118 research outputs found

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Quantisation mechanisms in multi-protoype waveform coding

    Get PDF
    Prototype Waveform Coding is one of the most promising methods for speech coding at low bit rates over telecommunications networks. This thesis investigates quantisation mechanisms in Multi-Prototype Waveform (MPW) coding, and two prototype waveform quantisation algorithms for speech coding at bit rates of 2.4kb/s are proposed. Speech coders based on these algorithms have been found to be capable of producing coded speech with equivalent perceptual quality to that generated by the US 1016 Federal Standard CELP-4.8kb/s algorithm. The two proposed prototype waveform quantisation algorithms are based on Prototype Waveform Interpolation (PWI). The first algorithm is in an open loop architecture (Open Loop Quantisation). In this algorithm, the speech residual is represented as a series of prototype waveforms (PWs). The PWs are extracted in both voiced and unvoiced speech, time aligned and quantised and, at the receiver, the excitation is reconstructed by smooth interpolation between them. For low bit rate coding, the PW is decomposed into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW). The SEW is coded using vector quantisation on both magnitude and phase spectra. The SEW codebook search is based on the best matching of the SEW and the SEW codebook vector. The REW phase spectra is not quantised, but it is recovered using Gaussian noise. The REW magnitude spectra, on the other hand, can be either quantised with a certain update rate or only derived according to SEW behaviours

    A high quality voice coder with integrated echo canceller and voice activity detector for mobile satellite applications

    Get PDF
    In the last decade, low bit rate speech coding research has received much attention resulting in newly developed, good quality, speech coders operating at as low as 4.8 Kb/s. Although speech quality at around 8 Kb/s is acceptable for a wide variety of applications, at 4.8 Kb/s more improvements in quality are necessary to make it acceptable to the majority of applications and users. In addition to the required low bit rate with acceptable speech quality, other facilities such as integrated digital echo cancellation and voice activity detection are now becoming necessary to provide a cost effective and compact solution. In this paper we describe a CELP speech coder with integrated echo canceller and a voice activity detector all of which have been implemented on a single DSP32C with 32 KBytes of SRAM. The quality of CELP coded speech has been improved significantly by a new codebook implementation which also simplifies the encoder/decoder complexity making room for the integration of a 64-tap echo canceller together with a voice activity detector

    Computer Models for Musical Instrument Identification

    Get PDF
    PhDA particular aspect in the perception of sound is concerned with what is commonly termed as texture or timbre. From a perceptual perspective, timbre is what allows us to distinguish sounds that have similar pitch and loudness. Indeed most people are able to discern a piano tone from a violin tone or able to distinguish different voices or singers. This thesis deals with timbre modelling. Specifically, the formant theory of timbre is the main theme throughout. This theory states that acoustic musical instrument sounds can be characterised by their formant structures. Following this principle, the central point of our approach is to propose a computer implementation for building musical instrument identification and classification systems. Although the main thrust of this thesis is to propose a coherent and unified approach to the musical instrument identification problem, it is oriented towards the development of algorithms that can be used in Music Information Retrieval (MIR) frameworks. Drawing on research in speech processing, a complete supervised system taking into account both physical and perceptual aspects of timbre is described. The approach is composed of three distinct processing layers. Parametric models that allow us to represent signals through mid-level physical and perceptual representations are considered. Next, the use of the Line Spectrum Frequencies as spectral envelope and formant descriptors is emphasised. Finally, the use of generative and discriminative techniques for building instrument and database models is investigated. Our system is evaluated under realistic recording conditions using databases of isolated notes and melodic phrases

    A Parametric Approach for Efficient Speech Storage, Flexible Synthesis and Voice Conversion

