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Abstract

We consider the model of a token-based joint auto-scaling and load balancing strat-
egy, proposed in a recent paper by Mukherjee, Dhara, Borst, and van Leeuwaarden [20]
(SIGMETRICS ’17), which offers an efficient scalable implementation and yet achieves
asymptotically optimal steady-state delay performance and energy consumption as the
number of servers N→∞. In the above work, the asymptotic results are obtained under
the assumption that the queues have fixed-size finite buffers, and therefore the fundamental
question of stability of the proposed scheme with infinite buffers was left open. In this
paper, we address this fundamental stability question. The system stability under the
usual subcritical load assumption is not automatic. Moreover, the stability may not even
hold for all N. The key challenge stems from the fact that the process lacks monotonicity,
which has been the powerful primary tool for establishing stability in load balancing
models. We develop a novel method to prove that the subcritically loaded system is
stable for large enough N, and establish convergence of steady-state distributions to the
optimal one, as N → ∞. The method goes beyond the state of the art techniques – it
uses an induction-based idea and a “weak monotonicity” property of the model; this
technique is of independent interest and may have broader applicability.

1 Introduction

Background and motivation. Load balancing and auto-scaling are two principal pillars in
modern-day data centers and cloud networks, and therefore, have gained renewed inter-
est in past two decades. In its basic setup, a large-scale system consists of a pool of large
number of servers and a single dispatcher, where tasks arrive sequentially. Each task has
to be instantaneously assigned to some server or discarded. Load balancing algorithms pri-
marily concern design and analysis of algorithms to distribute incoming tasks among the
∗Email: d.mukherjee@tue.nl
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servers as evenly as possible, while using minimal instantaneous queue length information.
At the same time, a big proportion of the tasks processed by these data centers come with
business-critical performance requirements. This forces service providers to increase their
capacity at a tremendous rate to cope up with the high-demand period in the presence of
a time-varying demand pattern. Consequently, the energy consumption by the servers in
these huge data centers has risen dramatically and become a dominant factor in managing
data center operations and cloud infrastructure platforms. Auto-scaling provides a popular
paradigm for automatically adjusting service capacity in response to demand while meeting
performance targets.

Load balancing in large systems. The study of load balancing schemes in large-scale systems
have a very rich history, and for decades, a lot of research have been conducted in under-
standing the fundamental trade-off between delay-performance and communication over-
head per task. The so-called ‘power-of-d’ schemes, where each arrival is assigned to the
shortest among d randomly chosen queues, provide surprising improvements for d > 2
over purely random routing (d = 1) while maintaining the communication overhead as low
as d per task. This scheme along with its many variations have been studied extensively in
[1, 3, 4, 6, 17, 19, 31, 33] and many more. Relatively recently, join-the-idle queue (JIQ) scheme
was proposed in [15], where an arriving task is assigned to an idle server (if any), or in case
all servers are busy, it is assigned to some queue uniformly at random. The JIQ scheme has a
low-cost token-based implementation that involves only O(1) communication overhead per
task. Large-scale asymptotic results in [27, 28] show that under Markovian assumptions, the
JIQ policy achieves a zero probability of wait for any fixed subcritical load per server in a
regime where the total number of servers grows large. It should be noted that the results
in [27, 28] even hold for considerably more general scenarios, viz. decreasing hazard rate
service time distributions and heterogeneous servers pools. Recently, it is further shown [7]
that when the average load per server λ < 1/2, the large-scale asymptotic optimality of JIQ is
preserved even under completely general service time distributions. Results in [18] indicate
that under Markovian assumptions, the JIQ policy has the same diffusion-limit as the Join-
the-Shortest-Queue (JSQ) strategy, and thus achieves diffusion-level optimality. These results
show that the JIQ policy provides asymptotically optimal delay performance in large-scale
systems, while only involving minimal communication overhead (at most one message per
task on average). We refer to [30] for a recent survey on load balancing schemes.

Auto-scaling with a centralized queue. Queue-driven auto-scaling techniques have been widely
investigated in the literature [2, 8, 10–14, 23, 29, 32]. In systems with a centralized queue
it is very common to put servers to ‘sleep’ while the demand is low, since servers in sleep
mode consume much less energy than active servers. Under Markovian assumptions, the
behavior of these mechanisms can be described in terms of various incarnations of M/M/N
queues with setup times. There are several further recent papers which examine on-demand
server addition/removal in a somewhat different vein [21, 22]. Generalizations towards
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non-stationary arrivals and impatience effects have also been considered recently [23]. Un-
fortunately, data centers and cloud networks with millions of servers are too complex to
maintain any centralized queue, and it involves prohibitively high communication burden
to obtain instantaneous system information even for a small fraction of servers.

Joint load balancing and auto-scaling in distributed systems. Motivated by all the above, a token-
based joint load balancing and auto scaling scheme called TABS was proposed in [20], that
offers an efficient scalable implementation and yet achieves asymptotically optimal steady-
state delay performance and energy consumption as the number of servers N→∞. In [20],
the authors left open a fundamental question: Is the system with a given number N of
servers stable under TABS scheme? The analysis in [20] bypasses the issue of stability by
assuming that each server in the system has a finite buffer capacity. Thus, it remains an
important open challenge to understand the stability property of the TABS scheme without
the finite-buffer restriction.

Key contributions and our approach. In this paper we address the stability issue for systems
under the TABS scheme without the assumption of finite buffers, and examine the asymp-
totic behavior of the system as N becomes large. Analyzing the stability of the TABS scheme
in the infinite buffer scenario poses a significant challenge, because the stability of the finite-
N system, i.e., the system with finite number N of servers under the usual subcritical load
assumption is not automatic. In fact, as we will further discuss in Remark 1 below in detail,
even under subcritical load, the system may not be stable for all N. Our first main result is
that for any fixed subcritical load, the system is stable for large enough N. Further, using this
large-N stability result in combination with mean-field analysis, we establish convergence of
the sequence of steady-state distributions as N→∞.

The key challenge in showing large-N stability for systems under the TABS scheme stems
from the fact that the occupancy state process lacks monotonicity. It is well-known that
monotonicity is a powerful primary tool for establishing stability of load balancing mod-
els [3, 27, 28, 31]. In fact, process monotonicity is used extensively not only for stability anal-
ysis and not only in queueing literature – for example, many interacting-particle-systems’
results rely crucially on monotonicity; see e.g. [9]. The lack of monotonicity immediately
complicates the situation, as for example in [7, 25]. Specifically, when the service time dis-
tribution is general, it is the lack of monotonicity that has left open the stability questions for
the power-of-d scheme when system load λ > 1/4 [3], and the JIQ scheme when λ > 1/2 [7].
We develop a novel method for proving large-N stability for subcritically loaded systems,
and using that we establish the convergence of the sequence of steady-state distributions as
N → ∞. Our method uses an induction-based idea, and relies on a “weak monotonicity”
property of the model, as further detailed below. To the best of our knowledge, this is the
first time both the traditional fluid limit (in the sense of large starting state) and the mean-field
fluid limit (when the number of servers grows large) are used in an intricate manner to obtain
large-N stability results.
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To establish the large-N stability, we actually prove a stronger statement. We consider an
artificial system, where some of the queues are infinite at all times. Then, loosely speaking,
we prove that the following holds for all sufficiently large N: If the system with N servers
contains k servers with infinite queue lengths, 0 6 k 6 N, then (i) The subsystem consisting of the
remaining (i.e., finite) queues is stable, and (ii) When this subsystem is at steady state, the average
rate at which tasks join the infinite queues is strictly smaller than that at which tasks depart from
them. Note that the case k = 0 corresponds to the desired stability result.

The use of backward induction in k facilitates proving the above statement. For a fixed
N, first we introduce the notion of a fluid sample path (FSP) for systems where some queues
might be infinite. The base case of the backward induction is when k = N, and assuming the
statement for k, we show that it holds for k− 1. We use the classical fluid-stability argument
(as in [5, 24, 26]) in order to establish stability for the system where the number of infinite
queues is k− 1. As mentioned above, here the notion of the traditional FSP is needed to
be suitably extended to fit to the systems where some servers have infinite queue lengths.
Loosely speaking, for the fluid-stability, the ‘large queues’ behave as ‘infinite queues’ for
which induction statement provides us with the drift estimates. Also, to calculate the drift
of a queue in the fluid limit for fixed but large enough N, we use the mean-field analysis. A
more detailed heuristic roadmap of the above proof argument is presented in Subsection 4.1.
This technique is of independent interest, and potentially has a much broader applicabil-
ity in proving large-N stability for non-monotone systems, where the state-of-the-art results
have remained scarce so far.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we
present a detailed model description, state the main results, and provide their ramifications
along with discussions of several proof heuristics. The full proof of the main results are
deferred till Section 3. Section 4 introduces an inductive approach to prove large-N stability
result. We present the proof of the large-scale system (when N → ∞) using mean-field
analysis in Section 5. Finally, we make a few brief concluding remarks in Section 6.

2 Model description and main result

In this section, first we will describe the system and the TABS scheme in detail, and then
state the main results and discuss their ramifications.

