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Abstract 

A particular aspect in the perception of sound is concerned with what is commonly 
termed as texture or timbre. From a perceptual perspective, timbre is what allows us 
to distinguish sounds that have similar pitch and loudness. Indeed most people are 
able to discern a piano tone from a violin tone or able to distinguish different voices 
or singers. 

This thesis deals with timbre modelling. Specifically, the formant theory of timbre 
is the main theme throughout. This theory states that acoustic musical instrument 

sounds can be characterised by their formant structures. Following this principle, the 
central point of our approach is to propose a computer implementation for building 

musical instrument identification and classification systems. 
Although the main thrust of this thesis is to propose a coherent and unified 

approach to the musical instrument identification problem, it is oriented towards the 
development of algorithms that can be used in Music Information Retrieval (MIR) 
frameworks. Drawing on research in speech processing, a complete supervised system 
taking into account both physical and perceptual aspects of timbre is described. 

The approach is composed of three distinct processing layers. Parametric models 
that allow us to represent signals through mid-level physical and perceptual represen- 
tations are considered. Next, the use of the Line Spectrum Frequencies as spectral 
envelope and formant descriptors is emphasised. Finally, the use of generative and 
discriminative techniques for building instrument and database models is investigated. 
Our system is evaluated under realistic recording conditions using databases of iso- 
lated notes and melodic phrases. 

3 



Acknowledgements 

I always believed that writing my Ph. D. thesis would mark in some ways the end of 
my education. Looking back on it at the time of writing, I have realised that it is 
just the beginning of it. The task is certainly not easy but the personal achievements 
that come out of it are decidedly priceless. 

I would like to thank here the colleagues and persons who I have been in contact 
with, who directly or indirectly accompanied the development of my work, and without 
whom these three years and a half spent in the Centre for Digital Music wouldn't 
have been so beneficial. 

First and foremost, I would like to thank my supervisor, Mark Sandler, for his 

expertise and for the confidence he placed in my research. I also greatly appreciated 
the freedom in research and investigations that the Centre for Digital Music offers 
to his members. I also would like to thank Mike Davies, my second supervisor, with 
whom I collaborated on several aspects of my work, for having let me bother him 

with my various questions which, after all, were not so existential. 
My special thanks go to Miki Mond for his friendship and for the advise he gave 

me before and during this time spent in London. I would like also to thank Gang 
Feng, a truly fantastic teacher, who is the person at the origins of my interest in 
digital audio signal processing. 

My deep gratitude is due to Nikolaos Mitianoudis, who took some of his precious 
time for proof-reading this manuscript, and to Juan-Pablo Bello, for his comments 
regarding the organisation of the thesis. 

Finally, I would like to thank the colleagues, researchers and past members of the 
Centre, for the various collaborations, discussions and for the good times we have 

spent together. In no particular order, I owe special thanks to Emmanuel, Paul, Dawn, 
Katy, Chris L., Chris D., Chris H., Ranting, Maria, Yves, Andrew, Samer, Matthew, 
Xue, Thomas, Peyman and Massimiliano. 



"So don't fear, if you hear, a foreign sound to your ear" 
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Introduction 

A particular aspect in the perception of sound is concerned with what is commonly 

termed as texture or timbre. Timbre is also referred to as tone colour or quality of 

sound. From a perceptual perspective, timbre is what allows us to distinguish sounds 

that have similar pitches and loudnesses. Beyond this rather vague definition, it is that 

property of sound that allows us to understand most our surrounding environment. 

Without seeing, we can picture a car that is passing from its engine noise, we can 

imagine someone walking when we hear footsteps in a corridor or we can recognise 

familiar voices over the telephone. Indeed most people are able to discern a piano 

tone from a violin tone or able to distinguish different voices or singers. 

The understanding of timbre is of great interest for psychologists, musicologists, 

physicists and scientists. Probably the first research work embodying all these aspects 

was by of Helmholtz [Hel54], published in 1877. Through a radically experimental 

approach, Helmholtz, physicist, musician, sets the fundamental basis of what will be 

later described as musical timbre perception. 
Helmholtz considered that the majority of the timbral information was contained 

within the quasi-stationary part of a sound. This view is partially acceptable, especially 

if one considers the class of pseudo or quasi-stationary signals. However, simple 

experimental observations revealed the importance of onsets, attacks and other time- 

related cues in the perception of timbre. 

So the facets of timbre are multiple. This led Plomb to describe it as a multi- 

dimensional attribute of sound [Plo70]. At the signal level, timbre depends on a 

multitude of acoustic properties whose individual contributions to the whole are not 

well-defined. This thesis proposes to focus on one of these aspects. 
Specifically, this research starts from the formant theory of timbre. This theory 

states that acoustic musical instrument sounds have characteristic and salient formant 

structures that can be used to uniquely characterise them. Following this principle, the 
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central point of our approach is to propose a computer implementation for building 

musical instrument identification and classification systems. 
The choice of each technique composing our system is carefully explained, justified 

and interpreted. Drawing on research in speech coding and speaker identification, we 

propose to tackle the problem from both physical and perceptual points of view. 
Although this research is oriented towards the development of algorithms that can be 

used in Music Information Retrieval (MIR) frameworks, its main thrust is to propose 

a coherent and unified approach to the musical instrument identification problem. 
The search for invariance and constancy in timbre is central to the building of 

instrument models. It is a fact that the perception of the timbre of an instrument 

or the identification of a particular sound object by humans can be achieved in a 

wide variety of acoustic circumstances. Simple experiments such as resampling a 

saxophone melody from 44100 Hz (thus roughly containing all the frequency details 

that the human ear can perceive) down to 4000 Hz will certainly affect the overall 

quality of the sound but the saxophone can still be recognised. The resampling 

operation introduces non-negligible alterations at the signal level: roughly a tenth of 

the time samples and frequency information are remaining, only the frequencies up 

to 2000 Hz being preserved. But humans have this extraordinary ability to adapt, 

map and transpose the knowledge learned from previous experiences to various novel 

situations that were unknown to them until then. 

Building a timbre model consists to a certain extent of mathematically charac- 
terising this invariance. However, it is not guaranteed that a computer system that 

performs well under given conditions will be able to reproduce the human ability of 

adaptation. In a computer system, this problem is directly transposed to the fea- 

ture and classifier levels since any change in the signal will be decidedly carried by 

the acoustic descriptors. From there arise concerns about the importance of using 

acoustic pre-processing or methods of feature normalisation in order to get indepen- 

dence from particular recording conditions, instrument brands or playing styles. One 

approach to address this problem is to consider the largest possible amount of repre- 

sentative sounds for each instrument class. Models will therefore have the knowledge 

of various realisations of the same timbre. 
Another approach consists of tuning a system for a particular application, at some 

expense on the models generalisation properties. For instance, it is understandable 
that if one wishes to identify a monophonic instrument in a melodic context, models 
built from melodic phrases will perform better than models trained using isolated 

notes, as will be shown in chapter 6. 



INTRODUCTION 15 

Thesis overview 

We propose to recognise acoustic musical instruments based on their sound spectral 

structure. We describe and evaluate a supervised system composed of three process- 

ing layers: parametric modelling, acoustic timbral descriptor extraction and machine 
learning algorithms. Supervised musical instrument identification systems encoun- 

tered in the literature are generally composed of these three layers. But depending 

on the considered approach, emphasis can be placed on any of them. For instance, 

multi-feature systems such as the ones described in section 2.3.1 pay attention on 

the nature and number of features that are considered for building the instrument 

models. Conversely, data-mining approaches attempt to optimise the performances 

at the classifier level by selecting for each instrument the feature sets that maximise 

the correct identification rates. 
The approach presented in this thesis gives equal contribution to each layer by 

presenting a unified methodology. Specifically, the focus is on preserving consistency 
between known perceptual and experimental facts in the perception of timbre, the 

acoustic descriptors computed from the waveforms and the algorithms used for build- 

ing the models. 
The use of parametric models allows us to describe sounds through mid-level phys- 

ical and perceptual representations. Another advantage of using parametric models 
is that they can represent different sounds, having different physical structures, in 

common and universal frameworks whereby intrinsic differences and similarities can 
be more easily characterised. In particular, we investigate the use of linear predictive 

models and sinusoidal analysis/synthesis models in a musical instrument identification 

context. 
We argue that the source-filter linear predictive model, widely used to represent the 

mechanisms of speech production, can be transposed to the case of acoustic musical 
instrument sounds. The emphasis is on the consideration of the Line Spectrum 

Frequencies (LSF) as spectral envelope and formant structure descriptors. We study 
the influence of pitch on the LSF and propose to use the pitch as a prior for the 
learning and identification phases. 

It is a fact that the perception and interpretation of sound relies on the low-level 

processing that takes place in the ear. Hence, it can be argued that the consideration 

of psycho-acoustic knowledge would better fit the mechanisms of timbre perception 
by humans. For this reason, we propose to include perceptual principles in a sinusoidal 
analysis/synthesis framework prior to the feature extraction stage. 
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From a set of multi-dimensional features, machine learning algorithms are used to 
determine a mathematical invariant that can describe the timbre of an instrument. For 

this purpose, generative and discriminative methods are compared. All throughout 

the thesis, the distinction between these two types of techniques, which yield two 

different interpretations and implementations of the pattern recognition problem, is 

clearly made. 
A complete evaluation of the approach is presented. It is shown how well it 

performs under realistic conditions, using databases of mono-timbral isolated notes 

and melodic phrases. 

Thesis outline 

This text is organised as follows: chapters 1 and 2 present the background of this 

thesis, introduce the problem and limit the scope in which this research has been 

carried out. The approach that is proposed to tackle the problem of identifying 

and recognising musical instruments is described. In chapters 3 and 4, technical 

background about acoustic timbral descriptors and machine learning algorithms are 

reviewed. Experimental evaluations are reported in chapters 5 and 6, while conclusions 

about this research and extensions of the proposed method close this thesis. 
Chapter 1 describes important acoustic and cognitive aspects in the perception 

of sound and music by humans. Starting with the acoustic representation of audio 

signals in the auditory peripheral system, this chapter introduces fundamental notions 
in acoustics such as frequency and temporal masking, pitch and loudness. Principles 

of two perception theories are outlined. Next, the concepts of texture and timbre of 

sound are defined. In particular, the principles governing the formant theory of timbre 

are described. 

Chapter 2 introduces fundamental principles involved in the design of automated 

musical instrument identification systems. Experimental results assessing human abil- 
ity to identify and recognise musical instrument tones are summarised. An overview 
of available techniques and existing systems encountered in the literature is given. 
Next, a computer implementation of the formant theory of timbre is proposed. 

In chapter 3, various acoustic timbral descriptors that can be computed from 

the sound waveforms are described. The use of parametric models to represent the 

mechanisms of sound production by musical instruments is investigated. In particular, 
the theoretical principles of linear predictive models and sinusoidal models are recalled. 
It is further justified why the linear predictive model can be transposed to represent 
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the mechanisms of sound production by musical instruments. The emphasis is on the 

Line Spectrum Frequencies and on their use as formant structure descriptors. Finally, 

we introduce a perceptually motivated sinusoidal analysis/synthesis technique that 

will serve as pre-processing layer to the feature extraction stage. 
In chapter 4, three machine learning algorithms are presented. The distinction be- 

tween generative and discriminative methods is highlighted. The theoretical principles 

of K-means, Gaussian Mixture Models and Support Vector Machines are analysed. 
The interpretations of learning characteristic spectral shapes and classifying spectral 

envelopes when building timbre and database models are proposed. 
Chapters 5 and 6 are concerned with the experimental evaluation of our approach. 

In chapter 5, a database of isolated notes, containing 3292 tones classified into 10 

classes of instrument is used to evaluate the system. The use of a global sound 

attribute such as the pitch is then proposed for both the modelling and identification 

phases. We finally show that our approach advantageously takes into account specific 

acoustic information carried by the onset of musical tones. 

Drawing on the conclusions reached in chapter 5, our approach is extended to deal 

with sounds taken from realistic musical contexts. In chapter 6, our system is eval- 

uated using a database of mono-timbral melodic phrases extracted from commercial 

recordings. 
A summary and a conclusion about this research close the thesis. Perspectives 

towards further related works in MIR are discussed. In particular, a direct application 

of our system for the evaluation of spectral and texture similarities between songs is 

proposed. 



1. Acoustic and cognitive aspects of music 

The perception and interpretation of sound play important roles in human evolution. 

From birth to death, humans learn and interact by its means. By listening to sounds, 

we can gather a multitude of information from our environment, complementing the 

visual clues. By speaking and listening to others, we are able to exchange ideas and 

socialise. By listening to music we can relax and experience emotions. These multiple 

aspects of the importance of sound for humans share the same low-level mechanisms 

of perception. Attempting to map and quantify what can be described as the response 

of the subject to a stimulus is of particular interest in research in audio and musical 

signal processing. 
At the acoustic level, no distinction is made between the origin and nature of 

sound, its meaning and the eventual musicality that it conveys. The ear acts as a 

transducer, receiving and transforming a signal into a suitable form to be processed 

at the upper levels of the perceptual chain. 
This chapter introduces the fundamental acoustic and perceptual principles gov- 

erning the perception of sound by humans. In section 1.1, details about the acoustic 

processing that takes place in the ear are described. Next, an overview of two the- 

ories of perception is given in section 1.2. The concepts of music semantics and 

categorisation are outlined in sections 1.2.3 and 1.2.4 respectively. 
Section 1.3 focuses on the timbre or texture of sounds. The perceptual attributes 

that characterise the quality of musical instrument tones are described. In particular, 

principles of the formant theory of timbre are exposed in section 1.3.1.3. In section 
1.3.1.4, the classical theory which states that steady-state and harmonic portions of 

sounds entirely define the timbre is complemented with important experimental facts 

revealing the importance of onsets, transients and other time-related cues. 
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Figure 1.1: Schematic representation of the middle ear. The tympanum delimits the boundary with 
the external ear, while the oval window marks the beginning of the inner ear. 

1.1 Acoustic aspects 

The overall physiological mechanisms of hearing are quite well known and a consid- 
erable literature exists on this topic ([ZF99], [Moo97]). The collaboration between 

psycho-acousticians, cognitians and audio engineers has greatly helped to consolidate 
the foundations of the existing techniques and, at the same time, to broaden the 

areas of research. 

1.1.1 Anatomy of the ear 

The auditory system can be divided into two main parts: the peripheral auditory 
system, commonly called the ear (responsible for the low-level signal processing), and 
the central auditory system beginning with the first neurons and ending with the cortex 

where the signals are interpreted (responsible for the high-level signal processing). 
The mechanisms driving the auditory process are complex, compounded by acous- 

tic, mechanic, hydrodynamic and electro-chemical subsystems. The main function of 
the ear is to encode the acoustic signal into nervous influx by successively trans- 
forming it into different forms. It acts as a transducer, similar to a microphone. In 

particular, it is composed of. 

" The outer ear: the purpose of the pinna is to collect sound waves. It performs 
resonant gain, direction-dependent filtering and impedance matching. Waves 

are then transmitted through the auditory canal (meatus) to the eardrum (tym- 

panic membrane). This constitutes the external part of the ear and waves are 
still in their acoustic form. 
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  The middle ear: vibrations of the tympanum are mechanically communicated 

through a linked triplet of small bones, the ossicles (called malleus, incus and 

stapes respectively) which are elastically connected one to the other. The 

footplate of the stapes is fastened to an elastic membrane (the oval window), 

marking the boundary with the inner ear. A schematic representation of the 

middle ear is given in figure 1.1. 

  The inner ear: the inner ear is composed of one main central organ, the 

cochlea, entirely filled with a liquid called the endolymph. Vibrations from the 

oval window are transmitted to the cochlea where thousands of tiny hair cells 

are stimulated. The hydrodynamic waves are transformed into nerve pulses 

which are then transmitted to the brain through the auditory nerve. 

The first two stages mainly act as an impedance-matching transformer, The 

analysis and transcription of signals take place in the inner ear. Although the cochlea 

is dedicated to hearing, the inner ear contains also organs responsible for the balance. 

The cochlea is composed of two and a-half turns of a spiral cavity filled with 

endolymph. Vibrations of the oval window induce waves in this liquid. One partic- 

ular structure in the cochlea, the basilar membrane, is mapped with approximately 

30000 hair cells, which selectively respond to frequencies close to their characteristic 

frequencies and induce an electric impulse in the auditory nerve. In some way, they 

behave like bandpass filters whose selectivity is directly related to their position along 

the basilar membrane. Such a decomposition is termed as tonotopic. 

In figure 1.2 is depicted a cross-sectional diagram of the inner ear. It can be 

noticed that the high frequencies are decomposed at the beginning of the first spiral 

cavity turn (the frequencies 1000 Hz and 2000 Hz are treated at distances 20 mm 

and 17 mm from the vestibular end respectively) whereas low frequencies (below 200 

Hz) are decomposed in the apical turn. 

A particular vocabulary is used when describing how sounds are perceived. Musi- 

cians, acousticians and scientists share a common language in order to express their 

sensations: loudness is a measure of the perceived intensity and is a subjective con- 

cept; the notion of pitch allows to represent complex musical stimuli on a perceptual 
frequency scale. Timbre, or quality of a sound helps to differentiate between two 

sounds having similar pitches and loudnesses. 
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Figure 1.2: Schematic diagrams showing the basilar membrane dimensions (top) and of the scalae 
of the human cochlea (bottom). Adapted from Fletcher, 1953, by Yost and Nielson, 1977. 

1.1.2 Intensity and loudness 

Intensity, or the acoustic pressure of a sound, is an absolute physical quantity that can 
be measured with instruments, while loudness is a subjective aural response depending 

on each individual's hearing acuity. Intensity is expressed as an energy per time unit 

and per surface unit. The human ear is sensitive in the range 1 watt. m-2 (the pain 

threshold) to 1 trillionth of a watt. m 2 (corresponding to the softest perceptible 

sound). It is common to adopt a logarithmic scale to deal with such a wide range of 

variation. According to the Weber-Fechner law, the response of any sense organ is 

approximately proportional to the logarithm of the magnitude of the stimulus. The 

Bel (B) is defined as the logarithmic ratio of the considered sound intensity I over 
the slightest perceptible intensity Ip, corresponding to the faintest pure tone (at 

frequency fo =1 kHz) that can be heard by the human ear. Mathematically, it can 
be written 

Lb = 10910( 6 Io) 

1 Bel corresponds to a ratio of 10 in sound intensity. However, as the smallest 
detectable variation in intensity is 0.1 B, the decibel (dB), defined as 

I 
Ldb = 10 10910 (IO ), 

represents a standard and psycho-acoustically relevant unit to measure sound intensity 
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level. 

Another useful measure of loudness is the Sound Pressure Level (SPL) and is 

defined for an acoustic pressure p as 

Lp = 201ogio(po) 

It is also expressed in decibels and measures the relation to a reference pressure 

pp. By convention, po = 20 jLPa, which is approximately the threshold of human 

hearing in its most sensitive range (1 to 3 kHz, see figure 1.3). 

The ear can perceive sounds between 16 Hz and 20 kHz, corresponding to ap- 

proximately 10 octaves. Its most sensitive range spans frequencies from 1000 to 3000 

Hz. The Absolute Threshold of Hearing (ATH), corresponding to the ear's internal 

noise level, is the intensity level below which audio stimuli are not perceived at all 
(represented by the curve (a) in figure 1.3). It is often taken as the 0 dB refer- 

ence. Similarly, the threshold of pain (curve (b) in figure 1.3) is the minimum level 

for which sounds having intensities located above irreversibly destroy the hair cells 
(approximately 120 dB). The auditory field is defined as the area delimited by the 

thresholds of hearing and pain. 
The loudness of a pure tone is not only determined by its acoustic pressure but 

also depends on its frequency. Isotonic curves mark equal perceived loudness for a 

given sound intensity as a function of the frequency. They correspond to the curves 
between (a) and (b) in figure 1.3. 

1.1.3 Frequency masking and critical bands 

The hair cells responsible for the tonotopic decomposition of the signal in the cochlea 

respond to frequencies close to their characteristic frequencies. Another important 

property of the transcription mechanism is that a stimulated region of the basilar 

membrane inhibits the neighbouring hair cells' responses. As a result, when two 

sounds with different but adjacent frequencies are simultaneously presented, it might 
happen that one can be masked by the other. This phenomenon is called frequency 

masking and can be total or partial, depending on the two stimuli loudnesses and 

relative frequencies. 

In the presence of a masking sound, the auditory threshold is deformed. Figure 1.4 

illustrates the frequency masking phenomenon with a masker with frequency f=1 
kHz. The absolute threshold of hearing is deformed and sounds having their intensities 
below the masking threshold are not audible. 
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Figure 1.3: Fletcher-Munson lines of equal subjective loudness. Frequencies (Hz) are reported in 
logarithmic scale in abscissa. The curve (a) is the absolute threshold of hearing, and the curve (b) 
the threshold of pain. Curves between (a) and (b) are isotonic curves (labelled in phons). Adapted 
from [FM33]. 

dB SPL 

Figure 1.4: Deformation of the absolute threshold of hearing in presence of a masker with frequency 
f=1 kHz. Sounds having their intensities below the deformed masking threshold are not audible. 

The spread in frequency of the masking effect shows that a pure tone excites the 

auditory system on a scale much broader than its physical spectra. The concept of 
the auditory filter, introduced by Fletcher [Fle40], suggests that the basilar membrane 
behaves as a filter bank with interleaved boundaries. A representation of such an au- 
ditory filterbank is depicted in figure 1.5. In practice, this model is approximated by 

a series of rectangular filters whose widths are experimentally determined. Note that 

only a frequency band, the critical band, of the masker participates in the masking. 

f-1000 Hz Hz 
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Figure 1.5: Auditory filter bank model showing the filters frequency responses and the distances in 
millimetres from the vestibular end where the decomposition takes place in the basilar membrane 
(see figure 1.2). 

The critical band corresponds to the minimum frequency space for which two har- 

monics in a complex periodic sound can be discriminated. By definition, one Bark 

is the width of a critical band, whatever its central frequency is. Its value is 100 Hz 

up to 500 Hz and approximately 20% of the central frequency above. Critical band 

boundaries can be approximated using the analytical formula [ZF99]: 

z= 13 arctan(0.761000) 
± 

3.5 arctan((? 500)2) 

where f is expressed in Hz and z in Bark. 
The perception of frequency is not linear over the entire frequency range. Above 

1000 Hz, the frequency of a pure tone has to be more than doubled to be perceived 

as twice in height by the ear. A constant variation in the Mel scale corresponds to 

a constant variation in the perceived frequency. The Mel scale can be calculated as 
[SV40]: 

M= 1127.01048log( 
? 
00 

+ 1) 

where f is expressed in Hz and M in Mels. 

1.1.4 Temporal masking 

Temporal masking is also called non-simultaneous masking. Due to temporal inhibi- 

tion of the nerve fibres' activity following a stimulation, and to a certain extent to 

the phenomenon of time integration in the ear, two sounds separated by a time gap 
can mask each other. 

Two types of temporal maskings can be distinguished: the forward masking (the 

maskee is before the masker) and the backward masking (the masker is before the 

maskee). These phenomena only occurs when the two sounds are separated by a 
maximum of a few tens of milliseconds. 
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Figure 1.6: Temporal masking phenomenon created by a 200 ms duration pure tone stimulus (grey 
area). In ordinate is reported the level of just masked pure tone [ZF99]. 

Important conclusions may be drawn from figure 1.6. Firstly, simultaneous mask- 
ing is more effective when the frequency of the masked signal is equal to, or higher 

than that of the masker. Secondly, while forward masking is effective for a significant 
time after the masker has stopped, backward masking may only be effective for few 

tens of milliseconds before the masker onset. 

1.1.5 Pitch and fundamental frequency 

Most of the complex tones that the ear perceives can be classified according to 

their position on the frequency scale. When these sounds are periodic, a unified 

pitch is perceived rather than separated frequency components corresponding to the 

overtones. According to Helmholtz [Hel54], the pitch is mainly determined by the 
fundamental frequency value fo, i. e. the value corresponding to the repetition rate 

of the temporal periodicity of the sound, and by its relative strength compared to the 

upper partials. In this classical theory, the higher harmonics were thought only to 

influence timbre. 

However, for certain sounds, low pitch perception also occurs even if the corre- 

sponding fundamental frequency is not physically present in the signals, thus refuting 
Helmholtz theory. Schouten [Sch40] introduced the formulation of the periodicity 

pitch theory in which pitch is mainly derived from the waveform periodicity of the 

unresolved higher harmonic of the stimulus. In this case, periodicity does not change 
if a component, such as the fundamental frequency, is missing. 

In [Rit67], a frequency dominant region has been associated as mostly influencing 

the pitch sensation. It has been experimentally shown that partials falling between 
500 and 2000 Hz (the dominant region) were contributing more to the pitch deter- 

mination that the other ones. In this theory, low pitch of tones with low fundamental 

lthis phenomenon is known as the missing fundamental 
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frequencies depends on the higher partials while pitch of tones with high fundamental 

frequencies is determined by the fundamental as it lies in the dominant region. 
Pitch is one of the three perceptual attributes of tones, along with the loudness 

and timbre that is used to completely describe sound. In music, pitch systems like the 

diatonic-chromatic or the 12-tone in Western music allow us to compare and organise 

notes of different sounds in similar frequency scales. 
The various theories about the perception of pitch raise many questions about 

the nature of the processing that takes place in the brain. In particular, why are all 

components of the complex tones perceived as a perceptual unit so that all the partials 
fuse into one percept? Perception theories attempt to explain this phenomenon from 

a general cognitive perspective. 

1.2 Perception 

The most influential theories that have been proposed to explain the mechanisms 

of perception are outlined in this section. Commonly called cognitive or psychology 

theories, they intend to relate the sensory information to the interpretation of the 

message at a higher cognitive level. Their use is not restricted to audio and musical 

stimuli but also serves to describe, among others, the mechanisms driving visual 

perception. 

1.2.1 The Gestalt school 

The structuralist stream, represented by Wundt [Blu80], conceptualised the principle 

of elementarism and pre-supposed that complex stimuli can be reduced to indivisible 

elementary, local sensory experiences. In the same vein, the atomist stream explained 

the complex perception mechanisms as being a combination of simple sensory re- 

sponses. 
By opposing the structuralist theory, Wertheimer, Koffka and Köhler elaborated 

the form theory (Gestalttheory) in the twenties [ESS97]. Years earlier, Christian von 
Ehrenfels, in a paper "On Gestalt Qualities" [Smi88] pointed out that a melody is 

still recognisable when played in different keys, even though none of the notes are 
the same. Ehrenfels argued that if a melody and the notes that comprise it are so 
independent, then a whole is not simply the sum of its parts, but corresponds to a syn- 
thesised whole effect, or Gestalt. The existence of global attribute (gestaltqualität) 

was then advanced. According to Wertheimer, the latter is instantaneously perceived 
and prior to any combination process of elementary events. The Gestalt psychologists 
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radically rejected the notion of atomism (or elementarism) and proposed holism as 

alternative, emphasising the role of emergent properties and the importance of con- 
text. The more general concept of perceptual organisation which described objects as 

organised entities, as opposed to a combination of elementary structures, represents 
the basic principle of the Gestalt theory. In this theory, the form is the fundamental 

element and several laws and concepts explain the mechanisms of perception. 

The fundamental "formula" of Gestalt theory might be expressed in this 

way. There are wholes, the behaviour of which is not determined by that 

of their individual elements, but where the part-processes are themselves 
determined by the intrinsic nature of the whole. It is the hope of Gestalt 

theory to determine the nature of such wholes. 
Max Wertheimer (1924) 

The most basic rule of Gestalt is the law of "Prägnanz". This law states that 
humans experience their environment by having a tendency towards good forms. The 

complementary Gestalt laws include: 

  Similarity: if several stimuli are presented together, there will be a tendency 

to perceive objects in a way that similar stimuli are grouped together (figure 

1.7(a)). 

  Proximity: elements that are closed together (spatially or temporally) are more 
likely to be grouped together in a single object (figure 1.7(b)). 

" Good continuation: the human perceptual organisation tends to prefer a 

continuity between stimuli in contrast to abrupt and discontinuous changes 
(figure 1.7(c)). 

  Closure: closure denotes the human tendency to complete familiar objects or 
forms that have gaps in them (figure 1.7(d)). 

  Common fate: the common fate law states that elements moving in the same 
direction are perceived together. 

Although these principles were generally described first in relation to vision, they 

are equally applicable to audition. It is known that music played a major role in the 

emergence of the Gestalt school. Early research has focused on the perception of 
rhythm, pitch, melody, consonance and timbre. 

However, perceptual grouping in more complex music is not simply a matter of 
linking different stimuli together. Rather, it involves a process whereby these stimuli 
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Figure 1.7: The Gestalt principles of similarity, proximity, continuity and closure. 

are fragmented into their separate attributes, followed by a process of synthesis or 

grouping in which the different attribute values are recombined. Auditory scene 

analysis (ASA) formalises these principles and is introduced in the next section. 

1.2.2 Auditory Scene Analysis (ASA) 

By analogy with the perception of a visual scene, auditory scene analysis considers 

the auditory field as a landscape of sounds or streams. The approach proposes 

principles to describe the processes required of the human auditory system as it 

analyses mixtures of sounds. Auditory scene analysis assumes at first that mixtures 

are broken into small elements which are then grouped into sources using perceptual 

cues [Bre90]. These rules are, to a certain extent, derived from the Gestalt theory but 

completed by attributes specific to audio and musical signals such as the harmonicity, 

common onset times or modulation [DC95]. 

Bregman makes a distinction between two types of auditory grouping, namely 

primitive grouping and schema-driven grouping. Primitive grouping is driven by the 

incoming acoustic data, and is probably innate. In contrast, schema-driven grouping 

employs the knowledge of familiar patterns and concepts that have been acquired and 
learned through experience of acoustic environments. 

Rather than objecting the Gestalt principles, auditory scene analysis has been built 

upon. It also defines a scope for the computer implementation of auditory percep- 
tion algorithms. In Computational Auditory Scene Analysis (CASA), the aim is to 

take into account several grouping rules as starting hypotheses during the analysis of 

audio signals. These hypotheses are confirmed or refuted according to prior contex- 
tual knowledge about the signal. The best hypotheses are then selected for further 

processing [EII96]. 

For instance, the similarity principle can be verified in that sounds similar in timbre 

or that change smoothly in frequency are likely to be emanating from the same 
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source. The principle of proximity refers to distances between auditory features with 

respect to their common onsets, pitches, and Ioudnesses. 2 Features that are grouped 

together have a small distance between each other, and a long distance to elements 

of another group. Likewise, the principle of good continuation identifies smoothly 

varying frequencies, loudnesses, or spectra with a changing sound source whereas 

abrupt changes indicate the appearance of a new source. The Gestalt principle of 

closure refers to a tendency to complete perceptual forms. Indeed, it has been shown 

that listeners are able to perceptually restore parts of a quieter sound that have been 

masked by a louder sound. This process is known as auditory induction [Deu82]. 

Finally, the principle of common fate groups frequency components together, when 

similar changes occur synchronously, such as synchronous onsets, glides, or vibratos. 

1.2.3 Music and semantics 

Associating a semantic for music signals assumes that music is pertaining to the 

meanings of words and concepts and supposes that there exist musical languages. 

Undoubtedly, music conveys a message, but an universal musical referential does not 

exist as such. At first sight, speech and musical signals are similar so that researchers 
in digital music processing were well equipped to start with. They share the same 

subjective descriptors, such as the pitch, loudness and timbre. The same techniques 

can be used to analyse either of them. However, their differences lie at a higher 

cognitive level .3 
In speech recognition, the process is to map the acoustic signal into its corre- 

sponding semantic internal representation, i. e. words and sentences. In automatic 

music transcription, the process is to determine the pitches of the notes, their starting 

and ending times as well as the instrument being played. But in contrast'to speech, 
these objects do not refer to any concept outside the musical world. This led Meyer 

[Mey56] to conclude that music was not a form of knowledge. 

