
Design and Implementation of an Automated

Battery Management Platform

by

Tuna Toksoz

B.Sc., Computer Science
Bogazici University (2010)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 22, 2012

Certified by. .
Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Eytan H. Modiano

Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Design and Implementation of an Automated Battery

Management Platform

by

Tuna Toksoz

Submitted to the Department of Aeronautics and Astronautics
on August 22, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis describes the design and the implementation of the hardware platform
for automated battery management with battery changing/charging capability for
autonomous UAV missions with persistency requirement that extends the mission
duration beyond the life of a single UAV battery. The platform is tested through
a series of missions lasting at least 3 hours to prove it meets design requirements
and to show its feasibility. This thesis also provides a method to modify existing
scenarios to proactively plan for the battery maintenance so that the overall system
performance is increased. The modifications made to the problem definition increased
the state-space significantly, and means of solving a problem of that scale needed to
be developed. To address this challenge, this thesis extends a previously developed
approach called Incremental Feature Dependency Discovery (iFDD) by allowing to
use caches from computer science literature to make conversion from basic features
to extended features faster. By doing so, this method significantly reduces the com-
putational complexity.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

3

4

Acknowledgments

First, I’d like to thank my advisor, Professor Jonathan How, for his vision, for his

talent and sometimes for his harshness. Since the first day of my internship in his

lab in 2009 and 2010, he has been really interested in what I have been doing, and

he was really helpful to guide me in the right directions in what needs to be done in

the end. His ”big-picture” mind always asked the right question, and made me think

about the answer to them. I feel lucky to have worked in his lab.

I would also like to thank to Gokhan, for putting his trust in me and recommending

me to Jon for internships and for Masters, without even knowing me in person.

Without him, it would have been a dream to work with all these smart people in

ACL.

I would like to thank my project team, a.k.a Team Turkey. K“a”mal has been a

great friend, and it would be really boring to do overnight experiments without him.

I will miss his friendliness and his strong Turkish sense of humor for sure. I would like

to thank Josh for simply being everything I wanted to be, and guiding me through

everything in the lab.

I would also like to thank my former and current lab mates. I owe a special debt

of gratitude to Mark, who has been a great friend and who helped me a lot on my

hardware problems; Andrew, who was courageous enough to let me drive his manual

transmission car and who shared part of our Turkish sense of humor; Sameera, who

shared my complaints about academic life by heart; Vishnu, who spent countless hours

tutoring me on FCP; Luke, who made me think about interesting C++ questions;

Georges -the one and only- , who ”let” me make his algorithms run million times

faster; Dan, who always had interesting thoughts on a lot of topics; Brandon, who

taught me how useful RRT could be; Alborz, who designed one of the algorithms I

used in this thesis; Buddy, who gave me my ACL-name ”Tunar”; Trevor, who shared

my internet sense of humor.

I also would like to thank my UROPs, Dan Weber and Nick Kirkby for helping

me a lot during and after the semester. Dan is one of the best hardware/embedded

5

software guys I have ever met, and his contribution to the recharge platform has been

invaluable. Nick is the most hands on person I have met, and his help during final

Boeing visit was thesis-saving. Matt Michini, I guess recharge station would still be

a dream without your skills.

I would like to thank my family and old friends. Mom, I love you. Although you

asked a lot of questions about how I was doing thousands of miles away from you,

it was really important to me. Sister, you have always been the one understanding

me. Thank you for keeping my secrets. Karolin, you have been my second thought -

corrected me before making mistakes, you have always been straight with me. Tutku,

thank you so much for coping with me through my emotional breakdowns. Onur,

thanks for being my android friend, and referring me to the most awesome guy,

Taylan.

Finally, I’d like to recognize Boeing Research and Technology for their generosity

in funding my project from start to finish. Specifically, I’d like to thank Matt Vavrina,

Dorina Hester and John Vian for the time they sacrificed to listen to, plan for, discuss

and support my research on both theoretical and practical levels. It has been a

pleasure working with each one of them.

6

Contents

1 Introduction 15

1.1 Overview . 15

1.2 Motivation and Objective . 16

1.3 Summary of Contributions . 17

1.4 Thesis Outline . 18

2 Automated Battery Management Platforms: Existing Approaches

and Design Requirements 19

2.1 Literature Review . 20

2.2 Analysis of Existing Approaches . 21

2.3 Conceptual Design Requirements . 23

2.4 Parameter Selection . 25

2.5 Conclusion . 28

3 Conceptual Design and Implementation 29

3.1 Vehicle and power source selection . 29

3.2 Battery carriage and skid design . 31

3.3 UAV positioning & landing on the platform 35

3.4 Locking UAV in place and providing power 36

3.5 Battery Charging - Charger Integration 37

3.6 On-board Electronics/Software . 38

3.7 Off-board Software . 39

3.8 Conclusion . 45

4 Experimental Recharge Results 47

4.1 Hardware Setup . 47

4.2 Results . 49

7

5 Planning With Battery Maintenance 57

5.1 Background . 57

5.2 Reducing Computational Complexity of iFDD using Caching 63

5.3 Proactive Planning with Battery Health Information 67

6 Conclusion and Future Work 81

6.1 Future Work . 82

A Recharge Station Manual 85

A.1 Recharge Station Communication Protocol 85

A.2 Sample Recharge Station Configuration File 89

A.3 Recharge Station PCBs and Schematics 91

References 99

8

List of Figures

2-1 Original MIT ACL recharge platform approach [1]. 22

2-2 Illustration of laser-beam-powered UAVs 23

2-3 Discharge of a battery during flight 25

2-4 Single battery voltage during the charge process. 26

2-5 Battery charging times for 32 batteries 27

3-1 The battery carriage and the battery receiver with T-shaped channel. 32

3-2 The linear motion of battery exchange 34

3-3 The battery carriage sliding motion 34

3-4 Sloped landing plate that guides the quadrotor into swap spots 36

3-5 One battery swap sequence from a multi-swap mission. 44

3-6 The final implementation of the recharge station. 45

4-1 Agents used in the experiments . 48

4-2 Quadrotor helicopter developed in-house 49

4-3 The MIT ACL RAVEN flight-test facility 50

4-4 The Boeing VSTL flight-test facility[2] 50

4-5 The voltage level of the batteries . 52

4-6 The voltage level of the batteries . 52

4-7 The voltage level of the batteries . 52

4-8 Battery potentials in the recharge station 54

4-9 Controller Collective Input . 54

4-10 Snapshots from an experiment conducted at boeing 55

5-1 The number of features discovered for Inverted Pendulum problem . . 64

5-2 Cache miss ratio of the implemented technique for PSM domain . . . 66

5-3 Time required to process 25000 episodes with and without cache . . . 66

5-4 Persistent Search and Track Mission 68

5-5 Cumulative reward as the algorithm proceeds 79

9

5-6 Mean battery voltage when the quad is called for recharge 79

5-7 Mean voltage increase per timestep 79

A-1 Charger PCB . 91

A-2 Charger Schematic . 92

A-3 Drum PCB . 93

A-4 Central PCB . 93

10

List of Tables

3.1 Battery types and their properties . 30

5.1 Single Agent Policy . 78

5.2 Multi Agent Heuristic Policy . 78

11

12

List of Algorithms

3.1 The routine used for landing . 35

5.1 Generate Sparse Feature Vector . 63

5.2 Generate Sparse Feature Vector with Caching 65

5.3 Cache Invalidation Using Newly Discovered Features 65

5.4 State Transition Routine . 71

5.5 Location Transition Routine . 71

5.6 Actuator Health Transition Routine 71

5.7 Sensor Health Transition Routine . 72

5.8 State Transition Routine . 76

5.9 Location Transition Routine . 76

13

14

Chapter 1

Introduction

1.1 Overview

Unmanned Aerial Vehicles (UAVs) have become the topic of significant interest in

research for years in robotics and aviation. Developments in embedded computing,

sensing and several other technologies made significant improvements in the capa-

bilities of UAVs. In addition to being capable of doing sophisticated tasks, the lack

of human occupant makes them well suitable for a wide range of missions including

border patrol and search and rescue operations.

Many different types of UAVs for a variety of purposes have been designed. Mili-

tary operations usually dominate the research and development in UAV field. In fact,

in 2009 the U.S. Air Force started training more pilots to operate UAVs than to fly

fighters and bombers [3]. Moreover, the U.S. congress mandated that by the year

2015, one-third of all ground combat vehicles will be unmanned [3]. To catalyze the

development in unmanned aerial vehicles, FAA is currently working on regulations

regarding the use of UAVs in civilian applications. This increase in the utilization of

unmanned vehicles in general is due to their ability to reduce the cost of operation

and training, and the risk involved in the tasks. If built well, the use of robotic sys-

tems can also amplify the ability of the operator, making many hard tasks easier to

realize.

15

1.2 Motivation and Objective

The increasing demand for unmanned vehicles has driven many researchers into the

development of planning and control algorithms for small and large scale missions.

Different types of ground, aerial or naval vehicles are utilized in different mission

settings as a result of the need to test planning algorithms for robustness to different

factors in laboratory environment. An important class of these missions falls under

the category of persistent missions, such as surveillance or target tracking, where the

length of the mission is much longer than the flight time of a single agent. These types

of missions are also practical scenarios in which the performance of the planning can

be stressed in the long run.

Although it is ideal to test the algorithms in the long run, the flight time of an

agent in indoor experiments is upper bounded by the vehicle’s battery life, which

limits the possible duration of the mission demonstration. This limitation has led to

many different approaches to solving autonomous battery charging/changing problem.

Initially, a human operator was involved in the battery changing process in persistent

surveillance missions. However, this method requires at least one human constantly

observing and doing repetitive work. In the presence of flying vehicles, this can also

be quite dangerous. Automating this process has emerged as a necessity, and onboard

autonomous charging mechanisms were introduced [1, 4–15]. However, charging bat-

teries onboard is time consuming, and leads to low vehicle utilization. In particular,

the design mentioned in [1] incorporates onboard battery charging to recover the bat-

tery after the quadrotor lands. This approach was demonstrated in a 24-hour mission

and with several vehicles, but since the charging is slow, this approach was found

to be very inefficient in terms of vehicle utilization. Even though it is possible to

reduce the charging time by increasing the current rate [12], the charging time is

still very long compared to the operational time. To increase the vehicle utilization,

different mechanisms to replace the consumed battery with a fresh one are designed

and implemented.

This thesis introduces a novel design that enables automated battery swaps with-

16

out shutting down the vehicle. The platform holds a buffer of seven batteries in a

dual drum structure that ensures time-efficient swapping (on the order of seconds).

Each battery is connected to a proprietary charger that supports multiple charging

rates and battery chemistry for proper battery maintenance. The hot swap capability

prevents vehicle from shutting down, eliminating the possibility of data loss.

The platform is demonstrated as a part of a large scale persistent search and

track mission setting that is introduced in [16]. The objective of the mission is to

search target vehicles in the surveillance, while continuously tracking those that are

found. The mission is executed in Aerospace Control Laboratory’s RAVEN test

environment. Three quadrotor vehicles are utilized as the agents performing the

mission, and three recharge stations were used as the battery maintenance agents to

increase mission length. The details of the mission setting are given in Chapter 4.

The MDP formulation in [16] is modified to incorporate battery states.

1.3 Summary of Contributions

This thesis presents several contributions to the long term battery management pro-

cess.

• A detailed survey of recent studies in long term battery management area is

included to provide a broad view of different techniques and devices imple-

mented. The survey also provides the advantages and disadvantages of the

proposed methods.

• The requirements of such battery management system is discussed in detail,

and possible solutions are given. This also includes the decisions made in the

hardware design presented in this thesis.

• A hardware platform is developed to enable missions of indefinite length.

• In order to show real world relevance, several flight tests were implemented with

a team of multiple UAVs, ground robots and recharge stations, and important

17

results were provided. These flight experiments were executed both in ACL’s

RAVEN facility and Boeing’s VSTL facility.

• Finally, the persistent search and track scenario is modified to incorporate bat-

tery states in the system.

1.4 Thesis Outline

The organization of the thesis is as follows: Chapter 2 discusses the need and design

requirements for hardware platform for automated battery maintenance, introduces

several metrics to measure performance of such system and presents the gaps in the

existing designs. Chapter 3 discusses the details of the specific design introduced in

this thesis. Chapter 4 provides experimental results about the impact of the hard-

ware platform. Chapter 5 presents background on dynamic programming (DP) and

Markov Decision Processes (MDP) and provides well-known algorithms to provide

background on the subject. This chapter also introduces the problem formulation

for the persistent search and track mission and proposes modification to incorporate

battery states to provide true persistency. Finally, Chapter 6 contains concluding

remarks and highlights areas for future research.