Consider a system of N parallel queues with identical servers and a single dispatcher.
Tasks with unit-mean exponentially distributed service requirements arrive as a Poisson pro-
cess of rate λN with λ < 1. Incoming tasks cannot be queued at the dispatcher, and must
immediately and irrevocably be forwarded to one of the servers where they can be queued.
Each server has an infinite buffer capacity. The service discipline at each server is oblivious
to the actual service requirements (e.g., FCFS). A turned-off server takes an Exponentially
distributed time with mean 1/ν (to be henceforth denoted as Exp(ν)) time (setup period)
to be turned on. We now describe the token-based joint auto-scaling and load balancing
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Figure 1: Illustration of server on-off decision rules in the TABS scheme, along with message
colors and state variables as given in [20].

scheme called TABS (Token-based Auto Balance Scaling), as introduced in [20].

TABS scheme [20].

• When a server becomes idle, it sends a ‘green’ message to the dispatcher, waits for an
Exp(µ) time (standby period), and turns itself off by sending a ‘red’ message to the
dispatcher (the corresponding green message is destroyed).

• When a task arrives, the dispatcher selects a green message at random if there are any,
and assigns the task to the corresponding server (the corresponding green message
is replaced by a ‘yellow’ message). Otherwise, the task is assigned to an arbitrary
busy server (and is lost if there is none), and if at that arrival epoch there is a red
message at the dispatcher, then it selects one at random, and the setup procedure of
the corresponding server is initiated, replacing its red message by an ‘orange’ message.
Setup procedure takes Exp(ν) time after which the server becomes active.

• Any server which activates due to the latter event, sends a green message to the dis-
patcher (the corresponding orange message is replaced), waits for an Exp(µ) time for
a possible assignment of a task, and again turns itself off by sending a red message to
the dispatcher.

As described in [20], the TABS scheme gives rise to a distributed operation in which servers
are in one of four states (busy, idle-on, idle-off, or standby), and advertize their state to the
dispatcher via exchange of tokens. Figure 1 illustrates this token-based exchange protocol.
Note that setup procedures are never aborted and continued even when idle-on servers do
become available.

Notation. For the system with N servers, let XNj (t) denote the queue length of server j
at time t, j = 1, 2, . . . ,N, and QN(t) := (QN1 (t),QN2 (t), . . . ) denote the system occupancy
state, where QNi (t) is the number of servers with queue length greater than or equal to i
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at time t, including the possible task in service, i = 1, 2, . . .. Also, let ∆N0 (t) and ∆N1 (t)

denote the number of idle-off servers and servers in setup mode at time t, respectively. Note
that the process (QN(t),∆N0 (t),∆N1 (t))t>0 provides a Markovian state description by virtue
of the exchangeablity of the servers. It is easy to see that, for any fixed N, this process
is an irreducible countable-state Markov chain. Therefore, its positive recurrence, which
we refer to as stability, is equivalent to ergodicity and to the existence of unique stationary
distribution. Further, let UN(t) denote the number of idle-on servers at time t. We will focus
upon an asymptotic analysis, where the task arrival rate and the number of servers grow
large in proportion. The mean-field fluid-scaled quantities are denoted by the respective small
letters, viz. qNi (t) := Q

N
i (t)/N, δN0 (t) = ∆N0 (t)/N, δN1 (t) = ∆N1 (t)/N, and uN(t) := UN(t)/N.

Notation for the conventional fluid-scaled occupancy states for a fixed N will be introduced
later in Subsection 3.1. For brevity in notation, we will write qN(t) = (qN1 (t),qN2 (t), . . . ) and
δN(t) = (δN0 (t), δN1 (t)). Let

E =
{
(q,δ) ∈ [0, 1]∞ : qi > qi+1, ∀i, δ0 + δ1 + q1 6 1

}
,

denote the space of all mean-field fluid-scaled occupancy states, so that (qN(t),δN(t)) takes
value in E for all t. Endow Ewith the product topology, and the Borel σ-algebra E, generated
by the open sets of E. For any complete separable metric space E, denote by DE[0,∞), the
set of all E-valued càdlàg (right continuous with left limit exists) processes. By the symbol

‘ P−→’ we denote convergence in probability for real-valued random variables.

We now present our first main result which states that for any fixed choice of the param-
eters, a sub-critically loaded system under TABS scheme is stable for large enough N.

Theorem 2.1. For any fixed µ, ν > 0, and λ < 1, the system with N servers under the TABS scheme
is stable (positive recurrent) for large enough N.

Theorem 2.1 is proved in Section 3.

Remark 1. It is worthwhile to mention that the ‘large-N’ stability as stated in Theorem 2.1
above is the best one can hope for. In fact, for fixed N and λ, there are values of the param-
eters µ and ν such that the system under the TABS scheme may not be stable. To elaborate
further on this point, consider a system with 2 servers A and B, and 1/2 < λ < 1. Let
server A start with a large queue, while the initial queue length at server B be small. In that
case, observe that every time the queue length at server B hits 0, with positive probability,
it turns idle-off before the next arrival epoch. Once server B is idle-off, the arrival rate into
server A becomes 2λ > 1. Thus, before server B turns idle-on again, the expected number of
tasks that join server A is given by at least 2λ/ν, while the expected number of departures
is 1/ν. Thus the queue length at server A increases by (2λ− 1)/ν, which can be very large
if ν is small. Further note that once server B becomes busy again, both servers receive an
arrival rate λ < 1, and hence it is more likely that server B will empty out again, repeating
the above scenario. The situation becomes better as N increases. Indeed for large N, if ‘too

6



0 50 100 150 200 250 300 350 400 450 500

Time

0

100

200

300

400

500

600

Queue length at server A
Queue length at server B

0 50 100 150 200 250 300 350 400 450 500

Time

0

100

200

300

400

500

600

Max queue length
2nd max queue length

0 50 100 150 200 250 300 350 400 450 500

Time

0

100

200

300

400

500

600

Max queue length
2nd max queue length

Figure 2: (Top left) Illustration of instability of the TABS scheme for N = 2 via sample paths
of the queue length process. (Top right) Sample paths of the maximum and second maxi-
mum queue length processes in an intermediate system (N = 50) for the same parameter
choices. (Bottom) The system becomes stable for a large enough system (N = 500).

many’ servers are idle-off and ‘too many’ tasks do not find an idle queue to join, the system
starts producing servers in setup mode fast enough, and as a result, more and more servers
start becoming busy. The above heuristic has been illustrated in Figure 2 with examples of
three scenarios with small, moderate, and large values of N, respectively.

In the next theorem we will identify the limit of the sequence of stationary distributions
of the occupancy processes as N→∞. In particular, we will establish that under sub-critical
load, for any fixed µ, ν > 0, the steady-state occupancy process converges weakly to the
unique fixed point. (For the finite buffer scenario this was proved in [20, Proposition 3.3].)
Denote by qN(∞) and δN(∞) the random values of qN(t) and δN(t) in the steady-state,
respectively.

Theorem 2.2. For any fixed µ, ν > 0, and λ < 1, the sequence of steady states (qN(∞),δN(∞))
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converges weakly to the fixed point (q?,δ?) as N→∞, where

δ?0 = 1 − λ δ?1 = 0 q?1 = λ, q?i = 0 for all i > 2.

Note that the fixed point (q?,δ?) is such that the probability of wait vanishes as N→∞
and the asymptotic fraction of active servers is minimum possible, and in this sense, the
fixed point is optimal. Thus, Theorem 2.2 implies that the TABS scheme provides fluid-level
optimality for large-scale systems in terms of delay performance and resource utilization,
while involving only O(1) communication overhead per task.

3 Proofs of the main results

In Subsection 3.1 we introduce the notion of conventional fluid scaling (when the number of
servers is fixed) and fluid sample paths (FSP), and state Proposition 3.1 that implies Theo-
rem 2.1 as an immediate corollary. Subsection 3.2 contains two key results for sequence of
systems with increasing system size, i.e., number of serversN→∞, and proves Theorem 2.2.

3.1 Conventional fluid limit for a system with fixed N

In this subsection first we will introduce a notion of fluid sample path (FSP) for finite-N
systems where some of the queue lengths are infinite. We emphasize that this is conventional
fluid limit, in the sense that the number of servers is fixed, but the time and the queue length
at each server are scaled by some parameter that goes to infinity.

Loosely speaking, conventional fluid limits are usually defined as follows: For a fixed N,
consider a sequence of systems with increasing initial norm (total queue length) R say. Now
scale the queue length process at each server and the time by R. Then any weak limit of this
sequence of (space and time) scaled processes is called an FSP. Observe that this definition is
inherently not fit if the system has some servers whose initial queue length is infinity. Thus
we introduce a suitable notion of FSP that does not require the scaled norm of the initial state
to be 1. We now introduce a rigorous notion of FSP for systems with some of the queues
being infinite.

Fluid limit of a system with some of the queues being infinite. Consider a system of N
servers with indices in N, among which k servers with indices in K ⊆ N have infinite queue
lengths. Now consider any sequence of systems indexed by R such that

∑
i∈N\K X

N,R
i (0) <∞, and

xN,R
i (t) :=

XN,R
i (Rt)

R
, i ∈ N \K (3.1)

be the corresponding scaled processes. For fixed N, the scaling in (3.1) will henceforth
be called as the conventional fluid-scaled queue length process. Also, for the R-th system,
let AN,R

i (t) and DN,R
i (t) denote the cumulative number of arrivals to and departures from

server i with aN,R
i (t) := AN,R

i (Rt)/R and dN,R
i (t) := DN,R

i (Rt)/R being the corresponding
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fluid-scaled processes, i ∈ N. We will often omit the superscript N when it is fixed from the
context.