    Get PDF
    During the past decades, many areas of speech processing have benefited from the vast increases in the available memory sizes and processing power. For example, speech recognizers can be trained with enormous speech databases and high-quality speech synthesizers can generate new speech sentences by concatenating speech units retrieved from a large inventory of speech data. However, even in today's world of ever-increasing memory sizes and computational resources, there are still lots of embedded application scenarios for speech processing techniques where the memory capacities and the processor speeds are very limited. Thus, there is still a clear demand for solutions that can operate with limited resources, e.g., on low-end mobile devices. This thesis introduces a new segmental parametric speech codec referred to as the VLBR codec. The novel proprietary sinusoidal speech codec designed for efficient speech storage is capable of achieving relatively good speech quality at compression ratios beyond the ones offered by the standardized speech coding solutions, i.e., at bitrates of approximately 1 kbps and below. The efficiency of the proposed coding approach is based on model simplifications, mode-based segmental processing, and the method of adaptive downsampling and quantization. The coding efficiency is also further improved using a novel flexible multi-mode matrix quantizer structure and enhanced dynamic codebook reordering. The compression is also facilitated using a new perceptual irrelevancy removal method. The VLBR codec is also applied to text-to-speech synthesis. In particular, the codec is utilized for the compression of unit selection databases and for the parametric concatenation of speech units. It is also shown that the efficiency of the database compression can be further enhanced using speaker-specific retraining of the codec. Moreover, the computational load is significantly decreased using a new compression-motivated scheme for very fast and memory-efficient calculation of concatenation costs, based on techniques and implementations used in the VLBR codec. Finally, the VLBR codec and the related speech synthesis techniques are complemented with voice conversion methods that allow modifying the perceived speaker identity which in turn enables, e.g., cost-efficient creation of new text-to-speech voices. The VLBR-based voice conversion system combines compression with the popular Gaussian mixture model based conversion approach. Furthermore, a novel method is proposed for converting the prosodic aspects of speech. The performance of the VLBR-based voice conversion system is also enhanced using a new approach for mode selection and through explicit control of the degree of voicing. The solutions proposed in the thesis together form a complete system that can be utilized in different ways and configurations. The VLBR codec itself can be utilized, e.g., for efficient compression of audio books, and the speech synthesis related methods can be used for reducing the footprint and the computational load of concatenative text-to-speech synthesizers to levels required in some embedded applications. The VLBR-based voice conversion techniques can be used to complement the codec both in storage applications and in connection with speech synthesis. It is also possible to only utilize the voice conversion functionality, e.g., in games or other entertainment applications

    Revisiting the Linear Prediction Analysis-by-Synthesis Speech Coding Paradigm using Real-time Convex Optimization

    Get PDF
    In this work, we propose a novel approach to speech coding by rewriting the nonlinear analysis-by-synthesis linear prediction scheme as a convex problem. This allows for determining trade-offs between, on one hand, the reconstruction error and, on the other, the sparsity of the predictor and the residual used to parametrize the speech signal. Differently from traditional coding schemes where the parameters are chosen throughout multiple optimization stages, our scheme produces a one-shot parametrization of a speech segment that intrinsically takes into consideration the voiced or unvoiced nature of a speech segment providing a better balance between residual and predictor and, consequently, a more appropriate bit allocation

    Advanced signal processing techniques for pitch synchronous sinusoidal speech coders

    Get PDF
    Recent trends in commercial and consumer demand have led to the increasing use of multimedia applications in mobile and Internet telephony. Although audio, video and data communications are becoming more prevalent, a major application is and will remain the transmission of speech. Speech coding techniques suited to these new trends must be developed, not only to provide high quality speech communication but also to minimise the required bandwidth for speech, so as to maximise that available for the new audio, video and data services. The majority of current speech coders employed in mobile and Internet applications employ a Code Excited Linear Prediction (CELP) model. These coders attempt to reproduce the input speech signal and can produce high quality synthetic speech at bit rates above 8 kbps. Sinusoidal speech coders tend to dominate at rates below 6 kbps but due to limitations in the sinusoidal speech coding model, their synthetic speech quality cannot be significantly improved even if their bit rate is increased. Recent developments have seen the emergence and application of Pitch Synchronous (PS) speech coding techniques to these coders in order to remove the limitations of the sinusoidal speech coding model. The aim of the research presented in this thesis is to investigate and eliminate the factors that limit the quality of the synthetic speech produced by PS sinusoidal coders. In order to achieve this innovative signal processing techniques have been developed. New parameter analysis and quantisation techniques have been produced which overcome many of the problems associated with applying PS techniques to sinusoidal coders. In sinusoidal based coders, two of the most important elements are the correct formulation of pitch and voicing values from the' input speech. The techniques introduced here have greatly improved these calculations resulting in a higher quality PS sinusoidal speech coder than was previously available. A new quantisation method which is able to reduce the distortion from quantising speech spectral information has also been developed. When these new techniques are utilised they effectively raise the synthetic speech quality of sinusoidal coders to a level comparable to that produced by CELP based schemes, making PS sinusoidal coders a promising alternative at low to medium bit rates.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore