28 research outputs found

    Hybrid meta-heuristic algorithm based parameter optimization for extreme learning machines classification

    Get PDF
    Most classification algorithms suffer from manual parameter tuning and it affects the training computational time and accuracy performance. Extreme Learning Machines (ELM) emerged as a fast training machine learning algorithm that eliminates parameter tuning by randomly assigning the input weights and biases, and analytically determining the output weights using Moore Penrose generalized inverse method. However, the randomness assignment, does not guarantee an optimal set of input weights and biases of the hidden neurons. This will lead to ELM instability and local minimum solution. ELM performance also is affected by the network structure especially the number of hidden nodes. Too many hidden neurons will increase the network structure complexity and computational time. While too few hidden neuron numbers will affect the ELM generalization ability and reduce the accuracy. In this study, a heuristic-based ELM (HELM) scheme was designed to secure an optimal ELM structure. The results of HELM were validated with five rule-based hidden neuron selection schemes. Then HELM performance was compared with Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Classification and Regression Tree (CART) to investigate its relative competitiveness. Secondly, to improve the stability of ELM, the Moth-Flame Optimization algorithm is hybridized with ELM as MFO-ELM. MFO generates moths and optimizes their positions in the search space with a logarithm spiral model to obtain the optimal values of input weights and biases. The optimal weights and biases from the search space were passed into the ELM input space. However, it did not completely solve the problem of been stuck in the local extremum since MFO could not ensure a good balance between the exploration and exploitation of the search space. Thirdly, a co-evolutionary hybrid algorithm of the Cross-Entropy Moth-Flame Optimization Extreme Learning Machines (CEMFO-ELM) scheme was proposed. The hybrid of CE and MFO metaheuristic algorithms ensured a balance of exploration and exploitation in the search space and reduced the possibility of been trapped in the local minima. The performances of these schemes were evaluated on some selected medical datasets from the University of California, Irvine (UCI) machine learning repository, and compared with standard ELM, PSO-ELM, and CSO-ELM. The hybrid MFO-ELM algorithm enhanced the selection of optimal weights and biases for ELM, therefore improved its classification accuracy in a range of 0.4914 - 6.0762%, and up to 8.9390% with the other comparative ELM optimized meta-heuristic algorithms. The convergence curves plot show that the proposed hybrid CEMFO meta-heuristic algorithm ensured a balance between the exploration and exploitation in the search space, thereby improved the stability up to 53.75%. The overall findings showed that the proposed CEMFO-ELM provided better generalization performance on the classification of medical datasets. Thus, CEMFO-ELM is a suitable tool to be used not only in solving medical classification problems but potentially be used in other real-world problems

    An empirical study on the various stock market prediction methods

    Get PDF
    Investment in the stock market is one of the much-admired investment actions. However, prediction of the stock market has remained a hard task because of the non-linearity exhibited. The non-linearity is due to multiple affecting factors such as global economy, political situations, sector performance, economic numbers, foreign institution investment, domestic institution investment, and so on. A proper set of such representative factors must be analyzed to make an efficient prediction model. Marginal improvement of prediction accuracy can be gainful for investors. This review provides a detailed analysis of research papers presenting stock market prediction techniques. These techniques are assessed in the time series analysis and sentiment analysis section. A detailed discussion on research gaps and issues is presented. The reviewed articles are analyzed based on the use of prediction techniques, optimization algorithms, feature selection methods, datasets, toolset, evaluation matrices, and input parameters. The techniques are further investigated to analyze relations of prediction methods with feature selection algorithm, datasets, feature selection methods, and input parameters. In addition, major problems raised in the present techniques are also discussed. This survey will provide researchers with deeper insight into various aspects of current stock market prediction methods

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Machine learning assisted optimization with applications to diesel engine optimization with the particle swarm optimization algorithm

    Get PDF
    A novel approach to incorporating Machine Learning into optimization routines is presented. An approach which combines the benefits of ML, optimization, and meta-model searching is developed and tested on a multi-modal test problem; a modified Rastragin\u27s function. An enhanced Particle Swarm Optimization method was derived from the initial testing. Optimization of a diesel engine was carried out using the modified algorithm demonstrating an improvement of 83% compared with the unmodified PSO algorithm. Additionally, an approach to enhancing the training of ML models by leveraging Virtual Sensing as an alternative to standard multi-layer neural networks is presented. Substantial gains were made in the prediction of Particulate matter, reducing the MMSE by 50% and improving the correlation R^2 from 0.84 to 0.98. Improvements were made in models of PM, NOx, HC, CO, and Fuel Consumption using the method, while training times and convergence reliability were simultaneously improved over the traditional approach
    corecore