Now for any fixed N, suppose the (conventional fluid-scaled) initial states converge, i.e.,
xR(0)→ x(0), for some fixed x(0) such that 0 6

∑
i∈N\K xi(0) <∞ and xi(0) =∞ for i ∈ K.

Then a set of uniformly Lipschitz continuous functions (xi(t),ai(t),di(t))i∈N on the time
interval [0, T ] (where T is possibly infinite) with the convention xi(·) ≡ ∞ for all i ∈ K, is
called a fluid sample path (FSP) starting from x(0), if for any subsequence of {R} there exists
a further subsequence (which we still denote by {R}) such that with probability 1, along that
subsequence the following convergences hold:

(i) For all i ∈ N, aRi (·)→ ai(·) and dRi (·)→ di(·), u.o.c.

(ii) For i ∈ N \K, xRi (·)→ xi(·) u.o.c.

Note that the above definition is equivalent to convergence in probability to the unique FSP.
For any FSP almost all points (with respect to Lebesgue measure) are regular, i.e., for all
i ∈ N \ K, xi(t) has proper left and right derivatives with respect to t, and for all such
regular points

x ′i(t) = a
′
i(t) − d

′
i(t).

Infinite queues as part of an FSP. The arrival and departure functions ai(t) and di(t) are
well-defined for each queue, including infinite queues. Of course, the derivative x ′i(t) for
an infinite queue makes no direct sense (because an infinite queue remains infinite at all
times). However, we adopt a convention that x ′i(t) = a

′
i(t) − d

′
i(t), for all queues, including

the infinite ones. For an FSP, x ′i(t) is sometimes referred to as a “drift” of (finite or infinite)
queue i at time t.

We are now in a position to state the key result that establishes the large-N stability of
the TABS scheme.

Proposition 3.1. The following holds for all sufficiently large N. For each 0 6 k 6 N, consider a
system where k servers with indices in K have infinite queues, and the remaining N− k queues are
finite. Then, for each j = 1, 2, . . . ,N, there exists ε(j) > 0, such that the following properties hold
(ε(j) and other constants specified below, also depend on N).

(1) For any x(0) such that 0 6
∑
i∈N\K xi(0) < ∞ and xi(0) = ∞ for i ∈ K, there exists

T(k, x(0)) <∞ and a unique FSP on the interval [0, T(k, x(0))], which has the following proper-
ties:

(i) If at a regular point t, M(t) := {i ∈ N : xi(t) > 0} with |M(t)| = m > k, then
x ′i(t) = −ε(m) for all i ∈M(t).

(ii) For any i ∈ N \K, if xi(t0) = 0 for some t0, then xi(t) = 0 for all t > t0.

(iii) T(k, x(0)) = inf {t : xi(t) = 0 for all i ∈ N \K}.

(2) The subsystem with N− k finite queues is stable.

9



(3) When the subsystem with N− k finite queues is in steady state, the average arrival rate into each
of the k servers having infinite queue lengths is at most 1 − ε(k).

(4) For any x(0) such that 0 6
∑
i∈N\K xi(0) <∞ and xi(0) =∞ for i ∈ K, there exists a unique

FSP on the entire interval [0,∞). In [0, T(k, x(0))], it is as described in Statement 1. Starting
from T(k, x(0)), all queues in N \K stay at 0 and all infinite queues have drift at most −ε(k).

Although Part 2 follows from Part 1, and Part 4 is stronger than Part 1, the statement of
Proposition 3.1 is arranged as it is to facilitate its proof, as we will see in Section 4 in detail.

Proof of Theorem 2.1. Note that Theorem 2.1 is a special case of Proposition 3.1 when k =

0.

3.2 Large-scale asymptotics: auxiliary results

In this subsection we will state two crucial lemmas that describe asymptotic properties of
sequence of systems as the number of servers N → ∞, if stability is given. Their proofs
involve mean-field fluid scaling and limits.

Lemma 3.2. There exist ε1 > 0 and Cq = Cq(ε1) > 0, such that the following holds. Consider any
sequence of systems with N→∞ and k = k(N) infinite queues such that k(N)/N→ κ ∈ [0, 1], and
assume that each of these systems is stable. Then for all sufficiently large N,

P
(
qN1 (∞) < ε1

)
6 e−CqN.

Lemma 3.3. Consider any sequence of systems with N → ∞ and k = k(N) infinite queues such
that k(N)/N→ κ ∈ [0, 1], and assume that each of these systems is stable. The following statements
hold:

(1) If κ > 1 − λ, then qN1 (∞)
P−→ 1 as N→∞.

(2) If κ < 1 − λ, then the limit of the sequence of stationary occupancy states (qN(∞),δN(∞)) is
the distribution concentrated at the unique equilibrium point (q?(κ),δ?(κ)), such that

q?1(κ) = κ+ λ, q?2(κ) = κ

δ?0(κ) = 1 − λ− κ, δ?1(κ) = 0.

Consequently,
lim
N→∞P

(
QN1 (∞) +∆N0 (∞) +∆N1 (∞) = N

)
= 0. (3.2)

Lemmas 3.2 and 3.3 are proved in Section 5. These results will be used to derive necessary
large-N bounds on the expected arrival rate into each of the servers having infinite queue
lengths when the system is in steady state.
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Remark 2. It is also worthwhile to note that Lemmas 3.2 and 3.3 can be thought of as a weak
monotonicity property of the TABS scheme as mentioned earlier. Loosely speaking, the weak
monotonicity requires that no matter where the system starts, in some fixed time the system
arrives at a state with a certain fraction of busy servers. The purpose of Lemmas 3.2 and 3.3
is to bound under the assumption of stability, the expected rate at which task arrives to the
infinite queues when the subsystem containing the finite queues is in steady-state: In this
regard

(i) Lemma 3.3 guarantees high probability bounds on the total number of busy servers, so
that with probability tending to 1 as N → ∞, the fraction of busy servers in the whole
system is at least λ in steady state.

(ii) But note that since the arrival rate is λN, when the system has few busy servers (even
with an asymptotically vanishing probability), the arrival rate to the infinite servers can
become Θ(N). Thus we need the exponential bound stated in Lemma 3.2 in order to
obtain bound on the expected rate of arrivals to the infinite queues.

In Subsection 4.4 we will see that as a consequence of Lemmas 3.2 and 3.3, we obtain that
for large enough N, under the assumption of stability, the steady-state rate at which tasks
join an infinite queue is strictly less than 1, and the drift of the infinite queues as defined in
Subsection 3.1 becomes strictly negative. This fact will be used in the proof of Proposition 3.1.

Proof of Theorem 2.2. Note that given the large-N stability property proved in Proposition 3.1
for k(N) = 0, and the convergence of stationary distributions under the assumption of
stability in Lemma 3.3, the proof of Theorem 2.2 is immediate.

4 Proof of Proposition 3.1: An inductive approach

Throughout this section we will prove Proposition 3.1. The proof consists of several steps
and uses both conventional fluid limit and mean-field fluid scaling and limit in an intricate
fashion. Below we first provide a roadmap of the whole proof argument.

4.1 Proof idea and the roadmap

The key idea for the proof of Proposition 3.1 is to use backward induction in k, starting from
the base case k = N. For k = N, all the queues are infinite. In that case, Parts (1) and (2) are
vacuously satisfied with the convention T(N, x(0)) = 0. Further observe that TABS scheme
does not differentiate between two large queues (in fact, any two non-empty queues). Thus,
when all queues are infinite, since all servers are always busy, each arriving task is assigned
uniformly at random, and each server has an arrival rate λ and a departure rate 1. Thus, it
is immediate that the drift of each server is −(1− λ) < 0, and thus, ε(N) = 1− λ. This proves
(3), and then (4) follows as well.

Now, we discuss the ideas to establish the backward induction step, i.e., assume that Parts
(1)–(4) hold for k > k(N) + 1 for some k(N) ∈ {0, 1, . . . ,N− 1} and verify that the statements
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hold for k = k(N). Rigorous proofs to verify Parts (1)–(4) for k = k(N) are presented in
Subsections 4.2–4.5. We begin by providing a roadmap of these four subsections.

Part (1). Recall that we denote by K the indices of the servers having infinite queue lengths,
and by N the set of all server indices. Denote by x(i) the i-th largest component of x (ties are
broken arbitrarily). Then for any x with m ∈ {0, 1, . . . ,N− 1} infinite components, define

T(m, x) :=
x(N)

ε(N)
+

N−m−1∑
i=1

x(N−i) − x(N−i+1)

ε(N− i)
(4.1)

with the convention that T(N, x) = 0 if all components of x are infinite. For k(N) ∈
{0, 1, . . . ,N − 1}, Part (1) is proved with the choice of T(k, x(0)) as given by (4.1). Indeed,
recall that we are at the backward induction step where there are k(N) infinite queues, and
we also know from the hypothesis that Parts (1)–(4) hold if there are k(N) + 1 or larger in-
finite queues in the system. Loosely speaking, the idea is that as long as a conventional
fluid-scaled queue length xj(t) at some server j ∈ N \K is positive, it can be coupled with
a system where the queue length at server j is infinite. Thus, as long as there is at least one
server j ∈ N \K with xj(t) > 0, the system can be ‘treated’ as a system with at least k(N) + 1
infinite queues, in which case, Part (4) of the backward induction hypothesis furnishes with
the drift of each positive component of the FSP (in turn, which is equal to the drift of each
infinite queue for the corresponding system).

