavior of effective navigation to the power
station to start a recharging routine was made a behavior
module for this work. The simulated robot used it as
directed by the learned control program to produce
effective area coverage patterns.

D. Area Coverage using the Navigation Module
We incrementally built on the previously learned

navigation behavior in developing the area coverage
behavior. The robot must either be in area coverage (work)
mode, or navigation (refueling) mode. The simulated robot
needed to learn behavior that would enable it to do area
coverage starting from the recharging area, and a
conditional branching test to tell it to switch into
navigational mode when low on energy.

A multi-loop CGA with conditional branching was used
to learn the complete self-sufficient task. It was one that is
designed to handle many sensor inputs by learning to jump
from one loop to another [27]. Multiple loops were needed
for this CGA because different overall tasks such as
avoiding walls, backing and turning away from walls after
contact, making wide sweeps to across new colony area,
and turning to position for additional wide sweeps across
new area were required. The correct process control
jumping between such types of sub-tasks needed to be
learned. In addition, learning jumping was needed to direct
the individual to switch into navigation mode.

The structure of the area coverage chromosome part was
identical to the structure of the navigation chromosome
part. Each chromosome consisted of 8 genes where each
gene (see Figure 5) consisted of a 2 bit number followed by
four 7 bit numbers. Each gene represented a “for” loop
with the 2 bit number specifying how many times the loop

should be executed such as 01 (once), 10 (twice), 11 (three
times) and 00 (infinite). The four 7 bit numbers
represented the instructions in the loop.

Fig. 5. The structure of a gene. Two different instruction types are shown.

This chromosome structure was combined with the pre-
learned navigation chromosome to form a 16 gene
chromosome. Specifically, the 16 gene chromosome
consisted of an 8 gene pre-learned section and an 8 gene
unlearned section (see Figure 6). The same pre-learned
chromosome was used as part of each 16 gene chromosome
of each population created and was fixed (i.e. it did not
change/evolve). The 8 gene pre-learned chromosome was
the chromosome with the best fitness in the 1024th
generation out of five populations in the navigation
simulation.

Fig. 6. The initial complete chromosome structure with an unlearned
(Genes 0 through 7) and a pre-learned (Genes 8 through 15) section.
Control would alternate between the two and was maintained in one
section at a time.

Two types of instructions could be executed: a specific
gait cycle instruction or a conditional branching
instruction. A specific gait cycle instruction directs the
robot to move according to the displacement and rotation
of the gait. A conditional branching instruction tests
specific sensors for their input states (see Figure 7). If tests
are positive, control switches to the beginning of the gene
specified in the instruction. Otherwise, the next instruction
in the gene is executed.

For any 7-bit instruction, the first bit represented the
type of instruction. If it was a 0, then the next 4 bits would
signify the one of 16 gait cycles to be executed. If it was a

1, then the next 3 bits would signify one of 8 combined
sensor input combinations/states that were considered. The
8 sensor combinations are listed in Figure 7. The 3 bits
after the conditional signified the address of one of the 8
segments to which a jump would be executed if the test
was positive. When executing the pre-learned section, an
extra most-significant bit was added to the branching
addresses so that control would always reside in genes 8
through 15.

Figure 7. The eight sensor state tests. A conditional branching test was
positive if the sensor/s considered formed a subset of all activated sensors
at the current step. The low power sensor is activated when the robot
power level falls below the low power threshold of 4.0V.

The flow of the fitness evaluation of a chromosome was
nearly identical to that used in learning the navigation task.
It would begin by completing the list of instructions in the
first gene of the section (i.e. unlearned or pre-learned) it is
in. Instructions would be executed in the “for” loop until it
finished, in which case the next gene started, or until a
branch condition instruction sent the point of execution to
another gene. If the algorithm finished executing the last
gene then control would return to the beginning of the first
gene. To avoid infinite branching the run would halt after
32 consecutive branches without a gait cycle instruction.

A fitness value assigned to an individual for a single run
was based on the number of squares it reached. The robot
is given a total of 600 steps to cover the colony area. The
colony area was sectioned off into 100 squares that were
each 50x50 units, and the contact width on each square was
the center 38x38 units of the square. The robot’s x and y
coordinates (at the robot’s center) had to be within the
contact width of a square for the square to have been
reached. Each new square reached was added to a list of
squares, and after the run completed the sum total of the
squares represented the robot’s fitness value. Additionally,
there was a zone of 25 units off each wall that if reached
would terminate the run. This was meant to discourage the
robot from getting too close to the walls, but also made it
difficult for the robot to reach the outer layer of squares. In
training, the outer layer of squares was accessible but for
the final fitness evaluation tests this outer layer was not
counted. Thus robot could get a maximum fitness of 100
squares in training and 64 squared in post-evolution tests.
The 64 colony area squares are shown in Figure 8.

