206,821 research outputs found

    Face Prediction Model for an Automatic Age-invariant Face Recognition System

    Full text link
    Automated face recognition and identification softwares are becoming part of our daily life; it finds its abode not only with Facebook's auto photo tagging, Apple's iPhoto, Google's Picasa, Microsoft's Kinect, but also in Homeland Security Department's dedicated biometric face detection systems. Most of these automatic face identification systems fail where the effects of aging come into the picture. Little work exists in the literature on the subject of face prediction that accounts for aging, which is a vital part of the computer face recognition systems. In recent years, individual face components' (e.g. eyes, nose, mouth) features based matching algorithms have emerged, but these approaches are still not efficient. Therefore, in this work we describe a Face Prediction Model (FPM), which predicts human face aging or growth related image variation using Principle Component Analysis (PCA) and Artificial Neural Network (ANN) learning techniques. The FPM captures the facial changes, which occur with human aging and predicts the facial image with a few years of gap with an acceptable accuracy of face matching from 76 to 86%.Comment: 3 pages, 2 figure

    No intruders - securing face biometric systems from spoofing attacks

    Get PDF
    The use of face verification systems as a primary source of authentication has been very common over past few years. Better and more reliable face recognition system are coming into existence. But despite of the advance in face recognition systems, there are still many open breaches left in this domain. One of the practical challenge is to secure face biometric systems from intruder’s attacks, where an unauthorized person tries to gain access by showing the counterfeit evidence in front of face biometric system. The face-biometric system having only single 2-D camera is unaware that it is facing an attack by an unauthorized person. The idea here is to propose a solution which can be easily integrated to the existing systems without any additional hardware deployment. This field of detection of imposter attempts is still an open research problem, as more sophisticated and advanced spoofing attempts come into play. In this thesis, the problem of securing the biometric systems from these unauthorized or spoofing attacks is addressed. Moreover, independent multi-view face detection framework is also proposed in this thesis. We proposed three different counter-measures which can detect these imposter attempts and can be easily integrated into existing systems. The proposed solutions can run parallel with face recognition module. Mainly, these counter-measures are proposed to encounter the digital photo, printed photo and dynamic videos attacks. To exploit the characteristics of these attacks, we used a large set of features in the proposed solutions, namely local binary patterns, gray-level co-occurrence matrix, Gabor wavelet features, space-time autocorrelation of gradients, image quality based features. We further performed extensive evaluations of these approaches on two different datasets. Support Vector Machine (SVM) with the linear kernel and Partial Least Square Regression (PLS) are used as the classifier for classification. The experimental results improve the current state-of-the-art reference techniques under the same attach categories

    Exposing AI Generated Deepfake Images Using Siamese Network with Triplet Loss

    Get PDF
    Generative Adversarial Networks have gained popularity mainly due to their ability to create fake human faces. The remarkable detail with which such images have been created in the past few years has exceeded the ability of humans to differentiate between these fake images and real images. Such images have been known to be capable of deceiving the face recognition systems with certain success as well. Forensic systems being developed nowadays take into account adversarial attacks in order to create a more comprehensive detection approaches. Different GAN algorithms such as StackGAN, StyleGAN use different architectures to produce images. Since the underlying technique is different from one another it is difficult for any single detection algorithm trained on one kind of GAN to detect fake images generated from some other kind of GAN. In this research we use a siamese network with triplet loss function to provide a generic solution for detection of GAN generated images or deepfake images. Extensive experiments have been conducted to analyze the effectiveness of the proposed approach. The results show that the siamese triplet loss network performs significantly better than the contemporary approaches with accuracy exceeding 90 % in most experiments

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Review of Face Detection Systems Based Artificial Neural Networks Algorithms

    Get PDF
    Face detection is one of the most relevant applications of image processing and biometric systems. Artificial neural networks (ANN) have been used in the field of image processing and pattern recognition. There is lack of literature surveys which give overview about the studies and researches related to the using of ANN in face detection. Therefore, this research includes a general review of face detection studies and systems which based on different ANN approaches and algorithms. The strengths and limitations of these literature studies and systems were included also.Comment: 16 pages, 12 figures, 1 table, IJMA Journa

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract
    • …
    corecore