So how could the nature of the musical message be defined if music is not a form 

of knowledge? In the case of spoken speech, speaker and listener share the same 
dictionary that they both need to know in order to understand each other. On the 

other hand, a speech signal is also the vector of emotions and side information such 
as exclamation, interrogation or hesitation carried by the prosody. This information is 

almost invariant across a language, so that people from the same cultural background 

2the proximity principle is equally applicable to the grouping of partials into harmonic objects 
[Bre90J. An example of such grouping is given in appendix B 

3if we exclude the fact that music is polyphonic by nature as opposed to spoken speech 



CHAPTER 1. ACOUSTIC AND COGNITIVE ASPECTS OF MUSIC 30 

are able to interpret the message and the associated emotional information. In the 

case of music, the melody, the rhythm or the timbre can constitute some of the 

various manifestation of the musical message but the effect they generate on us is 

purely emotional. Do I need to be musician to appreciate music? Do I need to know 

the dictionary, the rules that composes music? I don't think so, musicians and non- 

musicians will appreciate it, but in different ways because music has this powerful 

ability to convey emotions. 
So music is a emotional experience. Defining a semantic for emotions is a highly 

subjective and difficult process. However, there is a tremendous need in our modern 

society to describe musics in terms of words, concepts and relationships. The main 

goal of research in Musical Information Retrieval (MIR) is to associate a semantic to 

music. Practically, this corresponds to extract acoustic signal descriptors from the 

signals that can be related to emotions. 

1.2.4 Categorisation 

Categorisation is the basic cognitive process whereby sensory information gathered 
from the outside world is arranged into classes or objects. At the physical level, a 

stimulus is represented in a continuous, infinitely variable domain. As an example, an 

acoustic signal sampled at 20 kHz, perceived by the ears which has approximately a 
dynamic of 20 bits (0-120 dB) corresponds to a raw information rate of 400 kbits/s. 

At a higher cognitive level, what the brain interprets as a meaningful object (that 

can be the notes, the beat or phonemes in the case of speech) is encoded at a much 
lower rate. In the case of spoken speech, at the phonetic level, roughly 32 phonemes4 

can be distinguished to represent all the sounds in a language. At an average rate of 
10 phonemes per second, the information rate is reduced to 50 bits/s. At a higher 

lexical level, for an average of 2.5 words per second and 20000 words in a dictionary, 

this information rate drops to 37 bits/sec. The process of categorisation is depicted 

in figure 1.8. The gap of Smolinsky qualifies the drop in information rate between 

the physical and symbolic representations of a signal. 
The fundamental problems linked to the categorisation process are: 

1. Recovering the physical world from its internal representation. 

2. Naming and tagging the objects. 

"40-45 in the case of English 
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Figure 1.8: The categorisation process. 

3. Defining an equivalence relationship between physical external world and inter- 

nal semantic world. 

Musical signals have a meaning, or more precisely, are given a meaning. Trying to 

define the nature of the message conveyed by a song, or a piece of music is a highly 

subjective and context-dependent process. There cannot be a unique and universal 

answer as cultural background varies from one individual to another. From there 

arises the difficulty of designing automatic musical genre classification, for example. 

1.3 Audio texture and timbre 

We focus in this section on the notions of texture and timbre of sound. Textures and 
timbre are subjective concepts referring to the quality of sound. In addition to the 
loudness and pitch, it is used to uniquely distinguish between sounds. 

Definitions of timbre tend to be enigmatic and indicate what it is not rather than 

what it is. For instance, according to the American Standards Association (1960, p. 
45), 

Timbre is that attribute of auditory sensation in terms of which a listener 

can judge that two sounds similarly presented and having the same 
loudness and pitch are dissimilar. 

It is further stated that: 

Timbre depends primarily on the spectrum of the stimulus, but it also 
depends upon the waveform, the sound pressure, the frequency location of 
the spectrum, and the temporal characteristics of the stimulus 
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Figure 1.9: Timbre and other dimensions of sound. 

J 

Timbre Harmonics Loudness 

.17 

Frequency Intensity 

Loudness Pitch Timbre Duration 

Pressure +++ + + + 
Frequency + +++ ++ + 
Spectrum + + +++ + 
Duration + + + +++ 
Envelope + + ++ + 

Table 1.1: Dependence of subjective qualities of sound on physical parameters. += weakly depen- 
dent ++ = moderately dependant . +. = strongly dependent [Ros89]. 

This definition is rather confusing and tend to indicate that timbre is in fact not 

well defined. In contrast to other descriptors of sound, timbre has no defined asso- 

ciated physical quantities. Whereas intensity can be expressed in decibels, frequency 

in Hertz, timbre has no corresponding physical attribute. In consequence, timbre is 

often seen as a multi-dimensional attribute of sound [Plo70]. In figure 1.9, common 

subjective and physical components of sound are shown. In addition, table 1.1 re- 
lates the subjective qualities of sound to the physical parameters that are used to 

characterise the signal structure. In particular, note the dependence of timbre upon 

spectrum, frequency and envelope respectively. 
Although timbre is not well-defined in terms of the physical attributes that con- 
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tribute to it, it has some characteristic properties that can be highlighted. In [RW82], 

the notion of timbral constancy and invariance is discussed. In particular, it is men- 

tioned that sound sources can be reliably identified by humans in a wide variety of 

circumstances. Take the example of a speech signal over the telephone network. The 

bandwidth only covers the frequencies up to 4 kHz (corresponding to roughly a fifth 

of the maximum perceptible auditory field) but humans perform remarkably well at 

recognising familiar voices in such conditions. Similarly, a saxophone sound is still 

perceived as being a saxophone sound whether it is played from a vinyl recording, 

over an AM radio band, from a compact disc or in a concert hall. Thus the question 

arises as to the physical correlates of this constancy, and especially as to a physical 
invariant of timbre. 

The search for timbre-invariant highly motivates research in timbre and texture 

modelling. Because the timbre of a sound can be recognised under various conditions, 
it is advanced that there should exist particular properties at the signal level, whose 

contribution to whole led the definition of an invariant. 

1.3.1 Timbre correlates 

Timbre can be seen at the same time as a low-, mid- and high-level descriptor of 

sound. Low-level when it is associated with the physical structures of sound, mid- 
level when it is associated with musical cues, such as pitch and harmonicity and 
high-level when it is used to describe the texture or feel of a sound. For instance, 

a sound can be qualified by the terms shrill, rough, mellow or warm... Such words 
describe real and consistent differences in our responses to musical sounds but it is 

no simple matter to relate these sensations to the signal's physical structure. 
Timbre is therefore thought to be described by a number of features and their 

combination. The difficulty of characterising an invariant for the timbre is a direct 

consequence of this multiplicity of aspects. Further, the wide range of physical struc- 
tures of the class of musical sounds tremendously increases the amount of parameters 
to be studied and taken into account. For these reasons, research in the field inde- 

pendently focused on one aspect of timbre at a time. 
The spectral characteristics of audio signals remain the foundation of the con- 

ventional understanding of musical sounds by humans. Early published works from 

Helmholtz [He154] dealt with the quality and colour of pure tones. Helmholtz con- 

sidered that the majority of the timbral information was contained within the quasi- 

stationary part of a sound. These conclusions have been drawn from experimental 
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studies and it was then believed that spectrum and harmonic series would define 

timbre. This view is partially acceptable, especially if one only considers the class of 

pseudo or quasi-stationary signals. However, simple experimental observations reveal 

the existence of other cues participating in the perception of timbre. 

Specifically, the other contributors are related to time. It has been shown that 

transients, onsets attack and decay [Ber63] on the one hand and vibrato and tremolo 

[SC64] [Mar99] on the other hand are important timbre correlates. 
In the following, the spectral and temporal correlates of timbre are studied in more 

detail. Prior to that, the dependence of timbre upon phase is discussed. 

1.3.1.1 Timbre and phase 

Helmholtz believed that the ear was phase insensitive. In other words, if the spec- 

tral representation of two sounds have similar harmonic representations but different 

patterns in phase relationships, a listener will be unable to perceive the difference 

between the two sounds, even though they may have different waveforms. Helmholtz 

stated that "the quality of the musical portion of a compound tone depends solely 

on the number and relative strength of its partial simple tones, and in no respect on 

their differences in phase". Although he found that the effect of phase on the timbre 

of pure tones to be negligible, he admits an exception for non-musical sounds. 
However, this characteristic of the auditory system is still discussed and it has been 

shown that indeed, modifying the phase between harmonically related partials could 

affect the timbre of sound up to a certain degree. Recently, it has been experimentally 
found in [DR02] that phase coupling phenomena between partials of sustained portions 

of sound can be used to distinguish between musical instrument families. 

1.3.1.2 Timbre and spectrum 

It is generally accepted that the main physical characteristics of sound used to define 

the timbre are related to the spectral representation of the signal. Over this restricted 
temporal span, periodic signals can be decomposed as a Fourier series and it was 
believed that the spectrum of these harmonic series would define timbre. Helmholtz 

[Hel54] was convinced that "certain general rules will result for the arrangement of 
the upper partials which answer to such species of musical quality as are called soft, 

piercing, braying, hollow or poor, full or rich, dull, bright, crisp, pungent and so on". 
He then distinguished between tones without upper partials or tones with inharmonic 

upper partials as affecting the quality of tones. 
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For sustained tones, the most important of these correlates are the harmonic con- 

tent as well as the number and relative intensity of the upper harmonics present in 

the sound. Further, the odd/even relation between harmonics is also an important 

characteristic in the quality of sounds, for example the clarinet. Similarly, some mu- 

sical sound sources have overtones whose frequencies are not exactly a whole integer 

multiple of the fundamental frequency, for example the piano. These peculiarities in 

the harmonic content of instrument sound obviously affect the quality of tones. 

1.3.1.3 Timbre and formant structure 

It is important to discuss the formant structure of sound, especially for musical in- 

strument sounds. Formants are defined as frequency regions of the spectra of higher 

energies that are virtually independent of the pitch. Saldanha [SC64] mentioned that: 

[... ] it is believed that the strengthening of the partials in the formant 

region is due to the resonance of some part of the musical instrument 

being played or to the resonance of the body of air enclosed within the 

instrument. 

For musical signals, the formant theory [Fle34] complements the classical theory 

of Helmholtz and holds that: 

[... ] the characteristic tone quality of an instrument is due to the relative 

strengthening of whatever partials lie within a fixed or relatively fixed 

region of the musical scale. 

In [RW82], it is further noted that: 

Sound spectrograms suggested that, for a given intensity, the spectrum 
has a formant structure; that is, it varies with frequency so as to keep a 

roughly invariant spectral envelope. 

In the same vein, Schumann [Sch29] propounded several laws of perception of 

wind instrument timbre in relation with the stream segregation and Gestalt principles. 
His theory served as the basic foundations for explaining the production of wind 
instrument timbre through their typical formant areas. Reuter [Reu97] recalled the 
following: 

The principle of formant areas (Formantstreckengesetz) postulates that 
the formants of musical instruments are fixed areas of the spectrum which 
are independent of the fundamental frequency. 
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The principle of formant intervals (Formantintervallgesetz) states that the 

partial with the strongest amplitude located in the first (or lowest) formant 

area and the partial with the strongest amplitude located in the second (or 

higher) formant area result in an interval which is typical for the respective 

instrument. 

Reuter [Reu97] outlined that the validity of these principles have been experimen- 

tally confirmed for reed- and double-reed instruments, and that they seem to be valid 
for brass instrument timbres. On the other hand, he mentioned that these princi- 

ples could not be extrapolated to the case of string instruments. However, Benade 

[Ben76] showed that violin sounds exhibit sharp spectral resonances corresponding to 

the combined influences of violin air and wood resonances. He stated that: 

This overall curve [i. e. the loudness curve or the spectral envelope] has an 

interpretation that is very similar to that for the vocal-tract curves [... ] 

This corroborates what is known for speech signals. Formants are created by 

the natural resonant frequencies of the vocal tract or resonating body. Further, it is 

known that voiced sounds are uniquely characterised by their formant structures and 

that the first three formant frequencies are usually sufficient to identify vowels. 
In music, the vocal tract contribution can be transposed to the guitar body or 

the tube of a brass instrument, for example. It can then be argued that modelling 

the formant structure of an instrument can serve to uniquely characterise it. This 

also means that formant structures can be used as descriptors in musical instrument 

identification systems. 
The principles governing the formant theory of musical instruments constitute the 

foundations of our research. In this thesis, the formant theory of musical instruments 

is also termed as the formant theory of timbre. 
For periodic tones, timbre depends upon spectrum. However, instruments can still 

be recognised from very poor recordings and at different sampling rates, thus refuting 
the theory stating that spectral envelope is the unique timbre correlate. Furthermore, 

room acoustic and equalisation theories teach that a reverberant room can affect the 

spectral envelope of sound at levels as high as 20 dB for some frequencies. This 

room transfer function also depends upon the physical location of the listener. In 

other words, although the spectral information received by each listener is different, 

the identity of the sound can still be perfectly retrieved by them. 
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Figure 1.10: Plucked guitar string waveform (top) and corresponding spectrogram (bottom). 

1.3.1.4 Timbre and time cues 

Figure 1.10 shows the attack and decay of a plucked guitar string. The plucking action 

gives it a sudden attack characterised by a rapid rise to its peak amplitude. The decay 

is long and gradual by comparison. The ear is sensitive to these attacks and uses them 

to identify the instrument producing the sound. In [SC64] and [Ber63], it has been 

experimentally shown that the onset of a sound is psycho-acoustically important. 

Removing the initial segment of notes played by various instruments impairs the 

correct recognition of the instruments. Further, transients are to a certain extent, 

unique. For instance, the transient of a low pitch piano sound cannot be cut and 

transposed to synthesise a higher pitch piano note. This particularity is similar to the 

coarticulation phenomenon encountered in speech. It is therefore difficult to properly 

separate transients from steady-state portions of sound as to model transients for 

sound synthesis purposes. 
In his experiments, Saldanha [SC64] evaluated the relative importance of har- 

monic structure, frequency and vibrato as timbre cues in the absolute judgement of 

musical tones. He showed that for ten instruments in the database, the average cor- 

rect identification rates dropped from 47% to 32% when initial transients have been 

removed from the samples. More detail about several experimental studies assessing 
human ability for the task to identify musical instruments will be given in section 2.1. 

Other time-related timbre correlates are concerned with the variations in amplitude 
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and pitch of tones as a function of time, the tremolo and the vibrato. If the harmonic 

content of a sustained sound from a voice or wind instrument is reproduced precisely, 

the ear can readily detect the difference in timbre because of the absence of vibrato. 

For instance, Saldanha [SC64] conducted experiments involving sounds played with 

and without vibrato and showed that the presence of vibrato helped to increase the 

correct identification by 3%. Vibrato and tremolo are present to some extent in voice 

or musical instrument sounds. However, in most cases, they depend more on the 

playing style and can rarely be seen as an intrinsic property of an instrument. 

1.3.1.5 Timbre, pitch and loudness 

Musical instruments have a natural frequency range that can be defined by the range 

of notes that are played in realistic conditions. Many instruments have different 

registers and it is known, for example, that the clarinet has a different timbre whether 

it is played on the low or high pitch range. Playing a tone at a higher pitch is not a 

simple matter of shifting a spectral envelope up to the higher frequencies and involves 

more complex phenomena. In the same vein, an instrument tone played very loudly 

will sound different than a soft version of the same tone. For instance, producing a 

very low pitch note on a wind instrument with the same loudness as a higher pitch 

tone can be achieved if the musician blows stronger, thus providing more energy to 

the system. This affects the mechanical response of the instrument and therefore the 

corresponding structure of the sound. 
Timbre dependence upon pitch and loudness are fundamental attributes that need 

to be taken into account when one wishes to build automated systems for recognising 

musical instruments. These aspects will be covered more in depth in chapters 5 and 

6. 

1.3.2 Timbre space representation 

Research in timbre space representation directly results from the characterisation of 

the physical correlates of timbre. Due to the multi-dimensional nature of timbre, it is 

of great interest to represent sound objects in a lower-dimensional space whose princi- 

pal components can be labelled in a perceptually meaningful way. This suggests that 
by pointing out a point in this timbre space, one could hear the timbre corresponding 
to these coordinates and subsequently moves continuously on a graded and labelled 

timbre scale. 
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Probably the first to study such representation was Wessel [Wes78] who derived a 

2-dimensional timbre space from perceptual data for compositional control of timbre. 

Using multi-dimensional scaling algorithms (MDS), each sound object is represented 
by a point in a geometric representation generated from input data. In essence, the 

technique consists of gathering perceptual data corresponding to all pairs in a set of 

stimuli and then to select the directions that best fit these data. In particular, Wessel 

observed a clear correlation between the width of a sound's spectrum and one axis of 
his timbre space. This led him to define brightness as a measurement of the energy 
distribution among the sound harmonics. As Wessel has shown, this dimension is the 

one that can best articulate stream segregation [Bre9O]. The other axes of the space 

were either related to the attack rate or to the extent of synchronicity among the 

various components. 
More recently, attempts to build timbre space representation using Principal Com- 

ponent Analysis (PCA) have been reported in [dPLY04] and [CHM97]. In [dPLY04], 

the timbre palette produced by a single instrument over the whole pitch range is 

studied. The work is restricted to the quasi-stationary part of clarinet sounds, exclud- 

ing the attack, decay and transitions between consecutive notes. The timbre space 
is built by considering three principal components of the amplitude curves obtained 
from a sinusoidal analysis stage [MQ86]. It is shown that timbre classes are a function 

of the intensity and that the lower register of the clarinet exhibits in general much 

more richness in timbre variation than the higher register. However, it has been found 

difficult to relate the principal components other than the first one to any perceptual 
judgements of feeling. Furthermore, the universality of the approach and in particular 
its extension to deal with several musical instrument sounds are not guaranteed. 

This type of application decidedly provides efficient ways to validate the per- 

tinence of timbre models. For instance, the partitioning of a2 or 3 dimensional 

Euclidean space regarding the perceptual contrast between sound objects or sound 
families would denote a certain success in the approach. The extension to the mu- 

sical instrument identification problem would be rather straightforward. However, in 

practice, these methods have shown little ability to be extended to tackle musical 
instrument identification problems. 

1.3.3 Timbre perception 

To summarise, little is known about the precise physical characteristics that tend 

to contribute to the perception of timbre. Tackling the problem from a different 
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perspective, the quality of a sound can often be described in terms of the feeling and 

sensations they induce. And what better way have humans found to describe their 

feelings that by words. 
Early in 1877, and from a radically experimental point of view, Helmholtz [Hel54] 

extensively used verbal attributes to describe his research. He stated, for example that 

"the peculiar quality of tone commonly termed powerty as opposed to richness, arises 
from the upper partials being comparatively too strong for the prime tone: ' Further, 

his research and observations led him to conclude that: "simple tones [... ] have a 

very soft, pleasant sound, free from all roughness [... ] and dull at low pitches", and 
that "musical tones [... ] are more harmonious [... ]. Compared with simple tones 

they are rich and splendid, while they are at the same time perfectly sweet and soft 
if the higher upper partials are absent: ' 

Later in the seventies, von Bismarck [vB74] attempted to extract from the tim- 
bre percept those independent features which can be described in terms of verbal 

attributes. In his experiments, listeners were asked to rate 35 artificial sounds on 
30 scales whose endpoints were characterised by pairs of opposite attributes such 

as dark-bright or smooth-rough. The conclusion was that 4 scales were considered 

nearly sufficient to describe timbre. In particular, he found that the scale dull-sharp 

was most preferred among all listeners. 

Chapter summary 

This chapter introduced the basic concepts linking acoustic and physical signals to 
human perception. Previous research showed that the ear does not have the same 

response for all sounds. The non-linear properties of the ear frequency response 
have been highlighted. The concepts of absolute threshold of hearing, frequency and 
temporal masking, that are used in numerous applications in audio compression and 
audio signal analysis, have been introduced. 

Rather than providing a thorough review of the psycho-acoustic principles driving 

the perception of sounds by humans, the first part of this chapter introduced the 
fundamental and basic notions that motivate the design of psycho-acoustic models 
in digital audio signal processing. An example of such a model is given in appendix 
A. 

Further, the mechanisms through which the pitch of a complex stimulus is per- 
ceived have been discussed. The different theories of pitch processing by humans 
helped us to introduce the two most influential theories in audio perception. Their 
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fundamental principles have been outlined in section 1.2. 
In section 1.3.1, the acoustic and perceptual properties of timbre have been dis- 

cussed. The concept of timbre correlates which is important for understanding why 

a particular feature or descriptor will be used throughout this work has been intro- 

duced. In particular, principles of the formant theory of timbre, which is the main 

theme of this research, have been described. Finally, a distinction between spectral 

and temporal attributes of timbre has been made. 
The next chapter is concerned with automatic musical instrument identification. 

After having summarised experimental results assessing human ability to identify and 

recognise musical instrument tones, a description of techniques and systems encoun- 

tered in the literature is given. An approach to tackling the problem of modelling the 

timbre of an instrument is then proposed. 



2. Musical instrument identification 

Musical instrument identification systems are used to classify sounds according to 

salient properties of the signal. These systems attempt to reproduce how humans 

can recognise and identify the sounds populating their environment. Indeed most 

people are able to discern a piano tone from a violin tone or able to distinguish 

different voices or singers. 
It is important to point out here the importance of learning in the identification 

of sounds by humans. Take the set of musical instruments described in figure 2.1. 

Although the distinction between string and wind instrument sounds can be easily 

made by most human beings, the ability to distinguish between single and double-reed 

instrument tones, or a violin and a cello tones, involves a certain form of learning. 

That is to say: like humans do, machines learn. 

This chapter is concerned with musical instrument identification. In section 2.1, 

several perceptual experiments on the perception of timbre by humans are sum- 

marised. They will serve to define a ground-truth in terms of performance for eval- 

uating computer systems. In particular, the relative importance of temporal cues in 

the identification of sounds is made apparent. 
Next, principles of computer models and algorithms for musical instrument iden- 

tification are introduced in section 2.2. System evaluation protocols, limitations and 

applications of these algorithms in wider MIR frameworks are discussed. Several ap- 

proaches and systems encountered in the literature for the purpose of identifying and 

classifying musical instrument sounds are described in section 2.3. 
In section 2.4, an approach to tackle the problem of modelling timbre is proposed. 

A system is described. It is suggested that it preserves the coherence between physical 

and perceptual aspects of timbre. In particular, it is suggested that it conforms to 

the principles governing the formant theory of timbre. 
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2.1 How well do humans perform? 

Musical instrument identification systems attempt to reproduce how humans can 

recognise and identify the musical sounds populating their environment. When de- 

signing such systems, it is important to directly compare its performance with hu- 

mans, and this for equivalent tasks and under similar conditions. This procedure 
is widespread in most MIR applications and more generally in perceptually related 

system design as very often, human performance are the only baseline performance 

available. ' It is a fact that in speaker verification, for example, modern computer 

systems outperform human at recognising voices recorded in good acoustic condi- 

tions. On the other hand, humans are still much better than computers at separating 

sources from a mixture (e. g. the cocktail-party problem [Che57]). 

As far as the identification of orchestral musical instrument is concerned, several 

experiments have been conducted throughout the years. Due to the nature of the 

considered sounds and the difficulty for ordinary people to distinguish between all 

orchestral musical instruments, experiments often involve the participation of experi- 

enced listeners such as musicians, composers or music students. 
Berger [Ber63] focused on the relative importance of transient/onset and steady- 

state portions of sound in the identification of isolated tones produced by wind in- 

struments. Martin [Mar99] conducted experiments of identification of isolated notes 

among 27 instruments to validate his computer models. More recently, Srinavasan 

[SSFO2] carried out several experiments using sets of instruments that have been used 
to evaluate computer models in other research works. 

In the following, the most relevant studies for our research are summarised. The 

conclusions reached thereafter suggest that in many cases, human identification rates 

are lower than expected. 

2.1.1 Experiments involving isolated tones 

In [SSFO2], experiments have been conducted using isolated notes extracted from the 
McGill sound database [0W87]. The study consisted of evaluating the performance 

of 88 experienced listeners at recognising orchestral musical instruments notes out 

of musical context. The importance of a training session prior to the classification 
has also been evaluated. Performance were compared to similar experimental studies 
available in the literature ([SC67], [MK98]) and to computer systems using identi- 

cal sets of instruments. In figure 2.2, the results of various experiments involving 

land is more precisely what systems are intended to be compared to 
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Figure 2.2: Comparative performances in terms of average correct identification rates for several 
experimental studies. In abscissa are given the bibliographical reference for each system as well as 
the number of instruments retained for the experiments. White boxes correpond to the average 
identification rates that would be obtained by random guessing. Adapted from [SSFO2]. 

different types and number of instruments are shown. Although number to number 

comparison might not be relevant here, it can be noticed that human performance 
decreases as the number of instruments in the database increases. Next, for equal 

number of instruments, the listeners having participated in the experiments in [SSFO2] 

performed better than in previous experiments. Consequently, we will consider these 

performances as baseline performance for the evaluation of the system that will be 

presented in this thesis. 

2.1.1.1 Instrument identification 

Tests were performed with sets of 2,3,9 and 27 instruments respectively by presenting 

segments of 4-7s in duration. For each instrument, the entire available pitch range 
has been used. The listeners were asked to identify isolated notes and had to give an 

answer even if they did not recognise the instrument. Overall, for the experiments 
involving 2,3,9 and 27 instruments, the average correct identification rates were 
94.5%, 97.6%, 90.2% and 55.7% respectively. 

In table 2.1 is reported the confusion matrix for the experiment involving 9 instru- 

ments. Correct identification rates range from 99% (flute) to 83% (trumpet). Most 

important confusions concern the violin and cello tones. This type of confusion is ex- 

pected since both instruments differ only by size and have very similar timbres. Next, 

trumpet and sax tones, which both belong to the brass family, are confused 8% of the 

time. Finally, 6% of the bassoon samples were mis-identified as being trombone. This 

is slightly more surprising since bassoon is a double-reed excited wood-wind instru- 
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flute 99 1 
oboe 92 3 3 2 
clarinet 4 87 4 5 
bassoon 2 2 84 3 6 3 
sax 2 97 1 
trumpet 58 83 2 2 
trombone 4 94 2 
violin 84 17 -1 
cello 9 91 

Table 2.1: Human performance for the task of recognising isolated notes amongst 9 instruments. 
Presented instruments are shown in rows while answers given by the listeners are shown in columns. 
The correct identification rates are reported in percentages, the column n. c represents the difference 
to 100. From [SSF02]. 

ment while trombone is a slide brass instrument. Contrary to what could have been 

expected, experienced musicians show difficulties at recognising instruments tones 

out of context. 

2.1.1.2 Instrument family identification 

When evaluating humans and computer system performance, it is also interesting to 

analyse the correct inter-families identification or confusion rates as there is often a 

tendency for the error of identification for a given instrument to be made in terms of 

other instruments within the same group. In table 2.2, two typical confusion matrices 
for two different experiments involving 27 different instruments are summarised. A 

first interesting point is that very similar trend can be observed for both experiments: 
firstly, tones belonging to the bowed strings and flute families are very well identified 
(in both experiments, each family is correctly identified more than 98% of the time) 

and rarely confused with other families of instruments. Secondly, there appears to 
have been a persistent mis-identification of reed instruments tones whose confusions 

rates are scattered throughout the other instruments. In particular, note the difficulty 

to distinguish saxes from reed and brass sounds respectively. Note also that only 65% 

of the sax sounds were correctly identified. 

Experiments involving isolated notes correspond to the bottom line of human 

performance evaluation as tones are presented out of any musical context. It has been 

previously discussed that musical context can provide essential clues for the correct 
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strings 99 98 
brasses 90 42 3 86 832 
db reed 4 76 7 12 2 6 74 11 36 
clarinet 2 12 71 14 4 13 73 11 
flutes 99 99 
saxes 5 13 15 65 - ----- 

(a) [SSFO2] (b) [MK981 

Table 2.2: Confusion matrices corresponding to instrument families identification experiments. In 
rows are shown the instrument families while in columns are shown the answers given by the listeners. 

identification of instruments. However, under such controlled acoustic environment, 
the effect of extraneous timbre correlates are attenuated, thus resulting in a better 

picture regarding the contribution of each of these correlates to the whole. Note 

that experimental evaluations of our system using a database isolated notes will be 

reported in chapter 5. 

2.1.2 The importance of transient information 

Berger [Ber63] investigated the ability of 30 music students at identifying wind instru- 

ment tones having, among other alterations, the first and last half seconds removed. 
The corresponding confusion matrix is presented in table 2.3. A similar experiment 

using non-altered entire tones has also been conducted and results in 59% correct 
identification for similar instruments. 2 The following conclusions can be drawn. First, 

with the only knowledge of the sustained and quasi-periodic portion of sounds, the 
flute tones are almost never correctly identified (1 out of 30) as opposed to 13 out of 
30 for non-altered samples .3 More importantly, they are confused with instruments 
belonging to the brass family for 20 subjects out of 30. Second, oboe tones have been 

correctly identified by 28 out of 30 students. This can be explained by the fact that 
the oboe is the only double-reed instrument in the database and exhibits a character- 
istic and harmonically rich penetrating tone. Next, one could intuitively expect the 
tenor and alto saxes to have similar timbres, so that confusions would equally spread 
between both of them. However, whereas tenor sax tones were mostly confused with 

2note that these performance are worse than the ones reported in [SSF02J 
3note the listeners low performance in Berger's experiment compared to the one reported by 

Srinavasan (see table 2.1) 
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clarinet for 25 listeners, the alto sax tones were confused with the french horn for 11 

students. The brass instruments were overall mainly confused with instruments from 

the same group. Finally, the alto sax tones attracted most confusions, just as if these 

tones corresponded to an average timbre of the considered set of wind instruments. 

Contrasting with the 59% correct identification for non-altered samples, the tones 

with missing starting and ending portions produced a mean listener score of 35% 

correct. 
By comparing these figures to the ones reported in Srinivasan's experiment, 

the conclusion that correct identification rates are considerably higher when on- 

sets/transient are present can be drawn. This confirms that essential cues for the 

correct identification of musical instrument sounds are conveyed by the attack and 
to a certain extent by the end of tones. 

2.2 Computer models 

The increasing available computer power for both research and end-user applications 
highly contributes to the growth of MIR related systems design. Techniques which 

required extensive computational power such as machine learning algorithms, for 

example, can now run in acceptable and human time-scales. Grey [Gre771 decidedly 

pointed out three decades ago that 

[... ] these recent improvements in timbre research are largely the result of 

technological advances in the use of digital computers [... I 

This is remarkably valid today. He continued by stating 

[... ] which has given the investigator powerful new means for the analysis 

and synthesis of complex, time-variant musical instrument tones [... ], and 
for the analysis and presentation of complex, multi-dimensional data 

structures of the type that may be collected from studying the perception 

of timbre. 

However, the problem of analysing the human timbre perception mechanisms has 
been transposed to the problem of automatically recognising musical instruments, 
ideally in complex mixtures and under a wide variety of acoustic conditions. Modern 

research considers the timbre correlates as features or descriptors that are fed into a 
machine learning algorithm for building an instrument model. 
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A look at the approaches and techniques encountered in the literature reveals 

that researchers in the area investigate several techniques and their possible combi- 

nation to achieve this goal. Incidentally, this plethora of systems sometimes makes 

the problem more complex for the researchers themselves to tackle. Firstly, in terms 

of reproducibility, due to the lack of common databases and the differences in the 

experimental protocols ,4 it is difficult to objectively compare performance between 

systems. Next, in terms of complexity, certain algorithms sometimes involve a tremen- 
dous amount of processing levels (in terms of features or statistical classifiers) thus 
increasing the difficulty to reproduce a system's behaviour. Finally, in terms of the 

a-posteriori interpretation of the results. This is especially valid if one wishes to relate 
the performance of a system to the concept of timbre. The route that is often taken 
in the field is oriented towards systems that perform well as opposed to study the 

perception of timbre and its correlates through the design of computer models. 

2.2.1 But "can one hear the shape of a drum? " 

The task of building systems able to identify musical instruments is embodied in a 

wider and fundamental problem in science: the inverse problem. In 1966, Mark Kac 

asked [Kac66] the following question "Can one hear the shape of a drum? ". Beyond 

this question lays an essential question about the bijectivity between the mechanisms 

of sound production and the observation of the sound spectrum that can be output 
from a microphone. The problem can be stated as follows: given the frequency 

representation of a drum sound, would it be possible to infer the shape of the drum 

at the origin of this sound? The problem can be legitimately transposed in our case to: 

given a frequency representation of a musical instrument sound, would it be possible 
to infer the physical mechanisms that yielded the creation of this sound? A solution, 

even partial, would assuringly help us to solve the musical instrument identification 

problem as characterising the timbre of an instrument corresponds to a certain extent 
to characterise the physical mechanisms of this instrument. 

2.2.2 An ill-posed problem and its algorithmic approximations 

We shall describe here the underlying scope in which research in musical instrument 
identification lies. The two concurrent approaches can be considered: 

  Timbre model: this approach find its direct origins in the study of the mecha- 
nism of perception of timbre by humans and can be seen as a direct algorithmic 

4 such as the length of testing samples or the number of instrument identities, for example 
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transposition. In essence, the multi-dimensional nature of timbre is transposed 

into a multi-feature, multi-descriptor based system which represents the sensory 

information received by the ear and processed at the early stages of the percep- 

tion chain. This multitude of information is then recombined using a machine 

learning algorithm whose task is to mimic to a certain extent the remaining 

process yielding the perception of timbre. 