The fitness assignment procedure was as follows. The
robot would start with a power level set at the low power
threshold of 4V in order to induce it to learn to conduct a

conditional branching test testing its low power sensors
when low on power in a timely manner. When such a test
was positive, the robot would switch into the first gene of
the navigation chromosome section and travel straight
towards the power station. If and after undergoing a
charging routine, the robot would automatically switch
back to the first gene of the of the area coverage
chromosome section. When in area coverage mode, the
robot had the incentive to learn an effective means of
covering the area through a series of straights and turns,
such that new squares were consistently being reached. In
addition, because the periodic conditional branching test of
the low power sensor allowed the robot to effectively reach
the power station to refuel when low on energy and do
more area coverage, the robot would benefit from learning
to periodically conduct such tests.

Fig. 8. The simulated colony area with the squares to be covered, the light
sources and light distribution in the area, the kill zone, and the power
station. The figure is drawn to scale.

Termination of a run and the assignment of a fitness
value could occur for four reasons: the all the squares in the
area were reached resulting in a maximal fitness, the
maximum number of steps were taken, the robot got within
25 units of a wall, or the power level of the robot dropped
below the empty power threshold of 2.7V resulting in
consecutive no-movement gaits.

The actual training procedure was as follows. Five
populations of 256 individuals were created where the first
8 genes were randomly generated and the second 8 genes
were the unchanging pre-learned navigational
chromosome. Evolution was carried out for 512
generations in which each individual was assigned the
same 10 randomly generated starting positions for each
generation. The fitness of each individual was based on its
average fitness value in the 10 runs. This average was
raised to the 1.5 power to magnify differences in fitness

values between individuals in a population. The individual
with the best fitness was automatically included in the next
generation. The area coverage section of the remaining
individuals was produced through the application of the
three standard genetic operators, namely, selection,
crossover and mutation. The populations at several
generations from 0 up to 512 were saved during the
evolution.

In evolving the area coverage portion of the
chromosome two chromosomes for crossover and mutation
were chosen using roulette wheel selection. For each pair,
one of two different types of crossovers occurred, each
chosen with a 1-in-2 probability. For the first type of
crossover, a random index between 8 and 15 was chosen.
The resulting chromosome was made up of the [8, index]
genes of the first chromosome and the (index, 15] genes of
the second chromosome. The second type of crossover
used gene-by-gene crossover, where each corresponding
gene of the parent chromosomes was combined using one-
point crossover.

After crossover, the resultant chromosome was subject
to one of two types of mutation. The first type was used
when the first type of crossover was used. This involved
going through each gene in the chromosome, such that
each instruction was randomly regenerated with a 1-in-600
chance. The 2 bit “for loop” number was left unchanged.
The second type of mutation was bit-by-bit mutation, and
was used when gene-by-gene crossover was used. In this
type of mutation, each gene of the chromosome was subject
to a bit-by-bit mutation, such that each bit in the gene was
flipped with a 1-in-200 probability.

IV. RESULTS
There were 5 tests (each with a population where

individuals’ unlearned chromosome sections were initially
randomly generated) to check the viability of the learning
system. During the evolution of each of the populations,
the entire population (along with the individual with the
highest fitness in the population) was stored at the 0, 1, 32,
64, 128, 256, 384, and 512 generations. Tests on each
population’s best individual at each of these generations
were evaluated at 100 randomly generated start positions
near the power station. The best individual fitness
(averaged over the 100 trials) from each population at each
stored generation was recorded and is shown in Figure 9.

For each of the 5 tests (each with a population where
individuals’ unlearned chromosome sections were initially
randomly generated), a population was stored at the 0, 1,
32, 64, 128, 256, 384, and 512 generations. Tests on each
population at each of these generations were evaluated at
100 randomly generated start positions. The best
individual fitness (averaged over the 100 trials) from each

population at each stored generation was recorded. Figure
9 shows this fitness divided by 64 (max possible fitness) to
determine a fitness percentage.

Observations of the robots in simulation and in the actual
colony space revealed that the CGA had learned reasonable
solutions after 512 generations. In each population, the
individual with the best fitness would first back up from
the charging station and then rotate in one direction to
change its heading in preparation for forward movement
away from the charging station. Afterwards, it would
make minimal turns and sweep the area with a wide arc
pattern. Occasionally, it would get close to a wall in which
case the turns became more extreme in order to avoid
getting too close, and after which, the robot resumed
making minimal turns. After reaching a wall or point far
from the charging station, the robot would switch back to
navigation mode. Variation in each area coverage sweep
was generated due to the fact that the robot nearly always
starts in a different spot when doing area coverage as the
charging routine was approached from a different angle
each time. It is also notable that in each area coverage
sweep, the robot would avoid being in the dark area when
about to switch into navigation mode. This would be
necessary to allow the robot to use its light sensors to
successfully reach the charging station.