Now to explain the choice of T(m, x) in (4.1), observe that when all the components of
the N-dimensional FSP are strictly positive, each component has a negative drift of −ε(N).
Thus, x(N)/ε(N) is the time when at least one component of the N-dimensional FSP hits 0.
From this time-point onwards, each positive component has a drift of −ε(N− 1), and thus,
x(N)/ε(N) + (x(N−1) − x(N))/ε(N− 1) is the time when two components hit 0. Proceeding
this way, one can see that at time T(m, x(0)) all finite positive components of the FSP hit 0.
The above argument is formalized in Subsection 4.2.

Part (1) =⇒ Part (2). To prove Part 2, we will use the fluid limit technique of proving
stochastic stability as in [5, 24, 26], see for example [5, Theorem 4.2] or [26, Theorem 7.2] for
a rigorous statement. Here we need to show that the sum of the non-infinite queues (of an
FSP) drains to 0. This is true, because by Part (1) each positive non-infinite queue will have
negative drift. The formal proof is in Subsection 4.3.

Part (2) + Lemmas 3.2 and 3.3 =⇒ Part (3). Note that in the proofs of Parts (1) and (2) we
have only used the backward induction hypothesis, and have not imposed any restriction on
the value of N. This is the only part where in the proof we use the large-scale asymptotics,
in particular, Lemmas 3.2 and 3.3. For that reason, in the statement of Proposition 3.1 we use
“large-enoughN”. The idea here is to prove by contradiction. Suppose Part (3) does not hold
for infinitely many values of N. In that case, it can be argued that there exist a subsequence
{N} and some sequence {k(N)} with k(N) ∈ {0, 1, . . . ,N− 1}, such that when the subsystem

12



consisting ofN−k(N) finite queues is in the steady state, the average arrival rate into each of
the k(N) servers having infinite queue lengths is at least 1, along the subsequence. Loosely
speaking, in that case, Lemmas 3.2 and 3.3 together imply that for large enough N, there are
‘enough’ busy servers, so that the rate of arrival to each infinite queues is strictly smaller
than 1, which leads to a contradiction. Note that we can apply Lemmas 3.2 and 3.3 here,
because Part (2) ensures the required stability. The rigorous proof is in Subsection 4.4.

Parts (2), (3) + Time-scale separation =⇒ Part (4). We assume that Parts (1) – (3) hold for
k ∈ {k(N),k(N) + 1, . . . ,N}, and we will verify Part (4) for k = k(N). Observe that it only
remains to prove convergence to the FSP on the (scaled) time interval [T(k, x(0)),∞]. For
this, observe that it is enough to consider the sequence of systems for which xR(0) → x(0)
where xi(0) = 0 for all i ∈ N \K. In particular, all that remains to be shown is that the drift
of each infinite queue is indeed −ε(k). Recall the conventional fluid scaling and FSP from
Subsection 3.1, and let R be the scaling parameter. The proof consists of two main parts:

(i) Let us fix any state z of the unscaled process. If the sequence of systems is such that
xR(0) → x(0) where xi(0) = 0 for all i ∈ N \K, then due to Part (2), for the subsystem
consisting of finite queues, the (scaled) hitting time to the (unscaled) state z converges
in probability to 0. Also, since this subsystem is positive recurrent (due to Part (2)),
starting from a fixed (unscaled) state z, its expected (unscaled) return time to the state z
is O(1). This will allow us to split the (unscaled) time line into i.i.d. renewal cycles
of finite expected lengths. In addition, this also shows that in the scaled time the
subsystem of finite queues evolves on a faster time scale and achieves ‘instantaneous
stationarity’.

(ii) From the above observation we can claim that the number of arrivals to any specific
infinite queue can be written as a sum of arrivals in the above defined i.i.d. renewal
cycles. Using the strong law of large numbers (SLLN) we can then show that in the
limit R → ∞, the instantaneous rate of arrival to an specific infinite queue is given by
the average arrival rate when the subsystem with N− k finite queues is in steady state.
Therefore, Part (3) completes the verification of Part (4).

The above argument is rigorously carried out in Subsection 4.5.

4.2 Coupling with infinite queues to verify Part (1)

To prove Part (1), fix any x(0) such that 0 6
∑
i∈N\K xi(0) < ∞ and xi(0) = ∞ for i ∈ K.

Let K1 ⊆ N \K be the set of server-indices i, such that xi(0) > 0. We will first show that
when

∑
i∈N\K xi(0) > 0 with |M(t)| = m > k(N) + 1, then it has a negative drift −ε(m)

for all i ∈ M(t), thus proving Part (1.i). Since ε(m)’s are positive, this will then also imply
Part (1.ii). Now assume

∑
i∈N\K xi(0) > 0. In that case we have that |K1| =: k1 > 0. Now

consider the sequence of processes (xRi (·),aRi (·),dRi (·))i∈N along any subsequence {R}. Define
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the stopping time
TR := inf

{
t : XRi (t) = 0 for some i ∈ K1

}
,

and τR = TR/R. In the time interval [0, TR], we will couple this system with a system, let
us label it Π, with k+ k1 infinite queues. Let (x̄Ri (·), āRi (·), d̄Ri (·))i∈N be the queue length,
arrival, and departure processes corresponding to the system Π, and assume that x̄Ri (0) is
infinite for i ∈ K ∪K1. Now couple each arrival to and departure from i-th server in both
systems, i ∈ N. Since the scheme does not distinguish among servers with positive queue
lengths, observe that up to time TR both systems evolve according to their own statistical
laws. Also, up to time TR, the queue length processes at the servers in N \ (K∪K1) in both
systems are identical. Thus, in the (scaled) time interval [0, τR], aRi ≡ āRi and dRi ≡ d̄Ri for
all i ∈ N, and xRi ≡ x̄Ri for all i ∈ N \K. Therefore, using induction hypothesis for systems
with k + k1 > k(N) + 1 infinite queues, there exists a subsequence {R} along which with
probability 1,

(x̄Ri (·), āRi (·), d̄Ri (·))i∈N → (x̄i(·), āi(·), d̄i(·))i∈N,

where x̄i ≡ 0 for all i ∈ N\ (K∪K1), and x̄j ≡∞ with x̄ ′j ≡ −ε(k+ k1) < 0 for all j ∈ K∪K1.
Consequently, in the time interval [0, τ], along that subsequence with probability 1,

(xRi (·),aRi (·),dRi (·))i∈N → (xi(·), āi(·), d̄i(·))i∈N

with xi = x̄i ≡ 0 for all i ∈ N \ (K ∪K1) and x ′i ≡ −ε(k+ k1) < 0 for all i ∈ K ∪K1, where
τ = x(k+k1)/ε(k+ k1) > 0. Observe that the above argument can be extended till the time∑
i∈N\K xi(t) hits zero. Furthermore, following the argument as above, this time is given by

T(k(N), x(0)) as given in (4.1). This completes the proof of Part 1 (iii).

4.3 Conventional fluid-limit stability to verify Part (2)

As mentioned earlier, we will use the fluid limit technique of proving stochastic stability as
in [5, 24, 26] to prove Part (2). Consider a sequence of initial states with increasing norm
R, i.e.,

∑
i∈N\K X

R
i (0) = R and XRi (0) = ∞ for i ∈ K. Then from Part (1.iii), we know

that for any sequence there exists a further subsequence {R} along which with probability 1,
the fluid-scaled occupancy process (xRi (·))i∈N converges to the process (xi(·))i∈N for which∑
i∈N\K xi(t) hits 0 in finite time T(k(N), x(0)), and stays at 0 afterwards. This verifies the

fluid-limit stability condition in [5, Theorem 4.2] and [26, Theorem 7.2], and thus completes
the verification of Part (2).

4.4 Large-scale asymptotics to verify Part (3)

The verification of the backward induction step for Part (3) uses contradiction. Namely,
assuming that the induction step for Part (3) does not hold, we will construct a sequence of
systems with increasing N, for which we obtain a contradiction using Lemmas 3.2 and 3.3.
We note that this is the only part in the proof of Proposition 3.1, where we use the large-scale
(i.e., N→∞) asymptotic results.
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Observe that we have already argued in Subsection 4.1 that for all N, Parts (1) – (4) hold
for k = N. Now, if for some N, Part (3) does not hold for some k(N) ∈ {0, 1, . . . ,N− 1} while
Parts (1)–(4) hold for all k > k(N) + 1, then from the proofs of Parts (1) and (2), note that
Parts (1) and (2) hold for k = k(N) as well. Consequently, the subsystem with N− k(N)

finite queues is stable. Thus we have the following implication.

Implication 1. Suppose, for infinitely manyN, the induction step to prove Part (3) of Proposition 3.1
does not hold for some k = k(N). Then there exists a subsequence of {N} (which we still denote by
{N}) diverging to infinity, such that (i) The system with k(N) infinite queues is stable and (ii) The
steady-state arrival rate into each infinite queue is at least 1.

We will now show that Implication 1 leads to a contradiction – this will prove Part (3)
of Proposition 3.1. Suppose Implication 1 is true. Choose a further subsequence {N} along
which k(N)/N converges to κ ∈ [0, 1]. As in the statement of Lemma 3.3 we will consider two
regimes depending on whether κ > 1 − λ or not, and arrive at contradictions in both cases.
Since all the infinite queues are exchangeable, we will use σ to denote a typical infinite queue.