  Instrument model: indeed, the physical mechanisms yielding the production 

of sound by musical instruments are different by nature. Plucking a string, 
blowing in a saxophone mouth-piece or pressing a piano key involve different 

physical principles. There also exists a taxonomy (see figure 2.1, for example) 

of such physical mechanisms based on their likely similarities that can lead to 

instrument classification. These particularities are undoubtedly carried by the 

signal and at the same time independent of considerations in terms of human 

perception and sensitivity. 

Depending on the chosen approach, the methodologies and techniques that are 

considered are different. The instrument and physical acoustic modelling approaches 

are often too complex to solve so that timbre modelling systems are often preferred. 
However, knowledge in physical acoustics and of the mechanisms of sound production 
by instruments can bring essential clues for the pertinent choice of features to build the 

models from. For instance, several modern techniques in digital signal processing can 
be related to a semi-physical representation of the mechanisms of sound production. 
The linear predictive model, for example, is widely used to model the mechanisms of 

speech production. Its application for musical instrument identification purposes will 
be investigated in chapter 3. 

In the more general context of timbre or texture representation of sound, it can be 

argued that the choice between these techniques is more influenced by the types of 

sounds considered than being solely dependent upon a desired research orientation. 
All musical sounds have a timbre. In particular, modern music makes extensive use 

of electronically generated audio textures, mimicking or not the timbre of acoustic 
instruments. In this case, it becomes difficult to relate a signal with the physical 

mechanisms involved during its creation. 5 The classical timbre modelling approach is 

therefore more appropriate to deal with such musical sounds. A similar reasoning can 
be applied in the case where audio effects are applied to an instrument sound. An 

artificial reverberation effect modifies the signal waveform and spectral characteristics 

5although computer music uses physical modelling principles such as oscillators, modulators, etc 
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in a way that it can become impossible to trace back its physical origins. At another 

extreme, a distortion effect applied to an electric guitar sound radically affects the 

nature of the observation so that almost none of the original characteristics of the 

sound are preserved. 
Amid the various justifications accompanying the choice of either of the two 

approaches, questions about the pertinence of using an algorithm to model complex 

perception mechanisms can be raised. In other words, how difficult is it to a-posteriori 
trace back or infer an instrument identity from a multi-layered system biased at 

several levels? In essence, even if each descriptor is independently meaningful for 

representing one aspect of timbral information, to which extent is it guaranteed that 

the combination of several of these descriptors with such or such machine learning 

algorithm will result in an optimum timbre model? For instance, it can be shown that 

efficient systems are in fact optimised both at the feature and classifier levels. In the 

same vein, the question of whether concatenating feature data with different physical 

units into a single feature vector is more appropriate than independently building the 

models for each feature data can be raised. 

2.2.3 Systems evaluation 

Systems are usually evaluated using sets of audio excerpts representing the considered 

classes of instrument. Databases include recordings from various acoustic environ- 

ments, different brands of instruments and several playing styles. However, these 

precautions does not necessary yield the definition of a ground-truth and an optimum 

system in terms of performance. Each investigator evaluates his system with the 
data sets at his disposal. As a consequence, different systems and their performance 
have to be compared with care as most of the time, the corresponding instruments 
differ from one experiment to another. Moreover, the methodologies used for the 

evaluation procedures are often different. 

Amid the generally acceptable system competences, an ideal algorithm would have 

the following characteristics: 

  Generalisation: generalisation is concerned with the fact that given a system 
trained using a specific dataset, the performance of the algorithm using any 
subsequent unknown data will statistically correspond to what have been previ- 
ously achieved. In other words, it is desirable that the experiments that can be 

conducted closely represents what could be achieved with any other dataset. 
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  Robustness: an ideal system should recognise different instances of the same 

sound as emanating from the same source. Different instances comprises dif- 

ferent recordings conditions, different playing styles and to a certain extent 

different pitches and qualities. 

  Meaningful behaviour: a system is expected to behave in an understandable 

way and as close to human performance as possible, especially in terms of 

confusions between instruments or families of instruments. 

  Reasonable computational requirements: likewise such systems can be eas- 

ily included as a module into wider MIR frameworks without significantly af- 

fecting the responsiveness and latency of the overall structure. Note that the 

computational requirements needed for training the models are not critical since 

this operation is often performed off-line. 

  Modularity: it should be relatively easy to update the models with new samples 

that have been correctly recognised or taken from a complementary database, 

and this at any given time. Likewise, it is is expected that new instruments can 

be added to the system without retraining all the models in the database. 

2.2.4 Limitations 

Ideally, we would like to be able to characterise and recognise all the instruments 

or sources in poly-timbral mixtures and complex music pieces. Moreover, just as 

humans can do, an ideal system should be able to retrieve the number of sound 

objects present in the signal, their identities6, as well as to segment in time a piece 

of music in accordance with the presence or not of each source. Figure 2.3 illustrates 

what an ideal musical instrument identification system would achieve. 
However, such problem is complex and difficult to tackle. In contrast to the other 

components of sounds, timbre is not carried by a salient and identifiable acoustic 

property of a signal. Further, in contrast to rhythm, which can be related to the 

organisation in time of series of energy bursts, or pitch, harmony and melody which 

can be directly related to the signal's frequency composition, timbre can only be 

related to a multitude of physical characteristics whose precise contributions to the 

whole are unclear. 
6note that humans are still able to discern between sound objects, even if their labels or identities 

are not precisely known 
7by rhythm, we mean the calculation of a beat/tempo, knowing that the problem of retrieving 

the rhythm for non-percussive pieces is much more complex to tackle 
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Figure 2.3: An ideal musical instrument identification system. 

A piece a music can be seen as a mixture of several mono-timbral signals. The 

problem of separating a mixture into the original sources from its only consideration 

is difficult to tackle. Several approaches and techniques are dedicated to the source 

separation problem. However, in the case of a single observation (also known as 

one microphone source separation), only techniques setting priors on the signal com- 

position and structure have been shown to give exploitable results. In the case of 

stereo signals, DUET-type algorithms [YR04] can be successfully employed under the 

constraint of dealing with linear instantaneous mixtures. However, these techniques 

introduce artifacts8 in the separated signal thus limiting their use as a front-end to a 

musical instrument identification system. In figure 2.4 is depicted the diagram of a 

complete system using a source separation algorithm as front-end. 

For these reasons, current research for musical instrument identification in poly- 

phonic mixtures tends generally to avoid the use of source separation algorithms. 
Several systems are reported to use feature binary masks [EB04], or simply to build 

models of instrument mixtures. In this case, each considered class and their cor- 

responding models consists of a mixture of timbres. Although their use in concrete 

applications is possible, one should note that systems' complexity is growing exponen- 
tially with the number of instruments since all possible combinations of pairs, triplets, 

or more of instruments have to be considered. More specifically, these techniques can 

address problems of classifying jazz trios, quartets and other small musical formations 

[ERDa]. 

Finally, a common point for almost all supervised systems is that it is impractical to 

8research in the field focuses mainly on the increase of intelligibility rather than on the conser- 
vation of the timbral information 
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Figure 2.4: Musical instrument identification system using a source separation module as front-end. 

build models for all available instruments or all available timbres in order to recognise 

any possible components in any random musical piece. Again, in contrast to pitch 

or rhythm that are independent of the nature of the source, timbre characterises the 

source itself. This intrinsically sets the limit on the universality of the supervised 

approach. 

2.2.5 Applications 

Automatic audio source identification systems can provide interesting modules for 

MIR systems. In terms of classification, they have great potential for use in database 

search interfaces: retrieving pieces of music containing a given instrument, looking 

for similarities in different musical extracts or classifying pop songs in accordance with 

the lead singer voice are few examples of possible applications. 
The standardised MPEG-7 musical description format [Cas02] defines a number of 

competences that a system should have for describing any kind of sound file or sound 

stream. Through the use of metadata or tags, the content of sound can be described 

in a humanly readable way. These informations can then be used to manipulate, 

organise, classify and retrieve sounds from databases. One of these applications is 

directly related with timbre. For example, it is desirable to automatically determine 

if at a given time, a given instrument is played or not. In a more general framework, 

web-based search engines can be developed to retrieve music that sounds the same or 
to recommend users with similar music in a given style. Metadata-based applications 
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can be used for multitude of purposes, provided that the tags can be extracted in an 

automated and robust manner. 
Another important aspect is concerned with assisted data labelling. MIR systems 

are often prone to errors. By using user feedback, a musical instrument identification 

system could be used to assist the user during a hand-labelling operation of songs 

and music pieces. 
Musical instrument identification systems are in essence very similar to the ones 

that have been developed for speaker verification purposes. A direct extension of this 

work is concerned with artist classification using singing voice information. Examples 

of such approaches can be found in [KW02] and [OPGB05] using source-adapted 

source separation algorithms. 
For compression and low-rate object-oriented coding purposes, one could think 

about designing a system that could automatically adapt a compression algorithm 

to the timbral nature of the signal being played. Furthermore, under the condition 

of having developed a timbre model, high-level object coding algorithms could allow 

encoding high-level musical information, such as pitch, loudness and timbre, which 

are then reconstructed at the receiver end. 
Beyond the design of musical instrument identification systems, numerous appli- 

cations in audio related fields can be envisaged. As artistic and compositional tools, 

such systems can be used to evaluate similarities between sounds in order to drive au- 

tomatic accompaniment systems for live electro-acoustic and electronic performances. 
In this particular case, the process is not aimed at identifying instruments precisely 
but to classify sounds by groups according to their timbral similarities. 

2.3 Existing approaches 

Automated systems for identifying musical instruments started to be developed in the 
late nineties. Since then, a great deal of research has been carried out on the topic. 

Most of the techniques presented here belong to the class of supervised learning, 

where the purpose is to derive rules from an existing labelled dataset to classify 

one unknown sample. In essence, the identities of the instruments as well as some 

characteristic sounds are known a-priori. The aim is to infer from the available pairs 
labels/sounds a mathematical relationship whereby one unknown sample, after the 
identification process, will be assigned a label taken from the database. 

In table 2.4, typical performance for six systems are reported. As can be drawn 

from their analyses, problems arise when one tries to compare the percentages. Con- 
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System Correct Identification Number of instruments 

Marques [MM99] 70.0% 8 (0.2 seconds test) 
83.0% 8 (2 seconds test) 

Brown [Bro99] 94.0% 2 
Brown [BHM01] 84.0% 4 
Martin [MK98] 71.6% 14 
Agostini [ALP01] 92.8% 27 

95.3% 20 
Essid [ERD04] 79.1% 10 

Table 2.4: Recognition performance for six systems using mono-timbral excerpts. 

sidered instruments, their number and the duration of the audio samples used for 

the training and testing are usually different. Implementation of the feature extrac- 
tion function and/or the classifier may also differ from one system to another. This 

obviously affects the objectivity of number to number comparisons. 
However, general trends in the system's behaviours can be exploited and used for 

the design of new classification algorithms. Cross-comparison with experimental stud- 
ies on timbre perception, both in terms of correct instrument and family identification 

rates also contributes to evaluate the performance of a system. 
For clarity purposes, the existing approaches will be grouped depending on their 

orientation. As a result, descriptor-based modelling and instrument modelling tech- 

niques will be distinguished. State of the art systems in mono-timbral instrument 

recognition use solo recordings of sustained isolated notes or excerpts extracted from 

melodic phrases. 

2.3.1 Descriptor-based modelling 

Descriptor-based modelling systems include a feature extraction module. This stage 
is concerned with the choice and calculation of relevant acoustic features used to 

model the timbre of a sound. These features are then fed into a machine learning 

algorithm to obtain a condensed and representative model of each class. The types 

of extracted features clearly reflect the conclusions drawn from studies on timbre 

perception. Within this type of algorithms, one can encounter mono-feature systems, 
multi-feature systems and data-mining approaches. 
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2.3.1.1 Mono-feature systems 

In mono-feature systems, one single type of feature is retained to build the instrument 

models. Although it can be argued that timbre cannot be efficiently modelled by 

one type of feature, these systems allow a better understanding of the interaction 

feature/classifier. 

Brown [Bro99] used speaker recognition techniques for classifying between oboe 

and saxophone. Using cepstral coefficients based on a constant-Q transform, 94% 

correct identification was reported. In a later study [BHM01], her system classified 
between oboe, saxophone, flute and clarinet. The most successful feature set was the 

frequency derivative of 22 constant-Q coefficients measuring the spectral smoothness. 
A performance of 84% correct identification was reported using a standard GMM 

classifier. In [MM99], Marques described a system capable of recognising between 8 

different instruments (bagpipes, clarinet, flute, harpsichord, organ, piano, trombone 

and violin). Using 16 Mel Frequency Cepstral Coefficients (MFCC) and a Support 

Vector Machine (SVM) as classifier, 70% correct identification was reported for 0.2 

second test samples and 83% for 2 seconds audio samples. Krishna [KSO4] studied the 

use of a particular set of linear predictive coefficients, the Line Spectrum Frequencies 

(LSF). 9 Using a mixture of 54 Gaussians, performance of 87.3% can be achieved for 

the classification of one excerpt among 14 instruments. It has been further shown 

that the LSF performed better than the MFCC for a similar task. Eggink [EB031 first 

evaluated the performance of a technique designed to identify instruments in artificial 

poly-timbral mixtures. Prior to feature extraction, the fundamental frequency fo is 

calculated. A binary mask is then determined to select spectral descriptors based on 
the overtones frequencies. With this system, average instrument identification for 

tones extracted from the McGill database [0W87] was 66% for 5 instruments, the 
flute, the clarinet, the oboe, the violin and the cello. 

2.3.1.2 Multi-feature systems 

Multi-feature systems are a direct extension of the multi-dimensional aspects of tim- 
bre. In this approach, timbre is modelled by a mixture of spectral, harmonic and 
temporal descriptors. 

In [MK98], Martin used a large set of 31 features including the pitch, spectral 
centroid, attack asynchrony, ratio of odd-to-even harmonic energy (based on the 
first six partials) and the strength of vibrato-tremolo calculated from the output of a 

9although using the same type of feature, Krishna's work and the one presented in this thesis 
have been independently carried out 
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log-lag correlogram. A kth Nearest Neighbours (k-NN) classifier was used within a 

taxonomic hierarchy after having applied a Fischer discriminant analysis [McL92] on 

the feature data set in order to reduce the required number of training samples. For 

1023 isolated tones over the full pitch range of 14 instruments, 71.6% correct accuracy 

for the identification of individual instruments has been reported. Agostini described 

in [ALP01] a system using the mean and the standard deviation of 9 features derived 

from a STFT, including the spectral centroid, spectral bandwidth, harmonic energy 

percentage, inharmonicity and harmonic energy skewness. The three last parameters 

were calculated for the first four partials. The best results have been achieved using a 

Quadratic Discriminant Analysis (QDA) classifier (92.8% for 27 instruments and the 

maximum 95.3% for 20 instruments), followed by a SVM (69.7% for 27 instruments), 

a Canonical Discriminant Analysis (CDA) (66.7% for 27 instruments) and finally a 
k-NN classifier (65.7% for 27 instruments). 

2.3.1.3 Data-mining approaches 

These techniques consist of optimising a whole system both at the feature and clas- 

sifier levels. In essence, a consequent number of features is extracted from the wave- 
forms. Next, the principle is to maximise the system's performance in terms of correct 
identification rates by selecting, for each class, the feature set allowing the best dis- 

crimination between the other classes in the database. These approaches usually 

involve iterative and trial-and-error procedures. 
Fujinaga [Fuj98] used a Genetic Algorithm (GA) to select the best feature set 

among 352 descriptors. These descriptors consisted of spectral statistical moments 

extracted from steady-state segments of musical instrument tones. He then used a 
GA to find an optimum set of feature weights to build the models. His system allowed 
50.3% of correct classification of one unknown tone among 39 instruments. In the 

same vein, Peeters ([PeeO3], [PR03]) used a feature selection technique based on the 

maximisation of the Fisher discriminant ratio in a GMM framework. It has been shown 
that performance can be increased by 15% for the identification of one isolated note 

among 28 instruments. Next, Essid [ERD04] explored the use of class-pairwise feature 

selection techniques [HT98], the principle being to automatically select the feature 

set among a large amount of descriptors that optimally discriminates between each 

possible pair of instruments. In [ERD04], a GMM was used to build the instrument 

models from the selected features. Between 77.8% and 79.1% correct identification 

were reported using a one vs one classification scheme as opposed to 73.9% when 
the classical maximum a-posteriori (MAP) rule was used. More recently, a system 
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using Support Vector Machines (SVM) has been described in [ERDb] that helped to 

improve the performance up to 92% for test samples of 5 seconds. 

2.3.2 Instrument modelling 

These techniques put the emphasis on the learning of characteristic properties of 

sound production by musical instruments. Starting from a mathematical assumption 

about the signal content, the process consists of adapting this model to a training set, 

evaluating the relevant parameters during a training stage and using it to identify new 

excerpts. As an example, a log-power spectrum plus noise model in an independent 

subspace analysis framework has been used in [VR04]. In [VR04], it is assumed 

that instruments can play a finite number of notes lying on a semitone scale. The 

short-term log-power spectra are represented as a non-linear sum of weighted typical 

notes spectra plus background noise. Training the models using isolated notes, 90% 

correct identification has been achieved for a database of 5 instruments and for testing 

samples of 5 seconds extracted from commercial recordings. 
Other approaches are concerned with acoustic features extracted from the am- 

plitude envelope (e. g. attack time and energy) or from the output of a sinusoidal 

analysis stage (e. g. partial frequencies and amplitudes, harmonicity or inharmonicity 

factors [Jen02] [RW82]). However the difficulty to accurately attain these features 

from realistic recordings such as melodic phrases limit the extension of these models 
for the classification of large musical databases. 

2.4 A mixed approach 

Mixed models combine the two approaches described in section 2.3.1 and 2.3.2. On 

the one hand, a prior is set on the mechanisms of sound production and on the sig- 

nal structure, whereas on the other hand, features are extracted and used to build 

the models. As an example, the use of synchronous and asynchronous deviations 

of the phase of the partials for instrument identification purposes is investigated in 
[DR02]. It is suggested that these features may help to distinguish between instru- 

ments or families of instruments. The techniques presented in this thesis belong to 
this category. 

In this section, a computer implementation of the formant theory of timbre is 

proposed. A complete framework for identifying and classifying musical instrument 

sounds is described. The process yielding the building of instrument and database 

models is decomposed into three distinct processing layers. We suggest that this 
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Figure 2.5: Schematic diagram of the system. Three processing layers yielding the building of 
instrument and database models. 

approach preserves the consistency between physical and perceptual aspects of timbre. 
A schematic diagram is given in figure 2.5. 

2.4.1 Modelling the formant structure 

Our approach relies on the fact that spectral envelopes and formant structures can be 

estimated using linear predictive models. In chapter 3, it is described how this model, 

widely used for modelling the mechanisms of speech production, can be transposed 

to the case of sounds created by musical instruments. 

Drawing knowledge from research in speech coding, the use of a particular set of 
linear predictive coefficients, the Line Spectrum Frequencies (LSF) is investigated in 

a musical instrument identification context. It is argued that the localised spectral 

sensitivity and inter-frame correlation properties they exhibit can serve to determine 

characteristic spectral shapes for each instrument in the database. Following the 

principles of the formant theory of musical timbre described in section 1.3.1.3, it is 

argued that these characteristic spectral shapes can serve to uniquely characterise 

musical instruments. 

The principle behind a mono-feature system is that timbre mostly depends on one 
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type of acoustic information. This approach has clear origins within the speech com- 

munity and more particularly the speaker identification/verification field. Its use can 
be justified by the fact that the mechanisms of speech production across speakers are 

similar. However, this is not totally valid for musical instruments since the physical 

mechanisms of sound production by musical instruments differ from one source to an- 

other. Nevertheless, musical tones share common characteristics, especially in terms 

of harmonicity and spectral energy distribution so that it can be argued that a single 

type of feature might be able to capture at the same time global and salient timbre 

properties across sounds. Early research works in musical instrument identification, 

such as the one presented in [Bro99] explicitly used speaker verification techniques 

to identify mono-timbral recordings. 
It has been mentioned in section 1.3.1.5 that the timbre of an instrument depends 

to a certain extent on the pitch. It can therefore be argued that a pitch dependent 

information is carried at the feature level. For this reason, we propose to use the pitch 

as a prior for both the instrument modelling and identification phases. The principle 
is to build instrument models for two frequency registers. 10 The strategy is applied 

at the database level. Corresponding experiments are summarised in section 5.5. 

Experimental research works on timbre perception highlighted the importance of 
temporal properties in the identification of sounds by humans. As the uniqueness 

of the spectral envelope cannot be absolutely guaranteed, particularly when dealing 

with instruments belonging to the same family, the ear often relies on information 

carried by the attack and onset of sounds. As a consequence, the consideration of 
temporal features in automatic identification systems can be envisaged as means to 
include such signal characteristics into the models. These aspects will be covered in 

detail in section 3.3 where an overview of the available techniques for incorporating 

temporal descriptors in the systems is given. 

2.4.2 Perceptual cues 

The perception and interpretation of timbre rely on the low-level processing that takes 

place in the ear. For this reason, it can be argued that the consideration of psycho- 
acoustic knowledge would better fit the mechanisms of sound perception. Another 

contribution of our research is to propose a perceptually-motivated analysis/synthesis 
sinusoidal model that can be used prior to feature extraction stage. After having 

recalled the principles of analysis/synthesis sinusoidal model, we describe in section 

10all throughout this thesis, the term register will be used to specify different frequency bands, 
independently of any musical connotations 
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3.5 how the ISO/MPEG psycho-acoustic model described in appendix A can be used 

to select relevant partials in the spectra. A psycho-acoustic version of the LSF, the 

Perceptual LSF (PLSF) is introduced in section 5.7. 

2.4.3 Building instrument and database models 

Numerous techniques for data learning and classification problems are encountered in 

the literature. The use of three machine learning algorithms is investigated in chapter 

4. Each of them corresponds to a particular interpretation of the overall modelling 

process, namely identification and classification. 
The first one consists of learning characteristic feature vectors for each instrument 

in the database using a K-means algorithm. A minimum distance measure is then 

used to classify an unknown excerpt among the instruments in the database. Details 

about this approach are provided in section 4.2. In contrast to this deterministic 

method, probabilistic classification can also be considered through the use of Gaussian 

Mixture Models (GMM) in which the feature space is continuously partitioned. GMM 

are introduced in section 4.3. These two methods will be used to build instrument 

models. 
Support Vector Machines (SVM), which have found recently numerous applica- 

tions for data classification problems, are described in section 4.4. They will be used 

to build database models. 

The processes of determining characteristic spectral shapes for each instrument 

using K-means and GMM on the one hand and classifying spectral envelopes on the 

other hand are illustrated in chapter 4. 

Chapter summary 

Experimental results assessing experienced listeners' ability for the task to identify 

musical instrument notes have been summarised in section 2.1. Conclusions suggested 
that human identification rates are lower than expected. Previous research showed 
that onset and attack segments of notes were particularly important for the distinction 

between instrument sounds. 
In section 2.2, principles of computer models and algorithms for musical instru- 

ment identification have been introduced. Examples of application of these systems 
have been given. Several systems encountered in the literature for identifying and 

classifying orchestral musical instruments sounds have been presented in section 2.3. 
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The problem has been defined from two angles: the descriptor-based approach and 

the modelling of the mechanisms of sound production. 
Finally, we proposed in section 2.4 an approach to tackle the problem of identi- 

fying and classifying musical instrument sounds. The system is composed of three 

processing layers: parametric modelling, acoustic timbral descriptor extraction and 

machine learning algorithms. We suggested that this approach preserves the con- 

sistence between physical and perceptual aspects of timbre. Further, the distinction 

between instrument and database models has been made. 



3. Acoustic timbral descriptors 

In this chapter, the acoustic descriptors used in our system are detailed. The task 

of extracting acoustic timbral descriptors from the waveforms is addressed from two 

complementary perspectives. 
The first approach is concerned with a direct computer implementation of the for- 

mant theory of timbre. In section 3.2, the linear predictive model of sound production 
is considered as means of modelling both spectral and formant structures of sound. 
Specifically, the use of a particular set of features, the Line Spectrum Frequencies 

(LSF), is investigated in a musical instrument identification context. 
The perception and interpretation of timbre rely on the low-level processing that 

takes place in the ear. For instance, it has been highlighted in section 1.1 that the 

ear frequency response was not linear along the amplitude and frequency scales so 

that raw acoustic features extracted from the signals might not exactly correspond 
to what exactly the ear perceives. For this reason, it can be argued that the con- 

sideration of psycho-acoustic knowledge would better fit the mechanisms of sound 

perception. In this second approach, we propose to include perceptual principles at 

the feature extraction level. In section 3.5, after having recalled the definition of the 
Mel-Frequency Cepstral Coefficients (MFCC), we propose to calculate features after 

a psycho-acoustic masking determined using the ISO/MPEG model [ISO] is applied 

on the signal. 
These two approaches offer complementary points of view to the problem of iden- 

tifying musical instruments. On the one hand, the first approach focuses on the 

retrieval of physical principles of sound production and signal composition so that 

psycho-acoustics does not influence the process of discriminating between instrument 

textures. On the other hand, including psycho-acoustic considerations at the fea- 

ture level offers a realistic computer implementation of the mechanisms of sound 

perception by humans. 
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3.1 Acoustic front-end 

A non-negligible advantage in the identification of musical instrument sounds over 

speech sounds is that corresponding recordings are often noise-free. Current research 

for real-life speaker identification and verification applications focuses on the control 

of background noise introduced by the surrounding environment or the distortion in- 

troduced by ordinary microphones such as the ones encountered in mobile phones. 
Systems able to identify a speaker in clean, homogeneous and dry acoustic environ- 

ments yield excellent performance. 
For musical signals, the problem is posed in other terms since musical recordings 

are generally high-quality audio signals. However, the various electronic processing 

chains used in recording studios introduces significant alterations that are carried 
by the acoustic features. Differences in microphones and room frequency responses 

or in the type and amount of audio effects that can be added as post-processing 

can make the sounds of a particular musical instrument have rather different feature 

distributions. Although being two realisations in sound of the same instrument, these 

differences can affect the generalisation power of the models to the point of resulting in 

an unusable system [LR03]. Obviously, this problem is mostly tackled by the machine 
learning algorithm which, under the constraint of having a reasonable amount of 

the various sounds that an instrument can create will generally produce models with 

reasonable robustness properties. 
Various channel normalisation techniques are used prior to the feature extraction 

stage. Their role is to normalise different audio recordings by attenuating any bias 

that could be introduced by different microphones or recording conditions. A simple 

example is concerned with the amplitude normalisation of waveforms prior to the 

analysis in a way that signal energies lay in similar ranges. Similarly, eventual DC- 

bias that can be introduced by the recording electronic chain can be removed by 

subtracting the long-term mean from the signal or by applying a high-pass filter. 

A typical pre-processing chain commonly used in audio signal analysis is depicted 

in figure 3.1. Note that the pre-emphasis block aimed at increasing the relative 

contribution of the high frequency content is optional. However, it is commonly used 
before a linear predictive analysis is applied on the signal. 

Audio signals can be considered as stationary over short periods of time. This is 

due to the physical principles involved in the mechanisms of sound production, for 

example in speech, and to the nature of the human/instrument mechanical interac- 

tion, for example in music. In practice, it is typical to consider frames of 30-40 ms 
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Figure 3.1: A typical pre-processing chain composed of a DC-removal, amplitude normalisation and 
pre-emphasis blocks. 

in duration for the analysis. Furthermore, an overlap of 5-20 ms between adjacent 

analysis windows can be used to accurately capture the signal physical properties' 

evolution with time. 

After the pre-processing stage, features are calculated within each frame. The 

grouping of all these descriptors constitute the observation and is used as input to 

the machine learning algorithm. 

3.2 Spectral envelope descriptors 

The spectral characteristics of audio signals remain the foundation of the understand- 
ing of musical sounds by humans. The harmonicity or inharmonicity degrees and the 

spectral envelopes are examples of features attainable from the calculation of the 

short-term spectral energy distribution. 

In this section, the emphasis is on the modelling of spectral envelopes and formant 

structures. After having recalled the theoretical principles of the linear predictive 

model, principles yielding the calculation of the LSF are detailed. The inter-frame 

correlation and localised spectral sensitivity properties they exhibit are highlighted. 

3.2.1 The Linear Predictive (LP) model 

The linear predictive model is widely used to represent the mechanisms of speech 

production and is fundamental in the design of speech compression algorithms. Its 

theoretical principles are described in this section. 

3.2.1.1 Theoretical principle 

In the linear predictive model [MG76], each current sample of signal s(n) is estimated 
or predicted from the p previous weighted samples as: 

P 
"(n) _ ais(n - ti) 

i=1 
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where 9(n) is the estimate and p the order of the prediction. 
The prediction error or residual signal which is the difference between the original 

sample value and its prediction can be mathematically written as: 

P 
e(n) = s(n) - s(n) = s(n) -L ais(n - i) (3.1) 

i=1 

The principle behind Linear Predictive Coding (LPC) is to determine the order p 

and the set of coefficients ai in order to minimise the energy of the prediction error 

e(n). 
By calculating the Z-transform of the expression 3.1, the transfer function A(z) 

of a system taking as input the signal s(n) and outputting e(n) can be obtained. 

Mathematically, 

P 
E(z) = m[e(n)] = . 

T[s(n) -E ais(n - i)] 
i=1 

P 
= S(z) - S(z) L aiz-' 

i=1 
P 

= S(z)(1- E aiz-) = S(z)(1- P(z)) (3.2) 

i=1 

Defining the transfer function as follows: 

A(z) = 
T- 

, (3.3) 

it finally comes: 
P 

A(z) =1- P(z) = 1- > aiz-` (3.4) 
i=1 

P(z) is called the predictor filter, A(z) the inverse linear predictive filter, or 

whitening filter and e(n) the prediction error or residual signal. The filtering operation 
is depicted in figure 3.2. 

"(n) A(z) e(n) 

Figure 3.2: Inverse LP analysis filtering. A(z) is the frequency response of a FIR filter whose 
coefficients are determined in order to minimise the energy of the residual signal e(n). 
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3.2.1.2 Determination of the filter polynomial coefficients 

In this section, we present the technique known as the "autocorrelation LPC" method 

for calculating the filter polynomial coefficients. The analysis is performed on a frame 

basis by considering segments of a few tens of milliseconds in duration. 

The optimum set of coefficients {aj}ti=1,..., p is the one that minimises the energy 

of the residual for each considered frame, and for a given prediction order. This can 

be performed by setting the partial derivatives of the energy of the residual E for the 

whole frame of length N 

N-1+p 
E_E e2(n) 

n=0 
p2 

_ s(n) -> ajs(n - i) 

n i=1 
with s(n - i) =0 if n-i<0 

with respect to aq to zero. In other words, 

DE 
öa; - 0, i=1,.., p 

Subsequently, 

OE 
= 2E s(n)+ ats(n-i) s(n-j) äai 

i 

=2 
ýs(n)s(n-j)+EaiEs(n-i)s(n-j) 

=0, i, j=1,.., p 
n{n 

which can be rewritten as: 

Z s(n)s(n - j)+ E ai E s(n - i)s(n - j) =0 (3.5) 

n{n 14 

The first term in Eq. (3.5) corresponds to the short-term cross-correlation co- 

efficients while the second term represents a shifted version of the cross-correlation. 
Defining 

Rj =E s(n)s(n -j= it 
..., p 

n 

1 R2_j = Es(n-i)s(n-j), i, j = 1,..., p 
n 
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Eq. (3.5) can be rewritten 

Rj+ E aiR(i - j) =0 

This defines a set of equations known as the Yule-Walker equations. It can be 

written in a matrix form: 

Ro Rl ... RI, -1 al Ri 

R1 

R1 
RP-1 R1 Ro an Ra 

In order to calculate the vector a= {ai}i=1,... 
'p, 

the Toeplitz matrix R has to 

be inverted. This can be performed by using a Gaussian elimination decomposition. 

However, several efficient algorithms such as Durbin or Levinson-Durbin are often 

preferred [MG76]. 