Fig. 9. Fitness of the area coverage behavior. Percentage fitness is the
fitness divided by the max possible fitness. Each line represents the
fitness of one of 5 populations; the bold line shows the average of the 5.
The best individual for each population at each generation was saved and
individuals from selected generations were tested from a series of common
staring positions.

The described behavior is shown in Figure 10. The best
individual from the 512 generation for each of the 5
populations was run from one specific set of xy-
coordinates (x=415, y=252, h=98). These coordinates
were chosen because they signify a plausible robot position
after undergoing a charging routine. Each test shows how

the robot would make wide overlapping sweeps of the
colony area. It is notable that from Figure 10 that there is
significant differences in the general strategy of making
wide overlapping sweeps of the area. In tests 1 and 3, the
robot makes minimal left turns and stays within the center
of the area. In test 2, the robot also makes minimal left
turns, but stays more in the upper half of the colony area.
In test 4, the robot makes relatively sharp right turns. In
test 5, the robot alternates between making minimal right
turns in covering the upper half of the area, and making
solely straight movements in covering the lower half of the
area.

It is evident from the results of all five runs of the
complete task performance that the population fitness
average gained fitness quickly up through 64 generations
and remained in a narrow range of change after that (see
Figure 9). This is probably because when any relatively
successful strategy of covering area in this manner is
learned, it is very specialized and detailed with respect to
the environmental settings, and any evolutionary attempts
to significantly improve/change it may come at heavy costs
in the form of lowered task performance and may not be
worthwhile. The best solution does not achieve a
standardized method of area coverage such as back-and-
forth boustrophedic motions since this pattern would
probably not be feasible with the power consumption
constraints. The best solution produced in simulation was
downloaded to the actual robot and initial observations of
its behavior indicated that the CGA learned solution can
be effectively used on the physical robot operating in the
actual colony space.

V. CONCLUSIONS
We have shown that using a multi-loop CGA with

conditional branching is an effective learning method for
learning the self-sufficient area coverage task. Tests on the
actual robot confirmed that the self-sufficient area coverage
control program produced a reasonable area coverage and
navigation track over the ground in the colony space.

We believe that our approach to a self-sufficient system
has general significance even though this experiment was
specific to our colony setup. Using capacitors presents a
viable power supply alternative especially for small and
light weight robots for which short run/charge times are
desired.

Our self-sufficient approach requires much additional
development to increase its effectiveness. It would greatly
enhance the ability of our robots to hold concentrated
charge at higher voltage levels by using improved
capacitors rated at 2.7v and 100F that are now available.
Such a change would increase the robot’s work cycle time
of a self-sufficient task, which would allow it to develop

more elaborate search patterns. We could make the entire
system self-sufficient by using solar or wind energy to
power the charging station. Multiple robot interaction in
a self-sufficient system should be addressed to exhibit
behavioral relationships such as cooperation and
competition.

REFERENCES
[1] McFarland D. (1995) Autonomy and Self-Sufficiency in Robots. The

Artificial Life Route To Artificial Intelligence. Building Embodied,
Situated Agents. Steels L.(ed). Lawrence Erlbaum Ass. Pub. USA,
187-213.

[2] McFarland D., E. Spier. (1997) Basic Cycles, Utility and
Opportunism in Self-sufficient Robots. Robotics and Autonomous
System (20), 179-190.

[3] Yuta S., Hada Y. (2000) First Stage Experiments of Long Term
Activity of Autonomous Mobile Robot: Result of Repetitive Base
Docking over a Week. In: Proceedings of ISER'00, 7th International
Symposium on Experimental Robotics, 235-244.

[4] Sempé F., Muñoz A., Drogoul A. “Autonomous Robots Sharing a
Charging Station with no Communication: a Case Study.”
Proceedings of the 6th International Symposium on Distributed
Autonomous Robotic Systems (DARS'02). June 2002.

[5] Birk A. (1997) Autonomous Recharging of Mobile Robots. In:
Proceedings of the 30th International Symposium on Automative
Technology and Automation. Isata Press.

[6] K. Kouzoubov, D. Austin. “Autonomous Recharging for Mobile
Robotics.” Proceedings of the Australasian Conference on Robotics
and Automation. Auckland, Australia. November 2002.

[7] M. Silverman, B. Jung, D. Nies, G. Sukhatme. “Staying Alive
Longer: Autonomous Robot Recharging Put to the Test.” Center for
Robotics and Embedded Systems (CRES) Technical Report CRES-
03-015. University of Southern California, 2003.