Case 1. First consider the case when κ > 1 − λ. Note that the expected steady-state instanta-
neous rate of arrival to σ is given by

E
( λN

QN1 (∞)
1[QN1 (∞)+∆N0 (∞)+∆N1 (∞)=N]

)
6 E

( λN

QN1 (∞)

)
= E

( λ

qN1 (∞)

)
+ o(1). (4.2)

Now observe that for large N, λ/qN1 (∞) 6 2λ/κ, since qN1 (s) > κ/2 > 0. Further from

Lemma 3.3 we know that qN1 (∞)
P−→ 1 as N → ∞. Consequently, E(λ/qN1 (∞)) → λ as

N→∞. Therefore for large enough N,

E
( λN

QN1 (∞)
1[QN1 (∞)+∆N0 (∞)+∆N1 (∞)=N]

)
6

1 + λ

2
= 1 −

1 − λ

2
< 1, (4.3)

which is a contradiction to Part (ii) of Implication 1.

Case 2. In case κ < 1 − λ, first note that the statement in Part (3) is vacuously satisfied if
k(N) ≡ 0 for all large enough N. Thus without loss of generality, assume k(N) > 0. Fix ε1 as
in Lemma 3.2. In that case (4.2) becomes

E
( λN

QN1 (∞)
1[QN1 (∞)+∆N0 (∞)+∆N1 (∞)=N]

)
6 E

( λN

QN1 (∞)
1[QN1 (∞)+∆N0 (∞)+∆N1 (∞)=N, QN1 (∞)>ε1N]

)
+ λNP

(
QN1 (∞) < ε1N

)
6
λN

ε1N
P
(
QN1 (∞) +∆N0 (∞) +∆N1 (∞) = N

)
+ λNP

(
QN1 (∞) < ε1N

)
.

Now, due to Part (2) of Lemma 3.3, we know that

P
(
QN1 (∞) +∆N0 (∞) +∆N1 (∞) = N

)
→ 0,
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and furthermore, Lemma 3.2 yields

NP
(
QN1 (∞) < ε1N

)
→ 0 as N→∞.

Thus,

E
( λN

QN1 (∞)
1[QN1 (∞)+∆N0 (∞)+∆N1 (∞)=N]

)
→ 0 as N→∞. (4.4)

In particular, for large enoughN, the expected steady-state arrival rate is bounded away from
1, which is again a contradiction to Part (ii) of Implication 1. This completes the verification
of Part (3) of the backward induction hypothesis.

4.5 Time-scale separation to verify Part (4)

Assume Parts (1) – (3) hold for all k ∈ {k(N),k(N) + 1, . . . ,N}. Now consider a system
containing k = k(N) infinite queues with indices in K, and recall the conventional fluid
scaling and FSP from Subsection 3.1. Also, in this subsection whenever we refer to the
process {X(t)}t>0, the components in K should be taken to be infinite.

For the queue length vector X, define the norm ‖X‖ :=
∑
i/∈K Xi to be the total number

of tasks at the finite queues. Lemmas 4.1 and 4.2 state two hitting time results that will be
used in verifying Part (4).

Lemma 4.1. For any fixed γ ∈ (0, 1), there exists τ = τ(γ) and C = C(γ), such that if ‖X(0)‖ =
R > C, then

E‖X(Rτ)‖ 6 (1 − γ)‖X(0)‖.

Lemma 4.1 says that if the system starts from an initial state where the total number of
tasks in the finite queues is suitably large, then the time it takes when the expected total
number of tasks in the finite queues falls below a certain fraction of the initial number, is
proportional to itself. The proof of Lemma 4.1 is fairly straightforward, but is provided
below for completeness.

Proof of Lemma 4.1. Consider a sequence of initial states with an increasing norm, i.e., XR(0)
is such that ‖XR(0)‖ = R where R−1XR(0)→ x(0) as R→∞. Then from Part 1 we know that
as R→∞, on the time interval [0, T(m, x(0))] the process R−1XR(Rt) converges in probability
to the unique deterministic process x(t) satisfying∑

i∈N\K

x ′i(t) < −c(k(N)) whenever
∑

i∈N\K

xi(t) > 0, (4.5)

where c(m) = min
{
kε(k) : k(N) + 1 6 k 6 N

}
> 0. We also know that for any i ∈ N \K, if

xi(t0) = 0 for some t0, then xi(t) = 0 for all t > t0. Consequently, since c(k(N)) is positive,
there exists τ = τ(γ) <∞, such that

sup
‖x‖=1

{
‖x(τ)‖ : x(0) = x ∈ [0, 1]N−k(N) × {∞}k(N)

}
< 1 − γ.
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Now since the expected number of arrivals into the R-th system up to time t, when scaled
by R, is λt for any finite t, we obtain E(R−1‖XR(t)‖) 6 1 + λt. Therefore, the convergence in
probability also implies the convergence in expectation. Thus for the above choice of γ,

lim sup
R→∞ E

(‖XR(Rτ)‖
R

)
< 1 − γ.

Hence, there exists C such that for all R > C,

E
(‖XR(Rτ)‖

R

)
= E

(‖XR(Rτ)‖
‖XR(0)‖

)
6 1 − γ.

This completes the proof of Lemma 4.1.

For any C > 0, define the set C := {‖X‖ 6 C}, and the stopping time θC := inf {t : X(t) ∈
C}. For large enough C, the next lemma bounds the expected hitting time to the fixed set C
in terms of the norm of the initial state.

Lemma 4.2. There exists C,C1 > 0, such that if ‖X(0)‖ = R > C, then

E(θC|X(0)) 6 C1‖X(0)‖.

Proof of Lemma 4.2. Fix any γ ∈ (0, 1), and take τ = τ(γ) and C = C(γ) as in Lemma 4.1. For
i > 1, define the sequence of random variables Ti := τ‖X(Ti−1)‖ with the convention that
T0 = 0. Now consider the discrete time Markov chain {Φi : i > 0} adapted to the filtration
F =

⋃
i>0 Fi, where Φi = X(Ti) is the value of the continuous time Markov process sample

at times Ti’s, and Fi = σ(Φ0,Φ1, . . . ,Φi) is the sigma field generated by {Φ0,Φ1, . . . ,Φi}.
Further, for i > 0 define the stopping time θ̂C := inf {j > 0 : Zj 6 C}. Then observe that

θC 6
θ̂C∑
i=1

Ti =: ΨC.

Also define αi =
∑i
j=1 Tj for i > 1, and hence αθ̂C = ΨC. Then as a consequence of Dynkin’s

lemma [16, Theorem 11.3.1], using [16, Proposition 11.3.2] we have

E(θC) 6 E(ΨC) 6
τ

γ
E‖X(0)‖.

Choosing C1 = τ/γ completes the proof.

Now we have all the ingredients to verify Part (4) of the backward induction hypothesis.
Note that we now look at the sequence of conventional fluid-scaled processes starting at
(scaled) time T(k(N), x(0)). From the verification of Part (1) we already know that xi(t) = 0
for all t > T(k(N), x(0)), i ∈ N \K. Thus, it only remains to show that starting from time
T(k(N), x(0)), the drift of each of the infinite queues is at most −ε(k(N)). Specifically, we
will construct a probability space where the required probability 1 convergence holds.
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In order to simplify writing, we assume that the system starts at time 0, and thus it is
enough to consider a sequence of initial queue length vectors such that

‖xR(0)‖ → 0 as R→∞,

where R is the parameter in the conventional fluid scaling. Hence, Lemma 4.2 yields that

R−1E(θC|XR(0)) → 0 as R → ∞. Consequently, R−1θC
P−→ 0. Thus, the fluid-scaled time to

hit the set C vanishes in probability, which is stated formally in the following claim.

Claim 1. If the sequence of initial states is such that ‖xR(0)‖ → 0 as R→∞, then R−1θC
P−→ 0, as

R→∞.

Now pick any (unscaled) state z ∈ C, and define the stopping time θ̂z as

θ̂z := inf
{
t > 0 : X(t) = z

}
.

Since due to Part (2) of the backward induction hypothesis, the unscaled process X(·) is
irreducible and positive recurrent, we have the following claim.

Claim 2. If the sequence of initial states is such that xR(0) ∈ C, then R−1θ̂z
P−→ 0, as R→∞.

Up to time θ̂z, consider the product topology on the sequence space. Then Claims 1 and 2
yield that for a sequence of initial states such that ‖xR(0)‖ → 0 as R→∞, there exists a sub-
sequence {R}, along which with probability 1, R−1θ̂z → 0. Starting from the time θ̂z, along
the above subsequence, we construct the sequence of processes xR(·) on the same probability
space as follows.

(1) Define the space of an infinite sequence of i.i.d. renewal cycles of the unscaled process
X(·), with the unscaled state z being the renewal state, i.e.,{

X(i)(t) : 0 6 t 6 θ̂(i)z , X(i)(0) = z
}

for i = 1, 2, . . . are i.i.d. copies, and θ̂(i)z are also i.i.d. copies of θ̂z.

(2) Define the process XR(·) as

XR(Rt) =
∞∑
i=1

X(i)
(
Rt−Θ(i− 1)

)
1[Θ(i−1)6Rt<Θ(i)], where Θ(i) :=

i∑
j=1

θ̂(j).