3.2.1.3 A basic model of sound production 

The linear predictive model is widely used for modelling the mechanisms of speech 

production. A simplified model of sound production is depicted in figure 3.3. In 

this model, the all-pole frequency response of the IIR filter H(z) = 1/A(z) models 

the vocal tract transfer function while the residual signal e(n) represents the glottal 

excitation. 
In the basic model of speech production, the excitation is modelled either by an 

impulse train at period To if the frame is considered voiced, or by a white noise if 

e(n) H(z) ä(n) 

Figure 3.3: A simplified model of speech production. The excitation e(n) obtained after filtering by 
A(z) is modelled either by an impulse train, either by a random sequence, depending on the voiced 
or unvoiced nature of the frame. The modelled excitation is then fed to the synthesis filter H(z) to 
create the synthesised frame of signal s(n). 
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the frame is unvoiced. This implementation is used in very low-bit rate coders such 

as the LPC-10 [Tre82] which encodes a8 kHz sampled speech signal at 2.4 kbits/s. 

Although such implementation produces low-quality speech due to the simple form 

of the modelled residual, most modern speech coders use in one way or another the 

linear predictive technique, primarily for redundancy reduction purposes. 
The effects of LP analysis filtering for both voiced and unvoiced speech frames are 

illustrated in figure 3.4. A 12th order linear prediction has been applied in both cases. 
Note that after filtering, the spectra are flattened. The effect is more pronounced 
in the case of the voiced sound (figure 3.4(a)) which exhibits a clear formant struc- 

ture. Note that the time-domain residual signal (figure 3.4(a)(iii)) exhibits regularly 

spaced impulses corresponding to the glottal excitation. The time-period between 

two impulses corresponds to the fundamental frequency value of the sound. For this 

reason, it is said that the linear predictive technique can be used to deconvolve from 

speech signals the respective contributions of the excitation and the vocal tract. Note 

also that the frequency response of the LP synthesis filter gives an accurate estimate 

of the signal's formant structure (figure 3.4(a)(ii)) and short-term high-pass spectral 

envelope (figure 3.4(a)(iv)). 

In figure 3.5 is illustrated the effect of the LP analysis for two musical instrument 

sounds, the flute and the clarinet. The frames have been extracted from steady-state 

portions of isolated notes. A 12th order linear prediction has been applied. Similarly 

to the case of speech, the spectra are flattened after filtering. Note the clear formant 

structure these two instrument sounds exhibit. Observe also the noisy nature of the 

two time-domain residual signals (figures 3.5(a)(iii) and 3.5(b)(iii) respectively) in 

contrast to the speech voiced sound residual signal shown in figure 3.4(a)(iii). 

3.2.2 The Line Spectrum Frequencies (LSF) 

Several features are directly or indirectly derived from the linear predictive filter poly- 

nomial coefficients. It can be distinguished the PARCOR (PARtial CORrelation) or 

reflection coefficients corresponding to intermediary variables in the calculation of 
the filter polynomial coefficients using the Durbin-Levinson algorithm. They also 

correspond to the ratio between adjacent sections in the tubular model of speech 
production mechanisms [Ca100]. 

A particular set of linear predictive coefficients, the Line Spectrum Frequencies, 
derived from the Line Spectrum Pairs, have been introduced by Itakura [Ita75] for 

efficient scalar and Vector Quantisation (VQ) of the short-term spectral envelope 
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Figure 3.4: Inverse LP filtering and spectral flatness. Illustration for (a) voiced and (b) unvoiced 
speech frames. The prediction order is p= 12. Spectral envelope estimates using linear predictive 
analysis are represented by dashed-lines. Plots (i) and (ii) are the original time-domain frames and 
their corresponding magnitude spectra respectively. Plots (iii) and (iv) are the residual time-domain 
signals obtained after filtering and their corresponding spectra respectively. After filtering (iv), the 
short-term correlation between samples is removed and the spectra are flattened. 
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Figure 3.5: Inverse LP filtering and spectral flatness. Illustration for two (a) flute and (b) clarinet 
frames extracted from steady-state portions of sounds. The prediction order is p= 12. Spectral 
envelope estimates using linear predictive analysis are represented by dashed-lines. Plots (i) and (ii) 
are the original time-domain frames and their corresponding magnitude spectra respectively. Plots 
(iii) and (iv) are the residual time-domain signals obtained after filtering and their corresponding 
spectra respectively. After filtering (iv), the short-term correlation is removed and the spectra are 
flattened. 
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Figure 3.6: Distribution histogram for 12 LSF parameters calculated from 2 minutes of monophonic 
recordings. (a) cello, (b) clarinet, (c) flute and (d) piano. 

parameters in speech coders [PA93]. Their use in a musical instrument identification 

context constitutes one of the foundations of our approach. 
We recall that in a source-filter configuration, the short segment of a signal is 

assumed to be generated as the output of an all-poles filter H(z) = 1/A(z), where 
A(z) is the inverse filter given by: 

A(z) =1+ alz-1 +... + apz-p, (3.6) 

where p is the order of the LPC analysis and {ai}i=1,..., p the filter coefficients. 
The Line Spectrum Pairs (LSP) are the roots of two polynomials P(z) and Q(z) 

defined as: 

P(z) = A(z) + z-P+lA(z-1) 
Q(z) = A(z) - z-P+1A(z-1) 

(3.7) 

Assuming that H(z) is a stable filter, it can be shown that the roots of P and Q 

lie on the unit circle, are interleaved, distinct and that exactly two of the zeros are 

at +1 and -1. Their corresponding angular frequencies are called the Line Spectrum 

Frequencies and lie in the range ]0 7r[. Representing at the same time the short-term 
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Figure 3.7: Magnitudes of the STFT, LP filter frequency responses, and LSF representations (vertical 
dashed lines) for two frames of steady-state segments of (a) flute and (b) clarinet sounds having 
similar pitches. Note that two close LSF values characterise a peak in the spectra. 

spectral envelope and energy distribution, it can be assumed that the LSF are good 

candidates for modelling the spectral envelopes and formant structures of sounds. A 

computationally efficient algorithm to calculate these roots using Chebyshev polyno- 

mials is provided in [KR86]. 

Figure 3.6 shows the distribution of 12 LSF parameters that have been extracted 
from two minutes of monophonic recordings for four instruments, the cello, the clar- 
inet, the flute and the piano. It can be noticed that the coefficients are ordered along 
the frequency axis - the range ]0 7r[ has been mapped to a frequency scale in Hz 

- and their respective distributions exhibit characteristic bell shapes. In figure 3.7 

are shown two short-term spectra (flute and clarinet) with their corresponding LP 

spectral envelope representations for a prediction order p= 12. On the other hand, 

the LSF are represented by vertical dashed lines. Note that two close LSF parameters 

characterise a formant in the spectra (they are shown in bold-dashed lines) and that 

the closer the LSF values, the stronger the peak amplitudes. 
Another interesting property of the LSF is the strong inter-frame correlation they 

exhibit. This inter-frame correlation is illustrated in figure 3.8 where a melodic clar- 
inet excerpt is considered. The time-domain signal is shown on top. The frequency 

responses of H(z), that have been determined using a 12th order linear predictive 
analysis, are plotted at the bottom in vertical lines. The corresponding LSF repre- 
sentations are plotted on the same graph in horizontal dashed lines. Observe the 
formant with the lowest frequency at t -_ 0.3 s and note how the spaces between its 

associated pairs of LSF coefficients shrink as the amplitude of the peak increases. 

Frequency (Hz) 
(b) Clarinet 
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Figure 3.8: Clarinet melodic phrase excerpt time-domain representation (top), spectral envelopes 
estimated using a 12th order linear predictor (vertical lines) and corresponding LSF representation 
(horizontal dashed lines) as a function of time (bottom). Note at t rs 0.3 s how the spaces between 
pairs of LSF coefficients shrink as the amplitude of the peak with the lowest frequency increases. 

3.3 Temporal features 

This section is concerned with temporal descriptors. They have been shown to be 

important timbre correlates in sections 1.3.1.4 and 2.1.2. 

Following early perceptual experiments conducted by Berger [Ber63], recent re- 

search works [Ero0l] [ELR+05] attempted to evaluate the importance of temporal 

signal properties in the identification of sounds by machines. It is a fact that the 

onset of a hammered or plucked string note is different in nature than that of a 
flute, for example, so that intuitively, extra-information about the signal temporal 
behaviour can be considered to better model the signal's characteristics and therefore 

to improve the system's performance. 
In [Ero0l], several cepstral features derived from linear predictive coefficients have 

been studied in parallel with time-related features. The transient/steady-state sepa- 
ration was performed using an energy-based criterion. More precisely, it was assumed 
that the steady-state began when the signal energy reached its average RMS-energy 
level for the first time. This way, two sets of features could be extracted from both 

types of signals. It was found that 12 MFCC extracted from the steady-state portions 
of isolated tones performed slightly better than the same features extracted from the 
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onset database: a rough 4% increase in average performance was observed for the 

task of identifying one excerpt among 29 instruments. 
In [ELR+05], musical phrases extracted from commercial recordings were consid- 

ered. The segmentation transient/steady-state was performed using two onset de- 

tection algorithms [BDA+05]. The strategy first consisted of classifying frames into 

two databases as a function of their transientness degree [ELR+05]. Next, a large 

amount of features was extracted from the resulting datasets. For each database, a 
feature selection algorithm based on Fischer's Linear Discriminant Algorithm (LDA) 

has been used together with a pairwise classification strategy. For each database, the 

set of 40 features discriminating the best between all possible pairs of instruments 

was automatically selected. Using an average class separability criterion, it has been 

found that features selected from the databases of transient signals yielded a better 

discrimination power than the ones extracted from non-classified and non-transient 
databases respectively. However, when applied to a practical classification problem, 

the segmentation transient/non-transient prior to feature extraction/selection stage 
did not show any significant improvements in terms of average correct classification 

rate. 
In these two experiments, the non-improvement in terms of correct identification 

rates can be explained as follows. Non-transient (i. e. stationary) segments are often 
longer in duration than transient segments. Assuming that the sustained portion of 

a note has consistent and homogeneous characteristics, the features extracted from 

non-transient signals are in fact redundant over several temporal windows. They result 
therefore in statistically insignificant information - since non-novel - for building the 

models. In contrast, transient signals are shorter in duration and different by nature. 
Added to the fact that the onset detection algorithm is prone to errors and may 
therefore considers stationary signals as being transient, it can be argued that the 

resulting transient database is in fact a non-redundant snapshot of the non-segmented 
database. Thus the non-improvement in terms of correct average identification rates. 

It can further be noticed that the use of automated feature selection algorithms 
in [ELR+05] makes the interpretation of the results difficult, especially in terms of 
the relevance of the descriptors used to model the non-stationary part of signals. For 

instance, since similar features are extracted from both types of signals, and that for 

each, the best set of 40 features is chosen, it is not possible to independently evaluate 
the contribution of a particular type of features during the modelling process. 

To summarise, 
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  Extracting features from onsets have shown to result in slightly improved sys- 

tem's performance compared to when features were extracted from the steady- 

state segments of sounds. This has been interpreted and explained and we noted 

the database of onsets obtained after segmentation was in fact a non-redundant 

snapshot of the whole database. 

" The main difficulty in extracting temporal features resides in the fact that 

robust automated pre-processing techniques for onsets or transients detection 

are difficult to design, especially in the case of pitched musical phrases. As a 

result, it is difficult to accurately quantify the increase in performance when 

transient and steady-state features are independently considered. However, 

when using isolated notes, the problem is easier to tackle. Experiments will be 

conducted towards this direction in section 5.6.1. 

  We note that the experimental works reported in this section considered pitched 

musical sounds for the experiments. Although presenting non-linearity proper- 

ties, the onsets of pitched musical sounds created by wind, brass or string 

instruments are much less singular than that of a piano or a plucked string 

sound. This can explain why, by using a differentiated transient/steady-state 

sound modelling strategy prior to the feature extraction stage, no significant 

improvement could be observed. 

In order to include temporal considerations in the models, a more general approach 

to the problem can be envisaged. It consists of characterising the transitional spectral 
information and considering the derivative of the feature vectors as a function of time. 

This is commonly termed as calculating the delta coefficients of the feature vector. 
The usual procedure is to append them to the original descriptors in the feature vector 

prior to the modelling process. 
Since the features are calculated at regular time intervals, they do not have ana- 

lytical form. Therefore, the derivative can only be approximated by a finite difference. 

However, a first order finite difference is intrinsically noisy so that Furui [Fur8l] pro- 

posed to fit a first order polynomial to each time series of feature coefficient. In other 

words, considering that x is a feature vector, the delta coefficients are calculated us- 
ing: 

K 

kx[n - k] 

bx[n] = 
k= K (3.8) 

k2 
k=-K 
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Figure 3.9: (a) Spectrogram and (b) LSF representations for a saxophone melodic phrase. A 12th 
prediction order has been used. Changes between notes can be spotted at t=0.6 s and t=1.4 s 
on both representations. 

The augmentation of the LSF feature vectors with their delta as commonly per- 
formed with cepstral coefficients in speaker/speech recognition will be investigated 

in chapter 6. 

In figure 3.9 are shown both the spectrogram of a saxophone solo excerpt (figure 

3.9(a)) and its corresponding LSF representation (figure 3.9(b)). Onset locations 

corresponding to the note changes (t = 0.6 s and t=1.4 s) can be spotted on 
both plots. It can be argued that this transitional information can be captured by 

considering the delta of the LSF feature vectors. 

3.4 Pitch, vibrato and tremolo features 

These features try to capture some other frequency and time-related characteristics 

of instrument sounds. It has been highlighted that the pitch influences the timbre to 

a certain degree so that it can be considered as one fundamental parameter of sound 
that an identification system should take into account. In practice, pitch values can 
be used to adapt the analysis window lengths prior the Fourier transform, in order to 

set an appropriate frequency resolution, to select features as a function of the signal 
harmonic structure, or to build models of instruments for several pitch ranges. The 

latter strategy will be explored in chapter 5. 

On the other hand, features such as vibrato and tremolo have been studied by 

Martin [Mar99] and considered in more recent research works [Ero0l] [ELR+05]. 

Although these descriptors correspond to characteristic properties of sound, their 

consideration in an automatic musical instrument identification system has not been 

shown to be essential. Furthermore, it can be argued that vibrato and tremolo are 

Time (s) 
(a) Spectrogram 
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captured in some ways by the spectral envelope features and their evolutions with 

time. As a consequence, these features will not be studied more in detail here and 

not used in our system. 

3.5 Psycho-acoustic considerations 

The use of psycho-acoustic models is wide spread in the audio signal processing field 

so that there exists strong justifications in using psycho-acoustic considerations for an 

efficient acoustic description of waveforms. Early research works in speech/speaker 

verification already used psycho-acoustic considerations at the feature level. Likewise 

modern systems for automated musical instrument identification incorporate such 

principles. 
For this purpose, several methodologies can be envisaged. This can be performed 

at a pre-processing or front-end level by using, for example, an auditory filterbank or 
log-lag correlogram [MK98] prior to the feature extraction stage. Another approach 

consists of including psycho-acoustic clues at the feature level by warping the linear 

frequency axis onto a Mel or Bark scale prior to the spectral feature calculation. These 

approaches differ in their complexity and in the number of perceptual principles they 

take into account. 
In this section, we investigate various methods to include psycho-acoustic knowl- 

edge for the purpose of modelling timbre. In section 3.5.1, we outline several tech- 

niques encountered in the literature. Next, we propose to extend the field of appli- 

cation of the sinusoidal decomposition described in section 3.5.2 by introducing a 

psycho-acoustically motivated sinusoidal spectral analysis/synthesis technique based 

on the ISO/MPEG psychoacoustic model [ISO] described in appendix A. 

3.5.1 Background 

In this section, we briefly outline the existing techniques encountered in the literature. 

3.5.1.1 Frequency warping 

Frequency warping consists of transforming one spectral representation in a given 
frequency scale to another representation on a new, psycho-acoustically relevant fre- 

quency scale. 
This approach has been experimented by Eronen [Ero0l]. He used a warping 

function to map the calculation of the autocorrelation function from the frequency 

to the Bark scale [HL01] prior to the calculation of various LPC coefficients. He 
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compared the performance of the LP polynomial coefficients and PARCOR that were 

transformed into cepstral coefficients to their respective warped versions. Experi- 

ments involving isolated notes showed that for prediction orders ranging between 3 

to 30 (for signals sampled at 44.1 kHz), the WLPC and warped reflection coefficients 

performed slightly better than their non-warped counterpart for both the identifica- 

tion of instruments and instrument families. Specifically, an average increase of 8% 

in terms of correct instrument identification and 10% for instrument families have 

been achieved. 1 

Note that the use of a warped version of the LSF, the WLSF, will be investigated 

in chapter 5. 

3.5.1.2 Auditory filterbanks 

Using auditory filterbanks as pre-processing allows to decompose a signal into band- 

limited signals whose frequency content can be interpreted as following the decom- 

position that takes place in the inner ear (see section 1.1). In particular, auditory 

filterbanks implemented in the frequency domain2 are widely used in audio signal 

analysis and modelling. 
For instance, the determination of the MFCC involves the calculation of the total 

energy of frequency filters regularly spaced in the Mel-frequency scale. Likewise, Essid 

[ERDb] proposed to apply a triangular octave filterbank for the calculation of spectral 

features he named the Octave Band Signal Intensities (OBSI). 

Principles of spectral auditory filterbanks are illustrated in the next section. In 

particular, details about the MFCC are given. 

3.5.1.3 The Mel-Frequency Cepstral Coefficients (MFCC) 

MFCC are widely used in speech recognition and speaker verification systems. They 

constitute the classical feature in audio spectral pattern recognition problems. For 

this reason, they have been the first feature to be studied in a musical instrument 

identification context [Bro99]. We briefly recall in this section how the MFCC can be 

calculated from a frame of audio signal. This procedure is based on the implementa- 

tion proposed in [Sla98]. 

For a given frame, the short-term magnitude spectrum is calculated using a FFT. 

Next, a perceptual triangular filterbank having approximately equal bandwidth in the 

lfor a database containing 29 instruments, 33% correct instrument identification and 66% correct 
instrument family identification have been achieved 

2as opposed to band-pass time-domain auditory filterbanks 
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Figure 3.10: Triangular Filterbank used to calculate the MFCC coefficients [Sla98]. The non-uniform 
weighting comes from the fact that each filter is given unit weight. Each filter has approximately 
equal bandwidth in the Mel-frequency scale. 

Mel-frequency scale is applied in the frequency domain. The filters are spaced lin- 

early for the low-frequencies (13 filters) up to roughly 1000 Hz and logarithmically 

afterwards (27 filters). The upper and lower frequencies of each filter are the cen- 

tre frequencies of the adjacent filters respectively. The filterbank used in [Sla98] is 

depicted in figure 3.10.1 

The total energies in the 40 bands are then calculated, yielding 40 coefficients also 

called the filterbank coefficients. Next, the log-energy outputs are cosine transformed, 

yielding the Mel-cepstral coefficients. In practice, a discrete cosine transform is used. 
Assuming that { fi}i=1,..., Nj are the filterbank coefficients with NJ being equal to 

the total number of filters, the MFCC cj are calculated using: 

Nf 

cj= 
NfE1ogfjcos[NfU--), 

i=0,.... Nf-1 (3.9) 

1 

In practice, co, which represents the average power of the spectrum is discarded. 

On the other hand, only the first coefficients (typically 12-16) are usually considered 
for building the feature vectors. The MFCC will be used as a reference to compare 

our system to in chapter 5. 

3.5.2 Sinusoidal modelling 

This section discusses the sinusoidal analysis/synthesis model based on the short-term 
Fourier transform. This model will be used to include psycho-acoustic considerations 

at the pre-processing level. In the following sections, a complete analysis/synthesis 
framework based on the STFT is described. 
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Frequency (Hz) 

7000 



CHAPTER 3. ACOUSTIC TIMBRAL DESCRIPTORS 83 

ý as 

=ý o 
E 

Q 4+ 

ýýo aai aoe aw oa as as 
Time (s) 

vo9 

CC 

to -104 a .. to 
o---no fl . 000 -- 

Frequency (Hz) Frequency (Hz) 

Figure 3.11: Sinusoidal signal time-domain waveform (top) and frequency representation using the 
STFT. Magnitude (bottom left) and phase (bottom right) after Hanning windowing. 

Sinusoidal modelling techniques are related in some ways to the phase vocoder 

originally presented by Flanagan in 1966 [FG66] with an application in speech trans- 

mission. They have since found numerous applications in high quality time-scaling 

and pitch-shifting of audio signals [Dol86] [Lar99] or in speech processing [MQ86]. 

They are also at the origins of the Sinusoidal Modelling Synthesis (SMS) framework 

[Ser97]. 

3.5.2.1 Theoretical principle 

Sine waves, or pure tones, are an important class of sound waves as they convey the 

notion of frequency and its dual, the time period. A sine wave is a deterministic 

periodic signal whose time evolution x(t) is entirely defined by the knowledge of 

three parameters: amplitude, frequency and phase. A sinusoidal waveform can be 

mathematically expressed as: 

x(t) =A sin(27r ft+ ¢) =A sin(wt + 0) =A sin W (t) 

where A is the amplitude, f the frequency, w= 2irf the pulsation (in rad. s-1) and 
¢ the initial phase (in rad). In figure 3.11 are shown the waveform, magnitude and 

phase representations of a sinusoidal signal. 
Sinusoids are important in a variety of ways. Firstly, they are fundamental in 

physics. Systems that resonate or oscillate produce quasi-sinusoidal motions (e. g. 

simple pendulum or LC oscillator). Another reason is that complex exponentials are 

eigenfunctions of linear time-invariant (LTI) systems, meaning that they are important 
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for the analysis and characterisation of linear filters and for the estimation of filter 

frequency responses. Similarly, they constitute a set of orthogonal basis functions 

that can be used to analyse and decompose signals (e. g. using the Fourier series 

expansion or the Fourier transform). More importantly, from a computer music and 

signal processing points of view, the human ear acts in some ways as a spectrum 

analyser: as has been discussed in chapter 1, the cochlea physically splits sounds into 

their near sinusoidal components. In other words, by looking at spectra, which display 

the amount of energy corresponding to each sinusoidal basis present in a signal, we 

are looking at a representation very similar to that the brain receives on hearing. 

Moreover, it has to be noted that results from psycho-acoustic experiments, such as 

the tables used in psycho-acoustic models [ISO], are determined using, among others, 

pure tones stimuli. 
In sinusoidal modelling, a discrete time valued signal x(n) is approximated by a 

linear sum of evolving sinusoids as: 

Q(n) 

x(n) x(n) =E Aq(n) cos Wq(n) (3.10) 
q=1 

where Q(n) is the maximum number of partials at the time n, Aq(n) the instanta- 

neous amplitude of the partial q and '9(n) its instantaneous phase. The additive 

components in this model are assumed to vary on a time scale longer than the sam- 

pling period, meaning that the parameters can be estimated at a subsampled rate. 
The approximation symbol in the equation above implies that the sum of partials 

model does not represent exactly the original signal. Therefore, a residual term r(n) 

can be added in order to reconstruct perfectly x(n): 

Q(n) 
x(n) = x(n) + r(n) =E Aq(n) cos Wq(n) + r(n) 

q=1 

The signals -(n) and r(n) contain different musically meaningful information of 

x(n): the sum of partials captures characteristics such as the spectral envelope, the 
harmonicity, the loudness or the pitch whereas the residue represents a mixture of 
impulsive (e. g. transient and strong onsets during the attack of a piano note) and/or 
highly uncorrelated noise (such as the friction sound created by a bow). Since a sum 
of slowly varying sinusoids is rather ineffective for modelling noisy signals, a common 
strategy consists of classifying and separating the two components during the analysis 
stage. Similar to a partially filled or partially empty bottle, the estimation of one of 
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the two signals automatically determines the content of the other one. 

The determination of instantaneous sinusoidal parameters is commonly performed 

by calculating STFT over sliding windows. The local maxima in the magnitude spectra 

are interpreted as corresponding to sinusoidal components. 

Mathematically, let us define X (k, n) as being the STFT of x(n). It is a function 

of both the time and frequency indices n and k and is defined as: 

n+N-1 
X (k, n) =E x(m)h(n - m)e 2ý" N (3.11) 

m=n 

where h(n) is a finite length analysis window zero-valued outside the interval [n 

n+N-1] and N the length of the FFT. Setting wk = 21rk/N in Eq. (3.11) yields: 

n+N-1 
X (k, n) = x(m)h(n - m)e M"km (3.12) 

m=n 

The Fourier transform being invertible, a general re-synthesis equation is given by 

n+N-1 1 K-1 

x(n) =E 9(n - m) NX (k, m)ejwkm (3.13) 

m=n k=p 

where g(n) is the synthesis window zero-valued outside the interval [n n+N-1]. In 

the absence of modifications on X(k, n) and under certain conditions on the shape 

of the windows h(n) and g(n), x(n) can be perfectly recovered using Eq. (3.13). 

In the case where X(k, n) is not modified, one should ensure that the synthesis 
leads to perfect reconstruction. For this purpose an Overlap-and-Add strategy (OLA) 

is used. In our implementation, analysis and synthesis windows on the one hand, and 

analysis and synthesis window lengths on the other hand are similar. In this case, the 

condition for perfect reconstruction is that the sum of the squared windows regularly 

spaced by the hop-size equals unity. The reader is referred to [ABL02] for more details 

about the other cases. 
The analysis/synthesis procedure using sliding STFT is the fundamental principle 

of sinusoidal modelling. An illustration is given in figure 3.12. After segmentation, 

the frames are weighted by the analysis window. The STFT is then applied. The 

processing is performed in the frequency domain. After the inverse STFT, the syn- 
thesised signals are weighted by the synthesis window. An overlap-and-add strategy 

ensures minimal distortion at frames boundaries during the reconstruction. Note that 

the sum of the analysis windows (shown in solid line) regularly spaced by the hop-size 
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equals unity. 

3.5.2.2 Sinusoidal analysis 

We recall that the analysis is performed on a STFT frequency representation where 

local maxima in the magnitude spectrum are interpreted as being sinusoidal compo- 

nents. For the rest of this development, the FFT of the input windowed frame x(n) 

of length N calculated at a given time index m will be noted X(k) = IX(k)Iej0k, 

k=0,..., N -1, where N is the length of the FFT. 

The STFT displays the signal energy frequency distribution evaluated at each 

frequency bin k=0,..., N-1 with a resolution bf = fa/N, where f8 is the sampling 

frequency and N the length of the observation. 
Within the short-term magnitude spectra, the frequency bin k is considered as a 

local maximum if 

IX(k)I> IX(k + 1)I and IX(k)I > IX(k -1)I, k =1, ..., N/2 -1 

As the Fourier transform evaluates the energy distribution at discrete equally 

spaced frequencies, the frequency value of a local maximum corresponds to the fre- 

quency value of its corresponding bin index. Let us consider the case of a sinusoidal 

signal at true frequency fo. If ko is the index of the local maximum in the corre- 

sponding short-term spectrum, its frequency is: 

fko = ko 
Ne 

However if the original frequency fo is not a multiple of f8/N, fk0 and fo are 

different. 

High quality audio signal are usually sampled at 44100 Hz, providing a spectral 

resolution of 21.5 Hz if a 2048 points FFT is used. Depending on the application, 

it is often necessary to attain more accurate frequency values .3 
Several spectral 

interpolation techniques can be used to counterbalance the STFT finite resolution. 
For instance, a widely used algorithm is based on the observation that the STFT 

log-magnitude of a sinusoidal signal windowed by a Gaussian window can be approx- 
imated by a sampled parabola [SS87]. Therefore, by fitting a parabola to a local 

maximum and its two closest neighbours in the log-magnitude spectrum, it is possi- 
ble to determine more accurately the true amplitude and frequency of the sinusoid. 

3this is especially true if one wishes to determine the fundamental frequency of musical notes 
on the Western equally tempered pitch scale, for example 
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Figure 3.12: Principle of sinusoidal modelling using sliding STFT. Illustration for two time-domain 
grains. After segmentation, the frames are weighted by the analysis window. The STFT is then 
applied. The processing is performed in the frequency domain. After the inverse STFT, the synthe- 
sised signals are weighted by the synthesis window. An overlap-and-add strategy ensures minimal 
distortion at frames boundaries during the reconstruction. 
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This approximation can be extended to the case of windows with non-Gaussian but 

bell-shaped short-term magnitudes. Defining 

XdB(k) = 201ogio IX(k)l, k=0, ..., N 

as the signal short-term magnitude in dB and kp as the bin frequency of a local 

maximum, the process consists of fitting a parabola through the three samples with 

amplitudes: 

A-1 = XdB(ko - 1), Ao = Xda(ko), Al = XdB(ko + 1) 

The frequency difference between the estimated actual frequency and the bin 

frequency values in FFT bins can be expressed by: 

_1 
A_1- A+1 ak 

2 A_1 - 2Ao + A+1 

The new interpolated bin index becomes: 

ko = ko + 5k 

and its corresponding interpolated amplitude is: 

b 
Ao = Ao - (A-1 - A+' 1) 

Finally, the phase is linearly interpolated at kp using the phase values of the two 

neighbouring bins. 

Figure 3.13 illustrates the effects of spectral interpolation for the determination 

of the frequencies and amplitudes for three sinusoids. The spectra exhibit peaks 

at the same discrete frequencies for the three considered signals (pure tones with 
frequencies fo = 610 Hz, fo = 625 Hz and fo = 640 Hz for the left, middle and right 

plots respectively). A peak-picking algorithm based on a local maximum detection 

would consider the three signals as having the same frequency (i. e. 625 Hz). After 

quadratic interpolation using the two closest neighbours, more accurate frequency and 

amplitude values can be determined and the three signals can now be distinguished 

in the frequency domain. 



CHAPTER 3. ACOUSTIC TIMBRAL DESCRIPTORS 89 

m 
v 

V 
9 
7 
a+ 

0. E 
Q 

po sw 700 850 400 450 7m . 50 000 wo 700 

F (Hz) F (Hz) F (Hz) 

Figure 3.13: Examples of spectral quadratic interpolation for three sinusoids: fo = 610 Hz (left), 
fo = 625 Hz (middle) and fo = 640 Hz (right). Signals were sampled at 8 kHz, FFT on 128 
points. Circle markers represent the magnitudes of the FFT while the stars show the amplitudes and 
frequencies of the sinusoidal components after quadratic interpolation. Without interpolation, the 
bin frequencies of the three local maxima are equal. The STFT spectral resolution of bf = f, /N = 
8000/128 = 62.5 Hz is not fine enough to separate the three frequencies. 

3.5.2.3 Sinusoidal synthesis 

After the analysis stage, a series of local maxima has been selected. Their ampli- 
tudes, frequencies and phases have been interpolated. The synthesis of the selected 

sinusoidal components can be performed either in the time or frequency domain. The 

time-domain synthesis is a direct implementation of Eq. (3.10) where the parameters 
Aq(n) and 'Qq(n) are linearly interpolated between successive frames [ABL02]. 

An approach based on the IFFT is presented in this section: the principle is first 

to reconstruct the complex short-time FFT vector from the information extracted 
during the analysis stage and second to use the inverse FFT together with the OLA 

method to recover the time-domain grain. The IFFT/OLA based synthesis has the 

advantage in automatically interpolating the parameters at frame boundaries. Failing 

to do so would otherwise introduces artifacts in the synthesised signals. 
Let us first consider the case of a pure sinusoidal signal x(n) with frequency fo. 

During the analysis stage, x(n) is partitioned into overlapping frames, windowed by 

the analysis window and the STFT is calculated prior to the spectral analysis. Next, 

the true instantaneous amplitude, frequency and phase of the local maximum are 
estimated for each frame within the short-term magnitude representation. These 

three interpolated parameters are then used to rebuild the short-term FFT vector. 
An important property of the Fourier transform is known as the convolution the- 
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orem and holds that a multiplication operation in one domain (time or frequency) is 

identical to a convolution in the dual domain. In other words, the Fourier transform 

of the windowed signal is the Fourier transform of the signal (theoretically defined on 

an infinite support) convolved with the Fourier transform of the analysis window. Let 

us consider a sinusoidal signal with amplitude A. The magnitude of its Fourier trans- 
form exhibits theoretically a Dirac located at f= fo with an amplitude A/2. The 

resulting Fourier transform is the modulated version of the window Fourier transform 

at frequency fo. 

The following FFT vector reconstruction implementation is based on the modula- 
tion of the theoretical FFT of the windowing function by the interpolated sinusoidal 
frequency. The STFT vector X (k) = jX(k)jejq5(k), k=0,..., N-1 is reconstructed 

using the interpolated instantaneous sinusoidal parameters 10, Ap and ¢0. In the 
following, the case is illustrated for a Hanning window. 