18

Chapter 2

Automated Battery Management

Platforms: Existing Approaches

and Design Requirements

As the use of unmanned aerial/ground/sea vehicles in autonomous missions increases,

many efforts have been directed to the study of planning, control and navigation

algorithms. Many of these applications fall into the category of persistent missions

in which the planning algorithms try to optimize the system performance over a long

period of time. In particular, for most of these applications, the desired mission

length greatly exceeds the flight-time of a single UAV, hence monitoring the UAV

fuel status is an integral part of the planning scheme. In an experimental setting, the

flight-time of a UAV is limited by a battery life, making experimental demonstration

and verification a challenging problem.

In order to extend experiment duration, a human operator was involved in the

battery management process initially. However, this method requires at least one

human constantly observing and doing a repetitive work. Automating this process

has emerged as a necessity, and several approaches have been proposed by researchers.

The following section provides a detailed literature review on the research done in

automated battery management problem.

19

2.1 Literature Review

Initial work in autonomous battery charging problem has been done by the authors

of [4, 5] for a ground robot. They implemented a docking platform to charge battery

and demonstrated the platform through 1-week. Precise navigation during docking

is implemented using two optical sensors that are used to follow a line to the docking

station. The authors of [6, 7] designed a system similar to [4], but used an IR sensor to

locate the docking station. A similar approach is currently being used commercially

by I-Robot[17] and by Kiva Systems[18]. In [8] and [10], the docking mechanism is

differentiated by including blob detection for localization. [9] uses similar docking

mechanisms, and introduces estimation of operational time on a given charge level

based on the data collected.

Authors of [19, 20] discusses design details of their hovercraft testbed for decen-

tralized and cooperative control using a network of ground vehicles and how they

solved the battery management problem. Proposed method uses a secure mechanism

to provide electrical mating through the copper contacts at the bottom of the vehicle.

Using proper LiPo charging scheme, they can make the estimation of the remaining

time for the charging and plan proactively based on this information. Based on the

numbers given in the papers (15min operation and 150min charge), their level of

vehicle utilization is approximately 10%, which is very low.

The authors of [21] focused their attention not onto physical implementation or

analysis of such a system, but onto learning aspect of recharging. Using artificial

neural networks (ANN), they made their robot learn the implications of recharging

on overall system performance, i.e. cumulative reward, in the long run.

In [22, 23], the idea of contactless charging using inductive power transfer and

capacitive power transfer have been explored for soccer-playing robots. Similar to

other online battery charging methods, this approach suffered from agent utilization.

Proposed methods also had low-power transfer utilization due to disturbances in the

environment.

The first and ground breaking work in battery management on UAVs was pre-

20

sented in [1, 12, 13], which discusses the first prototype of a battery charger plat-

form was developed to support Aerospace Controls Laboratory’s RAVEN[24–26] test

bed. The authors demonstrated the functionality of the platform during a 24-Hour

continuous mission. [15] uses a similar approach to charge the vehicle using direct

connections to the battery through its feet. This approach, while easier to implement

than the other methods, suffers from a very low vehicle utilization of around (≤ 50)%,

requiring at least twice the number of operational quadrotors to provide persistency.

In [27], authors proposed a significantly different approach to the problem by using

high-energy laser beam to provide power to the quadrotor during flight. This quadro-

tor was directly powered by the laser beam, and the concept is demonstrated through

24-hour continuous flight. This method, however feasible, is costly to implement and

demonstrate, as several mobile laser-emitting stations are required.

The authors of [28] and [29] focused their attention on thorough analysis of several

recharge and replacement platforms and proposed a conceptual battery replacement

platform. This research concluded that economically battery replacement platforms

are preferable based on vehicle utilization and cost of overall system.

The authors of [14] developed the first prototype of a battery swapping mechanism

as part of their ACE test bed. They designed a low-weight carbon-fiber battery pack

for the vehicle which also interfaces with the charging unit. The secure attachment

of the battery pack to the vehicle is provided through the use of magnets.

Based on this discussion, the next section provides analysis of existing approaches

and introduce several design requirements.

2.2 Analysis of Existing Approaches

Swapping batteries manually This approach is a natural approach to swap the

batteries without automation. In this approach, a human operator continuously mon-

itors individual vehicle battery levels throughout the mission. When a vehicle spends

its battery, the battery is replaced with a fresh one and the charging process is man-

ually started by the operator.

21

Figure 2-1: Original MIT ACL recharge platform approach [1].

However, at least one dedicated human operator must constantly monitor the

battery levels. The number of human operators required to manually replace and

charge batteries increases with the number of UAVs in the mission. This task is

repetitive in nature, and it is a logical next step to automate it. This approach also

requires a complete vehicle shutdown of the vehicle’s onboard electronics as the spent

battery is swapped for a new one. This adds further delay and a potential for losing

onboard data and state information.

Charging batteries onboard This approach was first applied by the authors of

[1, 12, 13]. In this approach, the quadrotor is modified to provide contacts with

the landing pad connected to a charger as shown in Figure 2-1. This approach is

considered the initial step towards automating and streamlining the process. The

feasibility of the method has been demonstrated in a 24-hr flight operation.

The disadvantage of this design is that the charging time is very long compared to

the life of a single battery. In experiments done in [1, 12, 13], a battery could sustain 8

minutes of flight, and charging time was around 40 minutes. Even when the charging

rate is increased [12], the ratio of charging time to battery life is significantly high. In

addition, there is an upper limit at the rate in which batteries can be charged safely

which puts an upper bound on the vehicle utilization.

22

Figure 2-2: Illustration of laser-beam-powered UAVs. (Image courtesy of LaserMotiv
[27])

Emitting high-energy laser beams to provide power This approach[27] is

relatively new and provides a different approach to the problem. Instead of chang-

ing/charging the batteries, the power of the UAV is provided through high energy

laser beams targeting the UAV. The illustration of this approach is given in Figure 2-2.

However, constructing high energy laser beam emitters in the field where a quick

deployment of the UAV is necessary is not always possible. It is also expensive to

construct beam emitters in such environment, and the number of emitters will need to

be increased linearly with the number of operational UAVs. Furthermore, precision

tracking of the quadrotor is a difficult control problem, and any deviation from the

designated receiver area could potentially harm the quadrotor. This approach also

suffers from obstructions and the fact that, as the distance from the emitter increases,

the angle of reception will increase, yielding loss of energy.

2.3 Conceptual Design Requirements

Before the design phase, a certain set of requirements were defined for the system,

as highlighted below. These requirements will also be used to evaluate existing ap-

proaches in Section 2.2 and will also help with the decision of choosing alternative

23

approaches.

1. Continuous mission capability – This is the main idea behind the platform.

The designed mechanism should be able to sustain the mission indefinitely. In

order to achieve this, careful selection of the number of vehicles, number of

batteries, battery types, battery chargers and battery charging rate, and the

charging method must be made.

2. Minimal vehicle downtime – Many of the methods highlighted in Section 2.1

have levels of vehicle utilization that are less than 50%. Systems with low levels

of vehicle utilization require many more vehicles to provide the same level of

coverage. In order to have high individual vehicle utilization, the vehicle should

be put back to its operational state as soon as possible. The vehicle downtime

usually depends on the renewal approach, charging time for a battery, and

number of batteries available.

3. No interruption of vehicle power – On-board vehicle computer is usually

carrying invaluable mission-related data such as photographs of a target or a

video footage. The loss of power may result in loss of data. Moreover, the

controller-related data is also important and loss of this data may result in

reduction in the controller performance. The loss of power also causes delays

due to initialization of the system when the new battery placed onboard. The

uninterrupted power could be achieved using high capacity capacitors, or the

design must have a mechanism to provide the quadrotor power during battery

replacement. The latter is employed in the design proposed here.

4. Reliability – The platform will inevitably include moving parts and each mov-

ing part, in general, reduces the reliability of the system. The platform design

must have a low number of moving parts, and those moving parts should be

implemented with reliable actuators.

5. Small footprint – In space-constrained areas like lab environments, each bat-

tery management platform will reduce the effective size of the room, so it is

24

Figure 2-3: Discharge of a battery during flight

imperative to minimize the area used by the battery management platform.

2.4 Parameter Selection

In the design of such system, there are several parameters that need to be selected

such as battery charging rate, number of quadrotors, level of persistency, and num-

ber of batteries per charger. In order to select the appropriate parameters, several

measurements have been done. These measurements include average battery charg-

ing time from a defined low-level to fully-charged level. The hardware used in these

measurements is described in Chapter 4, but in summary a quadrotor copter which

uses 3-cell 1350 mAh battery. The voltage of a discharging battery in a quadrotor

during flight is shown in Figure 2-3. This plot is a representative of an average battery

discharge during flight. The battery is discharged until a predetermined low value of

10.5V (or 11.2V when the quadrotor is turned off).

25

Figure 2-4: Single battery voltage during the charge process.

Figure 2-4 shows battery voltage over time during charge process. The battery

is charged in constant current phase between t = 0min and t = 25min, and then it

enters into constant voltage phase between t = 25min and t = 50min. Figure 2-5

shows the time required to charge the 32 batteries. On average, it took 52min to

charge a battery from low (11.2V) to charged (12.6V), the variation in charge time

comes from the fact that batteries have different usage pattern - some are charge-

cycled more than others, or discharged more than their safe level.

Using the Petri analysis method described in [28], parameter selection could be

done systematically. The platform designed needs to support one quadrotor indefi-

nitely. However, since to provide full coverage, we need at least 1 vehicle in air at

all times, NUAV = 2 is selected. Taking TI = 0 s, TF = 8min, TC = 52.02min, and

NCGR = NBATT −NUAV and assuming a pessimistic value of TR = 1min, and aiming

26

48 49 50 51 52 53 54
0

1

2

3

4

5

6

7

8

9

time (min)

nu
m

be
r

of
 b

at
te

rie
s

Battery Charging Times (mean = 52.025 mins)

Figure 2-5: Battery charging times for 32 batteries

for CSY S ≥ 1.05,s

TLUAV
=

TF + TR + TI
NUAV

(2.1)

TLPLAT
=

TR
NPLAT

(2.2)

TLBATT
=

TC + TR
NBATT −NUAV

(2.3)

TLCGR
=

TC
NCGR

(2.4)

TCY C = max(TLUAV
, TLPLAT

, TLBATT
, TLCGR

) (2.5)

CSY S =
TF
TCY C

(2.6)

it is found that TCY C ≤ 7.61, and NCGR ≥ 6.95. This number indicates that in order

to provide continuous coverage for 1-quadrotor task with two quadrotors, second one

taking the first’s place only when battery is discharged, the recharge platform needs

to have at least d6.55e = 7 batteries. This is also the number chosen for the design

explained in the next chapter. Taking NCGR = 7, the overall system coverage is found

27

to be

CSY S = 1.056 (2.7)

which indicates that the system could run indefinitely, and there is a 12% buffer in

battery charging time, i.e. as long as batteries, on average, are charged in 53.33min,

the platform will be able to sustain persistent operations. Chapter 3 discusses the

specific implementation details of the platform designed that holds NCGR = 7 batter-

ies.

2.5 Conclusion

Based on the discussions in previous sections, the next chapter will provide design

details of a battery exchange/charge platform that has a buffer of 7 batteries. The

station makes use of off-the-shelf charging circuits to support missions of arbitrary

lengths. The design employs rail-like structures to enable rapid battery swapping to

minimize vehicle downtime. The sensors employed in the recharge platform increases

system robustness by introducing checks for proper battery placement. There are

also sensors that enable battery monitoring during recharge process.

28

Chapter 3

Conceptual Design and

Implementation

This chapter discusses the design options for a battery maintenance station, and gives

a detailed explanation about the choices made in the design described in this thesis.

There are several aspects of such a platform that must be addressed during the design

process:

1. Vehicle and power source selection

2. Battery carriage and skid design

3. UAV positioning & landing on the platform

4. Locking UAV and providing power while the battery swap is in place

5. Battery charging

6. On-board Electronics/Software

7. Off-board Controller Software

3.1 Vehicle and power source selection

In a maintenance system, it is preferable that the design can support as many different

types of UAVs as possible. The selection of the vehicle determines the type of power

source used by the vehicle, hence the design of the station.

29

Table 3.1: Battery types and their properties

Battery Type Cell Volt(V) Energy Dens.(W.h/kg) Cost(W.h/$)
Nickel-Cadmium 1.2 40− 60 1.25− 2.5
Nickel-Metal Hydride 1.2 30− 80 2.75
Lithium-Ion 3.6 150− 250 2.8− 5
Lithium-Ion Polymer 3.7 130− 200 2.8− 5

In laboratory environments, battery powered vehicles are used due to their ease

of refueling [25, 30]. There are a number of rechargeable battery types in the market

whose properties are summarized in Table 3.1. Due to their high energy density and

high discharge rate, Lithium-Ion Polymer (Li-Po) based batteries are widely used,

and will be the battery of choice for this platform. This decision reduces the total

weight of the payload the aircraft has to carry while increasing flight duration.

There are several important points to keep in mind when using Li-Po batteries:

1. Each cell of a Li-Po battery has 3.7V nominal voltage, and 4.2V full voltage.

2. The battery should not be charged and discharged more than the charging

rate advertised by the manufacturer. This charging rate is usually 1C1 for

non-balanced charging, and 2-6C for balanced charging. Charging the battery

significantly above these rates is dangerous as the battery may catch fire. It

will also significantly reduce its lifetime. Discharge rates are usually relatively

high, and they are usually around 20-40C.