Let A(t) denote the cumulative number of arrivals up to time t to a fixed server with infinite
queue length when the system starts from the state z. Now, in order to calculate the drift
of each of the infinite queues, observe that cumulative number of arrivals up to time Rt to
server n ∈ K in the R-th system can be written as

ARn(Rt) =

NRθ∑
i=1

A
(i)
n +Bn(t−Θ(N

R
θ)), where NRθ := max{j : Θ(j) 6 Rt}.
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A
(i)
n ’s are i.i.d. copies of the random variable A(θ̂z), Bn(·) is distributed as A(t), and A(i)

n ’s
and Bn(·) are independent of the random variable NRθ . Now, since due to Part (2) of the
backward induction hypothesis the subsystem consisting of the finite queues is stable, X(·)
is irreducible and positive recurrent. Thus, we have E(θ̂z|X(0) = z) < ∞, and hence, with
probability 1,

NRθ
R
→ t

E(θ̂z|X(0) = z)
, as R→∞.

Thus, using Part (3) of the backward induction hypothesis, SLLN yields, with probability 1,

1
R
ARn(Rt) =

1
R

NRθ∑
i=1

A
(i)
n +

Bn(t−Θ(N
R
θ))

R
→ ât, as R→∞,

for some â 6 1 − ε(k(N)). Therefore, in the conventional fluid limit, an(t) 6 (1 − ε(k(N)))t.
Also, since the departure rate from each of the servers with infinite queue lengths is always 1,
it can be seen that in the conventional fluid limit, dn(t) = t, and thus, the drift of the n-th
infinite queue is given by at most −ε(k(N)). Combining the probability 1 convergence of
the time θ̂z to 0, and the probability space constructed after time θ̂z, we obtain that along
the subsequence {R} with probability 1, the fluid-scaled processes converges to a limit where
each infinite queue has drift at most −ε(k(N)). This completes the verification of Part (4),
and hence of Proposition 3.1.

5 Mean-field analysis for large-scale asymptotics

In this section we will analyze the large-N behavior of the system. In particular, we will
prove Lemmas 3.2 and 3.3. The next proposition is a basic mean-field fluid limit result that
we need later. Define

Eκ :=
{
(q,δ) ∈ [0, 1]∞ : qi > qi+1 > κ, ∀i, δ0 + δ1 + q1 6 1

}
.

Proposition 5.1. Assume k(N)/N → κ ∈ [0, 1] and the sequence of initial states (qN(0),δN(0))
converge to a fixed (q(0),δ(0)) ∈ Eκ, as N → ∞, where q1(0) > 0. Then, with probability 1, any
subsequence of {N} has a further subsequence along which {(qN(t),δN(t))}t>0 converges, uniformly
on compact time intervals, to some deterministic trajectory {(q(t),δ(t))}t>0 satisfying the following
equations:

qi(t) = qi(0) +
∫t

0
λpi−1(q(s),δ(s), λ)ds−

∫t
0
(qi(s) − qi+1(s))ds, i > 1

δ0(t) = δ0(0) + µ
∫t

0
u(s)ds− ξ(t),

δ1(t) = δ1(0) + ξ(t) − ν
∫t

0
δ1(s)ds,
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where

u(t) = 1 − q1(t) − δ0(t) − δ1(t),

ξ(t) =

∫t
0
λ(1 − p0(q(s),δ(s), λ))1[δ0(s)>0]ds.

For any (q,δ) ∈ E, λ > 0, (pi(q,δ, λ))i>0 are given by

p0(q,δ, λ) =

{
1 if u = 1 − q1 − δ0 − δ1 > 0,

min{λ−1(δ1ν+ q1 − q2), 1}, otherwise,

pi(q,δ, λ) = (1 − p0(q,δ, λ))(qi − qi+1)q
−1
1 , i > 1.

This type of result is standard and is obtained using Functional Strong LLN, for example
as in [20, 27, 28]; we omit its proof. Also, we note that, while Proposition 5.1 is a version of
[20, Theorem 3.1], it is different in that it is suitably modified for the case of infinite buffers
and some queues being infinite, and it states a somewhat different type of convergence,
convenient for the use in this paper. Define mean-field fluid sample path (MFFSP) to be any
deterministic trajectory satisfying the properties stated in Proposition 5.1.

We now provide an intuitive explanation of the mean-field fluid limit stated in Propo-
sition 5.1. It is similar to that behind [20, Theorem 3.1]. The term u(t) corresponds to the
asymptotic fraction of idle-on servers in the system at time t, and ξ(t) represents the asymp-
totic cumulative number of server setups (scaled by N) that have been initiated during [0, t].
The coefficient pi(q,δ, λ) can be interpreted as the instantaneous fraction of incoming tasks
that are assigned to some server with queue length i, when the fluid-scaled occupancy state
is (q,δ) and the scaled instantaneous arrival rate is λ. Observe that as long as u > 0, there
are idle-on servers, and hence all the arriving tasks will join idle servers. This explains that
if u > 0, p0(q,δ, λ) = 1 and pi(q,δ, λ) = 0 for i = 1, 2, . . .. If u = 0, then observe that servers
become idle at rate q1 − q2, and servers in setup mode turn on at rate δ1ν. Thus the idle-on
servers are created at a total rate δ1ν+ q1 − q2. If this rate is larger than the arrival rate λ,
then almost all the arriving tasks can be assigned to idle servers. Otherwise, only a fraction
(δ1ν+ q1 − q2)/λ of arriving tasks join idle servers. The rest of the tasks are distributed uni-
formly among busy servers, so a proportion (qi − qi+1)q

−1
1 are assigned to servers having

queue length i. For any i = 1, 2, . . ., qi increases when there is an arrival to some server
with queue length i− 1, which occurs at rate λpi−1(q,δ, λ), and it decreases when there is
a departure from some server with queue length i, which occurs at rate qi − qi−1. Since
each idle-on server turns off at rate µ, the fraction of servers in the off mode increases at
rate µu. Observe that if δ0 > 0, for each task that cannot be assigned to an idle server, a
setup procedure is initiated at one idle-off server. As noted above, ξ(t) captures the (scaled)
cumulative number of setup procedures initiated up to time t. Therefore the fraction of
idle-off servers and the fraction of servers in setup mode decreases and increases by ξ(t),
respectively, during [0, t]. Finally, since each server in setup mode becomes idle-on at rate ν,
the fraction of servers in setup mode decreases at rate νδ1.
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5.1 Proof of Lemma 3.2

Throughout this subsection we will prove Lemma 3.2. Within this proof we will use the
following terminology. Let AN be an event pertaining to N-th system. We will write
P
(
AN
)
= η(N) to mean the following property: There exist C > 0 and N1 > 0 such that

P
(
AN
)
6 e−CN for all N > N1. If event AN depends on some parameter p (say, the process

initial state), we say that P
(
AN
)
= η(N) uniformly in p if the property holds for common

fixed C > 0 and N1 > 0.
To prove the lemma, clearly, it suffices to prove that for some fixed T0 > 0 and ε0 > 0

P
(
qN1 (T0) 6 ε0

)
= η(N), (5.1)

uniformly on the process initial states (qN(0),δN(0)). This is what we do in the rest of the
proof.

Fix any T0 > 0; ε0 > 0 will be chosen later. We now prove several claims, which rather
simply follow from the process structure and basic large deviations estimates (specifically,
Cramer’s theorem) – they will serve as building blocks for the proof argument.

Claim 3. (i) For any ε > 0, uniformly in τ ∈ [0, T0] and uniformly in qN1 (0) > ε,

P
(
qN1 (τ) 6 (ε/2)e−T0

)
= η(N). (5.2)

(ii) For any ε > 0, uniformly in τ ∈ [0, T0] and uniformly in δN1 (0) > ε,

P
(
δN1 (τ) 6 (ε/2)e−νT0

)
= η(N). (5.3)

Indeed, to prove (5.2), observe that any busy server at time t stays busy in the interval [t, t+τ]
with probability at least e−τ > e−T0 . It remains to recall that qN1 (0) > ε corresponds to at
least εN busy servers in the unscaled system and apply Cramer’s theorem. Statement (ii) is
proved analogously.

Claim 4. For any sufficiently small T1 > 0, there exists ε ′1 > 0 such that, uniformly in the initial
state (qN(0),δN(0)),

P
(
qN1 (T1) + δ

N
1 (T1) 6 ε

′
1
)
= η(N). (5.4)

Indeed, fix any T1 > 0 such that λT1 6 1/4. Suppose first that either qN1 (0) > 1/4 or
δN1 (0) > 1/4; uniformly on all such initial conditions, the claim follows by using Claim 3.
Suppose now that qN1 (0) < 1/4 and δN1 (0) < 1/4, and therefore δN0 (0) + uN(0) > 1/2, where
recall that uN is the fraction of idle-on servers. The (unscaled) number of new customer
arrivals in [0, T1], denote it by H[0, T1], is Poisson with mean λT1N; therefore,

P (|H[0, T1]/N− λT1| > (1/2)λT1) = η(N).

