2,413 research outputs found

    Effects of dance therapy on balance, gait and neuro-psychological performances in patients with Parkinson's disease and postural instability

    Get PDF
    Postural Instability (PI) is a core feature of Parkinson’s Disease (PD) and a major cause of falls and disabilities. Impairment of executive functions has been called as an aggravating factor on motor performances. Dance therapy has been shown effective for improving gait and has been suggested as an alternative rehabilitative method. To evaluate gait performance, spatial-temporal (S-T) gait parameters and cognitive performances in a cohort of patients with PD and PI modifications in balance after a cycle of dance therapy

    Locomotion Traces Data Mining for Supporting Frail People with Cognitive Impairment

    Get PDF
    The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to identify cognitive impairment based on the locomotion patterns of older people. Thus, this thesis at first focused on providing a systematic literature review of locomotion data mining systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying locomotion anomaly indicators and movement patterns for discovering low-level locomotion indicators, sensor data acquisition, and processing methods, as well as NDD detection algorithms considering their pros and cons. Then, we investigated the use of sensor data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented smart-homes. In order to get rid of the noise introduced by indoor constraints and activity execution, we introduced novel visual feature extraction methods for locomotion data. Our solutions rely on locomotion traces segmentation, image-based extraction of salient features from locomotion segments, and vision-based DL. Furthermore, we proposed a data augmentation strategy to increase the volume of collected data and generalize the solution to different smart-homes with different layouts. We carried out extensive experiments with a large real-world dataset acquired in a smart-home test-bed from older people, including people with cognitive diseases. Experimental comparisons show that our system outperforms state-of-the-art methods

    Diagnosis and treatment of neurogenic dysphagia - S1 guideline of the German Society of Neurology.

    Get PDF
    INTRODUCTION Neurogenic dysphagia defines swallowing disorders caused by diseases of the central and peripheral nervous system, neuromuscular transmission, or muscles. Neurogenic dysphagia is one of the most common and at the same time most dangerous symptoms of many neurological diseases. Its most important sequelae include aspiration pneumonia, malnutrition and dehydration, and affected patients more often require long-term care and are exposed to an increased mortality. Based on a systematic pubmed research of related original papers, review articles, international guidelines and surveys about the diagnostics and treatment of neurogenic dysphagia, a consensus process was initiated, which included dysphagia experts from 27 medical societies. RECOMMENDATIONS This guideline consists of 53 recommendations covering in its first part the whole diagnostic spectrum from the dysphagia specific medical history, initial dysphagia screening and clinical assessment, to more refined instrumental procedures, such as flexible endoscopic evaluation of swallowing, the videofluoroscopic swallowing study and high-resolution manometry. In addition, specific clinical scenarios are captured, among others the management of patients with nasogastric and tracheotomy tubes. The second part of this guideline is dedicated to the treatment of neurogenic dysphagia. Apart from dietary interventions and behavioral swallowing treatment, interventions to improve oral hygiene, pharmacological treatment options, different modalities of neurostimulation as well as minimally invasive and surgical therapies are dealt with. CONCLUSIONS The diagnosis and treatment of neurogenic dysphagia is challenging and requires a joined effort of different medical professions. While the evidence supporting the implementation of dysphagia screening is rather convincing, further trials are needed to improve the quality of evidence for more refined methods of dysphagia diagnostics and, in particular, the different treatment options of neurogenic dysphagia. The present article is an abridged and translated version of the guideline recently published online ( https://www.awmf.org/uploads/tx_szleitlinien/030-111l_Neurogene-Dysphagie_2020-05.pdf )

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Investigation of neuronal activity in a murine model of Alzheimer’s disease using in vivo two-photon calcium imaging

    Get PDF
    Alzheimer’s disease (AD) is one of the biggest challenges for biomedical research nowadays as with the growth of life span more and more people are affected by this disorder. Etiology of AD is unknown, yet growing evidence identifies alterations in neuronal activity as of the great importance for pathology. Although several significant studies of neuronal activity alteration in AD were done during the last decade, none of them addressed the question of the time course of these changes over the disease progression. Alzheimer’s disease (AD) is characterized by impairments of brain neurons that are responsible for the storage and processing of information. Studies have revealed decrease in the activity of neurons (Silverman et al., 2001; Prvulovic et al., 2005) and it was proposed that generalized hypoactivity and silencing of brain circuits takes place as formulated in the synaptic failure hypothesis (Selkoe, 2002). However, more recent studies also reported opposite effects – hyperexcitability and hyperactivity of neurons in the AD models (Busche et al., 2008; Sanchez et al., 2012; Liebscher et al., 2016). It still remains unclear if these are two sides of the same coin or if these are two stages, that follow each other. Moreover, it is not clear if observed neuronal activity alterations are caused by the dysfunction of individual neurons or if overall circuitry is disturbed because the crucial “activity controllers” (most probably - inhibitory neurons) alter their activity. This project aimed to examine spontaneous neuronal activity in the murine model of AD at the early stages of disease progression using chronic in vivo imaging to address the character and the stability of neuronal activity alterations as well relation of the activity alterations to amyloid plaque proximity. Compared to earlier studies the approach of in vivo awake calcium imaging used in the current study has many benefits for brain research. The main advantage is that brain activity can be measured without artifacts generated by anesthesia, which can exaggerate or mitigate experimental readouts. In this project, I used genetically encoded calcium indicator GCaMP6 that enables prolonged repetitive imaging of the same neurons in an intact environment. Recording of calcium transients in cell bodies of neurons was accompanied by in vivo imaging of Aβ plaques and followed by immunohistochemical staining of GCaMP6-expressing neurons to investigate how activity changes are correlated with proximity to the plaque. All the experiments were done in awake mice to ensure the absence of anesthesia-derived impact on spontaneous neuronal activity. My results support previously published reports of the increased proportion of hyperactive excitatory neurons in the AD mouse model. Importantly, my results also demonstrate that this increased activity is present in the awake state, is stable over a longer period of time (one month) and does not depend on the distance to the closest plaque. These findings support the hypothesis of permanent network alterations driving aberrant activity patterns that appear early in the disease progression, resulting in a chronic excitation/inhibition disbalance. Another important finding of my project is that individual neurons do not stay in the silent state and most of them remain functional demonstrating normal activity at the later time points. This finding requires further research as it has important implication for the development of the AD treatment, as in case many neurons remain functional and their normal neuronal activity can be recovered by addressing the cause of the circuit dysfunction with treatment. To summarize, the study presented in this PhD thesis is the first longitudinal study of neuronal activity changes in an AD mouse model, and while it provides important insight into pathology, it also emphasizes the importance of chronic in vivo studies to investigate neuronal activity and its role in the disease progression