3. As a rule of thumb, the battery should not be discharged below 80% of its ca-

pacity to prolong its lifetime. A 80% discharged battery will give approximately

3.7V per cell under no load, which corresponds to 11.1V for a 3S Li-Po pack.

Due to their simple structure, ease of control and stability [25, 31–33], a quadrotor

is used as the vehicle of target. The properties and the design of the quadrotor are

explained in detail in Chapter 4. Even though the demonstration is done using a

1Capacity indicates how much energy the battery pack can hold and is usually given in mAh.
This means that using 1C discharge rate, it would take 1 hour to drain the battery completely.

30

quadrotor, the design will be able to support any rotor-craft vehicle that can do

vertical take-off and landing.

The onboard controller for the quadrotor provides useful health information such

as battery voltage and individual motor currents. This information is currently used

to reactively [34] respond to dropping battery voltage. In the future, batteries could be

tagged with RFID stickers and their collected health data may be used to accurately

estimate their remaining flight time.

3.2 Battery carriage and skid design

In a normal R/C aircraft, the aircraft is connected to the battery through wires

and connectors such as Ultra Deans. These connectors typically provide a really

strong connection ensuring stable connection. However, they are not suitable for rapid

battery swapping. A special means of packing the battery in a rapidly-swappable way

is necessary. In [28], the authors propose a method involving electromagnets on the

batteries and the carriage. This method, although applicable, is complex and lengthy

in the sense that swapping a battery is realized in a 3-step process involving actuation

in multiple axis. The battery is first extracted from the aircraft, the magazine of

arrays is rotated to get the battery with highest potential, and the battery is pushed

into the vehicle. The overall process reportedly takes 47.5s on average. There is an

opportunity to reduce the swap time, and an alternative design is proposed.

The battery carrier is a rectangular prism-shaped structure that the battery is

placed inside. Power contact is provided through the copper strips on both sides of

the T-shaped rail. A gear is placed on the bottom of the carriage to allow linear

motion when it engages with the pinion gears found on the landing pad. The CAD

design is shown in Figure 3-1.

The quadrotor receiver is designed to be attached to any aerial vehicle that could

do vertical landing and take of while mating with the sloped landing plate on the

recharge station and accepting the battery carriage underneath. One of the objectives

in such design is to minimize the combined weight of the carriage and the receiver so

31

(a) Battery Carriage

(b) Battery Basket

Figure 3-1: The battery carriage and the battery receiver with T-shaped channel.

32

that the quadrotor can carry them without significantly sacrificing the useful battery

life. The strength of the carriage is provided in both vertical and horizontal directions

by using an “X” structure pattern. This enabled a great reduction in the component

weight, while still maintaining enough strength.

The basic philosophy behind the entire design is to create a battery swapping

process with one linear motion that performs the steps of replacing the old battery

with a new one as shown in Figure 3-2. This is in contrast to other possible options

with multiple steps, such as removing the old battery into an empty bay, aligning a

new bay with fully charged battery, and then inserting the new battery. This is how

a human would do the task manually, but it involves multiple steps that complicate

the overall process. The alternative approach taken here was to align three battery

slots (e.g, an empty one on the left, the vehicle one in the middle, and a bay holding

a charged battery on the right.) The aligned bays now provide a nearly continuous

T-rail support from the far left to the far right on the device (The T-rail supports

and the associate copper plates in the drum bays are visible at the top of Figure 3-6),

with small gaps in between. Note that the two ends of the T-rail in Figure 3-1(a)

are beveled to ease the transition across the gaps from one rail support to another it

simplifies insertion into the new rail support, and then the T-rail can force the proper

alignment as it moves across.

This process is clearly shown in Figure 3-1(b), which illustrates how the battery at

the left (back) slides out while at the same time the one at the right (front) slides in to

the battery receiver on the quadrotor. Figure 3-3 further illustrates how one battery

carriage slides out while the other slides in. The combination of the curved copper

strips on both sides and T-rail provide a pressure-fit with the receiver that prevents

the carriage from sliding out in mid-flight while also providing electrical contact.

The quadrotor receiver is designed to be attached to any quadrotor helicopter while

mating with the sloped landing plate on the change/charge station and accepting the

battery carriage underneath. One of the objectives in such design was to minimize

the combined weight of the carriage and the receiver so that the quadrotor can carry

them without significantly sacrificing the battery life. In order to meet this objective,

33

Figure 3-2: The battery basket is half way into sliding into the battery receiver on
the landing platform. This simple motion enables fast and reliable battery swapping.
Note that only left drum is shown for simplicity.

Figure 3-3: The Battery carriages sliding into and out of a quadrotor battery receiver.

34

Algorithm 3.1 The routine used for landing

function LandingThread(xland, yland, zland)
landSpeed← 0.07cm
xyTolerance← 0.02cm
zTolerance← 0.01cm
approachHeight← 0.5cm
ts ← 0.01seconds
zgoal ← zland + approachHeight
loop

xcurrent, ycurrent, zcurrent ⇐ getCurrentPosition()
distance←

√
(xcurrent − xland)2 + (ycurrent − yland)2

zdiff ← |zland − zcurrent|
if distance ≤ xyTolerance then

zgoal ← zgoal − landSpeed ∗ ts
end if
if distance ≤ xyTolerance and zdiff < zTolerance then

turnMotorsOff()
Break

end if
end loop

end function

careful structural optimization and material selection were performed.

3.3 UAV positioning & landing on the platform

This section introduces the measures implemented to minimize the position during

landing, and also focuses on dealing with small errors that could still occur during

landing. This improves the overall robustness of the total battery swapping process

against possible disturbances or degrading landing performance.

In order to improve the landing performance, a special landing algorithm is in-

troduced. During regular landing, a waypoint tracking method is generally used.

However, when landing on a specific coordinate in the x− y frame, the landing rou-

tine was modified such that instead of giving a step altitude command, the altitude

command is decreased only if the position error in x−y is within a given bound. This

ensures that deviations in x-y frame could be corrected without further reducing the

altitude. The landing algorithm is described in Algorithm 5.9.

35

SolidWorks Student Edition.
 For Academic Use Only.

Figure 3-4: Sloped landing plate that guides the quadrotor into swap spots

Even when a specifically designed landing routine described in Algorithm 5.9,

deviations from the final pose is still possible, and the station needs to have measures

to handle that. For that purpose, a sloped landing plate is designed. If the quadrotor

lands within that plate, the quadrotor is going to slide and it will be guided to the

spots designed for the feet. This allows deviations as big as 5cm in one direction and

2cm in the other. The CAD is shown in Figure 3-4.

3.4 Locking UAV in place and providing power

Even after a near-perfect landing, there may still need to be a small correction in

position and orientation. In addition, the quadrotor needs to be locked in place

during swapping process, otherwise the battery carriage may get jammed before it

could get into T-shaped rail. This component is implemented using two servo motors

on each side of the landing platform attached to 3-D printer arms and a matching

36

section on the receiver. The arms will lock down the quadrotor in place from the

beginning of the process, until after the fresh battery is pushed back into the vehicle.

One of the premises of this design is to keep the quadrotor powered when the

swap process is taking place. This is crucial in case the communication with the base

at all times is important, or cold-start of the quadrotor takes significant time. This

can be realized in several ways, 2 of which are explained below.

1. The sliding mechanism could provide connection to both spent and fresh bat-

teries simultaneously. This method ensures that the quadrotor is attached to at

least one battery any given time, but safety checks such as ensuring the spent

battery is fully pushed out is tricky.

2. The arms could provide shore power to the vehicle. This is the decision made in

this design due to its simplicity. The arms have copper conductors attached to

their tips, which are connected to 12.0V output on the board. The battery re-

ceiver has a matching connection parallel to the battery circuitry. This method

makes sure that even when the spent battery is fully pushed out, it is powered

through the arms.

3.5 Battery Charging - Charger Integration

The electronic circuitry used for battery charging is tightly coupled with the chemistry

of the battery. Li-Po batteries, despite their high energy density and high discharge

rates, need proper charging. They require to be charged through a method called

constant current - constant voltage (cc/cv). The meaning of it is that a constant

current is applied until the potential across the leads reach 12.6V for 3S battery, and

then the current will start dropping while ensuring that voltage remains constant.

The charging process will stop once the current drops to 0A.

In this design, a commercially available multi-chemistry smart battery charger T6

by Thunder Power is used. This charger has the lowest footprint per battery, and it

supports different battery chemistries such as NiMh, Li-on and LiPo. It is capable

37

of doing both balanced and unbalanced charging. One downside with this charger is

that it doesn’t provide any means of communication with it through protocols like

UART or I2C. Therefore, a separate circuitry to control when to start and stop the

charger, and measure the battery voltages is implemented.

3.6 On-board Electronics/Software

The system with previously described capability is composed of many circuit compo-

nents.

The overall control of the station is realized through 4 microcontroller units. A

robostix with ATMega 128 is used to communicate with the off-board controller, on-

board charger controller and actuation of the drum steppers that is responsible from

the alignment.

The actuation of the drums is realized by two stepper motors rotating in opposite

directions. Previously, a motor module coupled with an encoder was used for the

same purpose. However, precision control of the motor module was hard and it took

longer to align the drums to a specific position. Stepper motors provide an easy

way to control using step commands as opposed to Pulse-Width Modulation (PWM).

They also provide high-torque rotation so that they can resist against the moment of

inertia of the drum structure and 4 batteries.

Each drum has 1 dsPIC to control the motors that match the bottom gear of

battery bays. They are responsible from pushing the new battery out, and pulling

the new battery in. The dsPIC shares the same UART line with the XBee. This

is beneficial because there are 2 UARTs on the Robostix which are already used to

communicate with XBee and Charger controller board.

The management of chargers and measurement of the battery voltages are imple-

mented on an ATMega 256 board. One important point is to isolate the charging

circuit from the measuring circuit using operational amplifiers. Failure to do so re-

sults in ground loops, inaccurate voltage readings and dangerously high current levels.

When the charger technology evolves, and chargers with computer control emerge, it

38

will be possible to read the battery voltages, current, and energy put into the battery.

3.7 Off-board Software

The off-board software is responsible from higher level actuation commands that are

sent to the onboard controller through X-Bee. It also communicates with the mission

manager, which decides when the swap should take place. These commands include

arm lock, drum rotation, central sensor check for proper battery placement, voltage

and position retrieval, bay and central motor actuation.

The off-board software is written as a part of Raven Framework in Python, and

uses same messaging protocol. The software has a number of operational safety mea-

sures in place. The operation is suspended in case the swap could not be completed

due to jammed basket/receiver. This is the only instance where a intervention of a

human operator would be required.

3.7.1 Mission Manager

The mission manager is implemented in Python and is composed of a messaging

protocol and a number of messages for operational, tasking and health purposes,

position data protocol, and a number of utility functions. Mission manager is a

general framework to implement scenarios for a given mission description. Aside from

providing methods for commanding vehicles, it also provides methods for plotting

data, observing vehicle states, and logging them. Using Object Oriented Abstractions,

the mission manager can talk to systems in different labs and also to different types

of vehicles. This was mainly designed because of the requirement of being able to

transition software to Boeing facilities.

The messaging protocol ensures that the mission manager can talk to different

vehicles and command them. As long as the bandwidth is sufficient, and vehicles im-

plement the same messaging structure, the vehicle can talk to any number of vehicles

that are on the same network.

The mission manager also has a built-in simulator to enable the developer to test

39

the code s/he writes before running the mission with actual vehicles. Simulation

doubles for ground vehicles, quadrotors and recharge stations are implemented. It

is also possible to do real/sim experiments, ie a mission run of both simulated and

actual vehicles. Mission manager is also responsible from managing recharge station

as a resource. In order to do this, recharge station keeps track of occupied recharge

stations, vehicles occupying them, and the vehicles waiting for an empty recharge

station. With more than one recharge station, the selection of which one to allocate

becomes important. In missions where there are no higher level algorithms that decide

which one to allocate, the mission manager makes the selection using several different

algorithms as discussed in Section 3.7.2.

3.7.2 Station Selection Process

The mission manager needs to select an empty charger when a quadrotor goes low on

battery. Currently, 3 selection mechanisms has been implemented based on require-

ments on previous experiments:

1. Round-robin: With this method, the charge stations are assigned to quadrotors

in order, one after the other. This method ensures that each charge station

has similar battery charge levels. This method also makes it easy to debug the

recharge station use in the mission as what is going to be used next is known.

2. Preassigned: This method is the simplest to implement. Each quadrotor is

assigned to a specific recharge station. This method is used mostly for debugging

purposes.

3. Closest-First: This method makes sense when the environment is so large that

the navigation time is no longer negligible. Previous methods don’t use the

vehicle location, and it is likely that one quadrotor could be sent to the furthest

recharge station. When a quadrotor requests to refuel, the distance to each

recharge station is calculated and the closest non-occupied one is selected.

