5,662 research outputs found

    THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    Full text link
    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \underline{TH}reshold based \underline{E}nergy-efficient \underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using WBASN. In THE-FAME protocol, a composite parameter has been used that consists of a threshold parameter for lactic acid accumulation and a parameter for measuring distance covered by a particular player. When any parameters's value in this composite parameter shows an increase beyond threshold, the players is declared to be in a fatigue state. The size of battery and sensor should be very small for the sake of players' best performance. These sensor nodes, implanted inside player's body, are made energy efficient by using multiple sinks instead of a single sink. Matlab simulation results show the effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    A Review of Wireless Body Area Networks for Medical Applications

    Full text link
    Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time and provide real-time updates of the patient's status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solutions towards in-body and on-body sensor networks.Comment: 7 pages, 7 figures, and 3 tables. In V3, the manuscript is converted to LaTe

    Correlated shadowing and fading characterization of MIMO off-body channels by means of multiple autonomous on-body nodes

    Get PDF
    In off-body communication systems low-cost and compact transceivers are important for realistic applications. An autonomous off-body wireless node was designed and integrated onto a textile antenna. Channel measurements were performed for an indoor non line-off-sight 4x2 MIMO (Multiple-Input Multiple-Output) link using four off-body transmitting nodes and two similar fixed receiving nodes. The channel behavior is characterized as Rayleigh fading with lognormal shadowing and is fitted to a model determining fading and shadowing correlation matrices. The physics of the propagation is captured accurately by the model which is further used to simulate a link using diversity by means of Selection Combining, as implemented on the wireless nodes. The performance of measured and simulated links is compared in terms of outage probability level. The measurements and analysis confirm that the correlated shadowing and fading model is relevant for realistic off-body networks employing diversity by means of Selection Combining

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    A Wearable Sensor Network for Gait Analysis: A 6-Day Experiment of Running Through the Desert

    Get PDF
    International audienceThis paper presents a new system for analysis of walking and running gaits. The system is based on a network of wireless nodes with various types of embedded sensors. It has been designed to allow long-term recording in outdoor environments and was tested during the 2010 "Sultan Marathon des Sables" desert race. A runner was fitted with the sensory network for six days of the competition. Although technical problems have limited the amount of data recorded, the experiment was nevertheless suc- cessful: the system did not interfere with the runner, who finished with a high ranking, the concept was validated and high quality data were ac- quired. It should be noted that the loss of some of the measurements was mainly due to problems with the cable connectors between the nodes and batteries. In this paper, we describe the technical aspects of the system developed, the experimental conditions under which it was validated, and give examples of the data obtained with some preliminary processing

    A Server-Based Mobile Coaching System

    Get PDF
    A prototype system for monitoring, transmitting and processing performance data in sports for the purpose of providing feedback has been developed. During training, athletes are equipped with a mobile device and wireless sensors using the ANT protocol in order to acquire biomechanical, physiological and other sports specific parameters. The measured data is buffered locally and forwarded via the Internet to a server. The server provides experts (coaches, biomechanists, sports medicine specialists etc.) with remote data access, analysis and (partly automated) feedback routines. In this way, experts are able to analyze the athlete’s performance and return individual feedback messages from remote locations

    IoT Based Architecture for Basketball Supervision

    Get PDF
    Basketball is one of the most played games in the world with a huge amount of fan following and has a great number of basketballers. Sometimes players get severe lower body wounds such as ankle sprains, shortage of breath, head, teeth, hand, and fingers. Female players have a higher risk of knee injuries than male players. These are health issues that players face while playing basketball. Sports organizations spend millions to train fresh basketball players or for the development of the previous basketball players. The internet of things (IoT) made everyday things readable, controllable and recognizable through the internet and the wireless sensor networks. It is simply the network of interconnected devices that are embedded with sensors, software, and connectivity modules.Nowadays, with this growing technology it is possible to protect the life of players in the game as well as in training sessions, if we detect the problems early in players and appropriate actions will be taken to reduce adverse health effects which can be very dangerous. In this paper, we will propose an architecturefor basketball based on the internet of things (IoT). The main goal behind this approach is to introduce a healthcare system based upon sensors, actuators, devices and telecommunication technologies to communicating real-time stats

    Development of a Smart Sensor Node based on BITALINO

    Get PDF
    This dissertation is framed in the scope of the European Project SelSus, which aims to develop a new life cycle based and distributed upon probabilistic diagnostic and predictive maintenance environment for repairing and renovation activities. To promote all the previously addressed issues, the innovative concept of Sensor Cloud is presented. This concept is intimately related with the development of both Wireless Sensor Networks (WSN) and Service-Oriented Architectures (SOA), along with capabilities for processing, reduction and generation of sensor data. As a point of interest and ease of implement of this Sensor Cloud, the Smart Node concept is explored as intermediate between sensors, considered lower capacity devices, and components that may require certain services from the Cloud. The application scenario is the automotive industry. The main purpose of this dissertation is the study how this Smart Node's concept can be extended in order to include humans in the sensing process, both for accessing their conditions (Body Wearable Sensors) and to use the human as an active sensor (Sensor Probe), promoting the integration of a diverse type of sensors (like ECG, EMG, ACC, Vision, etc) and software algorithms that will be embedded within this platform to facilitate collaboration and decision making on a distributed peer-to-peer basis. This new node will use BITALINO (http://bitalino.com/) as main implementation platform

    Modeling and Monitoring of the Dynamic Response of Railroad Bridges using Wireless Smart Sensors

    Get PDF
    Railroad bridges form an integral part of railway infrastructure in the USA, carrying approximately 40 % of the ton-miles of freight. The US Department of Transportation (DOT) forecasts current rail tonnage to increase up to 88 % by 2035. Within the railway network, a bridge occurs every 1.4 miles of track, on average, making them critical elements. In an effort to accommodate safely the need for increased load carrying capacity, the Federal Railroad Association (FRA) announced a regulation in 2010 that the bridge owners must conduct and report annual inspection of all the bridges. The objective of this research is to develop appropriate modeling and monitoring techniques for railroad bridges toward understanding the dynamic responses under a moving train. To achieve the research objective, the following issues are considered specifically. For modeling, a simple, yet effective, model is developed to capture salient features of the bridge responses under a moving train. A new hybrid model is then proposed, which is a flexible and efficient tool for estimating bridge responses for arbitrary train configurations and speeds. For monitoring, measured field data is used to validate the performance of the numerical model. Further, interpretation of the proposed models showed that those models are efficient tools for predicting response of the bridge, such as fatigue and resonance. Finally, fundamental software, hardware, and algorithm components are developed for providing synchronized sensing for geographically distributed networks, as can be found in railroad bridges. The results of this research successfully demonstrate the potentials of using wirelessly measured data to perform model development and calibration that will lead to better understanding the dynamic responses of railroad bridges and to provide an effective tool for prediction of bridge response for arbitrary train configurations and speeds.National Science Foundation Grant No. CMS-0600433National Science Foundation Grant No. CMMI-0928886National Science Foundation Grant No. OISE-1107526National Science Foundation Grant No. CMMI- 0724172 (NEESR-SD)Federal Railroad Administration BAA 2010-1 projectOpe
    • 

    corecore