[8] G. Parker, R. Georgescu, and K. Northcutt, “Continuous Power
Supply for a Robot Colony.” Proceedings of the World Automation
Congress (WAC 2004). June 2004.

[9] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, Vol. 87,
No. 9, 1999, pp.1423-1447.

[10] D. Floreano and F. Mondada, "Evolution of Homing Navigation in a
Real Mobile Robot," IEEE Transactions on Systems, Man and
Cybernetics, Vol. 26, No. 3, 1996, pp 396-407.

[11] R. D. Beer and J. C. Gallagher, “Evolving Dynamical Neural
Networks For Adaptive Behavior,” Adaptive Behavior, Vol. 1, No. 1,
1992, pp. 91-122.

[12] H. H. Lund and O. Miglino, “From Simulated to Real Robots,” Proc.
IEEE Third International Conference on Evolutionary Computation,
NJ, 1996.

[13] J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki, and W. Banzhaf,
“Automatic Generation of Control Programs for Walking Robots

Using Genetic Programming,” EuroGP 2002, LNCS 2278, 2002, pp.
258-267.

[14] P. Nordin, W. Banzhaf, and M. Brameier, “Evolution of a World
Model for a Miniature Robot using Genetic Programming,” Robotics
and Autonomous Systems, Vol. 25, 1998, pp. 105-116.

[15] C. Lazarus and H. Hu, “Using Genetic Programming to Evolve
Robot Behaviours,” Proc. Third British Conference on Autonomous
Mobile Robotics & Autonomous Systems, Manchester, UK 2001.

[16] H. de Garis, “Genetic Programming: GenNets, Artificial Nervous
Systems, Artificial Embryos”, Ph.D. thesis, Université libre de
Bruxelles, Belgium, (1991).

[17] Petrovic, P. (1999) Overview of Incremental Evolution Approaches
to Evolutionary Robotics, Proceedings to Norwegian Conference on
Computer Science, p. 151-162.

[18] G. Parker and R. Zbeda, “Learning Navigation for Recharging a
Self-Sufficient Colony Robot,” Proceedings of the 2007 IEEE
International Conference on Systems, Man, and Cybernetics (SMC
2007). October 2007.

[19] G. B. Parker, “Learning Control Cycles for Area coverage with
Cyclic Genetic Algorithms,” Proc. Second WSES International
Conference on Evolutionary Computation (EC '01). February 2001
(pp. 283-289).

[20] G. Parker, “Evolving Cyclic Control for a Hexapod Robot
Performing Area Coverage.” Proceedings of 2001 IEEE International
Symposium on Computational Intelligence in Robotics and
Automation (CIRA 2001). August 2001 (pp. 561-566).

[21] H. Choset and P. Pignon, (1997). “Coverage Path Planning: The
Boustrophedon Cellular Decomposition.” Proceedings of the
International Conference on Field and Service Robotics.

[22] G. Parker and R. Zbeda, “Controlled Use of a Robot Colony Power
Supply.” Proceedings of the 2005 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2005). October 2005.

[23] G. B. Parker and G. J. E. Rawlins “Cyclic Genetic Algorithms for the
Locomotion of Hexapod Robots,” Proc. World Automation
Congress, Vol. 3, Robotic and Manufacturing Systems, 1996, pp.
617-622.

[24] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann
Arbor, MI, The University of Michigan Press, 1975.

[25] G. Parker, D. Braun, and I. Cyliax, “Evolving Hexapod Gaits Using
a Cyclic Genetic Algorithm.” Proceedings of the IASTED
International Conference on Artificial Intelligence and Soft
Computing (ASC'97). July 1997 (pp. 141-144).

[26] G. B. Parker, I. I. Parashkevov, H. J. Blumenthal, and T. W.
Guildman, “Cyclic Genetic Algorithms for Evolving Multi-Loop
Control Programs,” Proceedings of the World Automation Congress
(WAC 2004). June 2004.

[27] G. Parker and R. Georgescu, “Using Cyclic Genetic Algorithms to
Evolve Multi-Loop Control Programs.” Proceedings of the 2005
IEEE International Conference on Mechatronics and Automation
(ICMA 2005). July 2005.

Fig. 10. The best individual from the 512 generation for each of the 5 populations was run from xy-coordinates (x=415, y=252, h=98). In each test the robot
makes wide overlapping sweeps of the colony area, but in a different general strategy.

	Connecticut College
	Digital Commons @ Connecticut College
	10-2007

	Learning Navigation for Recharging a Self-Sufficient Colony Robot
	Gary Parker
	Richard Zbeda
	Recommended Citation

	Learning Navigation for Recharging a Self-Sufficient Colony Robot
	Keywords
	Comments