40

All of these methods are able to distinguish a simulated vehicle from a real one

so that simulated vehicles are prevented from going to real recharge stations and vice

versa.

3.7.3 Dispatching Process

After selecting an available recharge station for the quadrotor, the mission manager

has to perform a number of steps to ensure mission is continuing as desired and proper

actions are taken before the battery swap operation begins:

1. The mission manager constantly monitors each vehicle state. Depending on

the problem formulation used by the mission, either an algorithm proactively

decides to send the quadrotor to the station to swap its battery, or the mission

manager acts reactively and send the quadrotor to the station when the voltage

goes below a certain threshold to ensure battery and vehicle safety. Usually it

is a combination of both, the reactive planning will kick in if proactive planning

fails to do so.

2. When the quadrotor is about to be sent to the station, it needs to be taken out

of the available vehicles in the mission and all tasks assigned to the vehicle need

to be dropped.

3. After mission manager marks the vehicle as busy for recharge operation, the

quadrotor is commanded to land on a selected recharge station.

4. After landing, to ensure proper alignment and position on the station, the

current position of the vehicle is checked against previously recorded values.

If the error in recorded and the current pose is greater than what is tolerable

by the station, the quadrotor is commanded to take off and land again. If the

landing is successful, recharge station is commanded to initiate the sequence.

5. Depending on the mission type, after recharge station notifies the mission man-

ager, the vehicle can be set to stay on the recharge station, set to take off right

41

immediately, or the quadrotor is taken off and land at a designated area. In a

scenario like PSM, where number of available vehicles may exceed the number

of flying vehicles needed, the 3rd option is logical, while the required number of

vehicles is equal to the number of available vehicles, the first one is preferable.

3.7.4 Station Management Process

The following steps explain the charger management process step by step. The mission

manager refers to the software that coordinates the vehicles to achieve a mission

objective. It also monitors each vehicle’s individual health information. The following

step is also illustrated in Figure 3-5:

1. Mission manager continuously monitors the quadrotor health state, which in-

cludes the battery voltage and other components such as motor temperature

and performance.

2. When quadrotor battery voltage is considered to be low, the mission manager

calls the quadrotor back for refueling.

3. The quadrotor lands on the recharge station. The motors are turned off and

the mission manager is informed of a successful landing.

4. The Mission manager then commands the recharge station to start the swap

process.

5. The recharge station then locks & aligns the quadrotor using two servo-driven

arms. A proper lock & alignment provides shore-power to the quadrotor so

it can operate when the battery is removed, and toggle a sensor onboard the

station that enables Step 7.

6. Recharge station ensures using the central photo-electric sensors that the quadro-

tor has successfully landed and battery is properly aligned.

7. The recharge station pulls the discharged battery from under the quadrotor and

into an empty bay in one of the drums. Simultaneously, a charged battery is

pushed from the opposing drum into position under the quadrotor. Sensors

42

on the station detect the proper positioning of the new battery, which triggers

Step 8.

8. The recharge station releases the locking arms and notifies the mission manager

that the quadrotor is ready for take-off. The battery station then scans the

voltage level of the batteries in each bay and rotates the drums as necessary

in order to place a bay containing a fully-charged battery on top, aligned with

the empty bay. At this point, the quadrotor is available to be taken back into

mission.

9. The recharge station will start charging the recently inserted battery.

10. When the quadrotor is needed back in the mission, the mission manager will

send a take-off command to the quadrotor. The quadrotor will send a message

back when it has successfully taken-off. The mission manager will then release

the recharge station and make it available for the next battery change process.

The complete implementation of the platform is shown in Figure 3-6. The platform

has a sloped landing plate to guide the quadrotor into the swap place and two arms are

used to lock down the quadrotor and hold it in place. On each side of the platform

is a rotating drum, each of which contains 4 battery bays. Each of the drums is

connected to a battery charger to recharge the battery without human interaction

with the system.

In operation, a quadrotor modified with a battery receiver and carriage is placed

on a sloped landing plate and is locked down securely with two arms. The drums

are rotated to align the appropriate battery bays. The battery on the quadrotor is

then swapped out for the newly charged battery, and the old battery is placed into

an empty bay on the opposite drum. The charging for that battery then starts until

that battery is needed (approximately 1 hour later given the current system). Since

all steps are automated, the platform provides the capability to automatically change

and charge batteries without requiring intervention of a human operator.

43

(a) Quadrotor hovers over pad and descends to
land

(b) Quadrotor clamped to pad with shore power

(c) Spent battery is pushed into the empty spot (d) New battery is pulled under the quadrotor

(e) Locking arms are released, quadrotor is
ready to take off

(f) Next best battery is selected and drums are
aligned accordingly

(g) The quadrotor is commanded to take off by
the mission manager

Figure 3-5: One battery swap sequence from a multi-swap mission.

44

!"#$%&'%$($)*$%'
"#"(+$,'-.'/01'

23.4$,'3"5,)56'
43"-$'67),$8'
/01'3"5,)56'

2$%*.'"%98'"3)65'
"5,'3.(:'/01';'
8+.%$'4.<$%'

=<.'%.-">56',%798'
$"(+'<?@.7%'A"#$%&'
A"&8'$5"A3$8'
8)973-"5$.78'
3.",?753.",'

B)%$3$88''
9.,$9'
'
C5A."%,''
(.5-%.33$%8'

'
D+"%6$%8'@.%''
$"(+',%79'

Figure 3-6: The final implementation of the recharge station.

3.8 Conclusion

This chapter provided design details based on the design requirements introduced in

Chapter 2. The designed platform enabled rapid battery swapping, and fast battery

charging. Using the arms attached to the landing gear, the quadrotor is provided

with power even during battery swap operation, which prevented any data loss that

would have been caused by loss of power. The sensors introduced in the platform

increased system robustness. The next chapter is going to present hardware results

that were obtained through multi-hour experiments.

45

46

Chapter 4

Experimental Recharge Results

4.1 Hardware Setup

There are three categories of hardware in the hardware setup: robots, maintenance

station, and fast and accurate indoors positioning system. This section details each of

these categories and details the specific components used in the persistent surveillance

scenario.

4.1.1 Mobile Robotic Agents

Four different types of agents are used in the Persistent Search and Track scenario:

An aerial agent (a quadrotor), ground vehicles (IRobot Roomba robots) as targets

and ground surveillance vehicles and as civilians.

In addition, to answer the need for inexpensive aerial mobile robots, an in-house

quadrotor is developed to be used in PSM and other related flight experiments. The

quadrotor, shown in Figure 4-2, is built on a carbon-fiber and foam sandwich plate

frame with brushless motors, electronic speed controllers [35] capable of measuring

temperature and current, and an off-the-shelf autopilot board with accelerometers,

gyros and a pic-based microcontroller [36]. The firmware for the autopilot was also

developed in-house to close the attitude loop onboard for stable, hovering flight [37].

47

Figure 4-1: Four agent platforms used in flight experiments: Team UAV (top left),
Team UGV (top right), Target UGV (bottom left), and a Civilian UGV (bottom
right).

4.1.2 Indoor Metrology

Flight tests were carried out in Aerospace Controls Laboratory’s RAVEN Indoor

Flight environment[24, 25] and Boeing’s VSTL environment[2]. Figure 4-3 shows the

general layout of the MIT RAVEN facility, and Figure 4-4 shows the general lay-

out of the Boeing’s VSTL that enable rapid prototyping and testing of a variety of

unmanned vehicle technologies, such as different robotic agents, flight controls al-

gorithms, higher level task planning algorithms, coordinated flight algorithms in a

controlled environment. RAVEN/VSTL utilizes a vision-based motion capture sys-

tem to simultaneously track multiple robotic agents, and provide position and ori-

entation information with sub-millimeter accuracy about these vehicles in real-time.

This information is then distributed to a group of command and control computers

responsible for managing the autonomous execution of the mission.

48

Figure 4-2: Quadrotor helicopter built in-house to answer our need for an inexpensive,
autonomous, aerial mobile robot.

4.2 Results

This section presents and discusses the results obtained from hardware flight exper-

iments of the recharge platform. An experiment for testing the proposed properties

of the recharge station was performed and the results are given in Figure 4-5 and

Figure 4-6. The numbers on the plot indicate which battery is being used by the

quadrotor.

One cycle of the experiment consists of the quadrotor taking off from the ground,

flying and operating as a part of the mission until the mission time expires, then

landing on the charge/change station. After the swapping process takes place, the

quadrotor takes off and repeats the flight. The quadrotor is given a fully charged

battery, and the battery voltage is monitored by the mission manager. All batteries

49

Figure 4-3: The Real-time Autonomous Vehicle test ENvironment (RAVEN) in the
Aerospace Controls Lab at MIT [25].

Figure 4-4: Boeings Vehicle Swarm Technology Lab

50

in the station are also fully charged initially. As the voltage of the on-board battery

approaches 10.5 V (there is ≈0.7V voltage drop when the quadrotor is flying due to

current flow and the quadrotor impedance), the process outlined above is executed,

and the station swaps it with a fresh battery. All other batteries in the recharge

station are continuously charging.

Figures 4-5, 4-6 and 4-7 show the results of approximately 5 hour (conducted on

September 15, 2011), 4 hour autonomous flight experiments (conducted on January 4,

2012) and 3.5 hours (conducted on April 27, 2012) that cycled through the entire set

of batteries several times. The experiments shown in Figures 4-5 and 4-6 were ended

intentionally as they were long enough to prove the concept. The experiment shown

in Figure 4-7 was ended because of a quadrotor failure. Each peak in the figures

indicate that quadrotor had received a fresh battery – and after time t = 71 min,

the first battery used has already been recovered while the quadrotor is flying. Note

that each of the batteries identified by numbers is recovered in the next cycle, since

they reach the same battery voltage after charging. This shows that the persistency

is ensured.

Figure 4-8 shows the voltages of the batteries held in the recharge station. In the

beginning, all batteries are fully charged. The first battery is swapped at about ≈ 8.5

minute. Each drop in a battery voltage indicated that that battery is pushed into the

quadrotor while the battery in the quadrotor is pushed into the station for recharging.

As it is seen in figures, the battery is charged through constant-current period, and

it reaches constant-voltage, 12.6V , in about 34mins. The recharge process is finished

during constant-voltage period.

Furthermore, note that since each landing, battery swap, and take-off takes ap-

proximately 1 min, and the quadrotor flights are 8 min, the system is operating with

a vehicle utilization of approximately 90%, which far exceeds the approximately 10%

utilization (8 min flight time, 70 min recharge) achieved by the original recharge ap-

proach [1, 12]. Moreover, even if the charge time is reduced to approximately 20 min

by increasing the charge rate to ≈2 A, the utilization of the original approach would

still be limited to about 28% (8 min flight and 20 min recharge).

51

Figure 4-5: The voltage level of the batteries carried by the quadrotor through many
battery swaps during ≈ 5-hour take-off land mission

Figure 4-6: The voltage level of the batteries carried by the quadrotor through many
battery swaps during ≈ 4-hour car chase mission. The battery labeled with 1 has
relatively poor performance, yet, the platform was able to recover it every time it is
recharged.

Figure 4-7: The voltage level of the batteries carried by the quadrotor through many
battery swaps during ≈ 3.5-hour take-off land mission

52

Figure 2-5 was obtained through the same 5-hour mission as that of 4-5, and it

shows the time it takes to fully charge batteries. On average, it takes 52.02 minutes.

Time spent in the station by each battery has a mean of 61.1 minutes. This indicates

that the arbitrarily long flights feature is achieved as all batteries had enough time

to be recharged to their previous voltage level.

Figure 4-9 shows the collective controller input as it changes for single quadrotor

during a relatively long mission. The controller is counteracting to the dropping

voltage by increasing the throttle. Around ≈ 8 − 8.5mins, the voltage reaches to a

critical level, and it needs to be swapped. After the battery swap takes place, the

integrator is reset, and the controller starts with nominal throttle. In this mission, the

quadrotor has swapped its battery 32 times. The resulting downtime due to swapping

process is found to be ≈ 5%. This measures the ratio the quadrotor were in OFF

state vs ON state.

A similar mission to prove capability and feasibility is demonstrated in Boeing’s

VSTL facility[2]. The mission consisted of 2 quadrotor UAVs developed in MIT ACL,

and one RC Tank vehicle. The mission is to chase the ground vehicle with two aerial

vehicles. When one of the vehicles ran low on battery, the other one sitting on the

recharge platform took off, and the chase task is handed off to this vehicle once two

UAVs were within 1.5m of each other. The quadrotor is then guided to the recharge

station for refueling. After the swap operation is completed, the quadrotor sits until

the other one runs low on battery, and this cycle goes on. This mission continued for

about 75mins, until it was ended because of a programming error in the quadrotor

controller. Throughout the mission, each battery was used more than twice. The

reason each battery is used for short amount of time is that the batteries used in

VSTL were old compared to the ones used in ACL, thus they had shorter flight

time. However, the observation suggested that each battery, right before they are put

back into the quadrotor, was able to reach full voltage, which means sustainability is

achieved.

