519 research outputs found

    A Finite Buffer Fluid Queue Driven by a Markovian Queue

    Get PDF
    We consider a finite buffer fluid queue receiving its input from the output of a Markovian queue with finite or infinite waiting room. The input flow into the fluid queue is thus characterized by a Markov modulated input rate process and we derive, for a wide class of such input processes, an approach for the computation of the stationary buffer content of the fluid queue and so for the computation of the stationary overflow probability. This approach leads to a numerically stable algorithm for which the precision of the result can be specified in advance

    Two-dimensional fluid queues with temporary assistance

    Full text link
    We consider a two-dimensional stochastic fluid model with NN ON-OFF inputs and temporary assistance, which is an extension of the same model with N=1N = 1 in Mahabhashyam et al. (2008). The rates of change of both buffers are piecewise constant and dependent on the underlying Markovian phase of the model, and the rates of change for Buffer 2 are also dependent on the specific level of Buffer 1. This is because both buffers share a fixed output capacity, the precise proportion of which depends on Buffer 1. The generalization of the number of ON-OFF inputs necessitates modifications in the original rules of output-capacity sharing from Mahabhashyam et al. (2008) and considerably complicates both the theoretical analysis and the numerical computation of various performance measures

    Asymptotic analysis by the saddle point method of the Anick-Mitra-Sondhi model

    Full text link
    We consider a fluid queue where the input process consists of N identical sources that turn on and off at exponential waiting times. The server works at the constant rate c and an on source generates fluid at unit rate. This model was first formulated and analyzed by Anick, Mitra and Sondhi. We obtain an alternate representation of the joint steady state distribution of the buffer content and the number of on sources. This is given as a contour integral that we then analyze for large N. We give detailed asymptotic results for the joint distribution, as well as the associated marginal and conditional distributions. In particular, simple conditional limits laws are obtained. These shows how the buffer content behaves conditioned on the number of active sources and vice versa. Numerical comparisons show that our asymptotic results are very accurate even for N=20

    Join-Idle-Queue with Service Elasticity: Large-Scale Asymptotics of a Non-monotone System

    Get PDF
    We consider the model of a token-based joint auto-scaling and load balancing strategy, proposed in a recent paper by Mukherjee, Dhara, Borst, and van Leeuwaarden (SIGMETRICS '17, arXiv:1703.08373), which offers an efficient scalable implementation and yet achieves asymptotically optimal steady-state delay performance and energy consumption as the number of servers N→∞N\to\infty. In the above work, the asymptotic results are obtained under the assumption that the queues have fixed-size finite buffers, and therefore the fundamental question of stability of the proposed scheme with infinite buffers was left open. In this paper, we address this fundamental stability question. The system stability under the usual subcritical load assumption is not automatic. Moreover, the stability may not even hold for all NN. The key challenge stems from the fact that the process lacks monotonicity, which has been the powerful primary tool for establishing stability in load balancing models. We develop a novel method to prove that the subcritically loaded system is stable for large enough NN, and establish convergence of steady-state distributions to the optimal one, as N→∞N \to \infty. The method goes beyond the state of the art techniques -- it uses an induction-based idea and a "weak monotonicity" property of the model; this technique is of independent interest and may have broader applicability.Comment: 30 page

    Many-server diffusion limits for G/Ph/n+GIG/Ph/n+GI queues

    Full text link
    This paper studies many-server limits for multi-server queues that have a phase-type service time distribution and allow for customer abandonment. The first set of limit theorems is for critically loaded G/Ph/n+GIG/Ph/n+GI queues, where the patience times are independent and identically distributed following a general distribution. The next limit theorem is for overloaded G/Ph/n+MG/ Ph/n+M queues, where the patience time distribution is restricted to be exponential. We prove that a pair of diffusion-scaled total-customer-count and server-allocation processes, properly centered, converges in distribution to a continuous Markov process as the number of servers nn goes to infinity. In the overloaded case, the limit is a multi-dimensional diffusion process, and in the critically loaded case, the limit is a simple transformation of a diffusion process. When the queues are critically loaded, our diffusion limit generalizes the result by Puhalskii and Reiman (2000) for GI/Ph/nGI/Ph/n queues without customer abandonment. When the queues are overloaded, the diffusion limit provides a refinement to a fluid limit and it generalizes a result by Whitt (2004) for M/M/n/+MM/M/n/+M queues with an exponential service time distribution. The proof techniques employed in this paper are innovative. First, a perturbed system is shown to be equivalent to the original system. Next, two maps are employed in both fluid and diffusion scalings. These maps allow one to prove the limit theorems by applying the standard continuous-mapping theorem and the standard random-time-change theorem.Comment: Published in at http://dx.doi.org/10.1214/09-AAP674 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Numerical methods for queues with shared service