The kernel function of the Hanning window can be constructed using three Fourier 

transform of the rectangular window W, (O) [Por96]: 

W(B)=0.5Wr(B)-0.25Wr(B-Ný1)-0.25Wr(B+Ný1) 

where 

Wr(9) = D(O, N)e 1o. 5e(N-1) 

and D(9, N) being the Dirichlet kernel defined as: 

D(O, N) - 
sin(0.50N) 
sin(O. 50) 

Given fo and A0 being the interpolated frequency and amplitude of the sinusoid, 
the magnitude of the Fourier transform magnitude IX(k)I is approximated by: 

IX(k)j=2 NW(O(k)-Bo), 
0 <k <N/2-1 (3.14) 

where 00 is the angular frequency of the sinusoidal component defined by: 

Bo 2a 
fs 

The function W(B) is in fact evaluated for each angular frequency bin 

B(k) = 
2N 

-00,0 <k <N/2-1 
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On the other hand, the phase vector «(k) is reconstructed using ýp as: 

cb(k) = ýo, 0<k< N/2 -1 (3.15) 

Finally, prior to the inverse FFT, the full symmetric vector has to be reconstructed. 
Knowing that real signals have symmetric FFT, it can be written: 

IX(2 +k)I = IX(2 -k)1,0<k< 
2 

-1 

o(2 + k) = -« 
2- k), 0<k<2 -1 

Figure 3.14 illustrates the use of the kernel modulation technique for the recon- 

struction of a FFT vector composed of a single sinusoid. The original signal (sampled 

at f8 =8 kHz) is segmented into fixed length overlapping frames (FFT on 256 points 

with a hop-size of 64 samples). Each time-domain grain is then weighted by a Nan- 

ning window (figure 3.14(a)) before the FFT analysis. The frequency, amplitude and 

phase of the local maximum are determined using a peak-picking algorithm. Next, 

the interpolated values are used to reconstruct the FFT magnitude vector on the one 
hand (using equation Eq. (3.14)) and the FFT phase vector on the other hand (using 

Eq. (3.15)) as shown in figure 3.14(b). 

The overlap-and-add strategy used in the implementation ensuring perfect recon- 

struction after synthesis, errors that are introduced in the re-synthesised signals are 

only due to the limited accuracy of the interpolation method. It has to be noted that 
Eq. (3.15) is not theoretically valid as the phase value of the sinusoidal component is 

assigned to all the FFT bins. However, a single sinusoid magnitude spectrum exhibits 

significant energy only at the bins located around the analysed frequency. Therefore, 

artifacts are not introduced during the inversion operation. 
In the following, this sinusoidal synthesis technique is extended to the case of 

audio signals composed of several sinusoidal components. Prior to the synthesis, it is 

assumed that peak-picking and quadratic interpolation algorithms have been applied 
to estimate accurate amplitudes, frequencies and phases of the selected sinusoidal 

components .4 Two possible approaches can be used for the synthesis of multiple 

sinusoidal components: 

  first, by using an iterative scheme within each frame where a single sinusoidal 

grain is synthesised at a time, each one resulting from an inverse FFT operation. 

'the concept of partials selection is not expanded here but in section 3.5 where a psycho- 
acoustically motivated selection of the local maxima will be proposed 
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Figure 3.14: Single sinusoid spectral reconstruction (fo = 590 Hz, f, =8 kHz). (a) Original sinu- 
soidal grain weighted by a Hanning window. (b) Details about the spectral analysis/reconstruction 
stage: the FFT magnitude (256 points) in dB is shown in (i) while the FFT phase component 
(in rad) is plotted in (ii). Circle markers represent the estimated amplitude, frequency and phase 
parameters after quadratic interpolation. On (iii) are plotted the original FFT magnitude (line) and 
the result of the Hanning kernel modulation (dashed) determined using Eq. (3.14) (note that both 
plots are very similar so that they are not distinguishable). The reconstructed phase vector is shown 
in (iv). 
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Figure 3.15: Harmonic sinusoidal spectral reconstruction (fo = 590 Hz, 4 harmonics, f, =8 kHz). 
(a) Original harmonic grain weighted by a Hanning window (b) Details about the two spectral 
reconstruction methods: the FFT magnitude (256 points) in dB is shown in (i) while the FFT phase 
component (in rad) is plotted in (ii). Circle markers represent the estimated amplitudes, frequencies 
and phases parameters after quadratic interpolation. On (iii) are plotted the original FFT magnitude 
(line) and the amplitudes of the four modulated Hanning kernel corresponding to the four sinusoidal 
components. Their corresponding phase vectors are calculated as detailed in figure 3.14. On (iv) 
is plotted the original FFT magnitude (line) and the sum of the four modulated Hanning kernels 
(dashed). The corresponding recomposed phase vector is shown in (v). 
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The addition of the different grains is then performed in the time domain. This 

case is a direct extension of the single sinusoidal grain synthesis detailed in 

figure 3.14. Figure 3.15(b)(iii) illustrates the process where the modulated 
kernels are independently considered during time-domain grain synthesis. 

  second, by reconstructing the whole FFT vector using the total number of 

modulated kernels. In this case, only one inverse FFT operation per frame is 

necessary. 5 The addition is performed in the frequency domain. More precisely, 

the magnitudes of the modulated kernels are added but the phases are com- 

posed. Figures 3.15(b)(iv)/(v) illustrate this case where only one FFT vector 
is reconstructed to synthesise the harmonic time-domain grain. This strategy 
has been used in our implementation. 

3.5.3 Frequency masking 

While general audio coders use psycho-acoustic models for bit allocation and quanti- 

sation purposes, it is interesting to exploit the psycho-acoustic knowledge for direct 

manipulation of the audio signal in the frequency domain. 

As an extension of the sinusoidal analysis/synthesis model described in the previ- 

ous section, we propose to include psycho-acoustic principles in the frequency domain 

prior to the feature calculation. In essence, the ISO/MPEG psycho-acoustic model 
described in appendix A is used to select the most relevant partials in the frequency 

domain. They are then used to resynthesise a time-domain signal. This design saves 

on the need to specify the number of sinusoids to be extracted a priori. This section 
is concerned with a detailed description of the algorithm. 

Its general principle is depicted in figure 3.16. The input frame is firstly processed 
by a FFT. Next, a psycho-acoustic mask is applied and relevant partials, i. e. the 

ones having their amplitudes above the mask, are selected from the spectra. The 

selected sinusoidal components are then used to synthesise the output frame using 
the kernel modulation technique described in section 3.5.2.3. The subtraction of 
the latter from the original signal yields the residual signal. The hop-size during the 

analysis/synthesis is chosen to ensure perfect reconstruction in the case where the 

spectral representations stay unaltered. 

5note that this saves a considerable amount of processing compared to the iterative method 
since on average 30-150 sinusoids are needed to accurately synthesise a musical instrument sound 
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Figure 3.16: Illustration of a sinusoidal analysis/synthesis loop with partial selection stage using 
psycho-acoustic masking. 

3.5.3.1 Using the absolute threshold in quiet 

This experiment focuses on the use of the Absolute Threshold of Hearing (ATH) 

when manipulating signals in the frequency domain. The absolute threshold in quiet 

corresponds to the faintest sound energy level audible by the human ear (see chapter 

1). Within a short-term magnitude spectrum, only the sinusoidal components located 

above this threshold are retained and used for the synthesis. In our implementation, 

the following analytical ATH function [LAM] has been used: 

Ath(f) = 3.64 f -0.8 - 6.8 exp(-0.6(f - 3.4)2) 

+6 exp(-0.15(f - 8.7)2) + 0.0006f4 (3.16) 

where f is expressed in Hz and Ath in dB SPL. Note that this analytical formula re- 

places the one proposed in [TSS82] commonly used in the literature. A corresponding 

plot is shown in figure 3.17. 

In practice, the analysis stage is decomposed as follows: 

  First the input signal is segmented into overlapping frames (for Is = 22.05 

kHz, frames of N=1024 samples in length with an overlap of N/4 has been 

used to ensure perfect reconstruction). The segments are then weighted by a 
Hanning window prior to the STFT calculation. Next, all the local maxima in 

the magnitude spectrum are found by peak-picking and stored in a list. 

  The psycho-acoustic model maps the absolute threshold in quiet to the current 
STFT frame by normalising the maximum amplitude to 96 dB SPL. 

  Next, the local maxima located above the absolute threshold in quiet level are 

retained for the synthesis. The others are discarded. 
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Figure 3.17: Absolute threshold of hearing in dB SPL as a function of frequency calculated using 
Eq. (3.16). 96 dB SPL is used as reference level. 

  Each of these local maxima amplitude is then interpolated using the quadratic 

scheme described in section 3.5.2.2. Their corresponding interpolated frequen- 

cies and phases are used for the synthesis. 

In figure 3.18 is illustrated the whole process for a clarinet solo phrase. The 

number of retained sinusoidal components as a function of time is shown in figure 

3.18(b). Dots correspond to the number of local maxima that have been found in 

the spectra while the horizontal line delineates the average number of partials kept 

for the synthesis. Note that on average, 65 sinusoids are retained for this excerpt. 
As this stage, the following conclusions can be drawn regarding the algorithm 

behaviour: 

  Segments with small SNR (t = 0-0.02s in figure 3.18) are modelled using 

more sinusoids than average. This is a common drawback when one tries 

to decompose noisy signals using a sum of sine components. However, in 

this particular case, this segment of sound is inaudible and do not have to be 

considered. A combined energy and pitch detector can overcome this situation. 

  Transients corresponding to note onsets are characterised by high energy fre- 

quency content. They are modelled using more components than average. 
They correspond to peaks located at t :. 0.03s and t .:. 0.5s. A more efficient 
implementation of sinusoidal modelling algorithm would consider the transients 
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Figure 3.18: Sinusoidal modelling using the absolute threshold in quiet to select the relevant local 
maxima in the short-term spectrum. The signal shown in (a) is a solo clarinet phrase. In (b) are shown 
the number of retained sinusoidal located above the absolute threshold of hearing. Dots correspond 
to the number of local maxima that have been found by peak-picking. Plot (c) corresponds to the 
synthesised time-domain signal while the residual signal is shown in (d). 

sections as being part of the residual signal. Another drawback of modelling 
transients with sinusoids is that the attacks are smoothed since the energy 
distribution is averaged over the whole analysis window when the spectra are 

calculated. 

" In purely harmonic and sinusoidal sections, the number of retained components 

stays around 60. The algorithm performs well for pitched sounds and the 

simple use of the absolute threshold in quiet significantly reduces the number 

of components needed to model the signal. 

The synthesised signal is shown in figure 3.18(c) while the residual after subtrac- 
tion in the time domain is shown in figure 3.18(d). The synthesis quality is very 
good, without any perceivable artifacts or loss in tone colour. However, the quality of 
similarly resynthesised signals using trumpet solo phrases revealed artifacts located at 
the note onsets: attacks were smoothed and difference between original and modelled 

signals were noticeable. 
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Figure 3.19: Sinusoidal modelling using a MPEG-1 layer II psycho-acoustic model. The signal shown 
in (a) is a solo clarinet phrase. In (b) is shown the number of retained sinusoidal located above 
the global masking threshold. Plot (c) corresponds to the synthesised time-domain signal while the 
residual is shown in (d). 

3.5.3.2 Using the complete psycho-acoustic model 

The global masking threshold calculated using the complete psycho-acoustic model 
described in appendix A is now used to select the relevant components. In this case, 
the frequency masking of both tonal and non-tonal as well as the absolute threshold 

of hearing in quiet are considered for the global masking curve calculation. 
The principle of the decomposition is similar to the one described in section 

3.5.3.1. Corresponding results are presented in figure 3.19 for the same clarinet 
melodic phrase. 

The general trend for the number of extracted sinusoidal components as a function 

of time is preserved (same behaviour at transient, harmonic and noisy sections) but 

the average number of partials is now more than halved (25 against 65 for the previous 
experiment involving the absolute threshold of hearing). Despite this reduction, the 

quality between the synthesised signal is very good for this sound. Note the increase 
in the number of extracted sinusoids noticeable at t 0.5s and compare to figure 
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3.18(b). The attack of a note is characterised by a significant burst of energy in the 

high frequencies which move across the masking threshold, thus resulting in a higher 

number of sinusoids. 6 

This framework will be used during the feature extraction stage in order to include 

psycho-acoustic knowledge in our system prior to the LSF calculation. Details about 

this novel feature, the Perceptual LSF (PLSF), will be given in section 5.7. 

Chapter summary 

The acoustic descriptors that will be used to build our system have been described 

in this chapter. 
First, it has been shown in section 3.2 how linear predictive models can be used 

to represent signals' short-term spectral envelopes and at the same time to capture 

the signal formant structure. Principles of the deconvolution between the contribu- 

tion of the excitation and resonating body for the mechanisms of sound production 

have been introduced. We have recalled how the linear predictive analysis/synthesis 

filter coefficients can be calculated using the autocorrelation method. The emphasis 

has been on the description of the LSF as means of spectral envelope and formant 

structure descriptors. 

Second, the importance of temporal information in the perception of timbre has 

been highlighted. The difficulty in automatically attaining such features has been 

emphasised in section 3.3. In particular, a review of existing approaches encountered 

in the literature did not show significant improvements in overall performance when 
features were extracted individually from transient/onset and steady-state segments 

of signals. 
Third, several methods for including psycho-acoustic at the feature and pre- 

processing levels have been described in section 3.5. After having reviewed one 

method to calculate the MFCC, we proposed to include psycho-acoustic knowledge 

in the analysis/synthesis sinusoidal model described in section 3.5.2. The strategy 

consists of perceptually selecting relevant partials in the spectra. For this purpose, a 

complete frequency domain analysis/synthesis framework has been described in sec- 

tion 3.5.3. A detailed description of the perceptual LSF calculation will be provided 
in chapter 5. 

6at a cost of increased computation compared to existing techniques [BDA+05], one can use 
the number of psycho-acoustically selected sinusoids as a function of time as an onset detection 
function 



4. Machine learning algorithms 

The search for an invariance and constancy in timbre is central to the building of 

musical instrument models. It has been mentioned in the introduction of this thesis 

that the identification of a sound object by humans can be achieved in a wide variety 

of acoustic circumstances. In the same vein, a trumpet sound is recognised as being a 

trumpet sound, independently of the instrument brand or playing style: these different 

realisations in sounds and waveforms share the same and unique identity. 

To a certain extent, building a timbre model consists of characterising this invari- 

ance. From a set of multi-dimensional acoustic descriptors, machine learning algo- 

rithms are used to define mathematical rules from which unknown sample identities 

can later be inferred when compared to the models stored in the database. 

This chapter discusses the building models that can serve to identify and classify 

instruments. It is described how the principles governing the formant theory of timbre 

can be implemented at the machine learning level. For this purpose, generative and 
discriminative methods are studied. The distinction between these two types of tech- 

niques is emphasised in section 4.1.1. Next, the theoretical principles of the K-means, 

Gaussian Mixture Models (GMM) and Support Vector Machines (SVM) are recalled 

in sections 4.2,4.3 and 4.4 respectively. Through the use of the K-means and GMM 

algorithms, the interpretations of learning characteristic formant structures and build- 

ing instrument models are proposed. This approach is a central point of this work. 
The use of Support Vector Machines (SVM) for classifying spectral envelopes and 
building database models is further investigated. After having introduced the theo- 

retical principles of each of the three methods, the processes of building instrument 

and database models are interpreted and illustrated. 
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Figure 4.1: General principle of a supervised system for identification and classification. 

4.1 Supervised learning 

In supervised learning, examples of inputs and corresponding outputs are given. The 

aim is to predict the output for future inputs having seen only a restricted number 

of training examples. In essence, a representation of the data to models and their 

corresponding labels or identities are known a-priori. 1 In our case, the associated 
labels are instrument names, such as violin, flute or saxophone. 

4.1.1 Generative vs discriminative methods 

For building models, two types of algorithms will be considered. On the one hand, 

the problem of data classification will be tackled using generative methods such as 
K-means or GMM. In this case, each model for each class is built independently of 

any knowledge about the other classes in the database. The identification process 

consists of minimising a similarity measure (K-means) or maximising an a-posteriori 
likelihood of the unknown feature distribution knowing the models (GMM). 

Strictly speaking, these two algorithms can be seen as learning techniques since 
the models are explicitly and individually learnt from a set of training data. On the 

other hand, discriminative methods, such as SVM, consider the whole database in 

order to determine optimum boundaries between the various classes. 

las opposed to unsupervised learning for which the classes are discovered from the data them- 
selves 
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It is important to point out the differences between both identification and classifi- 

cation methods and especially through the methodologies they involve. By definition, 

a classifier needs to have the knowledge of the whole database to work on since the 

process consists of discriminating between each class's feature distribution against the 

others. One obvious drawback of the approach is that models have to be re-trained 

when new classes are added to the database, thus infringing the modularity principle 
(see section 2.2). Their main advantage is that they generally yield better systems' 

performance. On the other hand, extending the database when a generative method 
is used is simply a matter of training the models for the newly added families. 

These two types of systems correspond to two different interpretations and im- 

plementations of the same problem. 

4.1.2 Principle 

In figure 4.1 is illustrated the general principle of a supervised learning system. Inde- 

pendently of the algorithm's final application, a common architecture consists of two 
distinct phases, namely the training and testing phases. 

  during the training phase, models are built for each individual labelled instru- 

ment class using a set of data representative of the different realisations of the 

same identity. In practice, models are trained using a set of acoustic descrip- 

tors extracted from waveforms. In the case where generative methods are used, 

models can be seen as condensed representations of the classes intra-variability. 
In the case where discriminative methods are used, the principle is to define 

rules for optimally separating the classes between each other. 

  during the testing phase, unknown excerpts (i. e. the samples that have not 
been used to train the models) are presented to the system. They are similarly 
pre-processed, and the same type of features are extracted than during the 
training phase. This set of features is then compared to all the models in the 
database. The system returns the identity of the presented excerpt based on a 
similarity criterion. 

By building a model, the principle is to generalise a system behaviour that have 
been trained using a limited database for any future unseen inputs. Burges [Bur98] 

mentioned that: 
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Roughly speaking, for a given learning task, with a given finite amount of 

given data, the best generalisation performance will be achieved if the 

right balance is struck between accuracy attained on that particular 

training set, and the "capacity" of the machine, that is, the ability of the 

machine to learn any training set without error. 

As the outputs for the training database are known, the system is evaluated using 

a subset of the whole database that are unknown to the system. These performances 

are then generalised to any future inputs. 

4.2 The K-means 

The K-means algorithm is an iterative clustering method whereby a data set can be 

approximated by a finite number of codevectors. Being one of the simplest parametric 

machine learning algorithms, it can be used in numerous applications, spanning the 
fields of audio and video compression2, speaker identification and verification. Its use 
in a musical instrument identification context is another fundamental aspect of this 

research. 
In contrast to the other techniques presented in this chapter, the K-means algo- 

rithm relies on the use of distance measures, both for the learning and identification 

phases. 

4.2.1 Theoretical principle 

The principle of the K-means algorithm is to cluster a n-dimensional space into K 

distinct regions in terms of a chosen distance, each region having one single repre- 

sentant. In essence, after a K-means optimisation, the feature data set is represented 
by a fewer number of data, called the centres or codevectors. 3 

The training or optimisation phase involves an iterative scheme that can be de- 

composed as follows: 

1. Each region has a centre which is the mean all the data points in that region. 

2. Each data point is assigned to the region whose centre it is closest to. 

These two steps are alternated and repeated until a stop criterion is met, i. e., 
when there is no further change in the assignment of the data points. In that case, 
the algorithm reaches a local minimum. 

2the K-means algorithm is also called Vector Quantiser (VQ), for example in speech coding 
[PA93] 

3or also centroids or prototypes 
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Let us consider a training data set X= {xj, x2,..., xN} of N n-dimensional 
feature vectors and let us define a metric distance d(x, y) in R. Initially, K n- 
dimensional codevectors are given or randomly determined. The aim is to optimise the 

definition of these prototypes in such a way that they reflect the statistical distribution 

of the training data set. 
Given an initial dictionary `ß = {cl, c2, ..., cK} of K n-dimensional codevectors, 

the following two-stage iterative algorithm is used: 

" Nearest Neighbour: the regions or clusters R,, i=1, ..., K, also called 
Voronoi regions, are defined by: 

Rj={x�EX: d(xn, ci)<d(x� cj); i#j}, 1_<i, j<K 

  New Prototypes: at each iteration and for each cluster Ri containing Ii vec- 
tors, the new prototype ci is calculated using: 

i{ 
Ci= i>Xk, 1<i<K 

k=l 

The choice of a relevant distance d used for the new prototype calculation and 
the nearest neighbours determination is one of the main algorithm parameters. A 

commonly used metric is the Euclidean distance defined for two n-dimensional vectors 

x and y by: 
n 

d(x, y) _ lIxi _ yiII2 (4.1) 
i=1 

The two-stage procedure described above is then repeated until the average total 
distortion D* defined as 

N 
D* =NL1ýK d(xn, ck) (4.2) 

i=l 

does not significantly change between two successive iterations, so that the algorithm 
reaches a local minimum. 

In the following section, we describe how the K-means can be used to build 

models representative of a training data set. Details about the training (instrument 

modelling) and the testing (instrument identification) procedures are given. 

6 
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4.2.2 Training phase 

During the training phase, a dictionary `f of K prototypes is optimised for each 

instrument in the database. In our system, the method based on the LBG (Linde- 

Buzo-Gray, or generalised Lloyd) algorithm described in [LBG80] and [GG99] has been 

considered. 
The algorithm requires an initial codebook obtained by the splitting technique: 

starting with one codeword (the mean of the entire data set), each vector in the 

dictionary is iteratively split into two vectors until the closest inferior power of two 

of K is reached. Finally, the maximally populated cluster is split into two and the 

iterative two-stage optimisation is performed. The process is repeated until the desired 

number of centroids is reached. In our implementation, splitting is performed by 

adding a small perturbation e=0.01 proportional to the standard deviation of the 

regions to the vector coordinates in each direction. The procedure is detailed below: 

1. Given a training sequence X= {xl, x2, ..., xN} of N observations, e and ij 
to be small numbers. 

2. Let K=1 be the initial number of codevectors, 1=0 be the iteration index 

and cl the first codevector defined as the mean of the entire dataset X: 

N 
ci=Nýxi 

The average total error calculated using the Euclidean distance defined in Eq. 

(4.1) can be written as: 

N 

D*=1EIIxi-ciII 
i=1 

D* corresponds to the sum of the distances of each training data to the first 

codevector. 

3. The splitting technique is then applied. For k=1,..., K, the new codevectors 
are calculated using: 

Ck _ (' + E)ck* 
CK+k = (1 - E)Ck 

and the number of codevectors is now doubled, yielding K= 2K. 
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4. The codevectors are now optimised. The average error is Dgl) = D*. 

I. Each training vector is assigned to its closest centroid. In other words, 

each vector xE. is approximated by the closest codevector c'. E W: 

2(xi)=ck"+ 1<i<_N 

where 
k* =arg min I Ixi - c1I I2,1< i<N 

1<k<x 

Note that -9 can be seen as a quantiser. 

ii. The codevectors are then updated using: 

c(1+1) = 

E-l(Xi)=ck1) Xi 
1<k<K k 

In other words, each new codevector k is the mean of all the feature data 

in the kth region. 
iii. The iteration counter is updated: l=l+1 

iv. The new total average error becomes 

N 
D' = IIXi - . 

(Xj)II2 

1=i 

v. If (D('-') - D('))/D(i-1) > i, the algorithm has not met the stop 

criterion and the steps i-iv are repeated. 

vi. A local minimum is reached and the final optimised codevectors are: 

cjk=ck, 1<k<K 

The final total average error becomes 

D* = D<1 

5. Steps (3) and (4) are repeated until the desired number of codevectors is ob- 

tained. 

After this optimisation procedure, the training data set V of N feature vectors 

is represented by a dictionary `m° of K codevectors. 
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4.2.3 Identification phase 

The I instruments in the database are represented by their codebooks ̀ '1, `2,..., `ßj 

containing K codevectors each. In the following, it is assumed that the unknown 

instrument to identify is represented by an observation °. V = {yl, Y21..., YM} of 
feature vectors. 

The use of K-means classifiers for pattern recognition and identification commonly 
involves the minimisation of a similarity measure between the unknown observation 

and the models. The choice of a relevant metric ideally reflects the subjectivity 
inherent to the task of evaluating similarities between sets of acoustic features. In 

contrast to other machine learning algorithms presented in this thesis, the choice 

of a proper metric is essential for the system's robustness during the identification 

procedure. 
For this purpose, two types of similarity measure can be distinguished: the mini- 

mum distance similarity measure and the similarity evaluation between distributions. 

In both cases, the identity of an unknown excerpt is the identity corresponding to the 

model in the database that minimises the measure between the observation and all 

the models in the database. Mathematically, a minimum distance classifier allows to 

retrieve the identity of the unknown observation by finding I* such that 

I' = arg min (4.3) 
1<i<1 

where . 
9(91, `ßi) is a similarity measure between the observation 9/ and one codebook 

`m°i in the database. The identity of the observation is the one of P. Since the 

observation 9 is usually composed of several feature vectors, is usually 

expressed as 
M 

-9(°91, 
`ßi) = -1 

E1ý Kd(Yj, Ck, i) (4.4) 
j=l 

where Ck, i corresponds to the kth codeword of the ith instrument model. In the 
following, various metrics that are commonly used in pattern recognition problems 
are reviewed. 

4.2.3.1 Euclidean distance 

Let us consider for simplification y as being an observation vector and c as being one 
codevector of a particular instrument model. Using the Euclidean distance defined in 
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Eq. (4.1), d(y, c) can be written: 

n 
d(Y, c) IIyi _ C, 112 (4.5) 

i=1 

4.2.3.2 Mahalanobis distance 

A similar approach has been considered in [SRRJ87] in a speaker verification con- 

text. In this case, the Mahalanobis distance dm(y, c) which uses inverse covariance 

weighting is defined as: 

dm(y, c) = (Y _ c)TR-1(y - c) (4.6) 

where R is the pooled intra-instrument covariance matrix. Under the assumption 

that the covariance matrix R is diagonal, the distance can be rewritten as: 

n 
dm(y, C) = 

E(Yi 
- ci)2vi 

1 (4.7) 

i=1 

with vs being the elements of the diagonal covariance matrix. 

4.2.3.3 Similarity measurement between two codebooks 

In order to take advantage of the whole observation during the identification stage, 

the K-means algorithm is used to build a codebook `ß = {c1, c2i.. �cK} which 

statistically represents ! Y. The identification process consists of evaluating the sim- 
ilarity between two distributions represented by two dictionaries. To this effect, the 

definition of a similarity metric between two codebooks d(`ß, `ß) is introduced in the 

following. Considering that: 

1. Running the K-means algorithm twice on the same data set does not ensure 
that after each run the codewords are similarly ordered .4 In other words, it is 

not guaranteed that 
K 

d(ck , ck) =0 (4.8) 
k=1 

where tl and t2 indicate two runs of the algorithm on the same training data. 

2. In the case where `! contains K times the same codevector identical to one 

codevector of `', the measure should verify d(`ß, `ß) = 0. 

'note that this is not valid if an initialisation using splitting is performed 
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We propose the following similarity measure between the codebook `ß and one 

codebook Wa taken from the database: 

K 

kt ci, k)] (4.9) d(i, `e_) => 
[1<k<K 

min d(c 
k-1 

in which d is the Euclidean distance defined in Eq. (4.1). The similarity measure 

verifies: d(`ß, 'f) >0 and d', ' =0 but is not symmetric. 
Finally, the identity of the unknown codebook is retrieved by finding I* such that: 

I* = arg min d(`i, `ei) (4.10) 
1<i<I 

4.2.4 Learning using K-means 

In this section, we interpret and illustrate the process of learning characteristic spectral 

shapes using K-means. The LSF are the considered features throughout. 

The K-means is extensively used for the vector quantisation of the LSF in speech 
coders [PA93]. The localised spectral sensitivity property they exhibit (section 3.2.2) 

make them suitable to be used together with an averaging iterative algorithm. 
In the case of musical instrument identification, an interesting interpretation of 

the modelling process is concerned with the determination of average or characteristic 

spectral shapes of each instrument. In [RW82], it is outlined that: 

[... ] but since different instruments had different average spectra, it was 
believed that this difference in average spectrum was utterly responsible 
for timbre differences. 

Transposing this assumption to a computer algorithm, it can be argued under 
the condition that the training data set contains sufficient and typical waveforms, 
the K-means optimisation can result, to a certain extent, in the definition of such 
characteristic spectral shapes. Relating this interpretation to the formant theory 

of timbre (see section 1.3.1.3), it can reasonably be advanced that a dictionary of 
codevectors can be used to characterise an instrument and therefore its timbre. 

The advantages of the method in terms of learning power and data reduction 
(as opposed to non-parametric techniques such as the k-NN, for example) can also 
be highlighted. Similar techniques have been experimented in speaker identification 
frameworks, for example in [RS86]. 

During the training phase, the models corresponding to a dictionary of codevectors 
are built for each instrument in the database. For a number of codewords specified a- 
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Figure 4.2: Optimised codebooks using the iterative K-means algorithm. Data (white dots) are 
two-dimensional LSF feature vectors calculated using two minutes of monophonic recordings. Black 
stars represent the four optimised codevectors. (a) cello, (b) clarinet, (c) flute and (d) piano. 

priorP, the K-means is run until a local minimum is reached. The process is illustrated 

in figure 4.2. For ease of representation, two-dimensional LSF feature vectors (white 

stars) extracted after 12th order linear predictive analyses have been applied on the 

waveforms are considered. The process is represented for four instruments, the cello, 
the clarinet, the flute and the piano. Black stars correspond to four codevectors 

obtained after optimisation using K-means. They optimally represent the feature 

data by minimising the total error between the data and their respective codewords. 
It has been mentioned in section 3.2.2 how the LSF parameters can be related to an 

IIR filter frequency response. Therefore, any given LSF vector can be associated with 

a unique spectral envelope. Hence, codevectors generated from K-means optimisation 

using LSF can be regarded as characteristic spectral shapes of the data training set. 
As an illustration, 12 spectral envelopes corresponding to codebooks of 12 LSF vectors 

are plotted in figure 4.3 for the same four considered instruments as in figure 4.2. 

5note that this number is usually empirically determined 
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Figure 4.3: 12 IIR filter frequency responses evaluated from 12 optimised codevectors using LSF 
and the K-means algorithm. Features extracted from two minutes of monophonic recordings have 
been used to train the models. Instruments are (a) cello, (b) clarinet, (c) flute and (d) piano. 

4.3 Gaussian Mixture Models (GMM) 

In contrast to the K-means which clusters the n-dimensional space into regions with 
hard boundaries, a Gaussian Mixture Model assigns a belonging factor for each data 

point to each Gaussian in the mixture. As a result, a GMM can be seen as a soft 

or fuzzy vector quantiser. It is assumed that each training data vector is generated 
from a pool of Gaussians having fixed mixture weights. 

The parameter estimation of a GMM as well as the identification procedure are 

reviewed in this section. This system is the one described in [RR95] in a speaker 
identification framework. 

4.3.1 Principle 

A GMM models the probability density function of an observed n-dimensional feature 

vector x by a multivariate Gaussian mixture density 

K 
p(xlA) _E wk'Ok(x) 

k=1 
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Figure 4.4: Graphical representation of a mixture of K Gaussians. 

where K is the number of Gaussian components and wk, k=1,..., K, the mixture 

weights with the constraint j: K 
1 Wk = 1. Further, each component density 44, 

k=1, ..., K, is a function of the form 

'Dk(x) = (21r)n/2IEk 11/2 exp(- 2 (x - µk)T Ek 1(x 
- µk)) 

In a recognition system, each instrument in the database is represented by a GMM 

A entirely defined by the mean vectors Ak, covariance matrices Ek and weights wk 

noted 
A= {µk, Ek, wk}, k =1, ... ,K 

It is further assumed that each Gaussian in the model has a diagonal covariance 

matrix. The use of diagonal covariance matrices provides a good compromise between 

modelling power and algorithm complexity compare to a full covariance GMM. 

4.3.2 Training phase 

The aim of the training phase is to determine the model parameters A for each 
instrument in the database. The initialisation of the mean vectors {µk}k=1,..., K, 
is performed using the K-means algorithm described in section 4.2 while the Gaus- 

sian mixture parameters are determined using the iterative Expectation Maximisation 

(EM) method as detailed in [RR95]. 