53

Figure 4-8: Battery potentials as they are being charged in the recharge station
through 5-hour experiment. Each segment represents the area where a different bat-
tery is used. It took, on average, 52.02 minutes to charge a battery, while each battery
spent 61.1 minutes in the recharge station.

Figure 4-9: Plot of the collective control input of a quadrotor during the mission
lasting about 5-hours.

54

Figure 4-10: Snapshots from a car-chase mission conducted at Boeing facilities. In
this mission, 2 UAVs shared one recharge station. One of the vehicles sits on the
recharge station until the other one runs low on battery. Then the quadrotors hand
off the chase task and refuel.

55

56

Chapter 5

Planning With Battery

Maintenance

5.1 Background

The purpose of this section is to provide preliminaries for the formulation used in

planning with battery maintenance. Markov Decision Processes, Linear Function

Approximators and model-free MDP solvers are explained.

5.1.1 Markov Decision Processes

A Markov Decision Process (MDP) [38] is a tuple defined by (S,A,Pass′ ,Ra
ss′ , γ) where

S is a set of states, A is a set of actions, Pass′ is the probability of getting to state

s′ by taking action a in state s, Ra
ss′ is the corresponding reward, and γ ∈ [0, 1] is a

discount factor that balances current and future rewards . A trajectory is a sequence

s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ∈ A is chosen probabilistically according

to a policy π : S × A → [0, 1] mapping each state-action pair to a probability. The

agent bases its decision for a given state using the policy. Each step is generated by

environment based on the transition model. For every state, the total probability of

57

all transitions add up to one, i.e. s ∈ S, π(s, .) forms a probability distribution:

∀s ∈ S,
∑
a∈A

π(s, a) = 1. (5.1)

Given a policy π, the state-action value function, Qπ(s, a) of each state-action pair,

is the expected sum of the discounted rewards for an agent starting at state s, taking

action a, and then following the policy π.

Qπ(s, a) = Eπ

[
∞∑
t=0

γtrt

∣∣∣∣s0 = s, a0 = a

]
. (5.2)

In finite discrete spaces, Qπ(s, a) can be represented by a table that maps state action

pairs to values.

The goal of solving an MDP is to find the optimal policy which maximizes the

expected cumulative discounted rewards in all states. In particular, the optimal policy

π∗ is defined as:

∀s, π∗(s) = argmax
a∈A

Qπ∗(s, a). (5.3)

that is, for a given state, the action with the highest value in the value function is

picked. The state value function for a given policy π is defined as:

V π(s) , max
a∈A

Qπ(s, a) = Eπ

[
∞∑
t=0

γtrt

∣∣∣∣s0 = s

]
. (5.4)

The optimal value function is defined as:

V ∗(s) , V π∗(s) = max
a∈A

Qπ∗(s, a) = Qπ∗(s, π∗(s)). (5.5)

The optimal value function satisfies the Bellman equation:

∀s ∈ S V ∗(s) = max
a∈A

Es′

[
Ra
ss′ + γV ∗(s′)

∣∣∣∣s′ ∼ Pas]
= max

a∈A

∑
s′∈S

Pass′
[
Ra
ss′ + γV ∗(s′)

]
. (5.6)

58

5.1.2 Dynamic Programming

Dynamic Programming is a method of simplifying a decision problem by dividing it

into sequence of smaller decision steps over time. This is achieved by finding the

optimal value function and corresponding policy.

Policy Iteration

The basic idea behind policy iteration[39, 40] is that, once we know the value of each

state under current policy, the policy may be improved by changing the first action

taken. If there is an improvement, the policy is modified to take that new action

whenever it is in that state. This guarantees to improve the performance each time

policy is modified.

function PolicyIteration(R,P, γ)
π(s)← Random(A) for s ∈ S
changed← True
while changed do

V π ← (I − γP π)−1Rπ

for s ∈ S do
π+(s)← argmaxa∈A

∑
s′∈S Pass′ [Ra

ss′ + γV π(s′)]
end for
changed← (π+ 6= π)
π ← π+

end whilereturn π
end function

Value Iteration

This is a classic DP algorithm[39, 40] that updates state-action values by visiting all

state-space and applying the Bellman update

Q(s, a) =
∑
s′∈S

Pass′ [Ra
ss′ + γmaxa′Q(s′, a′)] , (5.7)

until no significant change is observed.

59

function ValueIteration(R,P, γ)
V (s)← Random() for s ∈ S
changed← False
while not changed do

for s ∈ S do
v ← V (s)
V (s)← maxa∈A

∑
s′∈S Pass′ [Ra

ss′ + γV (s′)]
π(s)← argmaxa∈A

∑
s′∈S Pass′ [Ra

ss′ + γV (s′)]
changed← changed or v 6= V (s)

end for
end while
return π

end function

5.1.3 Linear Function Approximation

The look-up table representation of the Q function by storing a value for each state-

action pair is not practical for problems with large state space. An approximation is

usually possible by grouping states into larger groups. The approximation is usually

of the form Qπ(s, a) = θTφ(s, a). The feature function φ : S × A → Rn maps each

state-action pair to a vector of scalar values. Each element of the feature function

φ(s, a) is called a feature; φf (s, a) = c ∈ R denotes that feature f has scalar value c

for state-action pair (s, a). The vector θ ∈ Rn As it can be noted in Equation 5.5,

finding the optimal policy requires the ranking of the Q values for a given state. It is

often a good practice to avoid approximating the value of Qπ(s, a) based on Qπ(s, a′)

where a 6= a′. The approach to do this is to map each state to a set of features

and create a vector with these features copied to the appropriate action slot, and set

remaining elements to 0. This process is demonstrated in the following example with

2 actions and 2 features.

φ(s) =

 φ1

φ2

→ φ(s, a1) =


φ1

φ2

0

0

 , φ(s, a2) =


0

0

φ1

φ2

 (5.8)

60

Adaptive Function Approximation using iFDD

Adaptive Function Approximators, aside from updating the weights of the θ, also

modify the set of the features based on the observed data using the following update

rule:

Q̂k,l(s) = φk,l(s)>θk,l, (5.9)

φk+1,l+1(s) = h(zk, θk,l, φk,l),

where h is the representation expansion function that adds new features to the feature

vector based on sampled trajectories, weight vector, and previous set of features.

Based on the successful results in representing value functions, iFDD [39, 41] is used

as the adaptive function approximator for our framework to represent the uncertainty.

The idea behind iFDD is to expand the feature representation by adding conjunctions

of a given set of initial features based on temporal difference error, thus reducing the

error in parts of the state space where the feedback error persists.

5.1.4 Approximate Dynamic Programming

The idea of approximate dynamic programming (ADP) is to approximate the value

function by representing in a lower dimensional space using n � |S| parameters.

In this thesis, the focus is on family of approximators, particularly on IFDD, as

explained in Section 5.1.3. The main reason IFDD is used in this thesis is that the

quality of approximation is strongly related to the features selected, and selection of

these features is a hard problem. Using a TD-error threshold based method, IFDD

incrementally expands the representation, thus increasing the power of approximation

while still being computationally tractable.

5.1.5 Reinforcement Learning

In most practical domains, the dynamics of the system (i.e. Pass′ ,Ra
ss′) are too complex

to express analytically or most often unknown. Using exact Dynamic Programming

61

methods explained in Section 5.1.2 is infeasible or most of the times not possible.

In contrast, Reinforcement Learning techniques do not need the exact knowledge of

the MDP. Algorithms solve the MDPs with unknown models by interacting with the

environment at each time step using a deterministic policy.

RL methods, like model-based MDP solvers, can be grouped into 2 categories

namely 1) Value-Based Methods and 2) Policy Search techniques. This thesis makes

use of Sarsa and an improvement on it called Trajectory Based Value Iteration which

belongs to the former category.

Trajectory Based Value Iteration (TBVI)

This algorithm focuses on applying the Bellman updates on trajectories that are

sampled through Monte-Carlo simulations. The policy used for generating trajectories

are ε− greedy with respect to the current value function:

πε(s, a) =

a = argmaxaQ(s, a) with probability 1− ε

a = random action otherwise

The random action selection with ε probability ensures that in the limit, all states

are updated infinitely, which guarantees convergence to the optimal value function.

In an exact DP algorithm, such as Policy Iteration and Value Iteration, all state-

action pairs (s, a) need to be updated. However, this is not computationally tractable

for problems with millions of states. This has driven researchers to consider Asyn-

chronous Dynamic Programming [42], which updates only a subset of (s, a) pairs. By

using trajectories produced through Monte-Carlo simulations, TBVI updates only

most-frequently seen (s, a) pairs.

62

Algorithm 5.1 Generate Sparse Feature Vector

function GetExtendedFeatures(φ0(s), χ ⊆ Fn)
φ̊(s)← 0̄
activeInitialFeatures← {i|φ0

i (s) = 1}
Candidates← SortedPowerSet(activeInitialFeatures)
while activeInitialFeatures 6= ∅ do

f ← Candidates.next()
if f ∈ χ then

activeInitialFeatures← activeInitialFeaturesr f
φ̊f (s)← 1

end if
end whilereturn φ̊(s)

end function

5.2 Reducing Computational Complexity of iFDD

using Caching

iFDD relies on feature sparsification, as explained in [39]. In summary, in order to

create a sparse set of features, a greedy set covering algorithm is employed. Using

the greedy set covering algorithm [43], the complexity of algorithm is reduced to

polynomial time. The method works as follows: Given an initial feature vector φ0(s)

and the current pool of features χ, the resulting features are found by identifying the

active initial features and calculating the power set sorted by the set sizes. Every set

in the power set is then compared with the initial active features and the set is taken

if all elements are included in the power set, and then the elements in the set are

removed from the initial active feature set. The algorithm is explained more formally

in Algorithm 5.1.

There is still an improvement possible to speed up the sparsification process by

introducing caching mechanisms from computer science literature [44, 45] . A cache

is a mechanism that stores data produced as a result of computationally expensive

process for faster access. Usually, they are implemented through the use of hash

maps, where each element (known as keys) is mapped to another element (known as

values). They make use of hash function to generate an index known as the index,

through the use of hash functions.

63

0 2 4 6 8 10

x 10
4

100

150

200

250

300

350

400

450

500

550

Steps

F
e
a
tu

re
s

Equation capped discovery

Threshold based discovery

Figure 5-1: The rate of number of features discovered decreases as the algorithm pro-
ceeds. The slow down in the feature discovery allows to represent the value function
with bounded number of features, which also limits the memory consumption.

One important aspect of every cache implementation is cache invalidation, in other

words, there needs to be a way to invalidate cache once new information is available

so that fresh information is served as opposed to stale cached one. In iFDD, the

invalidation needs to happen when new features are discovered. The performance im-

provement comes from the fact that the number of features discovered in each timestep

decreases as the algorithm proceeds since the algorithm works using a threshold of

temporal difference error, and as the algorithm proceeds the TD error will reduce.

This situation is shown in Figure 5-1. In the limit, the number of features found

will converge to the number of states. Moreover, even when new features are discov-

ered, most of the previous features are not affected by this change since the current

set will likely not intersect with the other feature sets in the cache. When a new

feature is expanded, features that include the basic features represented by the two

parent feature need to be invalidated.

64

For problems with small stochasticity, i.e., small probability of visiting unseen

states when sampling, the cache size will remain small as the probability of seeing

new states will be slim. Algorithms 5.2 and 5.3 explain caching and cache invalidation.

Algorithm 5.2 Generate Sparse Feature Vector with Caching

function GetExtendedFeaturesCache(φ0(s), χ ⊆ Fn)
if ∼ cache.HasKey(φ0(s)) then

cache[φ0(s)]← GetExtendedFeatures(φ0(s), χ)
for all f ∈ χ do

dependency[f]← dependency[f] ∪ {χ}
end for

end if
return cache[φ0(s)]

end function

Algorithm 5.3 Cache Invalidation Using Newly Discovered Features

function InvalidateCache(ˆφ(s))

for all fnew ∈ ˆφ(s) do
p0 ← fnew.parent0
p1 ← fnew.parent1
for all f ∈ p0 ∪ p1 do

for all fdependentindependency[f] do
cache.removeKey(fdependent)

end for
dependency.removeKey(f)

end for
end for

end function

A particular statistic of significant importance about caches is miss/request ratio.

This statistic signifies the success of implemented cache mechanism. The lower this

ratio is, the faster the access will be. Figure 5-2 shows a sample execution of TBVI

on PSM domain with 70 episodes, and Figure 5-3 shows the improvement in the

processing time. The cache miss ratio in Figure 5-2 reaches to a steady state as the

feature discovery also slows down. This steady state value of ≤ 2% is typical for most

domains. Reducing the amount of unnecessary calculation by increasing cache hit

ratio, the performance improved around 40times on this example problem.

