253 research outputs found

    Bearing fault diagnosis and degradation analysis based on improved empirical mode decomposition and maximum correlated kurtosis deconvolution

    Get PDF
    Detecting periodic impulse signal (PIS) is the core of bearing fault diagnosis. Earlier fault detected, earlier maintenance actions can be implemented. On the other hand, remaining useful life (RUL) prediction provides important information when the maintenance should be conducted. However, good degradation features are the prerequisite for effective RUL prediction. Therefore, this paper mainly concerns earlier fault detection and degradation feature extraction for bearing. Maximum correlated kurtosis deconvolution (MCKD) can enhance PIS produced by bearing fault. Whereas, it only achieve good effect when bearing has severe fault. On the contrary, PIS produced by bearing weak fault is always masked by heavy noise and cannot be enhanced by MCKD. In order to resolve this problem, a revised empirical mode decomposition (EMD) algorithm is used to denoise bearing fault signal before MCKD processing. In revised EMD algorithm, a new recovering algorithm is used to resolve mode mixing problem existed in traditional EMD and it is superior to ensemble EMD. For degradation analysis, correlated kurtosis (CK) value is used as degradation indicator to reflect health condition of bearing. Except of theory analysis, simulated bearing fault data, injected bearing fault data, real bearing fault data and bearing degradation data are used to verify the proposed method. Simulated bearing fault data is used to explain the existed problems. Then, injected bearing fault data and real bearing fault data are used to demonstrate the effectiveness of proposed method for fault diagnosis. Finally, bearing degradation data is used to verify the degradation feature CK extracted based on proposed method. All these case studies show the effectiveness of proposed fault diagnosis and degradation tracking method

    A Machine Learning Approach for Gearbox System Fault Diagnosis

    Get PDF
    This study proposes a fully automated gearbox fault diagnosis approach that does not require knowledge about the specific gearbox construction and its load. The proposed approach is based on evaluating an adaptive filter's prediction error. The obtained prediction error's standard deviation is further processed with a support-vector machine to classify the gearbox's condition. The proposed method was cross-validated on a public dataset, segmented into 1760 test samples, against two other reference methods. The accuracy achieved by the proposed method was better than the accuracies of the reference methods. The accuracy of the proposed method was on average 9% higher compared to both reference methods for different support vector settings

    Fault feature extraction method based on EWT-SMF and MF-DFA for valve fault of reciprocating compressor

    Get PDF
    According to the nonlinearity and nonstationarity characteristics of reciprocating compressor vibration signal, a fault feature extraction method of reciprocating compressor based on the empirical wavelet transform (EWT) and state-adaptive morphological filtering (SMF) is proposed. Firstly, an adaptive empirical wavelet transform was used to divide the Fourier spectrum by constructing a scale-space curve, and an appropriate orthogonal wavelet filter bank was constructed to extract the AM-FM component with a tightly-supported Fourier spectrum. Then according to the impact characteristic of the reciprocating compressor vibration signal, the morphological structural elements were constructed with the characteristics of the signal to perform state-adaptive morphological filtering on the partitioned modal functions. Finally, the MF-DFA method of the modal function was quantitatively analyzed and the fault identification was performed. By analyzing the experimental data, it can be shown that the method can effectively identify the fault type of reciprocating compressor valve

    Bearing fault diagnosis and degradation analysis based on improved empirical mode decomposition and maximum correlated kurtosis deconvolution

    Get PDF
    Detecting periodic impulse signal (PIS) is the core of bearing fault diagnosis. Earlier fault detected, earlier maintenance actions can be implemented. On the other hand, remaining useful life (RUL) prediction provides important information when the maintenance should be conducted. However, good degradation features are the prerequisite for effective RUL prediction. Therefore, this paper mainly concerns earlier fault detection and degradation feature extraction for bearing. Maximum correlated kurtosis deconvolution (MCKD) can enhance PIS produced by bearing fault. Whereas, it only achieve good effect when bearing has severe fault. On the contrary, PIS produced by bearing weak fault is always masked by heavy noise and cannot be enhanced by MCKD. In order to resolve this problem, a revised empirical mode decomposition (EMD) algorithm is used to denoise bearing fault signal before MCKD processing. In revised EMD algorithm, a new recovering algorithm is used to resolve mode mixing problem existed in traditional EMD and it is superior to ensemble EMD. For degradation analysis, correlated kurtosis (CK) value is used as degradation indicator to reflect health condition of bearing. Except of theory analysis, simulated bearing fault data, injected bearing fault data, real bearing fault data and bearing degradation data are used to verify the proposed method. Simulated bearing fault data is used to explain the existed problems. Then, injected bearing fault data and real bearing fault data are used to demonstrate the effectiveness of proposed method for fault diagnosis. Finally, bearing degradation data is used to verify the degradation feature CK extracted based on proposed method. All these case studies show the effectiveness of proposed fault diagnosis and degradation tracking method

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries
    corecore