Given a set of N training feature vectors for one instrument, the objective is to 
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estimate the parameters of the GMM A that would best represent the feature data set 

distribution. This can be performed by maximising the likelihood .2 of the training 

data X_ {xl, x2, ..., xN} given the model A: 

N 

p(XIA) = 
[JP(xiJA) 

=2(AIZ) 
i=1 

Finding the optimum model A* can be mathematically written: 

A* = argmaax. P(AIX) 

The difficulty to attain A* depends on the form of p(xlA). In the case of multi- 

variate Gaussian mixture models, the EM algorithm originally presented by Dempster 

et al. in 1977 [DLR77] is used. The iterative procedure can be summarised as follows: 

1. Choose an initial model A by initialising the means using a K-means algorithm, 

the variances and weights to unity. 

2. Determine a new model Aso that p(XIA) > p(. 'IA). 

3. Repeat the step above until p(X l A) - p(X IA) is above a certain threshold or 

if the required number of iterations has been reached. 

The reader is referred to [DLR77] and [Bil97] for a detailed description of the 

EM algorithm, and especially of the equations ensuring a monotonic increase in the 

model's likelihood value. 

4.3.3 Identification phase 

The I instruments in the database are represented by their GMM A1, A2,.... A,. 

The identity of an unknown excerpt is the identity corresponding to the model 

that maximises the a-posteriori probability for the given observation sequence _ 
{yl, y2, ... , yM}. It can be mathematically written: 

I* = arg max p(Ailg() (4.11) 
1<i<I 

Due to Bayes's rule 

p(Aiý°) = 
(O(lAi)p(Ai) 

p(g) 
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Figure 4.5: Two-dimensional density modelling using a mixture of four Gaussians. Training data set 
correspond to two minutes of monophonic recording. (a) cello, (b) clarinet, (c) flute and (d) piano. 

and assuming equally likely instruments p(Ai) = 1/I, it comes 

PC 21.3/) = 
Ip )) , 

Finally, p(6/) is the same for all instrument models. Therefore, Eq. (4.11) 

becomes 
1* = arg max p(V lAi) 

1<i<I 

The probability p(°, j/lAi) can be expressed in the case of i. i. d. by: 

M 
p(ffjAi) = 

flp(yjIAi) 

j=1 

4.3.4 Learning using GMM 

We describe in this section the process of building instrument models using a GMM. 

The EM algorithm implementation used is based on the one available in [VOI]. When 

the EM algorithm is used to determine optimum instrument models, the following 

three steps have to be considered: 

(e) (b) 

0.6 0.8 1 
LSF4 

(c) 

0.6 0.8 
LSF4 

(d) 

0.6 0.8 1 
ISF4 

0.6 0.6 
LSF, 
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  Choice of K: the determination of an optimum number of Gaussian compo- 

nents is usually experimentally driven. Choosing too few components produces 

models which are not specific enough to characterise the inter-instrument vari- 

ability. On the other hand, choosing too many components can decrease the 

performance by introducing singularities in the models. 

  Algorithm initialisation: the system has to be initialised prior to the EM 

algorithm with an initial model A0. The K-means is used to perform a clustering 

of the training data into K classes. The mean vectors {µk}k=1,..., K for the K 

Gaussians are firstly determined. They correspond to the codewords obtained 

after the K-means optimisation. Next, the K initial mixture weights are set to 

unity and each Gaussian component is initialised such that it has unit variance 
in each direction. 

  EM algorithm: while training a nodal variance GMM, the variances can be- 

come very small and degrade the classification performance by introducing sin- 

gularities in the model. This is particularly true for a mixture model with a large 

number of components compared to the number of training data. 6 In order to 

avoid such a situation, a prior is set on the variances at each EM iteration: 

8s if b ý &m ä2 i in 
_ 2 A if ö 2 <A min i min 

Figure 4.5 illustrates the two-dimensional feature vector PDF modelling using a 

mixture of four Gaussians. Data is extracted from a 12th order LP analysis and 

consists of the same LSF feature vectors that have been considered in figure 4.2. 

The two-dimensional feature space is modelled according to a continuous density 

distribution generated by the mixture of four Gaussians. Note that in order to avoid 

singularities during the EM optimisation, a variance limiting prior (vmin = 0.01) has 
been set at each iteration of the EM algorithm: the EM optimisation stopped when 
the relative increase of the log likelihood logp(X) between each iteration fall below 

0.1%. 

6this is actually similar to the case where running a K-means algorithm, only a few data points 
are associated to a given centroid 
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4.4 Support Vector Machines (SVM) 

Support Vector Machines are becoming increasingly popular for data classification 

and pattern recognition problems. Their use in a musical instrument identification 

context has been studied in [MM99] and [GR04] for pitched and percussive musical 
instruments respectively. They belong to the class of discriminative methods and can 
be used for classification and regression problems. In numerous cases, it has been 

observed that SVM generalisation performance either match or were significantly 
better than that of competing methods. Their application for classification tasks is 

described in this section. 

4.4.1 Principle 

Support Vector Machines perform classification by constructing an n-dimensional 
hyper-plane that optimally separates a labelled data set into two distinct classes. The 

optimum hyper-plane is the one that maximises the margin between the feature data 

corresponding to each class. 
Given a training data set xk, k = 1,..., m and a vector of labels y such that 

yA E {-1, +1}, k=1, ... , m, a SVM searches for the hyper-plane w. x +b=0 

verifying: 

Yk(Xk. W + b) -1>0, k=1,..., m (4.12) 

For an instance x to be classified, the decision function is: 

f (x) = sgn(x. w + b), (4.13) 

The reader is referred to [Vap95] and [CL01] for more information about the SVM 

theoretical principles. 
In figure 4.6 are illustrated two cases: the case of linearly separable data (figure 

4.6(a)) and the case non-linearly separable data (figure 4.6(b)). Circled markers 
are the support vectors. A SVM finds a hyper-plane that maximises the margin m 
between the two classes (figure 4.6(a)). In the case of non-linearly separable data, 

rather than fitting a non-linear curve as shown in figure 4.6(b), SVM use a kernel 
function to map the data into a higher-dimensional where the classes become linearly 

separable [Bur98]. 
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Figure 4.6: Classification using SVM. Illustration of (a) a linearly and (b) a non-linearly separable 
cases. Circled markers are the support vectors. Rather than fitting non-linear curves to the data, 
SVM use a kernel function to map the data into a higher-dimensional space where a hyper-plane is 
used to separate the classes. 

4.4.2 Extension to multi-class problems 

Any classification problem involving several classes can be decomposed as a combi- 

nation of elementary binary classifiers. A one-against-one approach [CL01] has been 

used in our system. Specifically, it consists of training a SVM for each class against 

all the others in the database. A total of I(I - 1)/2 binary classifiers, where I is 

the number of classes, are constructed. During the identification, each observation 
is successively classified by all the binary classifiers to reach a final decision. 

4.4.3 Testing and classifying 

During the identification stage, each individual frame y of ?/ is tested against the 

model which returns a possible identity. The final identity of the observation 91 is 

the one that has been the most often retrieved over the M tested frames. 

4.4.4 Classification using SVM 

In this section, an example of classification is given. Several kernels that can be used 
are presented. 

In order to be able to separate non-linearly separable data, a kernel function k is 

used to map the n-dimensional input vector into a higher dimensional space where 
the classes becomes linearly separable. There exists several kernels to be used with 
SVM, including [CL01]: 

  Linear kernel: 

k(x, y) = xT y (4.14) 
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  Polynomial kernel: 

k(x, Y) = (. yxTY+a)d, 7>0 (4.15) 

where y and a are the kernel parameters and d the polynomial degree respec- 

tively. 

  Radial Basis Function (RBF): 

k(x, y) = exp(-7I IX - YI I2), 7>0 (4.16) 

where ry is set to 1/I, I being the number of instruments in the database. 

In figure 4.7, a classification problem in the binary case using three different 

kernels is illustrated. Two sets of two-dimensional data belonging to two classes are 

represented by dots and plus markers respectively. After a SVM optimisation, a hyper- 

plane optimally separating two regions (white and black respectively) is determined. 

Note that depending on the kernel being used, the boundary separating the two 

classes is adapted to the feature data distributions. 

Chapter summary 

In this chapter, the theoretical principles of three machine learning algorithms have 

been outlined. Our primary aim was not to perform a thorough review of the available 

methods but to limit the scope of applications associated with each of them. In 

particular, the distinction between techniques used for identification problems (i. e. 

instrument modelling) and for classification tasks (i. e. database modelling) has been 

made. 
The emphasis has been on the K-means and on the interpretation of learning 

characteristic spectral shapes for each instrument. This process has been related to 

the formant theory of timbre and it has been argued that this approach could serve to 

model salient spectral characteristics of musical instrument sounds, and to a certain 

extent, their timbres. Several similarity measures have been presented. We have 

introduced a codebook to codebook similarity measure designed to take advantage 

of the whole observation prior to the identification phase. 
The principles of GMM have been recalled. The combination MFCC/GMM being 

a classical approach in audio pattern recognition, it will be used as a reference to 

compare our system to. 
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Figure 4.7: Illustration of using a linear, polynomial and RBF kernels for a binary classification task. 
Clockwise from top left: two-dimensional data classified into two classes (dots and plus markers 
respectively), classification using a linear kernel, classification using a polynomial kernel of degree 3 
and classification using a radial basis function respectively. 

Finally, SVM have been presented. They will be used for classifying and building 

database models. It has been described how a binary classification problem can be 

transposed to deal with multi-class problems. The properties of several kernels have 

been illustrated. 

In the next two chapters, it is described how acoustic timbral descriptors and 

machine learning algorithms can be combined to build automated musical instrument 

identification systems. Our approach is evaluated for the tasks of identifying and 

classifying isolated notes and melodic phrases respectively. 



5. Recognition of isolated notes 

This chapter is concerned with the performance evaluation of the supervised systems 

whose three processing layers have been described in chapters 3 and 4. Now, the 

task of identifying and classifying isolated notes, i. e. notes taken independently of 

any musical context, is considered. 
The use of isolated notes provides an interesting experimental environment for 

several reasons. Firstly, with regard to existing perceptual studies on the perception of 

timbre by humans, such as the ones described in section 2.1, which mostly considered 
isolated tones as stimuli. Considering isolated notes for computer simulations allows a 
direct comparison between humans and algorithm performance. Secondly, because a 
database of isolated notes provides various ways of fine tuning experimental protocols. 

In section 5.1, information about the database used in the experiments are given 

while in section 5.2, the feature extraction procedure is detailed. 

Our base system is presented in section 5.3. It consists of a mono-feature system, 

whereby a single type of feature is used to build models of instruments. In essence, 
these experiments attempt to confirm the theory stating that timbral information 

can be efficiently modelled using sound spectral envelopes and formant structures. 
Specifically, the Line Spectrum Frequencies are the considered features throughout. 
Results of a comparative study involving several acoustic descriptors are summarised 
in section 5.3.3. 

In section 5.4, this base system is compared to a classification approach using 
Support Vector Machines (SVM). This will serve to define an upper limit in terms of 
achievable performance. 

Next, the emphasis is on the study of pitch and timbre in automated musical 
instrument identification algorithms. After having illustrated the dependence of our 
models of instrument upon pitch, we propose in section 5.5 to use the pitch as a prior 
for both the modelling and identification phases. This strategy avoids the comparison 
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Instrument Instances No. of notes 
bassoon pp, mf, ff, Vib. 235 

oboe pp, mf, ff 199 
clarinet Eb, Bb 364 
flute Bass, Alto 278 
sax Alto 286 
trombone Bass, Tenor 307 
trumpet Vib, no Vib. 310 

cello pp, mf, ff, Vib. 472 

viola pp, mf, ff 438 

violin pp, mf, ff 403 

TOTAL 3292 

Table 5.1: Instances and number of notes per instrument in the database that have been retained 
for the experiments. Abbreviations pp, mf, ff and Vib. stand for pianissimo, mezzo-forte, fortissimo 

and vibrato respectively. Bass, Tenor and Alto are different instrument frequency ranges. Eb and 
Bb are two different clarinet registers. 

between features and models being too distant in pitch. 
In section 5.6, we propose a computer implementation of the perceptual experi- 

ments conducted by Berger [Ber63]. It is shown that our approach saves on the need 

to rely on a pre-segmentation onset/steady-state segments of sound and naturally 

incorporates specific acoustic information about the attacks of notes. 
Finally, a perceptually motivated feature extraction algorithm is presented in sec- 

tion 5.7. In essence, we propose to use the standard ISO/MPEG psycho-acoustic 

model described in appendix A to select relevant partials in the spectra. The latter 

are then used to resynthetise the waveform from which the LSF are extracted. The 

performance of this novel feature, the PLSF, are evaluated. 

5.1 Database 

The choice of instruments to be considered for the experiments is important since it is 

in practice not possible to evaluate a system using all the existing musical instruments. 

For this reason, a subset of instruments is often chosen, generally among the class of 

orchestral musical instruments, because several databases are freely or commercially 

available to researchers. As a result, although the generalisation of the system's 

performance to other instruments has to be performed with care, general trends 

and particular system properties can nevertheless be studied in such limited scale 

experiments. 
In this thesis, we will consider a subset of orchestral acoustic instruments, belong- 
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ing to the bowed string, wind and brass families, reflecting both the choice of instru- 

ments made by other researchers and the amount of data at our disposal. Recordings 

are of reasonable quality, originally sampled at 44100 Hz, and of sufficient number 

to represent the classes they correspond to. On average, notes are 5 seconds in 

duration. Details about the database are given in table 5.1 where in particular, the 

number of notes and the type of variations for each class are reported. The database 

consists of a combined subset of the IR-IOWA [The] and the RWC [RWC] isolated 

notes collections. It contains 3292 tones recorded at different loudnesses (pianissimo, 

fortissimo, ... 
), for several playing styles (vibrato, no vibrato), thus covering a wide 

range of timbre variation among each considered class. Samples have been recorded 
in anechoic chambers and no audio effects have been applied on the recordings. 

The following 10 instruments have been retained for the experiments: bassoon, 

clarinet, flute, oboe, sax, trombone, trumpet, cello, violin and viola. Care has been 

taken to include several instruments within each family so that intra- and inter-families 

correct and incorrect identification rates can be studied. Moreover, an extensive pitch 

range is also represented with tones having their MIDI numbers ranging between 32 

and 92 (corresponding roughly to 52 Hz and 1660 Hz respectively). 
High-quality audio signals are commonly sampled at 44100 Hz. Such relatively 

high frequency resolution can result in a considerable and unnecessary amount of 

processing during the feature extraction and instrument modelling stages. Added to 

the fact that the contribution of the very high frequency bands in the perception of 

sounds is relatively weak (see section 1.1.2), all the signals were re-sampled at 22050 

Hz prior to any processing. Similar resampling operations are commonly performed 
in the literature. 

5.2 Feature extraction 

Features extraction is performed on signals sampled at 22050 Hz. Silence and low level 

segments are firstly discarded. Only frames having an average energy level above - 
90 dB are retained. Next the pre-processing chain depicted in figure 3.1 is used: 
the DC bias is removed using a first-order IIR high-pass filter of frequency response 
H(z) = (1 - z-1)/(1 - 0.999z-1). Amplitudes are then normalised to the 0 dB 

level over the whole tone duration, and a pre-emphasis (H(z) =1-0.972-1) is used 
to increase the relative high frequency energy components. This step is particularly 
useful when LP-based models are used as it helps the algorithm to better pick the 

envelope high frequency structure. Figure 5.1 shows the frequency responses of both 
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Figure 5.1: Frequency responses of (a) the high-pass filter (1 - z-1)/(1- 0.999z-1) and (b) the 
pre-emphasis filter (bottom) 1-0.97z-1 used to pre-process the waveforms prior to the feature 

extraction. 

notch and pre-emphasis filters respectively. 
Features are then extracted every 17 ms within frames of 23 ms in duration that 

have been previously weighted by a Hanning window. The LSF are calculated using 

the technique described in [KR86] after having determined the LP filter coefficients 

using the Levinson-Durbin algorithm (see section 3.2.1). 

5.3 Instrument modelling 

This section is concerned with the description and evaluation of the base system 
[CDS05b]. It consists of extracting a single type of features which are then used 

either with a K-means algorithm, either in a GMM framework to build instrument 

models, as described in sections 4.2.4 and 4.3.4 respectively. In the following, a 
first series of experiments evaluates the system's performance as a function of the 

prediction order and the type of classifiers used. Several similarity measures between 

the unknown feature data set and the models in the database are further tested. to 

compare the systems, similar experiments have 

In practice, models have been trained for each instrument using 50% of the avail- 
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able data while 50% were retained for the testing. Experiments were repeated 3 times 

with different training and testing sets randomly chosen. The identification rates were 

accordingly averaged. Note that as opposed to [CDS05b], training and testing data 

sets are similar across experiments. 
Comparative performance are summarised in table 5.2. The rows in each table 

show different prediction orders, ranging from 8 to 40 while the columns show the 

number of clusters, ranging from 8 to 64 (for both GMM and K-means). Note that 

the standard deviations reported in tables are given for information only and have to 

be interpreted with care, especially in terms of statistical confidence since only three 

runs have been performed in all our experiments. However, they are typical of the 

numbers that have been found during experiments. Consequently, they will not be 

reported in all tables. 

5.3.1 Instrument identification 

The performance of four systems using the LSF are reported in table 5.2. For the 

GMM-based classifier, total average correct identification rates range between 44% 

and 62.5%. The best performance is obtained by using 24 LSF and a mixture of 

16 Gaussians. The corresponding confusion matrix is shown in table 5.3. Individ- 

ual correct identification rates range from 48.2% for the flute class to 80.3% for 

the bassoon. Most important confusions involve the pairs flute-bassoon (28.1% of 

the tested flute samples were identified as being bassoon), sax-violin (18.1%) and 

trumpet-viola (15.5% of the trumpet samples were identified as viola). Note that the 

confusion viola-violin (19.2% of the viola samples were mis-identified as being vio- 

lin) is expected since viola and violin sounds have similar origins in terms of physical 

mechanisms of sound production. 
When using the K-means and the Mahalanobis minimum similarity measure de- 

scribed in section 4.2.3.2, the average correct identification rates increased to a max- 
imum of 78.8% (table 5.2(b)). This performance is obtained by using 16 LSF and 
dictionaries of 32 codewords for the models. 

Overall, the best performance are obtained using the minimum distance classifier 

and the codebook to codebook similarity measure based on the Euclidean distance. 

Total average correct identification rates are reported in tables 5.2(c) and 5.2(d) 

respectively. Using the codebook to codebook distance, 24 LSF and 32 clusters 

yields 83.2% correct identification. The corresponding confusion matrix is reported in 

table 5.4. Individual correct identification rates range from 71.4% (clarinet) to 98.1% 
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(a) GMM 

No. of Gaussians 

8 16 32 64 

8 59.4 60.3 60.0 58.0 
16 48.0 50.6 62.3 62.0 

LSF order 24 56.0 62.5±2.1 55.4 60.3 
32 61.6 61.0 62.0 58.0 
40 44.0 56.0 55.0 56.7 

(b) K-means - Mahanalobis similarity measure 

No. of clusters 

16 32 64 

8 75.5 78.4 77.7 77.4 
16 76.7 75.8 78.8±1.8 75.6 

LSF order 24 73.0 78.0 73.9 72.5 
32 69.2 72.7 69.9 67.3 
40 66.2 71.8 67.1 69.2 

(c) K-means - Minimum distance similarity measure 

No. of clusters 

16 32 64 

8 76.9 76.6 76.0 68.0 
16 74.7 74.4 75.6 76.0 

LSF order 24 78.0 79.0 83.0±1.3 81.3 
32 77.0 80.7 80.1 79.0 
40 76.0 77.0 78.0 75.2 

(d) K-means - Codebook to codebook similarity measure 

No. of clusters 

8 16 32 64 
8 78.9 77.7 80.1 69.0 

16 75.1 74.0 81.8 77.7 
LSF order 24 81.2 82.9 83.2±1.2 81.6 

32 77.5 81.1 81.8 80.9 
40 78.8 76.8 80.4 76.8 

Table 5.2: Percentages of correct identification as a function of the prediction order (showed in 
rows) and the number of clusters (showed in columns) for four systems. Experiments have been 
repeated three times and involved similar training and testing data sets. Baseline performance are 
10% in the case of random guesses. 
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(trombone). These systems show clear improvements compared to the previous ones 

using a GMM and the Mahalanobis distance respectively, thus revealing the advantage 

of using Euclidean-based similarity measure between sets of LSF vectors. Note that 

the difference in performance between the two systems (tables 5.2(c) and 5.2(d)) is 

not statistically significant. However, at this stage, a decision has to be taken so 

that the codebook to codebook similarity measure will be chosen for all experiments 
involving K-means, except when explicitly mentioned. 

As a comparison, the performance of a conventional system using MFCC as fea- 

tures and a Gaussian Mixture Model as classifier are presented in table 5.5. Note 

that the first MFCC parameters co have not been considered for building the feature 

vectors (see section 3.5.1.3). The best performance are achieved when 12 MFCC and 
32 GMM are used. The corresponding confusion matrix is shown in table 5.6. This 

configuration allows slightly more than 74% of the tested samples to be correctly 
identified. Note that in contrast to [KSO4], the MFCC performed better than the 
LSF when used with a GMM. 

5.3.2 Family identification 

In this section, we analyse the results from another angle. Confusion matrices for 

family identification are shown in tables 5.7(a), 5.7(b) and 5.7(c) respectively. Note 

that the organisation of the instruments into families corresponds to the one that 
has been used for the perceptual experiments carried out by [SSFO2] and reported in 

section 2.1.1.2. Note that although being single-reed instruments, the sax and the 

clarinet are considered as two distinct instrument families. 

For the GMM classifier (table 5.7(a)), the average correct rate in terms of family 

identification is 63.6%. The string family is the most correctly identified, with 80.6% 

of the cello, viola and violin samples being recognised as being strings. On the 

other hand, the flute and clarinet are correctly identified 48.2% and 56% of the 
time respectively. These rather poor performances are however better than random 
guesses. Note also that these three families only contain one instrument (clarinet, 
flute and sax) so that a mis-identification can only be in favour of another family. 
In terms of inter-family confusion, the wind instruments are highly confused with the 

strings. In particular, sax are mis-identified as being strings 32.8% of the time. This 
type of confusion is representative of the non-meaningful errors that an automated 
system should avoid. 

The use of the K-means significantly improves the performance and nearly 85% 
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No. of Gaussians 
8 16 32 64 

8 55.7 59.3 62.1 58.0 
12 67.8 71.1 74.1±1.9 70.4 

MFCC order 24 66.3 68.9 67.1 68.7 
32 55.6 58.4 55.0 51.0 

Table 5.5: Percentages of correct identification as a function of the number of MFCC coefficients 
(showed in rows) and the number of Gaussians (showed in columns). Experiments have been repeated 
three times and concordantly averaged. Baseline performance are 10% in the case of random guesses. 

of the test samples are now correctly identified as belonging to their respective family 

(table 5.7(b)). Specifically, the strings are on average the most correctly identified 
(92.4%), followed by the brasses (92%) and the double-reeds (85.5%). The clarinet 
is the least correctly identified with 71.4% of the tested samples but still 15% better 

than if a GMM was used. In this configuration, the winds are much less confused with 
the strings, with 12.3% of the clarinet samples recognised as being string. However, 

overall, the strings are still attracting the most confusions. 
For the conventional system using 12 MFCC and 32 Gaussians (table 5.7(c)), 

77.3% correct family identification can be achieved. Overall, this system exhibits 

performance between the ones shown in tables 5.7(a) and 5.7(b). Nevertheless, one 

can notice an improvement by 4% for the clarinet compared to the LSF/K-means 

system. 

5.3.3 Comparison with other acoustic descriptors 

In order to illustrate the advantages of using the LSF as features when a K-means is 

used, experiments involving other acoustic descriptors have been conducted. Specif- 

ically, this comparative study involved the Linear Predictive Coefficients (LPC), the 

reflection coefficientsl (or PARCOR), the LSF and the Mel-Frequency Cepstrum Coef- 
ficients (MFCC). The performance have been evaluated as a function of the prediction 
order or number of MFCC parameters. Average individual and family identification 

rates are reported in figures 5.2(a) and 5.2(b) respectively. 
In all experiments, a dictionary of 32 codewords has been used to build the in- 

strument models and similarly to the previous experiments, three runs have been 

performed with different training and testing data sets. Note however that they are 
the same as in section 5.3. 

lthey are calculated using the Schur recursion [EurOO] 
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(a) 24 LSF and 16 GMM 

S ay '0\ý at Jý 's+ 
y+ý} st a \ t\ y 

strings 80.6 2.6 3.9 2.6 2.6 7.7 

brasses 21.4 72.3 5.8 0.3 0.3 
db reed 19.3 2.6 67.9 3.4 5.2 1.7 

clarinet 21.4 8.9 56.0 13.7 8.5 
flute 17.2 28.8 3.6 48.2 2.2 

sax 32.8 4.9 5.7 56.6 

(b) 24 LSF and 32 Codevectors with codebook to codebook sim ilarity measure 

S ý 

strings 92.4 1.4 1.6 1.8 1.4 1.2 
brasses 3.9 92.0 3.3 1.3 0.6 
db reed 5.1 '5.9 85.5 1.1 1.7 
clarinet 12.3 1.6 1.6 71.4 10.4 2.7 
flute 5.8 2.2 7.9 82.7 1.4 
sax 9.8 0.7 0.7 1.4 2.1 85.3 

(c) 12 MFCC and 32 GMM 

aoy 

'CtNý 
5p 

tay ` a\ý ýat 
2 

ý\JK ai- y O y 

strings 90.9 1.2 1.1 2.7 2.8 1.4 
brasses 9.1 84.6 5.5 0.7 0.3 
db reed 12.4 2.0 75.9 5.5 4.4 
clarinet 3.4 1.6 7.7 75.8 4.4 7.1 
flute 13.0 7.2 1.4 11.5 64.7 2.2 
sax 16.1 1.4 4.9 5.6 72.0 

Table 5.7: Confusion matrices corresponding to instrument family identification experiments. (a) 
24 LSF and 16 GMM, (b) K-means with the codebook to codebook similarity measure based on 
the Euclidean distance and (c) 12 MFCC and 32 GMM. Percentages of average correct family 
identification are 63.6%, 84.9% and 77.3% respectively. Families of the presented samples are in 

rows while answers returned by the system are in columns. 
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80 

70 

60 

8 12 16 24 32 40 
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(a) Instrument identification 
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(b) Family identification 

Figure 5.2:, Comparative performance for various acoustic descriptors, including the linear predictive 
coefficients, the reflection coefficients, the LSF and the MFCC. (a) average correct instrument 
identification and (b) average correct family identification. Experiments have been conducted with 
10 instruments in the database. 

It can be observed in figure 5.2(a) that for all the considered prediction orders, 

performance of the LSF are superior than that of the other linear predictive parameters 

and better than the MFCC respectively. For a prediction order of 24, the use of the 
LSF offers a gain of 6% over the PARCOR and more than 11% over the polynomial 

coefficients. Note the similar evolution of the performance as a function of the 

prediction order for the linear predictive parameters. In contrast, the best correct 
identification rate is obtained when 12 MFCC are used (73%). Note that this is 

consistent with what has been found in section 5.3 where the combination of 12 

MFCC and 32 GMM yielded the best performance (74.1%). 

Likewise, the total average performance in terms of family identification is in- 

creased by 6% and 9% over the PARCOR and LPC on the one hand and by 6% over 
the MFCC on the other hand (figure 5.2(b)). 

At this stage, the following interpretations can be drawn. Using the LSF, infor- 

mation about the formant structures are directly input to the K-means, that is, the 
differences between pairs of LSF parameters, which can be related to high frequency 

regions within spectra (see figure 3.7), are captured by the models. On the other 
hand, although containing spectral information, the PARCOR and LPC on the one 
hand, and the MFCC on the other hand do not implicitly carry information about the 
formant structures. For this reason, it can argued that the LSF/K-means combina- 
tion provides a meaningful and consistent implementation of the formant theory of 
timbre. 
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5.3.4 Summary 

This first series of experiments has focused on the evaluation of use of the pair 
LSF/K-means in a musical instrument identification context. Overall, the LSF used 

together with the K-means performs better than with a GMM classifier. It has also 

been highlighted that the use of two similarity measures based on the minimisation of 

the Euclidean distance results in better performance than if a Mahalanobis distance 

was used. This confirms to a certain extent that the Euclidean distance is particularly 

well suited to be used with the LSF, and in particular that it provides a meaningful 

perceptual approach to the similarity evaluation between spectral envelopes. Note 

that in contrast to [KSO4], it has been shown using our database that the combination 
LSF/GMM yielded worse performance than the combination MFCC/GMM. 

Next, a preferred prediction order yielding the best performance has been isolated. 

In essence, the system's performance degrade as the prediction order increases beyond 

the optimum. This can be interpreted as follows: using high prediction orders tends 

to model too much spectral information such as salient partials or overtones that the 

spectra can exhibit2 thus introducing spectral singularities in the models. Therefore, 

modelling more closely the signal frequency distribution will result in a pitch dependent 

set of features. In contrast, lower prediction orders focus more on the modelling of 
the spectral envelopes, thus preserving the formant structures which is the central 

point of our approach. 
We further showed that the LSF performed better than the reflection coefficients, 

the polynomial coefficients and the MFCC respectively, for any prediction order, both 

in terms of correct instrument and family identification. This comparative study 
helps us introduce one of the fundamental principles of our approach. In particular, 

that the process of averaging spectral envelopes and therefore formant structures for 

each instrument through the use of the LSF and K-means provides a meaningful and 

consistent implementation of the formant theory of timbre. 
The performance of this system is comparable to human ability to recognise tones 

in an isolated context. Srinivasan [SSFO2] and Martin [Mar99] reported rates of 
83.3% and 86% in terms of correct family identification for 12 and 27 instruments 

in the database respectively. The three databases being different, number to num- 
ber comparisons have to be interpreted with care since a choice between 27 or 12 
instruments identities is undoubtedly more prone to confusion than a choice between 

10 instruments. It can be further noticed that humans usually make expected and 

2theoretically, an infinite prediction order is the short-term spectrum itself 
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meaningful confusions, especially in terms of instruments having similar mechanisms 

of sound production. In contrast, the computer system presented in this section be- 

haves sometimes in an unexpected way. As an example, very few confusions made 
by humans involve wind and string families (2% in total in both experiments [SSFO2] 

[Mar99]) while it is the source of most of the confusions for the computer system 
(8% in average). 

For these reasons, extra information about instrument sounds has to be taken into 

account. In section 5.5, we show how a sound attribute such as the pitch of a tone 

can efficiently be used as a prior for both the modelling and identification stages. 
Prior to that, experiments involving the building of database models are con- 

ducted. In the following section, we evaluate the performance of a classification 

approach using the LSF as timbre descriptors and a SVM as machine learning algo- 

rithm. This system will serve to compare our learning approach to a classification 

problem involving the database as a whole. 

5.4 Database modelling 

This series of experiments aimed at comparing our instrument modelling approach to 

a classification approach involving a discriminative algorithm. We recall that these 

two problems are different and that they yield different system properties, especially 
in terms of modularity (see section 2.2). Further, the interpretations of the learn- 

ing/classification processes are also different. In particular, we will speak in this case 

of classifying spectral envelopes, as opposed of learning characteristic spectral shapes 

and formant structures. It is also expected that for similar types of features, such 

approach yields better performance than a generative one. 
For this purpose, the use of Support Vector Machines (SVM) for building a 

database model is investigated. The SVM theoretical principles have been introduced 
in section 4.4. In particular, it has been mentioned in section 4.4.2 how a binary clas- 
sifier can be extended to perform a multi-class classification. A Radial Basis Function 
(RBF) has been used in the experiments since it offers the most flexibility in terms 

of boundary separating the two classes distributions (see figure 4.4.4). Normally, the 

parameter ry can be optimised in order to maximise the system's performance but 
for fairness to the other considered algorithms, its value has been set to 1/I, where 
I= 10 is the number of instruments in the database. Note finally that prior to the 
SVM optimisation, data are normalised to lay in the range [-1 +11 [CL01]. 

In order to classify spectral envelopes, 24 LSF have been considered. Three 
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experiments have been conducted using the same training and testing data sets as in 

section 5.3. Performance were accordingly averaged. 

5.4.1 Instrument classification 

The corresponding confusion matrix is shown in table 5.11. This system yields 86.6% 

correct identification for 10 instruments in the database, 3% more on average than 

using a learning approach using K-means. Individual correct performance ranges 
from 100% for the trombone to 76.7% for the viola. When compared to table 5.4, 

most significant improvements concern the clarinet (plus 11%), the flute (plus 6%) 

and the trumpet (plus 6%). Other noticeable increase in performance involve string 
instruments, and in particular the violin (plus 5%). Note finally that none of the 

correct identification rates, except for the oboe, is worse than the ones that can 

achieved using the system described in section 5.3. 