65

Figure 5-2: Cache miss ratio of the implemented technique for PSM domain

Figure 5-3: Time required to process 25000 episodes with and without cache

66

5.3 Proactive Planning with Battery Health Infor-

mation

With the introduction of the battery maintenance platform in Chapters 2 and 3,

more information about the actual system dynamics is available, and the MDP model

needs to be modified to more realistically reflect the actual dynamics due to following

reasons:

• Batteries have different potential levels at any given time.

• Battery potential and the flight time it can provide has nonlinear relation. The

charging is also nonlinear due to CC-CV battery charging scheme.

• Batteries should not be discharged to less than 20% percent.

• Battery performances may be different from each other.

This thesis addresses these issues in the context of the PSM problem.

5.3.1 Persistent Search and Track Mission

The persistent search and track mission (PSM) is a multi-agent mission planning

problem where a number of UAVs perform surveillance on a group of targets, while

maintaining communication and health constraints [16]. The high-level mission out-

line is shown in Figure 5-4.

Each UAV’s individual state at time t = tj is a tuple of 3 components:

s(ai, tj) = (Lai,tj , Fai,tj , Hactuatorai,tj
, Hsensorai,tj

) (5.10)

where Lai denotes the location of agent ai, and is described by a discrete set of

locations:

Lai ∈ {Base, Communication, Tasking} (5.11)

67

Figure 5-4: The objective of persistent search and track mission is to have as many
agents as required in the tasking area, while maintaining a communication link in
the relay area. Each agent’s state is subject to uncertainty in actuator,sensor health
and fuel consumption. The objective is to maximize the coverage in the tasking area
while preventing agents from crashing.

Fai denotes the fuel level of agent ai, and is described by a continuous set

Fai ∈ [0, Fuelmax] (5.12)

Hactuatorai
denotes the actuator health status of agent ai, and has values

Hactuatorai
∈ {Healthy, Failure} (5.13)

Similarly, Hsensorai
denotes the sensor health and its domain is given by

Hsensorai
∈ {Healthy, Failure} (5.14)

The state-space of the whole problem is combination of the states of each agent.

There are three available actions for each UAV: {Advance,Retreat, Loiter}. The

objective of the mission is to keep as many UAVs as possible in the Tasking area,

68

while one UAV remains in the Communication area to provide the data link between

Tasking area and the Base area. Each UAV starts with Fuelmax. Fuel burn doesn’t

have a deterministic model as it depends on external conditions such as weather

conditions and internal conditions such as the maneuvers made. Hence, it is modeled

using discrete Bernoulli Distribution [46]. The vehicle burns one unit of fuel for all

actions with probability pnom and 2 units with probability 1 − pnom. A UAV with

failed sensor cannot perform surveillance whereas a UAV with failed actuator cannot

perform neither surveillance nor communication. If a UAV runs out of fuel, it crashes

and can no longer continue the mission. When a UAV returns to the base, its failures

are repaired.

The state-transition model Pass′ captures the mission dynamics and is defined as

follows. Each agent’s location at the next time step depends on the current location

and the action taken, and it is deterministic in nature.

Lai,tj+1
=



Lai,tj , if Fai,tj = 0 or uai,tj = Loiter

Base, if Lai,tj = Comm and uai,tj = Retreat

Tasking, if Lai,tj = Comm and uai,tj = Advance

Communication, if Lai,tj = Tasking and uai,tj = Retreat

Communication, if Lai,tj = Base and uai,tj = Advance

(5.15)

Each agent’s fuel at the next time step is stochastic with parameter pfuel representing

the probability of burning fuel at the nominal rate of 1. With probability 1 − pfuel,

the fuel reduces by 2.

Fai,tj+1
=



0, if Fai,tj = 0

Fmax, if Lai,tj = Comm and uai,tj = Retreat

Fai,tj − 1, if Lai,tj = Comm or Lai,tj = Tasking Prob = pfuel

Fai,tj − 2, if Lai,tj = Comm or Lai,tj = Tasking Prob = 1− pfuel
(5.16)

69

The actuator and sensor health are modeled using a discrete probability distribution

with 2 outcomes:Failure or RemainSame. The uncertainty could also be modeled

as using state dependent uncertainty [47, 48], but for simplicity,it is modeled using

Bernoulli distribution [46].

Hactuatorai,tj+1
=


Healthy, if Lai,tj = Comm. and uai,tj = Retreat

Failure, if Prob = pactuatorfail

Hactuatorai,tj
otherwise

(5.17)

Hsensorai,tj+1
=


Healthy, if Lai,tj = Comm. and uai,tj = Retreat

Failure, if Prob = psensorfail

Hsensorai,tj
otherwise

(5.18)

The available actions set for a given state is defined as follows:

uai,tj(sj) ∈


{Advance}, if Lai,tj = Base

{Advance,Retreat, Loiter}, if Lai,tj = Communication

{Retreat, Loiter}, if Lai,tj = Tasking

(5.19)

The overall state transition is given in Algorithm 5.4

The cost function g(st, ut, ut+1) is chosen such that any favorable outcome is re-

warded while unfavorable ones are punished. For the PSM mission, favorable out-

comes include: (1) Having as many agents in surveillance area as possible while there

is a communication link. Unfavorable outcomes include: (1) Having crashed vehicles.

Moreover, each UAV move incurs additional cost Cmove.

g(st, ut, ut+1) = NtaskingCcoverageCommLink + CcrashNcrashed + CmoveNmove (5.20)

70

Algorithm 5.4 State Transition Routine

1: function sampleNextState(currentState, action)
2: for i ∈ {0, .., Nagent} do
3: Lai,t+1 ← AdvanceLocation(Fai,t, Lai,t, ui) . Set the location
4: if random() ≤ pfuel then
5: Fai,t+1 ← Fai,t − 1
6: else
7: Fai,t+1 ← Fai,t − 2
8: end if
9: Hactuator,ai,t+1 ← AdvanceActuatorHealth(Hactuator,ai,t, pactuatorfail, Lai,t+1)

10: Hsensor,ai,t+1 ← AdvanceSensorHealth(Hsensor,ai,t, psensorfail, Lai,t+1)
11: if Lai,t+1 = Base then
12: Fai,t+1 ← Fmax
13: end if
14: Fai,t+1 ← saturate(Fai,t+1, 0, Fmax)
15: end for
16: end function

Algorithm 5.5 Location Transition Routine

1: function AdvanceLocation(fuel, location, action)
2: if location = Base and action = Advance then
3: return Communication
4: else if location = Communication and action = Retreat then
5: return Base
6: else if location = Communication and action = Advance then
7: return Tasking
8: else if location = Tasking and action = Retreat then
9: return Base

10: else if action = Loiter then
11: return location
12: end if
13: end function

Algorithm 5.6 Actuator Health Transition Routine

1: function AdvanceActuatorHealth(actuatorHealth, pfailure, nextLocation)
2: if random() ≤ pfailure then
3: actuatorHealth← Failure
4: end if
5: if nextLocation = Base then
6: actuatorHealth← Healthy
7: end if
8: end function

71

Algorithm 5.7 Sensor Health Transition Routine

1: function AdvanceSensorHealth(sensorHealth, pfailure, nextLocation)
2: if random() ≤ pfailure then
3: sensorHealth← Failure
4: end if
5: if nextLocation = Base then
6: sensorHealth← Healthy
7: end if
8: end function

5.3.2 Modifications to Incorporate Battery State

These transition and reward functions do not take into account of the individual

battery states, and they always assume that going back to base will ensure a fully

charged battery. This is not necessarily true, as the best battery at the platform might

not have completed the recharge cycle, and its voltage level might be less than Fmax

fuel. The transition and reward functions also do not take into account individual

battery states, and the nonlinear charging rate due to battery safety and CC-CV

charging scheme as discussed in Section 3.1 and Section 2.4. When these dynamics

are not considered during planning, the resulting policy may not necessarily have

persistency. The battery will be driven below safe levels as the sole purpose is to keep

the quadrotor in the tasking area as long as possible, and the time it arrives to base

for refuel will be just above 0 to prevent it from crashing. Driving battery that low

will require slower recharge, hence lengthening the charge time. The former dynamics

also assumes the battery will be fully charged, which isn’t necessarily true.

To corporate the battery states, the MMDP state is modified to include charger

states. Each charger state is composed of individual voltage level of batteries in the

drums scaled to the range [0, 10]

Sci,t = (bci,0,t,, bci,m−1,t) (5.21)

where ci is the charger index, t is time, and m is the number of batteries per charger.

72

The overall problem state could be modeled as follows:

St = (sa0,t, sa1,t, ..., san−1,t, sc0,t, ..., scm−1,t) (5.22)

where n is the number of available agents, and m is the number of recharge stations,

and t is the time indicator, sax,T is agent x’s state with fuel, location, sensor and

actuator health information, scx is recharge station x’s state which is composed of

individual battery levels.

As the first step, the action space is modified (Eq. 5.23) to include Rechargex as

an operation where x is the index of the charger. An agent is only allowed to invoke

Rechargex when it is in Communication area, and at a particular time step agents

can swap batteries only from different chargers, giving

uai,tj(sj) ∈


{Advance}, if Lai,tj = Base

{Advance,Retreat, Loiter, Rc0 , ..., Rcm−1}, if Lai,tj = Comm

{Retreat, Loiter}, if Lai,tj = Tasking

(5.23)

where Rcm−1 is the action for going to battery change station cm−1.

The state transition is modified to include (1) the possibility to have a lower

battery potential than Fmax, and (2) increasing individual battery potential due to

charging to better reflect real system dynamics. Eq. 5.24 shows the modification one

73

to the vehicle fuel transition.

Fai,tj+1
=



0, if Fai,tj = 0

Fai,tj − 1, if Lai,tj = Comm and uai,tj 6= Rechargex Prob = pfuel

Fai,tj − 2, if Lai,tj = Comm and uai,tj 6= Rechargex Prob = 1− pfuel

Fai,tj − 1, if Lai,tj = Tasking Prob = pfuel

Fai,tj − 2, if Lai,tj = Tasking Prob = 1− pfuel

Ftj ,bxmax , if Lai,tj = Comm and uai,tj = Rechargex

(5.24)

where Ftj ,bxmax
= max(bcx,0,tj , ..., bcx,n−1,tj), i.e. the battery with highest potential.

For each agent, Rechargeai,tj 6= Rechargeak,tj , that is they cannot go to the same

recharge station at the same time.

The health transition is kept the same as in Eq. 5.17 and Eq. 5.18, as they are

independent of the battery state. Although the battery state transition could be

learned for each battery using state-dependent uncertainty learning techniques given

in [47, 48], but for simplicity, the state transition (when there is no swap operation

taking place) is assumed to be of the following form:

bci,n,tj+1
=

bci,n,tj + 0.3bincrement, if bci,n,tj < 2

bci,n,tj + bincrement, if bci,n,tj ≥ 2

(5.25)

where bincrement = Tcharge/Tflight = 53min/8.5min. The reasoning behind this is that

when the battery is drained more than 20%, it needs to be charged really slowly to

keep the battery healthy. This should not happen often, and depending on the mission

objective, it should be allowed only very rarely. If there is a need to incorporate state-

dependent uncertainty in battery transition, the learner could learn the behavior, and

this learned behavior could be used in trajectory generation that is fed into TBVI.

When a battery swap occurs, the battery that is swapped is replaced with the

battery in the vehicle, and battery transition also reflects that. The decision of when

to go to recharge station plays the most important role in persistency. All other

74

components contribute to the total cumulative reward. In order to have persistency

in the system, the total energy consumed by the system should be greater than the

energy put into the system. The exception is when one or more battery is fully

charged. In that case the battery is assumed to take hypothetical over-charge to ease

the calculations.

The reward function Eq. 5.20 is modified to include the change of energy in the

system. When the system is losing energy, a negative reward is given. When the

system is gaining energy, a positive reward is given

g(st, ut, ut+1) = NtaskingCcoverageCommLink + CcrashNcrashed + CmoveNmove

+ EdiffCdiff (5.26)

where

Ediff (t) =
n−1∑
i=0

m−1∑
j=0

bci,j,t+1 −
n−1∑
i=0

m−1∑
j=0

bci,j,t (5.27)

The overall state transition logic is given in Algorithm 5.8, and it is similar to Algo-

rithm 5.4. Changes are highlighted. Lines 18-20, basically notes the difference from

Algorithm 5.4. Line 18 finds the index and the level of the best battery and assigns

to Vmax and Imax respectively. The battery of the agent ai is swapped with the the

best battery in lines 19 and 20.

5.3.3 Simulation Results

Below are several results obtained through algorithm simulations. The simulations

were done in an in-house MDP solver framework that supported many MDP solvers,

function approximators and different domains.

There are several metrics defined to measure the system performance. The simu-

lation started from an initial state, and fed the possible state trajectories to the MDP

solver TBVI defined in Section 5.1.5 Using ε-greedy exploration approach, random

actions were selected to explore unseen states. The simulation simulated 3-agent state

transitions to learn the optimal policy.