    Get PDF
    A queueing system is a mathematical abstraction of a situation where elements, called customers, arrive in a system and wait until they receive some kind of service. Queueing systems are omnipresent in real life. Prime examples include people waiting at a counter to be served, airplanes waiting to take off, traffic jams during rush hour etc. Queueing theory is the mathematical study of queueing phenomena. As often neither the arrival instants of the customers nor their service times are known in advance, queueing theory most often assumes that these processes are random variables. The queueing process itself is then a stochastic process and most often also a Markov process, provided a proper description of the state of the queueing process is introduced. This dissertation investigates numerical methods for a particular type of Markovian queueing systems, namely queueing systems with shared service. These queueing systems differ from traditional queueing systems in that there is simultaneous service of the head-of-line customers of all queues and in that there is no service if there are no customers in one of the queues. The absence of service whenever one of the queues is empty yields particular dynamics which are not found in traditional queueing systems. These queueing systems with shared service are not only beautiful mathematical objects in their own right, but are also motivated by an extensive range of applications. The original motivation for studying queueing systems with shared service came from a particular process in inventory management called kitting. A kitting process collects the necessary parts for an end product in a box prior to sending it to the assembly area. The parts and their inventories being the customers and queues, we get ``shared service'' as kitting cannot proceed if some parts are absent. Still in the area of inventory management, the decoupling inventory of a hybrid make-to-stock/make-to-order system exhibits shared service. The production process prior to the decoupling inventory is make-to-stock and driven by demand forecasts. In contrast, the production process after the decoupling inventory is make-to-order and driven by actual demand as items from the decoupling inventory are customised according to customer specifications. At the decoupling point, the decoupling inventory is complemented with a queue of outstanding orders. As customisation only starts when the decoupling inventory is nonempty and there is at least one order, there is again shared service. Moving to applications in telecommunications, shared service applies to energy harvesting sensor nodes. Such a sensor node scavenges energy from its environment to meet its energy expenditure or to prolong its lifetime. A rechargeable battery operates very much like a queue, customers being discretised as chunks of energy. As a sensor node requires both sensed data and energy for transmission, shared service can again be identified. In the Markovian framework, "solving" a queueing system corresponds to finding the steady-state solution of the Markov process that describes the queueing system at hand. Indeed, most performance measures of interest of the queueing system can be expressed in terms of the steady-state solution of the underlying Markov process. For a finite ergodic Markov process, the steady-state solution is the unique solution of N−1N-1 balance equations complemented with the normalisation condition, NN being the size of the state space. For the queueing systems with shared service, the size of the state space of the Markov processes grows exponentially with the number of queues involved. Hence, even if only a moderate number of queues are considered, the size of the state space is huge. This is the state-space explosion problem. As direct solution methods for such Markov processes are computationally infeasible, this dissertation aims at exploiting structural properties of the Markov processes, as to speed up computation of the steady-state solution. The first property that can be exploited is sparsity of the generator matrix of the Markov process. Indeed, the number of events that can occur in any state --- or equivalently, the number of transitions to other states --- is far smaller than the size of the state space. This means that the generator matrix of the Markov process is mainly filled with zeroes. Iterative methods for sparse linear systems --- in particular the Krylov subspace solver GMRES --- were found to be computationally efficient for studying kitting processes only if the number of queues is limited. For more queues (or a larger state space), the methods cannot calculate the steady-state performance measures sufficiently fast. The applications related to the decoupling inventory and the energy harvesting sensor node involve only two queues. In this case, the generator matrix exhibits a homogene block-tridiagonal structure. Such Markov processes can be solved efficiently by means of matrix-geometric methods, both in the case that the process has finite size and --- even more efficiently --- in the case that it has an infinite size and a finite block size. Neither of the former exact solution methods allows for investigating systems with many queues. Therefore we developed an approximate numerical solution method, based on Maclaurin series expansions. Rather than focussing on structural properties of the Markov process for any parameter setting, the series expansion technique exploits structural properties of the Markov process when some parameter is sent to zero. For the queues with shared exponential service and the service rate sent to zero, the resulting process has a single absorbing state and the states can be ordered such that the generator matrix is upper-diagonal. In this case, the solution at zero is trivial and the calculation of the higher order terms in the series expansion around zero has a computational complexity proportional to the size of the state space. This is a case of regular perturbation of the parameter and contrasts to singular perturbation which is applied when the service times of the kitting process are phase-type distributed. For singular perturbation, the Markov process has no unique steady-state solution when the parameter is sent to zero. However, similar techniques still apply, albeit at a higher computational cost. Finally we note that the numerical series expansion technique is not limited to evaluating queues with shared service. Resembling shared queueing systems in that a Markov process with multidimensional state space is considered, it is shown that the regular series expansion technique can be applied on an epidemic model for opinion propagation in a social network. Interestingly, we find that the series expansion technique complements the usual fluid approach of the epidemic literature

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    On a generic class of two-node queueing systems

    Get PDF
    This paper analyzes a generic class of two-node queueing systems. A first queue is fed by an on–off Markov fluid source; the input of a second queue is a function of the state of the Markov fluid source as well, but now also of the first queue being empty or not. This model covers the classical two-node tandem queue and the two-class priority queue as special cases. Relying predominantly on probabilistic argumentation, the steady-state buffer content of both queues is determined (in terms of its Laplace transform). Interpreting the buffer content of the second queue in terms of busy periods of the first queue, the (exact) tail asymptotics of the distribution of the second queue are found. Two regimes can be distinguished: a first in which the state of the first queue (that is, being empty or not) hardly plays a role, and a second in which it explicitly does. This dichotomy can be understood by using large-deviations heuristics

    On the Fluid Queue Driven by an Ergodic Birth and Death Process

    Get PDF
    • 

    corecore