An analysis of the results from a family classification point of view is proposed in 

the following section. 

5.4.2 Family classification 

In table 5.9 are reported the average correct family classification rates. 88.6% correct 
family classification can be achieved in this configuration, an overall improvement 

of 1.5% compared to a learning approach using a K-means and the codebook to 

codebook similarity measure (see table 5.7(b)). Improvements can be noticed for the 
flute (plus 6%), the strings and the double-reed (plus 2%). 

5.4.3 Comparison with other acoustic descriptors 

Similar to section 5.3.3, we have compared the performance of several spectral enve- 
lope descriptors for the same classification task involving SVM. Average correct clas- 

sification rates are reported in figure 5.4.3. Best average performance are achieved 

using the LSF (86.6%), followed by the PARCOR (83.0%), the LPC (80%), and 
finally the MFCC (75.7%). Note that this order differs from the one found when sim- 
ilar experiments using a generative approach have been conducted (see figure 5.2). 
Note also the performance of the PARCOR (83%) which are comparable to what 
can be achieved with the LSF/K-means approach (83.2%). Overall, using a SVM, 

performance are increased for the four considered types of features compared to figure 

5.2. 
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y 

hýýýcý 

ýy 

otayy 

ýýea 
Ne, 

w 

ya+ 

strings 94.8 0.7 1.3 1.8 0.5 0.9 
brasses 4.9 93.3- 1.3 0.5 0.1 
db reed 6.6 1.2 87.4 2.8 1.0 1.0 
clarinet 9.6 0.3 4.4 82.4 2.2 1.1 
flute 2.9 0.8 7.9 88.0 0.4 
sax 12.6 0.7 1.1 85.6 

Table 5.9: Confusion matrix showing correct instrument families classification rates. 24 LSF and a 
SVM have been used to build a model of the database. 88.6% correct family classification can be 
achieved in this configuration. Rows correspond to the true families while columns correspond to 
the answers given by the system. 

100 
95 
90 
85 
80 
75 

le 70 
CL 65 

60 

86.6 
83.0 80.0 

75.7 

24 LSF 12 MFCC 24 PARCOR 24 LPC 

Figure 5.3: Performance of several acoustic descriptors for a classification task using SVM. 

5.4.4 Summary 

The central point of this section was to evaluate a system based on the classification 

of spectral envelopes. Using a SVM as classifier and LSF as descriptors, 86.6% and 
88.6% correct instrument and family classification have been achieved respectively. 
It has been shown that for an identical type of feature, a classification approach to 
the problem yielded better performance than a generative one. 

In the following section, after having illustrated the dependence of generative 
models upon pitch, we propose to improve this approach by using pitch as a prior for 
both modelling and identification stages. 

5.5 Learning with a pitch prior 

Note that in this section, both the terms pitch and fundamental frequency are indif- 
ferently used to describe the fundamental frequency of a pitched sound. 

It has been mentioned in section 1.3.1.5 that the timbre of an instrument depends 
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to a certain extent on the pitch. At the acoustic level, two tones having very low 

and very high pitches created by the same instrument can correspond to two rather 

distinct physical mechanisms of sound production. For instance, producing a very 

low pitch note on a wind instrument with the same loudness as a higher pitch tone 

can be achieved if the musician blows stronger, thus providing more energy to the 

system. This affects the mechanical response of the instrument and therefore the 

corresponding structure of the sound. Further, the corresponding harmonic structures 

are rather different (and especially regarding the number of partials) in a way that 

the overall formant structure can be different along the pitch scale. 

Our database of isolated notes cover a wide frequency range, some of them being 

somewhat atypical of the instrument's nominal playing range. The corresponding 

pitch dependent information is carried by the features and averaged during the mod- 

elling phase. Such extremes yield a non-optimal instrument model since very different 

spectral information are averaged in one single model. For instance, the spectral en- 

velopes that can be obtained by averaging two spectral envelopes distinct in pitch 

yield a blurry model that might not be anymore interpreted as characteristic formant 

structures of the instrument. 

Figure 5.4 illustrates this effect. Plots (a), (c) and (e) illustrate the process of 

averaging two spectral envelopes corresponding to two notes with close fundamental 

frequencies (G2,98 Hz and A2,110 Hz), while plots (b), (d) and (f) illustrates 

the same averaging process with two spectral envelopes corresponding to two notes 

with distant fundamental frequencies (G2,98 Hz and C5,523.25 Hz). Note that 

the formant structure shown in (e) is very similar to the ones shown in (a) and 

(c) respectively. In contrast, the formant structure shown in (f), obtained after 

having averaged (b) and (d), is different from (b) and (d). In particular, the first 

formant frequency has been shifted to a value between the ones shown in (b) and (d) 

respectively. 
Automated musical instrument identification systems encountered in the literature 

often take into account the instantaneous pitch value as a feature appended to the 

other descriptors of sound [MK98]. Therefore, the models have some knowledge 

about the correspondence between feature vector and fundamental frequency. The 

pitch dependency upon timbre has also been explored at the classifier level in [KGO03], 

where a fo-dependent machine learning algorithm has been proposed. It has been 

shown that on average, performance at individual-instrument level improved by 4%, 

from 75.73% to 79.73% for 19 instruments in the database. 

In order to respect the approach that is presented throughout this thesis (and 
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Figure 5.4: Averaging spectral envelopes corresponding to different fundamental frequencies. Plots 
(a) and (b) are the same representations of a spectral envelope estimate obtained after a 24th 
prediction order has been applied on a frame of cello sound (G2,98 Hz). In (c) and (d) are plotted 
two spectral envelope estimates for the notes A2 (110 Hz) and C5 (523.25 Hz) respectively. Plots 
(e) and (f) are the averaged spectral envelopes after having calculated the means in the LSF domain 
of (a) and (c) on the one hand, and plots (b) and (d) on the other hand. Note the similar formant 
structure in (e) than in (a) and (c). Note also the different formant structure in (f) than in (b) and 
(d) respectively. 

particularly the interpretation of averaging spectral envelopes), we propose to use the 

pitch as a prior for both the instrument modelling and identification phases. The 

strategy is applied at the database level. 

. In the following, a pitch detection algorithm is firstly described. Next, experiments 
that have been conducted are presented. Results from experiments involving the same 
database as in previous experiments are finally summarised. 

5.5.1 Pitch detection 

The fundamental frequency determination of a mono-timbral steady-state audio signal 
can be considered as trivial provided an adequate strategy is used. To this effect, 
various techniques including spectral (STFT-based) and temporal (autocorrelation, 

AMDF [Tre82]) methods can be used. Our first implementation used a modified 
AMDF function [Tre82]. However, it has been informally found that this algorithm 

was not reliable for the full pitch range covered by the notes in our database. For 
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this reason, the YIN [dCK02] algorithm has been preferred. It has been chosen for 

the good trade-off between simplicity of implementation and accuracy. 
For an input frame s(n) of N samples, the difference function D is first calculated 

such that: 
N 

D(k) = E(s(n) 
- s(n + k))2 , k=0,..., N (5.1) 

n=1 

where k represents the lags between samples. Note that Eq. (5.1) is similar to 

the detection function used in [Tre82]. An unknown period may be found in D by 

searching for the values of k for which D(k) is minimum. However, it has been shown 
in [dCK02] that secondary dips due to the signal's formant structure can be deeper 

than the one corresponding to the period, thus introducing errors in the determination 

of the period value. As a consequence, the cumulative mean normalised difference 

function has been proposed. 
The cumulative mean normalised difference function D' [dCK02] is obtained by 

dividing each value of D by its average over shorter-lag values: 

D'(k) =1 D(k)II(l/k) Eý=1 D(a)l otherwi 
(5.2) 

A frame s having a definite pitch has local minima in the function D1. In practice, 

the smaller lag value k whose minimum D'(k) is below a threshold fixed a-priori 

corresponds to the period in samples of the frame. The process is illustrated in figure 

5.5 for one frame of 512 samples extracted from the steady-state portion of an oboe 

note. The lag value below the threshold (horizontal dashed line) in figure 5.5(c) 

corresponds to the time-period k0 in samples of the frame. In the case where no 
local minima are found or no local minima has a value below the threshold, the frame 

is considered as being unpitched. 
Accurate pitch values can be determined if the signal's period is a multiple of 

the sampling period. However, in other cases, the estimate can be biased up to half 

the sampling period [dCK02]. For this reason, the quadratic interpolation technique 
described in section 3.5.2.2 is applied to obtain a better estimate ko of k0. The 

corresponding fundamental frequency in Hz can then be calculated as fo =ö where 
fs is the sampling frequency. 

For each frame of each tone waveform in the database, a pitch value is determined. 

To this effect, frames of 2048 samples have been considered. In practice, the search 
for local minima in D' has been performed from a lag value of 12 samples, thus 
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Figure 5.5: Example of pitch detection using the YIN pitch detector algorithm. (a) Time-domain 
frame extracted from the steady-state portion of an oboe note. (b) Difference function D, Eq. 
(5.1) and (c) Cumulative mean normalised difference function D', Eq. (5.2). The horizontal dashed 
line corresponds to the absolute detection threshold. In (c), the smaller lag corresponding to a 
local minimum whose amplitude is below the threshold is the signal's sample-period. In this case, 
ko 90. 

corresponding to a maximum pitch value of roughly 1837 Hz for fe = 22050 Hz. 

The absolute threshold value has been set to 0.4. Next starting and ending pitch 

values corresponding to the attack and decay/end of the notes3 were discarded for 

the calculation of a mean pitch value for the whole tone. Note that it cannot be 

ruled out that errors in the pitch calculation occur in the process. However, as will 
be seen in section 5.5.2, we propose to apply a strategy at the database level that 

does not rely on accurate pitch values. 
Finally, the fundamental frequency is transformed into a value on the MIDI note 

scale and used as a label for the waveform. In figure 5.6 are shown the frequency 

distribution of the tones in the whole database as well as the frequency range per 
instrument that have been determined using the YIN pitch detector. 

5.5.2 Using two frequency registers 

In this experiment, two frequency registers are considered, 32-66 and 67-92 in MIDI 

number respectively. In the following, they will be called low and high-register (LR 

and MR respectively). This choice reflects at the same time the pitch distribution of 

3typically the first and last 6 values 

20 
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Figure 5.6: Pitch distribution in MIDI notes of the 3292 tones in the database. Pitch range per 
instrument (top) and histogram for the whole database (bottom). The vertical solid line delineates 
the boundary when two registers are used. 

each instrument in the database and the fact that the ten instruments are relatively 

well represented in each register. 
Experiments have been conducted as follows. Each note, for each instrument in 

the database was firstly classified into one of the two registers using the pitch detector 

described in section 5.5.1. Next, in each register and for each instrument, 50% of the 

files have been used for training the models while 50% were kept for the evaluation. 
This way, the number of notes for building and evaluating the system are the same 

as in section 5.3. Three runs have been performed with different training and testing 

data sets and the performance were accordingly averaged. 
In table 5.10 are shown the number of notes, for each instrument in the new 

database. For each register and for each instrument, 24 LSF have been extracted to 
build the feature vectors. Models were trained by running a K-means, and 32 code- 

words were determined. The choice of these parameters conformed to the conclusions 
drawn from experiments reported in section 5.3. 

During the identification, the pitch value of the note to identify drives the choice of 
the frequency register to compare the observation to. Similarity measures between the 

unknown feature data and all the models in the corresponding register are calculated. 
Similar to section 5.3, the codebook to codebook similarity measure has been used. 

The percentages of average correct identification, for each instrument and for 
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Instrument LR (32-66) HR (67-92) 

bassoon 106 129 

oboe 31 168 
clarinet 138 226 

flute 102 176 

sax 157 129 
trombone 256 51 

trumpet 132 178 

cello 360 112 

viola 186 252 

violin 92 317 

Table 5.10: The 3292 notes in the database classified into 2 registers. 

each register are shown in figure 5.7. On average, 81.8% and 82.7% of the tones can 

be correctly recognised for the low- and high-register respectively. Note that these 

rates are calculated for different numbers of tones for each instrument and for each 

register. 
Note the correct identification rate for the trombone in the high-register (80.4%) 

compared to the low-register (96.9%). As a result, the global performance for this 

instrument (94.0%) dropped when compared to the base system (98.1%, see table 

5.11). This particular example shows how too few data used for training the mod- 

els can affect the overall system's performance. This fact is also verified for the 

oboe, whose performance dropped by 3.4% from 79.5% to 76.1% due to the low 

performance in the low register (32.3%). 

In table 5.11 are compared the average correct identification rates for the base 

system and the one using pitch as a prior. Noticeable improvements are concerned 

with the clarinet, (plus 10.8%), the trumpet (plus 6.4%) and the flute (plus 3.7%), 

three instruments that are well represented in the two registers. 4 Performance for 

the bassoon are also improved by 3.6%. Note also the improved correct identification 

rates for all the string instruments. Overall, 85.2% average correct identification is 

achieved, an improvement of 2% over the original system (see section 5.3) that did 

not consider the pitch as a prior. 
In tables 5.12 and 5.13 are shown the confusion matrices for instrument and 

family identification respectively. Using the pitch as a prior yields 87.5% correct 
family identification, 2.5% more than the base system (see table 5.7(b)) but slightly 
less than if a classification approach using SVM is chosen (88.6%, see table 5.9). 

"one can relate the improvement for the clarinet with the fact that this instrument has a different 
timbre depending on the register 
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Figure 5.7: Average correct identification rates for each instrument and for each of the two registers. 
Individual correct identification rates for the whole database (Global) are also reported. 

Instrument Base system Two registers Diff. 

bassoon 91.5 95.1 +3.6 
clarinet 71.4 82.2 410.8 
flute 82.7 86.4 -13.7 
oboe 79.5 76.1 -3.4 
trombone 98.1 94.0 -4.1 
trumpet 77.4 83.8 16.4 

sax 85.3 84.6 -0.7 
cello 91.9 92.8 10.9 
viola 78.1 79.3 1 1.2 
violin 76.1 78.1 1 2.0 

TOTAL 83.2 85.2 

Table 5.11: Comparison between the base system and a system using the pitch as prior with two 

registers. 

One can notice that the strings and the flute attract much less confusions than in the 

base system (on average 3.1% and 0.4% against 6.2% and 2.7% for the base system). 
The performance for the clarinet are improved by more than 10% (note however that 

this family contains only one instrument). 

Cross-register experiments have been conducted in order to demonstrate the fact 

that training and testing models using different registers yielded a non-optimal system. 
For this purpose, each testing sample in each register is tested against the models in 

the other register. In table 5.14, rows correspond to the register in which the tested 

samples belong to, while columns indicate the register for which the tested samples 
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& ýaý , el; e 

strings 94.9 2.4 0.9 0.7 0.9 0.2 
brasses 4.1 91.2 0.5 3.6 
db reed 2.3 6.3 85.8 1.0 1.4 3.2 
clarinet 3.9 2.6 8.3 82.2 3.0 
flute 7.6 2.3 1.5 86.4 2.2 
sax 8.4 2.7 4.3 84.6 

Table 5.13: Confusion matrix showing correct instrument families classification rates. Two frequency 

registers have been used. 87.5% correct family identification can be achieved in this configuration. 
Rows correspond to the true families while columns correspond to the answers given by the system. 

LR 32-66 HR 67-92 

LR 32-66 81.8 78.8 
HR 67-92 75.2 82.7 

Table 5.14: Cross-register experiments. Average correct identification rates. In rows are shown the 
register of the presented tones and in columns the register of the models. 

are compared to. The average correct performance of the system are reported in 

diagonals while the other percentages correspond to cross-register experiments. 
lt can be observed that training and testing using similar registers (diagonal in 

table 5.14) yields the best performance so that the best overall system can be designed 

by choosing the register models in accordance with the pitch of the unknown tone. 

Next, training and identifying using different registers yields worse performance. For 

instance, training using LR and testing using HR results in 78.8% of the samples to 

be correctly identified while training using HR and testing using LR results in 75.2% 

of the samples to be correctly identified. 

However, note that each instrument class in each register does not contain the 

same number of notes, so that the percentages reported in table 5.14 have to be 

compared with care. By combining the individual performance in terms of correct 
instrument identification rates for the two cross-register experiments, 79.7% average 

correct identification has been achieved. This is, in comparison, roughly 6% worse 
than training and testing using corresponding registers (85.2%). 

5this means that the register of the models is chosen accordingly to the register of the tested 
sample 



CHAPTER 5. RECOGNITION OF ISOLATED NOTES 147 

5.5.3 Summary 

The aim of this series of experiments was to take into account a global characteristic 

of sound when building the instrument models. Specifically, it has been interpreted 

that sound spectral envelopes and formant structures are dependent on the pitch so 

that the determination of a single model of characteristic spectral envelope covering 

the whole frequency range might not be optimal. Therefore, we have presented a 

strategy at the database level6 whereby the pitch is used as a prior for the modelling 

and testing phases. 
Using the pitch as a prior significantly improved the correct identification rates for 

the clarinet, the trumpet, the flute and the bassoon. On the other hand, performance 
for other instruments such as the oboe or the trombone dropped. This has been 

explained by the fact that there were not enough data in the low and high-register 

respectively for building robust models. Note however that these models are robust 

enough to avoid confusing the system. Overall, improvements of 2% and 3% in 

terms of correct instrument and correct family identification rates have been observed 

compared to the base system described in section 5.3. 

The boundary between registers has been chosen in such a way that all the in- 

struments in the database and in each register were represented, thus preserving 9 

possible confusions for each identification decision, similar to the base system. How- 

ever, it can be argued that using two registers is not optimum since very similar 
formant structures, especially around the boundary between registers, are represented 
in the low- and high-register models. Nevertheless, it can also be argued that in this 

configuration, formant structures corresponding to very low and very high pitches are 

not averaged, thus resulting in noticeable improvements in terms of average correct 
identification rates. 

The purpose of these experiments was to illustrate the dependency of our model 

upon pitch. Cross-register experiments have been conducted and it has been con- 
firmed that the models trained using the LSF depend to a certain extent on the pitch. 
It has been subsequently shown that the timbre modelling approach presented herein 

is indeed sensitive to pitch. This provides a possible justification for using melodic 

phrases instead of isolated notes when one wishes to identify melodic phrases, as will 
be shown in chapter 6. 

6as opposed to methods that are applied at the feature or classifier levels, e. g. [K0003] 
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Require: Ga and Gr, attack and release rates respectively 
Initialisation: Env E- 0, i=0, Tmp =0 
for each new sample x(i) do 

Calculate: Tmp i-- Ix(i)l 
if Env < Tmp then 

Env 4-- Ga * Env 
Env F- Env + (1- Ga) * Tmp 

else 
Env «- Gr * Env 
Env 4- Env + (1- Gr) * Tmp 

end if 
end for 

Figure 5.8: A simple envelope follower algorithm. 

5.6 Differentiated transient/steady-state instrument sound 

modelling 

Following the work of Berger [Ber63] on the importance of transients and onsets in 

the identification of sound by humans, we propose in this section to implement a 

computer simulation of his experiments using the musical instrument identification 

system described in section 5.3. A background review of two systems considering 

such segmentation prior to the feature extraction stage has been given in section 3.3 

for the case of isolated notes and melodic phrases respectively. 
In the following, a technique for automatically segmenting the isolated note wave- 

forms into transient/steady-state segments based on an envelope follower algorithm 
is described. Next, we propose to evaluate the performance of a system where similar 
features are independently extracted from the transient and steady-state segments of 

tone respectively. 

5.6.1 Transient/steady-state segmentation 

Envelope following algorithms are fundamental in the audio processing field for mea- 

suring the power of an audio signal as a function of time. An envelope follower 

algorithm averages the signal power over a time-lag long enough for the instanta- 

neous oscillations in power value not to significantly affect the overall power estimate 

and short enough to determine a reasonably accurate estimate of the envelope. 
A simple envelope follower algorithm [Mus] is presented in figure 5.8. The algo- 

rithm has two main parameters, the attack and release rates, which control how the 
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follower responds to transients. 7 In our implementation, the parameters Ga and Gr 

were set to: 

Ga = exp -1 fats 

Gr = exp - (5.3) 
fr 

where f8 is the sample rate in Hz, and ta. =5 ms and t,. = 30 ms the attack and 

release times respectively. 
This envelope estimate obtained using the algorithm described in figure 5.8 is how- 

ever noisy and still contains high frequency component. Further, as we are interested 

in the calculation of the time envelopes that roughly models the slower modulations 

in amplitude that the signal exhibits, a low-pass filtering operation with cut-off fre- 

quency of 10 Hz is applied as post-processing to smooth the shape of the envelope 

as a function of time. 

The onset time location is then estimated using a derivative of the envelope. For 

the same reasons mentioned in section 3.3, the derivative is calculated by fitting a first 

order polynomial to avoid obtaining a noisy estimate of the instantaneous envelope 

derivative. In figure 5.9 is illustrated the segmentation process for two flute and 

viola isolated notes. The peak location in the derivative of the envelope having the 

maximum amplitude (figure 5.9(c)) gives a rough estimate of the onset location. The 

corresponding value is then used to segment the waveform into transient and steady- 

state segments respectively. Specifically, the signal segment located before the peak 
(left arrow in figure 5.9(d)) is considered as the onset signal while the segment located 

after (right arrow in figure 5.9(d)) is considered as the steady-state segment of the 

tone. Note that this algorithm only gives a rough estimate of the onset location. 

As can be seen in figure 5.9(d), the flute onset signal contains samples from the 

steady-state segment of the tone. 

On average, it has been found that the onsets segments produced by this technique 

lasted between 100 ms and 200 ms, thus corresponding to roughly 4 and 10 feature 

vectors per tone. 

5.6.2 Experiments 

Experiments were conducted as follows: all the files in the original database were 

segmented into onset/transient and steady-state segments respectively and two new 

7note that the term transients is used in this context to qualify the typical high frequency 
oscillations that audio waveforms exhibit and not only the start/attack of notes 
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Figure 5.9: Transient/steady state segmentation using an envelope follower algorithm for two flute 
(left) and viola (right) isolated notes. (top) time-domain signals (a) estimate of the envelope using 
the envelope follower algorithm described in figure 5.8 (b) envelope estimate after low-pass filtering 
with a 10 Hz cut-off frequency (c) derivative of the envelope estimate using the polynomial fitting 
algorithm described in section 3.3 using a linear window of 9 samples (d) magnified view around the 
onset location. 

databases were built. Next, each of these databases was considered independently for 

the descriptors extraction, the models calculation and the performance evaluation. 
Features were extracted in a similar way as for the base system, consisting of one 

vector of 24 LSF for each frame. Models were built using 32 codewords and the mini- 

mum distance measure described in section 4.2.3.1 was used to identify each unknown 

excerpt during the testing phase. The reason for using this measure is that the onset 
database contains very short excerpts. As a consequence, the use of the codebook 

0.1 0.15 0.2 
Time (s) 

-1 0.08 0.1 0.12 0.14 0.16 
Time (s) 
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Instrument Onset database Steady-state database Un-segmented database 

bassoon 84.3 92.6 91.5 
clarinet 74.3 68.8 71.4 
flute 72.2 80.6 82.7 

oboe 86.2 66.6 79.5 
trombone 89.4 98.1 98.1 
trumpet 80.8 85.8 77.4 
sax 90.0 81.8 85.3 
cello 79.4 92.0 91.9 
viola 54.5 75.8 78.1 

violin 49.0 57.8 76.1 

TOTAL 76.0 80.0 83.2 

Table 5.15: Comparative performances when feature and models are trained on separate on- 
set/transient databases. Percentage of correct identifications. 24 LSF have been used for training 
while the models consisted of 32 codewords. Standard deviations are reported in parentheses. 

to codebook similarity measure is not possible since it involves the calculation of a 

dictionary of 32 codewords from the observation to be identified. However, it has 

been shown in section 5.3 that the performance of these two similarity measures in 

this particular configuration (24 LSF and 32 codevectors) were statistically similar. It 

can therefore be argued that the comparison between the systems' performance in- 

volving the three different databases is meaningful. Three runs have been performed 

with different training and testing samples but with the same file combinations as in 

section 5.3. 

Comparative performance in terms of correct identification rates for each instru- 

ment are reported in table 5.15. In the last column are recalled the performance of 

the base system in which features were indifferently extracted over the whole note. 
On average, training the models using the steady-state portions of tones as op- 

posed to using the onset database yields better performance, with an increase of 4% 

in average identification rate. However, this is in comparison 3% less than if similar 

models were trained on the un-segmented database. A clear difference in identifica- 

tion rates is concerned with the string family. A drop of roughly 12% for the cello, 
21% for the viola and 18% for the violin in average performance between steady-state 

and onset database can be observed. For these instruments, models are more advan- 
tageously built using the steady-state and un-segmented databases than the onset 
database. This can be explained by the fact that the cello, the viola and the violin 
have very similar mechanisms of sound production. Therefore, their note onsets have 

similar physical characteristics - resulting from the same mechanical bowing action 
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- that do not contain specific enough information about the instruments for building 

robust models. Using the database of steady-state samples bring extra-information 

about the spectral envelopes that help to better discriminate between the three in- 

struments sounds. The fact that these instruments mainly differ by size and that they 

have slightly different nominal playing ranges obviously yield different spectral enve- 
lope models that are, in consequence, more representative of each class. Combining 

these two facts into one model (i. e. using the un-segmented database) is useful since 

the overall performance increased. As a result, it can be concluded that the models 
built using the un-segmented database contain to a certain extent information of both 

the attack and steady-state segments of sound. 
On the other hand, it is more interesting to use the onset database for the clar- 

inet, oboe and sax. Using the onset database yields 74.3%, 86.2% and 90% correct 
identification rates, an improvement over both the steady-state and un-segmented 
databases. Note for these three instruments the average performance between onset 

and steady-state databases when the un-segmented database is used: it can be argued 

that the models built from the un-segmented database contain essential information 

about the transients. 

Overall, building models from the onset database still yields 76.0% correct identi- 

fication which corresponds to reasonably high performance considering the duration 

of the considered signals (typically few hundreds milliseconds). This way, we confirm 

the conclusion drawn in section 3.3 where it has been highlighted that the onset 
database was in fact a non-redundant snapshot of the whole database. In conse- 

quence, this database contains a small amount of non-redundant information about 
the spectral envelopes of the steady-state segments that are advantageously exploited 
by the models. Note that this is particularly valid in the current case since isolated 

tones have a constant pitch over their whole duration. This has been informally veri- 
fied by listening to the various samples: although being very short in duration, it has 

been found that the onset segments had a clear and definite pitch. 
Finally, note the different behaviour of this system compared to Eronen's one (see 

section 3.3), in which 12 MFCC extracted from the onset database performed slightly 
better than the same features extracted from the steady-state database. Using the 
LSF and K-means, better performance are achieved with the un-segmented database, 

thus justifying the use of our generative approach in a melodic context, as will be 
investigated in chapter 6. 
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5.6.3 Summary 

In this section, we proposed to evaluate the performance of our system in a differ- 

entiated transient/steady-state instrument sound modelling framework. At the same 

time, the aim was to present a computer implementation of the perceptual experi- 

ments conducted by Berger [Ber63] dealing with the importance of onset/transient 

in the identification of sound by humans. 

On the one hand, it has been shown that on average, training the models using the 

steady-state database yielded better performance than if they were trained using the 

database of onsets. This has been shown to be particularly true for the bowed string 
family for which the spectral envelopes extracted from the steady-state segments 

of tones exhibit more discriminating power than the ones extracted from the onset 

segments. The consideration of the steady-state segments of tones improved the 

performance for most of the other instruments except for the clarinet, oboe and sax 
for which building models from their onset database offered improvements in terms 

of performance. 
On the other hand, considering the un-segmented database improved the average 

performance so that it can be concluded that models consisting of average spectral 

envelopes determined using a K-means algorithm carry essential information about 

the waveforms' transient structure. It has been proved that this information is useful 

since the performance increased when features were extracted over the whole tone 

duration. This provides a justification for using this generative approach in a melodic 

context, as will be shown in chapter 6. 

One can argue that the LSF are not appropriate for modelling transients and 

onsets. However, as has been mentioned in section 3.3, the onsets of pitched musical 

sounds created by wind, brass or string instruments are much less singular than the 

transient of a piano or a plucked string sound. In particular, one can observe in 

figure 5.9(d) the non-percussive nature of the flute and viola onset segments. For 

the flute, the onset segment is periodic and similar to the steady-state. For the 

viola, the onset segment is noisy. This is due to the initial friction of the bow on 
the strings. As the LSF model in some ways spectral envelopes, it can be argued 
that they can model steady-state (low-pass spectral envelopes) or noisy (high-pass 

spectral envelopes) onsets without relying on formal temporal considerations. 



CHAPTER 5. RECOGNITION OF ISOLATED NOTES 154 

5.7 Psycho-acoustic considerations 

In this section, we propose to include psycho-acoustic considerations for building the 

models. This corresponds to the second approach to the timbre modelling problem 
introduced in chapter 3. 

The work of Eronen [Ero0l] has been reported in section 3.5. In particular, he 

showed how a frequency warping into the Bark scale improved the performance of his 

system over non-warped versions of the LP coefficients. 8 In this series of experiments, 
the use of a similar warping method prior to the LSF calculation is investigated. 

Next, we propose a novel feature based on a psycho-acoustically motivated partial 

selection algorithm applied prior to the LSF calculation. Principles of the calculation 

of these descriptors using the ISO/MPEG psycho-acoustic model (see appendix A) 

are described in the following section. 

5.7.1 Perceptual LSF (PLSF) calculation 

We have described in section 3.5.3 how a frequency masking technique could be 

used to include psycho-acoustic considerations into the sinusoidal analysis/synthesis 
framework. As a result, we propose to use the instantaneous global frequency masking 

curves to calculate a psycho-acoustic version of the LSF coefficients, the Perceptual 

LSF (PLSF). 

The PLSF are determined as follows. Signals are processed on a frame basis. For 

each frame, the global masking threshold (see appendix A) is calculated and used to 

select the relevant local maxima in the spectrum-9 Their amplitudes, frequencies and 

phases are interpolated using the quadratic and linear schemes described in section 
3.5.2.2 and used as input to the kernel modulation algorithm (see section 3.5.2.3) 

to synthesise a time-domain frame. Next, a LP analysis is applied and the LSF 

are calculated using the standard technique described in section 3.2.2. The whole 
process is illustrated in figure 5.10 for a single frame of cello sound. Compare figures 
5.10(b) and 5.10(d) and note the missing spectral information at f 5000 Hz and 
f ý. 8000 Hz corresponding to sinusoidal components that have not be retained after 
the psycho-acoustic spectral transformation. 

8note he used cepstral versions of the LP and warped LP coefficients respectively 9the ones whose magnitudes are above the global masking curve 
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Figure 5.10: Illustration of psycho-acoustic motivated LSF calculation. (a) Original time-domain 
frame (b) Corresponding magnitude spectrum and LSF representation (vertical dashed lines) for a 
12th prediction order (c) Time-domain frame after spectral psycho-acoustic decimation and resyn- 
thesis (d) Corresponding magnitude spectrum and LSF representation for a 12th prediction order. 

5.7.2 Experiments 

In these experiments, two perceptual features, the Warped LSF (WLSF) and the 

Perceptual LSF (PLSF) are considered with the K-means and the SVM for building 

the instrument and database models. A number of 24 parameters has been chosen in 

all cases in order to compare the performance with the results summarised in sections 

5.3 and 5.4. 

The WLSF are calculated as follows. First, the warped LP coefficients are de- 

termined using the code provided in [War]. A warping factor of 0.6461, which cor- 

responds approximately to a transformation from frequency to Bark scale [Ero01] 

[HLO1] for f8 = 22050 Hz, has been used. Next, the warped LP coefficients are 

transformed to WLSF using the procedure described in section 3.2.2. 

In figure 5.11 are reported the systems' comparative performance. Figure 5.11(a) 

is concerned with the K-means while figure 5.11(b) with the SVM. Corresponding 

performance using the LSF (see tables 5.4 and 5.8) are recalled in both figures. 

For the K-means (figure 5.11(a)), 72.8%, 82.9% and 83.2% average correct iden- 

tification are achieved for the WLSF, the PLSF and the LSF respectively. Note that 

(a) (b) 
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the performance of the WLSF are comparable to what can be achieved when 12 MFCC 

and a K-means are used (73% average correct identification, see section 5.3.3). For 

the PLSF, improvements in terms of correct identification rates concern the clarinet 
(plus 4%), the oboe (plus 3%) and the flute (plus 3%). On the other hand, the 

performance for the cello and trombone drop by nearly 12% and 2% respectively. As 

a consequence, the average performance of the system using the PLSF are almost 

similar to the ones obtained with a system using the standard LSF as descriptors. 