75

Algorithm 5.8 State Transition Routine

1: function sampleNextState(currentState, action)
2: for i ∈ {0, .., Ncharger − 1} do . For all chargers
3: for j ∈ {0, .., Nbattery} do . For each battery in charger ci
4: bci,j,t+1 ← bci,j,t + getRate(bci,j,t) . increase battery potential
5: end for
6: end for
7: for i ∈ {0, .., Nagent} do
8: Lai,t+1 ← AdvanceLocation(Fai,t, Lai,t, ui) . Set the location
9: if random() ≤ pfuel then

10: Fai,t+1 ← Fai,t − 1
11: else
12: Fai,t+1 ← Fai,t − 2
13: end if
14: Hactuator,ai,t+1 ← AdvanceActuatorHealth(Hactuator,ai,t, pactuatorfail, Lai,t+1)
15: Hsensor,ai,t+1 ← AdvanceSensorHealth(Hsensor,ai,t, psensorfail, Lai,t+1)
16: if Lai,t+1 = Base then
17: if ui = Rechargex and Fai,t+1 6= 0 then

18: Vmax, Imax ← max(bcx,0,t,, bcx,m−1,t)

19: bcx,Imax,t+1 ← Fai,t+1

20: Fai,t+1 ← Vmax
21: end if
22: end if
23: Fai,t+1 ← saturate(Fai,t+1, 0, Fmax)
24: end for
25: end function

Algorithm 5.9 Location Transition Routine

1: function AdvanceLocation(fuel, location, action)
2: if location = Base and action = Advance then
3: return Communication
4: else if location = Communication and action = Advance then
5: return Tasking
6: else if location = Communication and action = Rechargex then
7: return Base
8: else if location = Tasking and action = Retreat then
9: return Base

10: else if action = Loiter then
11: return location
12: end if
13: end function

76

• Cumulative reward for the mission

• Average battery potential increase in system each time step

• Average battery voltage before being sent to recharge

The policy obtained through the execution of TBVI is compared against the

heuristic policy defined as in Table 5.1 and Table 5.2. Basically, based on which

agent (indicated by different rows) is querying policy and based on its location (indi-

cated by columns), the policy will execute the if block in the corresponding cell. In

a single agent scenario in Table 5.1, since it is not possible to satisfy communication

requirement and have as many vehicles as possible in the tasking area at the same

time, the communication constrained is removed. If the vehicle is in Base region,

and has positive fuel, it is commanded to transition into Communication area. In

communication area, if the fuel level is < 4, there is no need to be present in the

communication area. If fuel level is ≤ 5, transitioning into Tasking region is dan-

gerous, since by the time it will go to Base for recharge, it will have Fai ≤ 2, so it

is sent to Recharge. Similarly, the agent is commanded to incrementally go to Base

for recharge if Fai < 5.

Figure 5-5 shows the cumulative reward obtained through the execution of 1)

policy obtained through TBVI and 2) Heuristic policy. After about 23000 steps of

TBVI, which took about 15 minutes, TBVI produces better policy than the heuristic.

This performance is really good given the state space of that size. When the policy

produced is examined, it is seen that heuristic is relatively conservative since it always

tries to stay above fuel level 2 for each battery. The TBVI policy allows the agent

to go to below fuel level 2 if that still results in positive overall voltage change in

the system thus stays persistent. By allowing to stay longer in the tasking area, the

overall coverage in the tasking area is increased. Figure 5-6 shows average battery

level when vehicles are called back from Communication area. The heuristic policy

always calls the vehicle back when the fuel level is 3, so that the next time step when

it is at Base, the fuel level is still ≥ 2. The policy produced by the TBVI will go below

2, as long as the total energy difference between consecutive timesteps is greater than

77

Table 5.1: Single Agent Policy

Base Communication Tasking
fuel <= 0 → Loiter
fuel > 0 → Advance
otherwise→ Loiter

fuel ≤ 5 → Advance
fuel < 4 → RechargeNR
otherwise→ Loiter

fuel ≥ 5 → Loiter
fuel < 5 → Retreat
otherwise→ Loiter

Table 5.2: Multi Agent Heuristic Policy. r represents all agents except 0th. The basic
philosophy behind this heuristic is that the vehicle should not reach fuel levels ≤ 2
at any point in the execution.

A Base Communication Tasking
0 fuel <= 0 → Loiter

fuel > 0 → Advance
otherwise→ Loiter

fuel ≤ 5 → Loiter
fuel < 4 → RechgNR
otherwise→ Loiter

Retreat

r fuel <= 0 → Loiter
fuel > 0 → Advance
otherwise→ Loiter

fuel ≤ 5 → Advance
fuel < 4 → RechgNR
otherwise→ Loiter

fuel ≥ 5 → Loiter
fuel < 5 → Retreat
otherwise→ Loiter

0, as shown in Figure 5-7.

78

Figure 5-5: Red line represents the cumulative reward obtained using the heuristic
policy defined in Table 5.2. The policy obtained through execution of TBVI exceeds
the score obtained by the heuristic.

Figure 5-6: TBVI policy increases the cumulative reward by calling the quadrotor for
recharge when its fuel level is well below 3. The heuristic policy, on the other hand,
calls the quadrotor when the fuel level is 3. Calling it later means that that battery
needs to be charged with smaller current to protect it. By sacrificing from the energy
put into system, it increases the overall performance.

Figure 5-7: The TBVI policy increases the cumulative reward by calling the quadrotor
later than fuel level drops below 3. By sacrificing from the overall voltage increase
per timestep in the system, it increases the overall performance as it is seen in Figure
5-5.

79

80

Chapter 6

Conclusion and Future Work

This thesis consisted of two focus areas. The first was the design and implementation

of a mobile battery charge platform. The motivation for such a platform was that, in

many hardware experiments, the performance needs to be evaluated in the long run.

Due to very short battery life, this is not possible without having a stack of batteries

and charging them.

In order to extend the mission durations, this thesis introduced a platform that has

a buffer of 7-batteries. The platform enabled very rapid battery swapping through its

rail structure. Using off-the-shelf commercial chargers, the mission length is extended

indefinitely, making it possible to test planning algorithms in the long run.

To prove relevancy of the designed platform, multiple hardware experiments have

been designed and implemented. The first of these experiments was a simple take-

off and land mission. This experiment was useful in that it isolated the platform

from other aspects of missions, and concentrated just on the capability. Multiple

runs of this experiment, one lasted for 5 − hours and one lasted for 3hours, have

been done, and data regarding to battery voltages on the UAV and the platform has

been collected. The second mission was a car chase mission in which the quadrotor

tried to learn the car’s behavior so that it could guess where the car might be in

the future. This mission was executed for about 4 − hours. Third experiment was

the persistent search and track mission. This was the only experiment that used 3

battery replacement platforms. In this experiment, over 120 swaps have been realized

81

in about 3.5hours. This experiment was particularly useful for robustness test. The

latest of the missions was another car chase mission with 2 quadrotors that simply

followed a ground vehicle. This experiment was conducted in Boeing facilities, and it

lasted for about 75minutes

The battery management platform brought the necessity to to manage the use of

this resource. In many missions, there are multiple UAVs and multiple battery man-

agement platforms, and proper scheduling of this resource is of crucial importance.

The second part of the thesis proposes a modification to the well-studied persistent

search and track mission scenario to more realistically model the battery swapping,

and to increase the performance of the mission. Increasing the problem complexity

also brought the necessity to implement faster MDP solvers. Using an approximate

MDP solver, iFDD, the problem became tractable but still very slow. By introducing

caching mechanism into iFDD, the solver is made orders of magnitude faster.

6.1 Future Work

Although the introduced battery management platform introduces persistency into

system, there is still room for improvement. In its current state, the platform is

capable of serving one vehicle indefinitely. However, if balanced charging were used,

the charging rate could be increased more than 1C, and it would have been possible

to serve more than 1 vehicles indefinitely. Balanced charging is also useful for keeping

the battery healthy for longer periods. In addition, the current design is relatively

complex with its drum structure. It makes it hard to build additional devices and add

additional components such as balancers. Simplifications in the design are possible.

One idea would be to use multiple ”empty bay - central landing area - full bay”

structures one next to each other. This would eliminate rotational actuation in the

drums, removing one more point of failure. It would also make adding balancers

easier as it would not need additional thick wires that connect to the charger.

Currently, the platform assumes all the batteries show similar discharge perfor-

mance. This may not be true in real world scenarios since some of the batteries

82

may be cycled more than others, or discharged more than their safe level. Assuming

all batteries are the same may result in relatively poor performance in algorithms

that take into account that information. It is possible to learn individual battery

performances using [47, 48]. If this information is embedded into system during tra-

jectories fed into TBVI, it would be possible to improve system performance. To

identify individual batteries, each battery could be tagged with an RFID chip, and

an RFID reader could be embedded into landing platform to read its ID. This way,

each battery performance could be logged with timestamps and IDs, and analysis on

that data could be performed.

Additional modifications to IFDD are also possible. Currently the cache grows in-

definitely. This increases the memory consumption, and slows down the performance

to some extent. Using smarter caching structures, like caches that only keeps most

frequently used feature mappings, it would be possible to put an upper bound on the

memory used by the cache. Moreover, current implementation is not optimal. Every

time a new feature is discovered, multiple copies of the θ vector is created in order to

add the new feature into its appropriate slot. This doesn’t need to be the case, and

copy operation could be removed completely by allocating larger feature vector than

there is available.

83

84

Appendix A

Recharge Station Manual

A.1 Recharge Station Communication Protocol

The recharge station operation is controlled through messages sent using UDP proto-

col. The software currently supports two different messaging protocols, one described

in [24–26] and another used by Boeing VSTL lab.

In summary, these two protocols can be summarized as follows:

• Raven Protocol

Raven protocol is an ASCII protocol in the form of space delimited values. <

Sender ID > < Destination ID > < Command ID > < 8 Data Items >;

85

Field Data Type Description

Sender ID Integer Unique identifier of the sender. This is as-

signed by the Vicon Broadcaster

Destination ID Integer Unique identifier of the receiver. This is as-

signed by Vicon Broadcaster.

Command ID Integer Unique command identifier specifying the

content of the message or command. Usually

given different ranges for different command

groups.

Data Items Integer Space delimited values describing the param-

eters of the specified commands.

• Boeing Protocol

Boeing protocol is a binary protocol given in following table

MsgType Destination Orig Command Size Payload Count CRC

86

Field Data Type Size Description

Msg Type Integer 4B Needs to be 0

Destination ID Integer 4B Unique identifier of the receiver. This

is assigned by Vicon Broadcaster.

Origin ID Integer 4B Unique identifier of the sender. This is

assigned by the Vicon Broadcaster

Command ID Integer 4B Unique command identifier specifying

the content of the message or com-

mand. Usually given different ranges

for different command groups.

Size Integer 4B Size of the message in bytes. This

doesn’t include CRC

Payload Float[8] 32B Space delimited values describing the

parameters of the specified commands.

Count Integer 4B Needs to be 8.

CRC Integer 4B Checksum

A.1.1 Operational Messages

Command Messages

These messages are the messages to control recharge station operations. They follow

the same messaging format.

25015: Load/Unload bays

This message commands the recharge station to load or unload bays. This command

makes use of battery voltages of each bay to determine if a bay is full or empty, so

that it doesn’t spin to the bay when commanded to be full and is already full.

87

Data Field Name Description

1 Bay Status 0 1: If needs to be full, 0: if needs to be empty.

2 Bay Status 1 1: If needs to be full, 0: if needs to be empty.

...

x Bay Status x 1: If needs to be full, 0: if needs to be empty.

25017: Load/Unload bays

This message commands the recharge station to start or to stop a particular bay

charger.

Data Field Name Description

1 Operation 0: Stop. 1: Start

2 Bay Number The charger number

25020: Start Swap

This message commands the recharge station to start swapping operation.

Data Field Name Description

1 Mode Type of swapping to implement. AutoSwap = 1: Picks

the swap source based on the battery levels. SwapUs-

ingBays = 2: Swap source and destination is provided

by user. RotateToBaysOnly = 3: Do not realize swap,

but just rotate to bays given.

2 Source Specifies the swapping source (i.e. the battery to push

into quadrotor). Disregarded in Auto mode.

3 Destination Specifies the swapping destination (i.e. the slot to have

the spent battery).

4 Final Bay 1 The bay to rotate to after swapping is completed.

5 Final Bay 2 The bay to rotate to after swapping is completed.

88

Status Messages

These messages are the messages sent from recharge station to notify the mission

manager and other vehicles about the state of battery bays or the state of an opera-

tion.

25016: Operation status This message informs the mission manager and other

vehicles about the status of any operation.

Data Field Name Description

1 Status 1: Operation Started. 2: Operation Finished

25021: Bay battery voltages

This message informs the mission manager and other vehicles about the voltages of

individual battery bays. The information is broadcasted by the station at 1Hz.

Data Field Name Description

1 Voltage The battery voltage of first bay

...

x Voltage The battery voltage of x’th bay

A.2 Sample Recharge Station Configuration File

Recharge station configuration files are self explanatory. One recharge station con-

troller can manage multiple recharge stations. Even though configuration file may

contain more recharge station configuration than there are in Vicon stream, only the

ones in Vicon stream will be initialized.