    Investigation of neuronal activity in a murine model of Alzheimer’s disease using in vivo two-photon calcium imaging

    Get PDF
    Alzheimer’s disease (AD) is one of the biggest challenges for biomedical research nowadays as with the growth of life span more and more people are affected by this disorder. Etiology of AD is unknown, yet growing evidence identifies alterations in neuronal activity as of the great importance for pathology. Although several significant studies of neuronal activity alteration in AD were done during the last decade, none of them addressed the question of the time course of these changes over the disease progression. Alzheimer’s disease (AD) is characterized by impairments of brain neurons that are responsible for the storage and processing of information. Studies have revealed decrease in the activity of neurons (Silverman et al., 2001; Prvulovic et al., 2005) and it was proposed that generalized hypoactivity and silencing of brain circuits takes place as formulated in the synaptic failure hypothesis (Selkoe, 2002). However, more recent studies also reported opposite effects – hyperexcitability and hyperactivity of neurons in the AD models (Busche et al., 2008; Sanchez et al., 2012; Liebscher et al., 2016). It still remains unclear if these are two sides of the same coin or if these are two stages, that follow each other. Moreover, it is not clear if observed neuronal activity alterations are caused by the dysfunction of individual neurons or if overall circuitry is disturbed because the crucial “activity controllers” (most probably - inhibitory neurons) alter their activity. This project aimed to examine spontaneous neuronal activity in the murine model of AD at the early stages of disease progression using chronic in vivo imaging to address the character and the stability of neuronal activity alterations as well relation of the activity alterations to amyloid plaque proximity. Compared to earlier studies the approach of in vivo awake calcium imaging used in the current study has many benefits for brain research. The main advantage is that brain activity can be measured without artifacts generated by anesthesia, which can exaggerate or mitigate experimental readouts. In this project, I used genetically encoded calcium indicator GCaMP6 that enables prolonged repetitive imaging of the same neurons in an intact environment. Recording of calcium transients in cell bodies of neurons was accompanied by in vivo imaging of Aβ plaques and followed by immunohistochemical staining of GCaMP6-expressing neurons to investigate how activity changes are correlated with proximity to the plaque. All the experiments were done in awake mice to ensure the absence of anesthesia-derived impact on spontaneous neuronal activity. My results support previously published reports of the increased proportion of hyperactive excitatory neurons in the AD mouse model. Importantly, my results also demonstrate that this increased activity is present in the awake state, is stable over a longer period of time (one month) and does not depend on the distance to the closest plaque. These findings support the hypothesis of permanent network alterations driving aberrant activity patterns that appear early in the disease progression, resulting in a chronic excitation/inhibition disbalance. Another important finding of my project is that individual neurons do not stay in the silent state and most of them remain functional demonstrating normal activity at the later time points. This finding requires further research as it has important implication for the development of the AD treatment, as in case many neurons remain functional and their normal neuronal activity can be recovered by addressing the cause of the circuit dysfunction with treatment. To summarize, the study presented in this PhD thesis is the first longitudinal study of neuronal activity changes in an AD mouse model, and while it provides important insight into pathology, it also emphasizes the importance of chronic in vivo studies to investigate neuronal activity and its role in the disease progression

    Brain Injury

    Get PDF
    The present two volume book "Brain Injury" is distinctive in its presentation and includes a wealth of updated information on many aspects in the field of brain injury. The Book is devoted to the pathogenesis of brain injury, concepts in cerebral blood flow and metabolism, investigative approaches and monitoring of brain injured, different protective mechanisms and recovery and management approach to these individuals, functional and endocrine aspects of brain injuries, approaches to rehabilitation of brain injured and preventive aspects of traumatic brain injuries. The collective contribution from experts in brain injury research area would be successfully conveyed to the readers and readers will find this book to be a valuable guide to further develop their understanding about brain injury
    corecore