This means that with probability 1 − η(N), we have H[0, T1]/N < δN0 (0) + uN(0), and there-
fore each arrival in [0, T1] creates either a new busy server or a new setup server; furthermore,
each of these newly created busy or setup servers will not change its state until time T1 with
probability at least e−ν

′T1 , where ν ′ = max{ν, 1}. It remains to choose ε ′1 ∈ (0, (1/4)λT1e−ν
′T1)

to obtain the claim.
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Claim 5. For any ε1 > 0 and any T2 > 0, there exists ε ′2 > 0 such that, uniformly in δN1 (0) > ε1,

P
(
qN1 (T2) + u

N(T2) 6 ε
′
2
)
= η(N). (5.5)

Indeed, at time 0 there are at least ε1N setup servers. Fix any T2 > 0. In [0, T2] each of them
tuns into an idle-on server with probability at least 1− e−νT2 ; those servers that do turn into
idle-on will be either still be idle-on or busy at time T2 with probability at least e−ν

′′T2 , where
ν ′′ = max{µ,ν}. It remains to choose ε ′2 ∈ (0, (1/2)ε1e−ν

′′T2), and apply Cramer’s theorem.

Claim 6. For any ε2 > 0 and any sufficiently small T3 > 0, there exists ε3 > 0 such that, uniformly
in uN(0) > ε2,

P
(
qN1 (T3) 6 ε3

)
= η(N). (5.6)

Indeed, fix T3 small enough so that e−µT3 > 3/4 and λT3 < ε2/2. At time 0 there are at
least ε2N idle-on servers; with probability at least e−µT3 > 3/4 they will still be idle-on at
time T3, unless they are taken by a new arrival. The (unscaled) number of new arrivals in
[0, T3], namely H[0, T3], is Poisson with mean λT3N, and therefore H[0, T3]/N concentrates at
λT3: P (|H[0, T3]/N− λT3| > (1/2)λT3) = η(N). We conclude that with probability 1 − η(n)

every new arrival in [0, T3] will go to an idle-on server and turn it into busy; each of those
servers, in turn, will remain busy until T3 with probability at least e−T3 . It remains to choose
ε3 ∈ (0, (1/4)λT3e−T3) to obtain the claim.

With these claims, we are now in position to conclude the proof of the lemma. Choose
small T1 > 0 and ε ′1 > 0 as in Claim 4; and then ε1 = ε ′1/2. For the chosen ε1, choose
small T2 > 0 and ε ′2 > 0 as in Claim 5; and then ε2 = ε ′2/2. Finally, for the chosen ε2,
choose small T3 > 0 and ε3 > 0 as in Claim 6. Note that T1, T2, T3 can small enough so that
T ′3

.
= T1 + T2 + T3 6 T0; let us also denote T ′2 = T1 + T2. Choose ε0 = (1/2)min{ε1, ε2, ε3}e−T0 .
According to Claim 4, with probability 1 − η(N), at time T1 we have either qN1 (T1) > ε1

or δN1 (T1) > ε1. Conditioned on a state at T1 safisfying qN1 (T1) > ε1, we have (5.1) by
applying Claim 3. Therefore, it remains to prove (5.1) conditioned on a state at T1 satisfying
δN1 (T1) > ε1. Under this condition at T1, we obtain from Claim 5 that, with probability
1− η(N), at time T ′2 we have either qN1 (T ′2) > ε2 or uN(T ′2) > ε2. Then, conditioned on a state
at T ′2 satisfying qN1 (T ′2) > ε2, we have (5.1) by once again applying Claim 3. It now remains
to prove (5.1) conditioned on a state at T ′2 satisfying uN(T ′2) > ε2. Under this condition at
T ′2 , we obtain from Claim 6 that, with probability 1 − η(N), at time T ′3 we have qN1 (T ′3) > ε3;
and conditioned on qN1 (T ′3) > ε3 at T ′3 , we have (5.1) by, yet again, Claim 3. The proof is
complete.

5.2 Proof of Lemma 3.3

Throughout this subsection we will prove Lemma 3.3. Recall that the stability of the sub-
system N \K is assumed, and hence there exists a unique stationary distribution for each
N. Recall that we denote by qN(∞) the random value of qN(t) in the steady-state. We will
start by stating a few basic facts about the mean-field limits that will facilitate the proof of
Lemma 3.3.
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Recall the definition of MFFSP from the paragraph after Proposition 5.1, and that u(t) =
1 − q1(t) − δ0(t) − δ1(t). Also, denote by y1(t) = q1(t) − q2(t) and by (d+/dt) the right
derivative.

Claim 7. For any ε > 0 there exists α > 0, such that any MFFSP with q1(0) > 0 satisfies the
following properties for all t > 0:

(i) If y1(t) 6 λ− ε and u(t) > 0, then (d+/dt)q1(t) > α.

(ii) If y1(t) 6 λ− ε, u(t) = 0 and δ1(t) > ε, then (d+/dt)q1(t) > α.

(iii) If y1(t) 6 λ− ε, u(t) = 0, δ1(t) = 0, and δ0(t) > 0, then (d+/dt)δ1(t) > ε.

Proof. Fix any ε > 0. First observe that since q1(0) > 0 and due to Proposition 5.1, q1(0)
is nondecreasing whenever q1(t) − q2(t) 6 λ, we have q1(t) > min{q1(0), λ} > 0 for all
t > 0. Thus, Proposition 5.1 can be applied for all t > 0, throughout the MFFSP. Choose
α = min{εν, ε}.

For (i), note that if y1(t) 6 λ− ε and u(t) > 0, then

(d+/dt)q1(t) = λ− (q1(t) − q2(t)) > ε > α.

For (ii), note that if y1(t) 6 λ− ε, u(t) > 0, and δ1(t) > ε, then due to Proposition 5.1,

(d+/dt)q1(t) = min
{
(δ1(t)ν+ q1(t) − q2(t)), λ

}
− (q1(t) − q2(t))

= min
{
δ1(t)ν, λ− (q1(t) − q2(t))

}
> min

{
εν, ε

}
= α.

Finally, for (iii), note that from Proposition 5.1 if y1(t) 6 λ− ε, u(t) = 0, δ1(t) = 0, and
δ0(t) > 0, then (d+/dt)δ1(t) = λ− (q1(t) − q2(t)) > ε.

Proof of statement (1). Note that it is enough to prove the following property of any MFFSP:

Claim 8. Starting from any state q(0) ∈ Eκ with κ > 1 − λ and q1(0) ∈ [κ, 1), along any MFFSP
we have

lim
t→∞q1(t) = 1.

Indeed, Claim 8 implies that under the assumption of stability, asymptotically the stationary
distribution of qN1 (t) must concentrate at q?1 = 1, as N→∞.

Proof of Claim 8. We will prove by contradiction. Note that for the case under consideration,
qi(t) > κ for all i > 1 and t > 0. Therefore, throughout the proof of Claim 8 we can assume
q1(0) > κ > 0, and can apply Proposition 5.1 and Claim 7.

Note that if q1(t) < 1, we have q1(t) − q2(t) < 1 − κ 6 λ, and hence due to Claim 7,
q1(t) is non-decreasing. Thus if Claim 8 does not hold, then there exists an ε > 0, such that
q1(t) 6 1 − εν for all t > 0, and hence

q1(t) − q2(t) 6 λ− εν for all t > 0. (5.7)
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The high-level proof idea is that if q1(t) remains below 1 by a non-vanishing amount for
all t > 0, then the (scaled) rate q1(t) − q2(t) of busy servers turning idle-on would not be
high enough to match the (scaled) rate λ of incoming jobs. If there are idle-on servers (as
in Claim 7.(i)) or sufficiently many servers in setup mode (as in Claim 7.(ii)), then we can
still assign incoming tasks to idle-on servers, but this drives up the fraction of busy servers
q1(t) and cannot continue indefinitely since q1(t) 6 1 − εν for all t > 0. This means that we
cannot initiate an unbounded number of setup procedures (see Equation (5.11)). At the same
time, as argued above, we cannot continue assigning tasks to idle-on servers either. Thus,
throughout the MFFSP, a positive fraction of the jobs are assigned to busy servers, which
initiates an unbounded (scaled) number of setup procedures, and hence the contradiction.

Define the subset Xκ ⊆ E as

Xκ :=
{
(q,δ) ∈ Eκ : q1 + δ0 + δ1 = 1, δ1ν+ q1 − q2 6 λ

}
,

and denote by 1Xκ(q(s),δ(s)) the indicator of (q(s),δ(s)) ∈ Xκ. Observe that due to Propo-
sition 5.1, q1(t) can be written as

q1(t) = q1(0) +
∫t

0
δ1(s)ν1Xκ(q(s),δ(s))ds+

∫t
0
[λ− q1(s) + q2(s)]1Xcκ(q(s),δ(s))ds. (5.8)

Thus,

q1(t) > q1(0) +
∫t

0
[λ− q1(s) + q2(s)]1Xcκ(q(s),δ(s))ds,

and (5.7) yields there exists positive constant K1, which may depend on ε such that ∀ t > 0∫t
0
1Xcκ

(q(s),δ(s))ds < K1 =⇒
∫t

0
1[u(s)>0]ds < K1. (5.9)

Again from (5.8) we obtain

q1(t) > q1(0) +
∫t

0
δ1(s)ν1Xκ(q(s),δ(s))ds

> q1(0) + ν
∫t

0
δ1(s)ds− (ν+ 1)

∫t
0
1Xcκ

(q(s),δ(s))ds.

and thus, by (5.7) and (5.9), there exist positive constants K2, K ′2 which may depend on ε
such that ∀ t > 0∫t

0
δ1(s)ds < K1 =⇒

∫t
0
1[δ1(s)>

ε
2 ]

ds < K2, =⇒
∫t

0
1[δ1(s)>

εν
2 ]

ds < K ′2. (5.10)

Consequently, due to Proposition 5.1, since δ1(t) = δ1(0) + ξ(t) − ν
∫t

0 δ1(s)ds, it must be the
case that

lim sup
t→∞ ξ(t) <∞. (5.11)
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Furthermore, since q1(t) 6 1 − εν for all t > 0,

1[δ0(t)=0] 6 1[u(t)>0] + 1[δ1(t)>
εν
2 ]

.