1 [

2 {

3 "communication": {

4 "bluetooth": {

5 //MAC address of the bluetooth device

6 "deviceAddress": "00:11:11:16:00:22",

7 //In case no address is provided , this is going to be used

for lookup

89

8 "deviceName":"CH01",

9 // Specifies what dongle to use.

10 "dongle": 1

11 },

12 // Specifies how to communicate. Supported values are bluetooth

and serialport

13 "method": "bluetooth"

14 },

15 //How many battery bays a drum has?

16 "drumCapacity": 4,

17 //Do we have charging capability - ie are chargers connected?

18 "hasChargingCapability": true ,

19 //When do we say a bay is empty? This is useful because when a

battery is pulled , the voltage decaysslowly.

20 "emptinessThreshold":7,

21 // Vicon name of the thing

22 "name": "CH01",

23 //Do we have center motor reverse?

24 "centerMotorReverse":true

25 },

26 {

27 "communication": {

28 "serialport": {

29 "uri": "/dev/ttyUSB0",

30 "baudrate":38400 ,

31 },

32 "method": "serialport"

33 },

34 "drumCapacity": 4,

35 "hasChargingCapability": true ,

36 "emptinessThreshold":7,

37 "name": "CH02",

38 "centerMotorReverse":false

39 },

40]

Listing A.1: My Javascript Example

90

A.3 Recharge Station PCBs and Schematics

Figure A-1: Charger PCB

91

Figure A-2: Charger Schematic

92

C:\Users\Ayşe TOKSÖZ\Downloads\chrager_PIC_board.pcb (Silkscreen, Top layer, Bottom layer)

f

Figure A-3: Drum PCB

C:\Users\Ayşe TOKSÖZ\Downloads\Robostix_board_v3 (1).pcb (Silkscreen, Top layer, Bottom layer)

Figure A-4: Central PCB

93

94

Bibliography

[1] M. Valenti, D. Dale, J. How, and J. Vian, “Mission health management for

24/7 persistent surveillance operations,” in Proceedings of the AIAA Guidance,

Navigation, and Control Conference, (Myrtle Beach, SC), August 2007.

[2] e. a. Vian, John L., “Autonomous vehicle rapid development testbed systems

and methods,” 10 2010.

[3] L. G. Weiss, “Autonomous robots in the fog of war,” IEEE Spectrum, vol. 48,

no. 8 (NA), p. 30, August, 2011.

[4] Y. Hada and S. Yuta, “A first-stage experiment of long term activity of au-

tonomous mobile robot - result of repetitive base-docking over a week,” in Ex-

perimental Robotics VII, ISER ’00, (London, UK), pp. 229–238, Springer-Verlag,

2001.

[5] Y. Hada and S. Yuta, “A First-Stage Experiment of Long Term Activity of

Autonomous Mobile Robot - Result of Respective Base-Docking Over a Week,”

Lecture Notes in Control and Information Sciences: Experimental Robotics VII,

vol. 271, pp. 229–238, 2001.

[6] D. Austin, L. Fletcher, and A. Zelinsky, “Mobile Robotics in the Long Term

- Exploring the Fourth Dimension,” Procedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2001.

[7] K. Kouzoubov and D. Austin, “Autonomous recharging for mobile robotics,” in

Australian Conference on Robotics and Automation, Auckland, pp. 27–29, 2002.

[8] M. C. Silverman, B. Jung, D. Nies, and G. S. Sukhatme, “Staying alive longer:

Autonomous robot recharging put to the test,” Tech. Rep. CRES-03-015, Center

for Robotics and Embedded Systems (CRES), University of Southern California,

2003, 2003.

95

[9] V. Vladimerouy, A. Stubbs, J. Rubel, A. Fulford, J. Strick, and G. Dullerud,

“A hovercraft testbed for decentralized and cooperative control,” in American

Control Conference (ACC), (Boston, MA), pp. 5332–5337, July 2004.

[10] R. Cassinis, F. T. P. Bartolini, and R. Fedrigotti, “Dock-

ing and charging system for autonomous mobile robots,” 2005.

(http://www.ing.unibs.it/∼arl/docs/papers/05 008.pdf).

[11] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi, N. A. Syed, S. Sharma,

and T. Chiueh, “MiNT-m: An Autonomous Mobile Wireless Experimentation

Platform,” Proceedings of the 4th International Conference on Mobile Systems,

Applications and Services, 2006.

[12] D. R. Dale, “Automated ground maintenance and health management for au-

tonomous unmanned aerial vehicles,” Master’s thesis, Massachusetts Institute of

Technology, Department of Electrical Engineering and Computer Science, Cam-

bridge MA, June 2007.

[13] M. J. Valenti, Approximate Dynamic Programming with Applications in Multi-

Agent Systems. PhD thesis, Massachusetts Institute of Technology, Department

of Electrical Engineering and Computer Science, Cambridge MA, May 2007.

[14] K. Swieringa, C. Hanson, J. Richardson, J. White, Z. Hasan, E. Qian, and

A. Girard, “Autonomous battery swapping system for small-scale helicopters,” in

IEEE International Conference on Robotics and Automation (ICRA), pp. 3335–

3340, May 2010.

[15] A. Chernov, “Self-charging stations for flying vehicles,” 2008. Semester Project.

[16] B. Bethke, J. P. How, and J. Vian, “Multi-UAV Persistent Surveillance With

Communication Constraints and Health Management,” in AIAA Guidance, Nav-

igation, and Control Conference (GNC), August 2009. (AIAA-2009-5654).

[17] e. a. David A. Cohen, “Autonomous robot auto-docking and energy management

systems and methods,” 02 2008.

[18] E. Guizzo, “Three engineers, hundreds of robots, one warehouse,” Spectrum,

IEEE, vol. 45, pp. 26 –34, july 2008.

[19] A. Stubbs, V. Vladimerou, A. Vaughn, and C. Dullerud, “Development of a vehi-

cle network control testbed,” in American Control Conference, 2002. Proceedings

of the 2002, vol. 4, pp. 3028 – 3033 vol.4, 2002.

96

[20] V. Vladimerou, A. Stubbs, J. Rubel, A. Fulford, J. Strick, and G. Dullerud,

“A hovercraft testbed for decentralized and cooperative control,” in American

Control Conference, 2004. Proceedings of the 2004, vol. 6, pp. 5332 –5337 vol.6,

30 2004-july 2 2004.

[21] D. Floreano and F. Mondada, “Evolution of homing navigation in a real mobile

robot,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, vol. 26, pp. 396 –407, jun 1996.

[22] A. Hu, C. Liu, and H. L. Li, “A novel contactless battery charging system for

soccer playing robot,” in Mechatronics and Machine Vision in Practice, 2008.

M2VIP 2008. 15th International Conference on, pp. 646 –650, dec. 2008.

[23] S. Mukhopadhyay, G. Gupta, and B. Lake, “Design of a contactless battery

charger for micro-robots,” in Instrumentation and Measurement Technology Con-

ference Proceedings, 2008. IMTC 2008. IEEE, pp. 985 –990, may 2008.

[24] M. Valenti, B. Bethke, G. Fiore, J. P. How, and E. Feron, “Indoor Multi-Vehicle

Flight Testbed for Fault Detection, Isolation, and Recovery,” in AIAA Guid-

ance, Navigation, and Control Conference (GNC), (Keystone, CO), August 2006

(AIAA-2006-6200).

[25] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-

tonomous vehicle test environment,” IEEE Control Systems Magazine, vol. 28,

pp. 51–64, April 2008.

[26] J. P. How, C. Fraser, K. C. Kulling, L. F. Bertuccelli, O. Toupet, L. Brunet,

A. Bachrach, and N. Roy, “Increasing autonomy of UAVs,” Robotics and Au-

tomation Magazine, IEEE, vol. 16, pp. 43–51, June 2009.

[27] T. Nugent and J. Kare, “Laser Power for UAVs,” 2008.

http://lasermotive.com/wp-content/uploads/2010/04/Wireless-Power-for-

UAVs-March2010.pdf.

[28] K. Suzuki, P. Kemper Filho, and J. Morrison, “Automatic battery replacement

system for uavs: Analysis and design,” Journal of Intelligent & Robotic Systems,

pp. 1–24, 2011.

[29] F. P. Kemper, K. A. Suzuki, and J. R. Morrison, “Uav consumable replenish-

ment: Design concepts for automated service stations,” J. Intell. Robotics Syst.,

vol. 61, pp. 369–397, January 2011.

97

[30] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro-

uav testbed,” Robotics Automation Magazine, IEEE, vol. 17, pp. 56 –65, sept.

2010.

[31] E. Altug, J. Ostrowski, and C. Taylor, “Quadrotor control using dual camera

visual feedback,” in Robotics and Automation, 2003. Proceedings. ICRA ’03.

IEEE International Conference on, vol. 3, pp. 4294 – 4299 vol.3, sept. 2003.

[32] G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter trajectory

tracking control,” in AIAA Guidance, Navigation and Control Conference and

Exhibit, Honolulu, Hawaii, 2008.

[33] G. M. Hoffmann, H. Huang, S. L. Wasl, and E. C. J. Tomlin, “Quadrotor heli-

copter flight dynamics and control: Theory and experiment,” in In Proc. of the

AIAA Guidance, Navigation, and Control Conference, 2007.

[34] J. D. Redding, Approximate Multi-Agent Planning in Dynamic and Uncertain

Environments. PhD thesis, Massachusetts Institute of Technology, Department

of Aeronautics and Astronautics, Cambridge MA, February 2012.

[35] Mikrokopter , “Electronic speed controllers.”

[36] http://sparkfun.com/products/3970.

[37] M. Cutler, “Design and Control of an Autonomous Variable-Pitch Quadrotor

Helicopter,” Master’s thesis, Massachusetts Institute of Technology, Department

of Aeronautics and Astronautics, August 2012.

[38] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT

Press, 1998.

[39] A. Geramifard, Practical Reinforcement Learning Using Representation Learning

and Safe Exploration for Large Scale Markov Decision Processes. PhD thesis,

Massachusetts Institute of Technology, Department of Aeronautics and Astro-

nautics, February 2012.

[40] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,

1995.

[41] A. Geramifard, F. Doshi, J. Redding, N. Roy, and J. How, “Online discovery of

feature dependencies,” in International Conference on Machine Learning (ICML)

(L. Getoor and T. Scheffer, eds.), pp. 881–888, ACM, June 2011.

98

[42] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction (Adap-

tive Computation and Machine Learning). The MIT Press, March 1998.

[43] L. Wolsey, “An analysis of the greedy algorithm for the submodular set covering

problem,” Combinatorica, vol. 2, pp. 385–393, 1982. 10.1007/BF02579435.

[44] J. E. Smith and J. R. Goodman, “A study of instruction cache organizations and

replacement policies,” SIGARCH Comput. Archit. News, vol. 11, pp. 132–137,

June 1983.

[45] J. E. Smith and J. R. Goodman, “A study of instruction cache organizations and

replacement policies,” in Proceedings of the 10th annual international symposium

on Computer architecture, ISCA ’83, (New York, NY, USA), pp. 132–137, ACM,

1983.

[46] P. McCullagh and J. Nelder, Generalized Linear Models, Second Edition. Mono-

graphs on Statistics and Applied Probability, Taylor & Francis, 1989.

[47] N. K. Ure, A. Geramifard, G. Chowdhary, and J. P. How, “Adaptive Planning

for Markov Decision Processes with Uncertain Transition Models via Incremental

Feature Dependency Discovery,” in European Conference on Machine Learning

(ECML), 2012.

[48] N. K. Ure, G. Chowdhary, J. Redding, T. Toksoz, J. How, M. Vavrina, and

J. Vian, “Experimental demonstration of efficient multi-agent learning and plan-

ning for persistent missions in uncertain environments,” in Conference on Guid-

ance Navigation and Control, (Minneapolis, MN), AIAA, August 2012.

99

	Introduction
	Overview
	Motivation and Objective
	Summary of Contributions
	Thesis Outline

	Automated Battery Management Platforms: Existing Approaches and Design Requirements
	Literature Review
	Analysis of Existing Approaches
	Conceptual Design Requirements
	Parameter Selection
	Conclusion

	Conceptual Design and Implementation
	Vehicle and power source selection
	Battery carriage and skid design
	UAV positioning & landing on the platform
	Locking UAV in place and providing power
	Battery Charging - Charger Integration
	On-board Electronics/Software
	Off-board Software
	Conclusion

	Experimental Recharge Results
	Hardware Setup
	Results

	Planning With Battery Maintenance
	Background
	Reducing Computational Complexity of iFDD using Caching
	Proactive Planning with Battery Health Information

	Conclusion and Future Work
	Future Work

	Recharge Station Manual
	Recharge Station Communication Protocol
	Sample Recharge Station Configuration File
	Recharge Station PCBs and Schematics

	References