Thus, (5.9) and (5.10) yield ∀ t > 0,∫t
0
1[δ0(s)=0]ds 6 K1 +K

′
2. (5.12)

Now from Proposition 5.1 observe that

ξ(t) =

∫t
0
λ(1 − p0(q(s),δ(s), λ))1[δ0(s)>0]ds

>
∫t

0
λ(1 − p0(q(s),δ(s), λ))1[δ0(s)>0,u(s)=0,δ1(s)6ε/2]ds,

and on the set {s : δ0(s) > 0,u(s) = 0, δ1(s) 6 ε/2} we have p0(q(s),δ(s), λ) 6 λ−1(εν/2 +

q1(s) − κ). Therefore,

ξ(t) >
∫t

0

(
λ−

εν

2
− q1(s) + κ

)
1[δ0(s)>0,u(s)=0,δ1(s)6ε/2]ds

>
∫t

0

(
λ−

εν

2
− q1(s) + κ

)
ds−

∫t
0
1[δ0(s)=0]ds−

∫t
0
1[u(s)>0]ds−

∫t
0
1[δ1(s)>ε/2]ds,

(5.13)

where the second inequality is due to the fact that λ− εν/2−q1(s) 6 λ < 1. Therefore, since
λ+ κ > 1, we have λ− εν/2 − q1(s) + κ > εν/2 > 0, and Equations (5.9), (5.10), (5.12), and
(5.13) implies lim inft→∞ ξ(t) = ∞, which is a contradiction with (5.11). This completes the
proof of Claim 8.

Proof of statement (2). First we will establish convergence of qN1 (∞) as N → ∞, followed
by convergence of qN2 (∞), δN0 (∞), and δN1 (∞).

Convergence of qN1 (∞). First we will show that for all ε2 > 0,

lim sup
N→∞ P(qN1 (∞) < κ+ λ− ε2) = 0. (5.14)

Due to Lemma 3.2, note that any limit of stationary distributions is such that with probabil-
ity 1, q1 > ε1 for some fixed ε1 > 0. Therefore, throughout the proof of Part (2) of Lemma 3.3,
it is enough to consider MFFSP so that q1(0) > ε1, and Proposition 5.1 and Claim 7 can be
used. Thus, for (5.14), it is enough to show that any MFFSP has the following property:

Claim 9. Starting from any state q(0) ∈ Eκ with q1(0) ∈ [ε1, κ+ λ), along any MFFSP we have

lim inf
t→∞ q1(t) > κ+ λ. (5.15)
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Similar arguments as in the proof of Claim 8 can be used to prove Claim 9, for which we
omit the details. Claim 9 then implies (5.14).

Further, observe that since we have assumed that the system is stable, we have

lim
N→∞E(qN1 (∞)) 6 κ+ λ. (5.16)

Fix any ε ′2 > 0. Now for all fixed M > 0,

E(qN1 (∞)) − (κ+ λ) > ε ′2P(qN1 (∞) > κ+ λ+ ε ′2) −
ε ′2
M

P
(
κ+ λ−

ε ′2
M

6 qN1 (∞) 6 κ+ λ+ ε ′2
)

− P
(
qN1 (∞) < κ+ λ−

ε ′2
M

)
,

> ε ′2P(qN1 (∞) > κ+ λ+ ε ′2) −
ε ′2
M

− P
(
qN1 (∞) < κ+ λ−

ε ′2
M

)
,

and thus, from (5.14) and (5.16) above,

lim sup
N→∞ P(qN1 (∞) > κ+ λ+ ε ′2) 6

1
M

for all M > 0

which in conjunction with (5.14) completes the proof of convergence of qN1 (∞).

Convergence of qN2 (∞). Note that given the above convergence of qN1 (∞) to κ+λ asN→∞,
the following property of the mean-field limit is sufficient to prove that the sequence of
stationary distributions qN2 (∞) concentrate at q?2 = κ as N→∞:

Claim 10. For any ε3 > 0, there exists a fixed T0 and ε4 > 0, such that starting from any state
q(0) ∈ Eκ with q1(0) = λ+ κ and q2(0) > κ+ ε3, along any MFFSP we have q1(T0) > κ+ λ+ ε4.

Indeed, if the sequence of the stationary distributions were such that

lim sup
N→∞ P

(
qN2 (∞) > κ+ ε3

)
> 0,

then Claim 10 would imply that lim supN→∞P
(
qN1 (∞) > κ+ λ+ ε4/2

)
> 0, which contra-

dicts the convergence of qN1 (∞).

Proof of Claim 10. We will prove by contradiction. Note that since q1(0) = λ+ κ and q2(0) >
κ + ε3, and the rates of change are bounded, in a sufficiently small neighborhood [0, T0]

(depending only on ε3), we have for all t ∈ [0, T0], (i) q1(t) 6 λ+κ+ ε3/2, (ii) q2(t) > κ+ ε3/2,
and

(iii) y1(t) = q1(t) − q2(t) 6 λ−
ε3

2
.

Since due to Claim 7, q1(t) is nondecreasing in [0, T0], it is enough to produce a subinterval
of [0, T0], where the right-derivative of q1(t) is bounded away from 0. Now we will consider
two cases:
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Case 1: There exists t ′ ∈ [0, T0/2], such that u(t ′) = 0 and δ1(t
′) 6 ε3/2. In this case,

δ0(t
′) > 0, and in a sufficiently small time interval almost all points (with respect to Lebesgue

measure) are regular for δ1(t). Also, due to Proposition 5.1, since for t > t ′,

δ1(t) = δ1(t
′) + ξ(t) − ξ(t ′) − ν

∫t
t ′
δ1(s)ds,

with (d+/dt)ξ(t) = λ−y1(t) > ε3/2 at t = t ′, we have for sufficiently small t1 < T0/4 (where
choice of t1 does not depend on t ′), δ1(t

′ + t1) > t1ε3/4. Also, since the rate of decrease of
δ1(t) is bounded, there exists t2 < T0/4 (where choice of t2 does not depend on t ′ as well),
such that,

δ1(t) >
t1ε3

8
for all t ∈ [t ′ + t1, t ′ + t1 + t2] ⊆ [0, T0].

Thus, due to Claim 7 there exists α > 0, such that during the time interval [t ′+ t1, t ′+ t1 + t2],
(d+/dt)q1(t) > min{α,νt1ε3/8}. Consequently,

q1(T0) > q1(t
′ + t1 + t2) > λ+ κ+ min

{
α,
νt1ε3

8

}
t2. (5.17)

It is important to note that the choices of t1 and t2 depend only on ε3 and not on t ′.
Case 2: For all t ∈ [0, T0/2], either u(t) > 0 or δ1(t) > ε3/2. In this case, due to Claim 7 (i)
and (ii), there exists α > 0, such that (d+/dt)q1(t) > α for all t ∈ [0, T0/2]. Also, since q2(t)

is non-decreasing in [0, T0]. we obtain

q1(T0) > q1

(T0

2

)
> λ+ κ+

αT0

2
. (5.18)

Combining the two cases above, and choosing

ε4 = min
{

min
{
α,
νt1ε3

8

}
t2,
αT0

2

}
> 0

completes the proof of Claim 10.

Convergence of δN1 (∞) and δN0 (∞). Given the convergence of qN1 (∞) and qN2 (∞), the
convergence of δN1 (∞) and δN0 (∞) can be seen immediately by observing that the mean-
field limit has the following property:

Claim 11. Starting from any state q(0) ∈ Eκ with q1(0) = λ+ κ and q2(0) = κ, along any MFFSP
δ1(t)→ 0 and δ0(t)→ 1 − λ− κ as t→∞.

The proof of Claim 11 is immediate from the description of the mean-field limit as in Propo-
sition 5.1, and hence is omitted.

The proof of the statement in (3.2) follows by using the convergence of steady states and the
PASTA property. This completes the proof of Lemma 3.3.
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6 Conclusion

In this paper we studied the stability of systems under the TABS scheme and established
large-scale asymptotics of the sequence of steady states. Understanding stability of stochastic
systems is of fundamental importance. Systems under the TABS scheme, as it turned out,
may be unstable for some N even under a sub-critical load assumption. As in many other
cases, the lack of monotonicity makes the stability analysis much more challenging from
a methodological standpoint. We developed a novel induction-based method and establish
that the TABS scheme is stable for all large enough N. The proof technique is of independent
interest and potentially has a much broader applicability. The key model-dependent part of
our method is what can be called a weak monotonicity property, which ensures that for large
enough N, with high probability, no matter where the system starts, in some fixed amount
of time, there will be a certain fraction of busy servers. Both traditional fluid limit (fixed
N, initial state goes to infinity) and mean-field limit (for a sequence of processes with the
number of queues N→∞) were used in an intricate manner to establish the results.
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