For the SVM (figure 5.11(b)), average performance are improved for the two 

perceptual descriptors. On average, 82.4%, 85.4% and 86.6% correct identification 

have been observed for the WLSF, the PLSF and the LSF respectively. One can notice 

the difference in relative performance between the WLSF and the LSF depending on 

the classifier used. Specifically, the drop in average correct identification rates is more 

pronounced in the case of the K-means (roughly 9% for the WLSF compared to the 

LSF) than in the case of the SVM (roughly 4% for the WLSF compared to the LSF). 

Further, for the two classifiers, the LSF are better than the PLSF, that are themselves 

better than the WLSF. 

Although it was argued the consideration of psycho-acoustic features would better 

fit the mechanisms of sound perception by humans, experiments did not show signifi- 

cant improvements by considering perceptually derived LSF coefficients. This can be 

analysed as follows. Applying a psycho-acoustic transformation can be interpreted as 

transposing the sound physical formant structure into a perceptually relevant scale. 
However, in this new scale, it is not guaranteed that the process of averaging spectral 

envelopes and evaluating a similarity measure between observation and models using 

an Euclidean distance is appropriate. For instance, it is known in speech coding that 

the Euclidean distance is relevant for measuring a distance between two LSF vectors. 
This can explain the better performance of the LSF over the WLSF when a K-means 

is used. 
Experiments involving the PLSF confirm this hypothesis. In this case, the for- 

mant structures are much less altered since the pre-processing consists of removing 

sinusoidal components that are often located in the high frequencies, where formants 

are rarely present. In the worse case, a missing sinusoidal component in the lower 

frequency can affect the formant structure, but in a much smaller scale than in the 

case of the WLSF. Thus resulting on average in the mid-performance of the PLSF 

compared to the WLSF and LSF respectively. 
Finally, experiments involving SVM revealed the capacity of the adaptation of the 

algorithm. SVM are much less sensitive to the type of features being used since they 
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dynamically adapt the boundaries between feature data distributions. 

5.7.3 Summary 

In this series of experiments, we proposed to include psycho-acoustic knowledge prior 

to the feature extraction stage. After having described how the PLSF were calculated, 

we compared their performance with the WLSF and the standard LSF for the same 

identification and classification tasks. 

We have related the performance of the system WLSF/K-means with the ones 

that can be achieved using the MFCC (see section 5.3.3). The drops in performance 
for the WLSF and PLSF have been interpreted and it has been concluded that the 

Euclidean distance was not suitable for evaluating similarity measures into perceptual 

scales. On the other hand, using a SVM resulted in relatively uniform performance 
for the three considered features, thus revealing the SVM adaptive properties. 

Chapter summary 

In this chapter, we have presented various applications of our system for the iden- 

tification of isolated tones taken out of musical context. The use of this database 

helps to limit the amount of musical acoustic information that could intervene for a 

proper interpretation of the results and system behaviour. Our approach finds strong 

justifications in the formant theory of musical timbre whose fundamental principles 
have been exposed throughout this thesis. Not only was the aim to propose a system 

able to identify musical instrument sounds, we described a framework in which the 

relative importance of the timbral characteristics could be verified and reproduced. 
In section 5.3, the base system which served as reference for our research has 

been presented. The use of the LSF as spectral envelope and formant structure 
descriptors has been presented in a musical instrument context. We justified the use 

of the K-means for building the models by considering at the same time principles 

governing the formant theory of timbre and various research works in speech coding 

and speaker identification/verification. Preliminary experiments consisted of finding a 

preferred prediction order and number of codewords for the models that maximised the 

average performance. Next, the performance of several similarity measures between 

observations and the models have been evaluated. We have experimentally found 

that a minimum distance classifier based on the isotropic Euclidean distance yields 
the best performance together with the codebook to codebook similarity measure. It 

has also been found that the use of Mahalanobis distance and the MAP rule used 
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in the GMM was inappropriate with the type of considered features. Finally, it has 

been experimentally shown that our system outperformed the classical MFCC/GMM 

approach for the same learning task. To summarise, this base system yielded more 

than 83% average correct identification among 10 instruments identities, the database 

totalling 3292 samples while training and testing databases being considered in a 
50/50 ratio. Although the number of considered instruments in our database is 

limited, we advanced that the performance of this system in terms of instrument 

family identification is comparable to what humans can achieve. 
Various acoustic descriptors can be used for the purpose of modelling spectral 

envelopes. In section 5.3.3, experiments comparing the performance of the LPC, 

PARCOR, LSF and MFCC respectively have been conducted. For similar algorithm 

parameters (prediction order and number of codewords), the use of the LSF improved 

the performance both in terms of correct instrument and correct instrument family 

identification. This has been justified by the fact that since the LSF exhibit localised 

spectral sensitivity properties, they were particularly suitable to be used together with 

an averaging machine learning procedure such as the K-means. 

In section 5.4, our learning approach has been compared to a classification ap- 

proach involving SVM. The use of the SVM helped to increase the average per- 
formance by more than 3% up to 86.6% for the LSF. Experiments involving other 

acoustic descriptors also showed improvements compared to experiments involving K- 

means. It has been argued that this database model yielded an upper limit in terms 

of achievable performance for the LSF-based mono-feature system described in this 
thesis. 

In section 5.5, a study on the dependence of the models upon pitch that were 

obtained after a K-means optimisation has been conducted. Our argument was that 

although the formant structure of an instrument sound is thought to be theoretically 
invariant to the pitch, the LSF being extracted are in practice dependent on the 

position of the spectral envelope along the frequency axis. It was therefore believed 

that averaging a set of spectral envelopes distant in pitch would result in non-optimum 
and blurry models. Consequently, it has been shown that models can advantageously 
be built for different instrument frequency registers. For this purpose, we have isolated 

two frequency registers in the database for which two corresponding models were 
trained using identical procedures. Experiments have quantified the improvements 
in terms of correct identification rates when pitch was used as prior for the clarinet, 
trumpet, bassoon and flute. At the same time, cross-register experiments showed 
that performance degraded as the distance in pitch between unknown samples and 
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models increases. Using the pitch as prior and the same database, the average correct 

identification rates increased by 2% up to 85.2% compared to the base system. 

In section 5.6, it has been verified that a single model built for each instrument 

and using features extracted from un-differentiated frames types would nevertheless 

contains information about the onset and attack segments of tones. To this effect, 

a segmentation onset/steady-state algorithm based on a spectral envelope follower 

has been used. Next, identical features were extracted from the two newly created 

databases. Overall, the average identification rates are improved when models are 

built from the steady-state database and the un-segmented database respectively 

compared to when models are built only from the transient database. It has been 

concluded that our approach confirmed to a certain extent the experiments conducted 
by Berger [Ber63] and that models trained from the LSF and K-means naturally 

incorporate specific acoustic information about the attacks and onsets of notes. 
The second approach we proposed to build timbre models consisted of using 

psycho-acoustics at the pre-processing level prior to the LSF calculation. To this 

effect, we have described in section 5.7 a perceptually motivated pre-processing tech- 

nique based on the ISO/MPEG psycho-acoustic model described in appendix A. We 

compared this feature, the PLSF, with the WLSF and the standard LSF using similar 

parameters as in previous experiments. When using K-means, it has been found that 

performance dropped by 9% with the WLSF and less by 2% with the PLSF. We 

explained this by the fact that although the spectral envelopes obtained after warping 

into the Bark scale on the one hand, and after psycho-acoustic spectral selection on 

the other hand were perceptually relevant, the processes of modelling and averaging 

were more relevant when the standard LSF and the Euclidean distance were used. 

In the next chapter, the generative and discriminative approaches described in 

this chapter are extended to deal with realistic musical recordings. 



6. Instrument identification and 

classification in a melodic context 

Chapter 5 was concerned with the evaluation of systems aimed at identifying musical 
instrument notes taken out of any musical context. It has been mentioned how such a 

controlled musical environment could serve to conduct finely tuned experiments. To 

this effect, a computer system conforming to the formant theory of musical timbre 

has been built. The dependence of this system on pitch has been quantified and 

a solution whereby different models were built for two frequency registers has been 

proposed. It has also been shown how such a system could advantageously take into 

account the information carried by the onsets of musical instrument sounds without 

necessarily relying on a pre-segmentation processing module. 
Musical sounds encountered in real-life MIR applications are melodic and poly- 

timbral by nature. It is expected that an automated system designed for identifying 

musical instruments or evaluating the timbral similarity between sounds is able to deal 

with the various musical melodies that acoustic instruments can produce. As stated 
in the introduction of this thesis, the problem of identifying instruments in polyphonic 

mixtures is beyond the scope of this research. We will therefore restrict our study to 

the task of identifying melodic excerpts having continuous varying pitches and various 
temporal properties such as, for example, the number of notes in the considered audio 
samples. 

In essence, this approach is a direct extension of the previous research work in- 

volving isolated notes. For instance, it is assumed that under the condition that a 
system is reasonably robust at identifying isolated notes, its timbre modelling power 
could be directly used for identifying melodic phrases. 

In this chapter, several systems designed for the task of identifying mono-timbral 

melodic phrases are described. In section 6.2, we propose to train the models using 
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isolated notes while melodic excerpts of various durations have to be identified. We 

then show in section 6.3 that training models using melodic phrases is more appropri- 

ate for identifying melodic phrases since they intrinsically carry essential information 

about the transitions between notes and the expressiveness of musical phrases. An 

attempt to include time consideration and to append the delta of the acoustic timbral 
descriptors to the original feature vector is made. Similar to chapter 5, our learn- 

ing approach to the musical instrument identification problem is compared to the 

classification approach using Support Vector Machines (SVM). 

In section 6.4, we propose to combine generative and discriminative methods to 

classify musical instrument models. It is shown how the SVM training computational 
load can be reduced at a reasonable expense in terms of the system's performance. 

6.1 Database 

The difficulty in conducting experiments involving melodic excerpts resides in the fact 

that such databases are not available as such to researchers. The preliminary step 

was therefore to gather as much data from various sources as possible. We shall 

stress here the difficulty of finding mono-timbral solo phrases within real classical 

musical pieces. As a consequence, our database is now restricted to 6 instruments: 

the clarinet (Cl. ), the oboe (Ob. ), the flute (Fl. ), the cello (Ce. ), the violin (VI. ) 

and the piano (Pn. ). Piano sounds have been included because they have percussive 

attacks. Following the conclusions drawn in section 5.6, it is expected that models 
built using K-means capture these characteristics. 

For each instrument, the data set contains 600 seconds of sounds originating from 

10 different sources. Similarly to the experiments involving isolated notes reported in 

chapter 5, all samples are downsampled to 22050 Hz prior to any further processing. 
In our experience, features extracted every 34.5 ms over frames of 46.43 ms gave the 
best results, so this segmentation has been used in all the experiments presented in 
this chapter. 

6.2 From isolated notes to melodic phrases 

This section is concerned with the description of a system in which models are built 
from isolated notes [CS06]. 1 

lnote that results from similar experiments have been succinctly reported in [KSO4] 
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Instrument No. of notes Pitch range 

clarinet 120 50 - 90 
oboe 100 58 - 90 
flute 111 60 - 90 
cello 188 36 - 81 
violin 192 55 - 90 
piano 265 28 - 92 

TOTAL 976 

Table 6.1: Instances and number of notes per instrument in the isolated note database that have 
been retained for the experiments. The pitches have been determined using the YIN algorithm 
described in section 5.5.1. 

This approach can be referred to the work presented in [VR04] where sounds 

produced by each instrument in the database were modelled using a weighted sum of 
log-power spectra plus noise quantised on a semi-tone frequency scale. This model 

was firstly trained on a database of isolated notes and then used to identify mono- 

timbral melodic excerpts of 5 seconds in duration. In our approach, assuming that 

the K-means yields the definition of characteristic spectral shapes, the process can 
be seen as determining a condensed timbral representation of each instrument in the 

database, at the expense of losing the frequency resolution of the method in [VR04]. 

Similar to [VR04], the training database consists of a subset of the RWC collection 
[RWC]. Information about this database can be found in table 6.1. Note that 265 

piano tones have now been added. The pitch for each instrument note has been 

determined using the YIN algorithm described in section 5.5.1. 

6.2.1 System description 

In this experiment, we propose to evaluate the performance of K-means and SVM at 
the task of identifying melodic excerpts. The combination of 16 LSF/40 codewords 
has been chosen for all the experiments involving K-means [CS06]. 

During the evaluation phase, segments between 2 and 5 seconds in duration were 

presented to the system which returned their identities. Note that the segments to 
be tested might contain different numbers of notes, truncated attacks or steady-state 

portions as well as soft and loud passages. This corresponds however to typical data 

that can be encountered in real-life applications of the system. 
In order to compare the performance of this system with the one presented in 

section 6.3, half of the database of melodic phrases is considered for the evaluation, 
that is, 300 seconds of data are kept for testing the system. 
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6.2.2 Experiments 

Results are summarised in figure 6.1(a) where the average correct identification rates 

are reported for the two machine learning algorithms. For the K-means, and except 

when explicitly mentioned, the codebook to codebook similarity measure has been 

used as a measure of distortion between observations and models. Similar to section 
5.4, the Radial Basis Function (RBF) has been used in all the experiments involving 

SVM. The parameter y has been set toy = 1/6 and the feature data was normalised 
to lay in the range [-1 +1] [CLO1]. 

In this configuration, the correct average identification rates were 64.4% and 
73.3% for the K-means and SVM. The corresponding confusion matrices are shown 
in figures 6.1(c) and 6.1(d) respectively. Although above random guesses (16.7%), 

these figures are worse than human performance (98% and 85% average correct 
identification rates have been reported in [SSFO2] for 3 and 9 instruments in the 
database respectively) and below what could be achieved when isolated notes are 

used for both training and testing (83.2% and 86.6% for the K-means and SVM 

respectively in experiments reported in sections 5.3 and 5.4 for 10 instruments). 

For the K-means, performance range from 53.3% for the clarinet and to 83.3% 
for the piano. Note how the K-means performs slightly better than the SVM for 

this instrument. This can be explained by the fact that being the only percussive 
instruments in the database, the piano model contains a significant amount of char- 

acteristic high-pass spectral envelopes. These characteristics are well-captured by the 

similarity measure during the identification phase when compared to the other instru- 

ment models which do not exhibit high-pass characteristic spectral shapes [CS06]. 

This confirms to a certain extent the conclusions drawn in section 5.6 where it has 

been shown that models built using K-means implicitly incorporate specific acoustic 
information about the attacks of notes. 

Most important confusions involve the pairs violin-cello (20%), cello-violin (15%) 

and clarinet-oboe (15%). Note that each of these confusions concerns instruments 
belonging to the same families (strings and reeds respectively, if we consider single 
and double-reed instruments as belonging to the same group). 

Overall, using a SVM helps to increase the identification rates for the flute, cello, 
and violin classes by 23%, 18% and 15% respectively compared to the K-means. 
The corresponding confusion matrix is reported in figure 6.1(d). Most important 

confusions are concerned with the pairs clarinet-oboe (21.7% of the presented clarinet 
excerpts have been mis-identified as being oboe) and cello-violin (16.7%). The same 
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Figure 6.1: (a) Comparative performance for the task of identifying melodic phrases of 5 seconds 
in duration using models trained from isolated notes. Results for a K-means and SVM respectively. 
For each instrument, 60 excerpts have been tested. (b) Total average correct identification rates as 
a function of the duration of the tested samples, ranging from 2 to 5 seconds. (c) Confusion matrix 
when K-means is used (64.4% average correct identification). (d) Confusion matrix when a SVM is 

used (73.3% average correct identification). Rows correspond to the true instrument identities while 
columns correspond to the answers given by the system. 

Cl. Ob. Fl. Ce. VI. Pn. 

CI. 51.7 21.7 10.0 8.3 6.7 1.7 
Ob. 15.0 63.3 6.7 15.0 
Fl. 10.0 6.7 83.3 

Ce. 81.7 16.7 1.7 
VI. 15.0 6.7 78.3 
Pn. 6.7 3.3 8.7 81.7 
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conclusions about these confusions as in the case where a K-means is used can be 

drawn. Finally, note the similar performance for the clarinet and the oboe for the 

K-means and SVM respectively. 
In figure 6.1(b) are shown the total correct identification rates for the considered 

systems as a function of the duration of the testing samples. Note that for the ex- 

periments involving segments of 2 and 3 seconds respectively, the minimum distance 

measure described in section 4.2.3.1 has been used instead of the codebook to code- 
book similarity measure: in few cases, silences in the tested samples resulted in too 

little observation to run a K-means. One can noticed that the longer the observation, 

the better the average performance. Overall, the influence of the duration of the 

tested sample on the average performance is more limited in the case of the SVM 

than in the case of the K-means. 

6.2.3 Summary 

The system presented in section 6.2.2 has been designed to identify melodic excerpts 

using models trained using isolated notes. It has been found that average performance 
increased by nearly 9% to 73.3% using a classification approach compared to a system 

using a K-means and the codebook to codebook similarity measure. We have noticed 

that the K-means performed particularly well with piano sounds. For similar acoustic 
features, it has been confirmed that a discriminative approach performed better than a 

generative one. It has been further noticed that the two systems exhibited meaningful 
behaviours in terms of family confusions. 

Drawing on the conclusions reached in chapter 5, it can be argued the following. 

First, that the database of isolated notes contains very low and very high pitched notes 

that might not yield optimum models. Second, that solo phrases exhibit temporal 

properties at note changes that models trained using isolated notes do not capture. 
For these reasons, we propose in the next section to train models using melodic 

phrases. 

6.3 Using melodic phrases for training 

This series of experiments focuses on the use of melodic phrases for both training and 
testing. It is argued that timbral melody and expression can advantageously be taken 
into account to build more robust instrument models. Research works dealing with 

mono-timbral melodic phrases have been reported in [BHM01], [EB04] and [ERDb]. 
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6.3.1 The importance of context 

The presence of musical context in the identification of sounds by humans is essen- 

tial. However, little perceptual research has been carried out on the topic so that it 

is difficult to accurately quantify the corresponding contribution to the whole. This 

musical context can be related to successive note attacks, to various playing tech- 

niques characterising the instruments or to the overall expressiveness carried by the 

phrases. 
These aspects play a crucial role in identifying musical sounds. For instance, it 

has been informally observed that when asking professional musicians to recognise 

isolated notes out of musical context, confusions between a high pitched violin note 

and a high pitched oboe sound, among others, are not rare. By training the models 

using isolated notes, the essential information present in musical phrases is not taken 

into account, thus resulting in low identification rates during experiments, as has 

been shown in section 6.2.2. 

6.3.2 Experiments 

This series of experiments involves the same machine learning algorithms than in 

section 6.2. Models have been trained using 50% of the available data in the melodic 

phrase database (300 seconds for each instrument) while the other 50% were retained 
for the system evaluation. Note that the testing data set is the same as in section 

6.2. Feature vectors were built by extracting 16 LSF from the training data set. The 

influence of the delta LSF coefficients is also investigated. It can be argued that they 

model the LSF fluctuations with time, and to a certain extent the transitional infor- 

mation that characterise musical phrases (see figure 3.9). They have been calculated 

using the polynomial fitting technique described in section 3.3. A linear window of 
length K=9 has been used (see equation 3.8). 

In figure 6.2(a) are summarised the average performance when solo phrases are 

used for both training and testing. The base system using a K-means and 40 code- 

vectors is able to correctly identify 77.5% of the tested samples, an increase of 13% 

over the system using isolated notes for training. Individual correct identification rates 

range from 66.7% for the cello and clarinet to 86.7% for the flute. The corresponding 

confusion matrix is shown in figure 6.2(b). The most important confusions involved 

the pairs cello-violin (21.7%) and oboe-flute (15%). In terms of instrument families 

identification, bowed strings (cello and violin) are recognised 92% of the time and 

reeds (oboe and clarinet) 78% of the time. The global performance of this system is 
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Figure 6.2: (a) Individual correct identification rates for the 2 considered systems using melodic 
phrases for both training and testing. (b) Confusion matrix for a system using a K-means and 32 

codewords (77.5% average correct identification) (c) Confusion matrix for a system using a SVM 
(86.4% average correct identification). Rows correspond to the true instrument identities while 
columns correspond to the answers given by the system. 
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comparable to the one described in [BHM01] where 77% average correct identifica- 

tion has been achieved using ten cepstral coefficients and a Gaussian mixture model. 

Finally, note that the addition of the delta coefficients to the feature vectors degraded 

the performance which dropped by nearly 15% to 62.8%. 

Using a Support Vector Machine allows 86.4% of the testing samples to be cor- 

rectly recognised, an improvement of nearly 9% compared to the system using K- 

means. The corresponding confusion matrix is shown in figure 6.2(c). The best 

individual correct identification rates are achieved for the oboe class (98.3%), fol- 

lowed by the flute class (91.7%). Again, among the 6 instruments in the database, 

the cello samples are the worst classified (71.7%). Most important confusions involve 

the pairs cello-violin (16.7% of the cello samples were recognised as being violin) and 

clarinet-violin (12%). Finally, bowed strings and reeds families are identified 90% and 
88% of the time respectively. It can also be noted that appending the delta did not 

significantly change the average percentage of correct identification (85.8% against 

86.4%). 

The overall performance is comparable to the systems described in [VR04] and 
[EB04] where respectively 90% and 84% correct identification were achieved for 5 
instruments. 

6.3.3 Summary 

This series of experiments showed that training models using melodic phrases substan- 

tially improves the performance when one wishes to recognise melodic excerpts. By 

implicitly taking into account the note transitions that characterise melodic phrases, 

an increase of 13% in terms of average correct identification rates has been achieved 
for the K-means and SVM systems over the systems described in section 6.2. 

Further, we have shown that using a K-means, the consideration of the delta 

LSF significantly degraded the performance. This can be interpreted as follows. By 

concatenating these two types of features, the two different information about the 
LSF and the delta LSF are averaged in a single model. As a result, the models do not 

correspond to characteristic spectral shapes (i. e. formant structures and high-pass 

spectral envelopes for the transients and onsets) of each instrument, thus explaining 
the drop in performance. 
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Figure 6.3: Principle of classifying instrument models using K-means and SVM. For each class, a 
K-means is performed on the extracted features. A multi-class SVM is then trained on the resulting 
codevectors to build the classifier. 

6.4 Classifying instrument models 

In this section, we propose to combine the generative and discriminative approaches 

in a single system [CDS05a]. In practice, a K-means is performed in order to obtain a 

condensed representation of the data intra-variability prior to the SVM optimisation. 
Although it is known that the bigger the training set, the better the model, intra- 

class feature data are redundant by nature. For instance, the information contained 
in successive frames of a steady-state portion of note are highly correlated, especially 

when the LSF are used as spectral envelope descriptors (see figure 3.8). In the same 

vein, it has been shown in section 5.6 that reasonable system's performance can be 

obtained when features were extracted from the onset database only. It has been 

interpreted that the onset database was in fact a non-redundant snapshot of the 

un-segmented database. 

For this reason, it can be argued that using K-means prior the SVM training can 

at the same time reduce the data dimension and serve to build instrument models. 
In the following, this operation is referred to as cluster modelling. This condensed 

and meaningful information is then input to the SVM for building a classifier for 

instrument models. The overall principle is depicted in figure 6.3. 
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Figure 6.4: Total average correct identification rate as a function of the number of clusters when a 
cluster modelling stage is applied prior to the SVM optimisation (dashed line). (a) Training using 
isolated notes (b) Training using melodic phrases. The bold horizontal lines delineate the systems' 
performance when models are built without cluster modelling (73.3% and 86.4% respectively). Ver- 
tical bars represent the relative computational load in arbitrary unit needed for the SVM training. 

6.4.1 Experiments 

The experiments have been conducted as follows. Features were extracted from the 

same training data set as in sections 6.2 and 6.3. After the cluster modelling stage, 
the amount of data was reduced to 32,64,128,256,512 and 1024 codevectors 

respectively. A SVM was then trained and the same testing data set as in sections 
6.2 and 6.3 was used to evaluate the performance. 

In figure 6.4 are shown the systems' performance as a function of the number 

of clusters when an intermediate cluster modelling stage is used. Figures 6.4(a) and 
6.4(b) correspond to experiments in which models were trained using isolated notes 

and melodic phrases respectively. The number of clusters is shown in abscissa while 
the percentages of correct identification are reported in ordinate (dashed lines). The 

vertical bars represent the relative computational load in arbitrary unit needed for 

the training. Values have been normalised so that 1 in the scale corresponds to the 

computational load of the systems yielding 73.3% and 86.4% correct identification 

respectively (see figures 6.1(d) and 6.2(c)). Corresponding performance are delineated 

by the horizontal solid lines. 

When models are built from isolated notes (figure 6.4(a)), performance range from 
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55.0% for 32 clusters to 70.5% for 1024 clusters. At the same time, the computational 
load can be reduced by a factor 106 to 102 respectively. One can note the significant 
degradation in performance as the number of clusters decreases from 1024 to 256 

compared to figure 6.4(b). 

When models are built from melodic phrases (figure 6.4(b)), the training set is 

originally composed by roughly 8690 feature vectors for each instrument. Average 

correct identification rates range from 60.5%, for 32 clusters, up to 81.9%, for 1024 

clusters. The best performance is achieved while roughly 11% of the original amount 

of data remains. At the same time the computational load can be reduced by a 
factor 105 (32 clusters) to 103 (1024 clusters) respectively. One can note that for 

32 clusters, the performance are better if the K-means and the Euclidean similarity 
measure are used (77.5% for the generative approach against 60.5% for the mixed 
K-means/SVM system). This reveals to a certain extent the validity of our generative 

approach to the musical instrument identification problem. 
Finally, one can note the graceful degradation in performance for the two systems 

as the number of clusters decreases. 

6.4.2 Summary 

In this section, we proposed to combine generative and discriminative approaches in 

a single system. In practice, a K-means is run prior to classification using SVM. The 

advantage of this strategy is twofold: first, it provides a meaningful approach to the 
data compaction problem by reducing a feature data set into a model of instrument. 
Second, the use of a cluster modelling stage significantly reduces the SVM training 

time. We have interpreted the process as classifying musical instrument models. 
It has been experimentally shown that when models were trained using melodic 

phrases, the computational load for the SVM training can be significantly reduced at 
the expense of losing 4% in terms of correct identification. On the other, by training 
the models from isolated notes, a minimum drop of 7% in performance has been 

observed compared to a system without cluster modelling stage. 
Mixed approaches, such as the one presented in this section, can provide a possi- 

ble solution for dealing with huge databases of sounds, music pieces and songs. For 
instance, the automated classification of songs by genres, artists, bands or groups 
involves a tremendous amount of processing at the machine learning level. It can be 

argued that the design and building of such spectral or timbral similarity algorithms 
can be first performed using a mixed approach. Having noticed the graceful degra- 
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dation in performance they exhibit, the systems can be modified and improved while 
having reliable information about their true performance. The final and optimised 

versions of the algorithms can finally be built without cluster modelling stage. 

Chapter summary 

In this chapter, our system has been evaluated for the task of identifying musical 

phrases in a realistic musical context. Considering excerpts extracted from commercial 

recordings, the performance of both generative and discriminative approaches to the 

musical instrument identification problem have been evaluated and compared to other 

systems encountered in the literature. 

Drawing on the conclusions reached in chapter 5, we have justified the use of the 

generative approach in a melodic context. In sections 6.2 and 6.3, we showed how 

well our learning approach performed when models were built from isolated notes and 

melodic phrases respectively. It has been concluded that training the models using 
isolated notes, the essential information present in musical phrases was not taken into 

account, thus resulting in lower identification rates during the experiments. 
By using isolated notes for training the models, 64.4% and 73.3% correct identi- 

fication rates have been achieved for the K-means and SVM. By training the models 

using melodic phrases, performance increased by 13% to 77.5% and 86.4% for the 

K-means and SVM respectively. 
In section 6.4, we proposed a mixed approach to instrument identification problem 

by combining K-means and SVM in a single system. The process has been interpreted 

as classifying instrument models. The advantages in terms of computational load re- 
duction have been highlighted. Specifically, it has been shown that the SVM training 

can be reduced by a factor 1000 at the expense of losing 4% in terms of correct 
identification when models were trained using melodic phrases. We suggested that 

such mixed approach can provide a possible solution for the design of computation- 

ally extensive algorithms such as the ones encountered in MIR for organising music 
databases. 



Conclusion and perspectives 

In this chapter, the work presented in this thesis is summarised. The achievements 

and contributions to the research field are highlighted. Limitations inherent to the 

use of supervised approaches for musical instrument identification problems - and 

especially in the case where the identification of poly-timbral mixtures is desired - are 

addressed. Research perspectives towards a better understanding of timbre on the 

one hand and the design of novel systems on the other hand are proposed. Extensions 

to other MIR applications such as texture modelling for music similarity measures are 

further discussed. 

Thesis summary 

This thesis investigated the use of computer algorithms for building automated mu- 

sical instrument identification systems. Tackling the problem from a low-level per- 

spective, a complete system that can be used as a module for MIR applications has 

been described. In essence, we proposed an approach unifying both physical and 

perceptual aspects of timbre that conforms to previous research on the perception of 

musical instrument textures by humans. The formant theory of timbre has been the 

main theme throughout. 

Chapter 1 was concerned with the introduction of the basic principles driving the 

mechanisms of hearing and perception of sound by humans. This chapter also served 

to define the fundamental aspects of psycho-acoustics that have been considered when 

the ISO/MPEG psycho-acoustics model has been used in the experiments. Details 

about various timbre correlates and in particular about the formant theory of timbre 

have been given. 
In chapter 2, several perceptual experiments assessing human performance in the 

task of identifying orchestral musical instrument sounds taken out of musical context 
have been reported and commented. Next, a literature review of various systems that 
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have been built to identify and classify musical instrument sounds has been provided. 

Finally, our approach to tackle the problem has been introduced. 

In chapter 3, the various acoustic timbral descriptors used in our system have been 

introduced. First, we have recalled the fundamental principles of the source-filter LP 

model. We have justified why it can be transposed to model the mechanisms of sound 

production by musical instruments. In particular, we have presented the LSF which 

are derived from the LP coefficients. Interesting properties such as the inter-frame 

correlation and localised spectral sensitivity they exhibit are advantageously exploited 

when models are built using iterative averaging algorithms such as the K-means. 

Second, we introduced and described a perceptually motivated feature extraction 

method based on a signal sinusoidal analysis/synthesis model and proposed to use 

psycho-acoustic masking models as a way to select perceptually relevant sinusoidal 

components in the spectra. 
Chapter 4 focused on the building of instrument and database models. To this 

effect, a distinction between generative and discriminative techniques has been made. 

We have subsequently isolated the tasks of identifying and classifying, the two of 

them being used for automatically organising musical instrument sound databases. 

Through the use of the K-means and GMM algorithms, the interpretation of learning 

characteristic formant structures has been proposed. This approach has been one 

of the central points of this work. Through the use of SVM, the interpretation of 

classifying spectral envelopes has been advanced. 
The experimental part covered chapters 5 and 6. In chapter 5, a first series of 

experiments served to validate various hypotheses about timbre correlates that have 

been advanced a-priori. Using a database of isolated notes, a preferred prediction 

order and number of codewords for the models that maximised the average perfor. 

mance have been determined. We then showed that using the LSF yielded better 

performance than using other acoustic descriptors, and in particular better than the 
filter polynomial and reflection coefficients on the one hand and the MFCC on the 

other hand. The overall performance in terms of instrument family identification of 
the base system have been found to be comparable to what humans can achieve for 

similar instrument families. Using a database of isolated notes that allowed us to 
finely tune experimental protocols, we have been able to characterise the dependence 

of our system on pitch and proposed the fundamental frequency as a prior to both 

instrument modelling and identification phases. Cross-register experiments allowed 

us to confirm the dependence on pitch of the system. 

Next, we showed that extracting similar features independently from the onset and 
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steady-state segments of sound slightly decreases the overall system performance. It 

has been then concluded that the models consisting of average spectral envelopes 

determined using a K-means algorithm were able to capture the essential information 

about the notes' onset structure, thus justifying their use to identify melodic phrases. 

Finally, we proposed to include psycho-acoustic considerations at the feature level. 

For this purpose, the calculation of a perceptual version of the LSF, the PLSF has 

been introduced. The performance were compared to the standard LSF on the one 
hand and to the WLSF. We have related the performance of the WLSF with the 

ones that can be achieved with the MFCC and concluded that a similarity measure 
based on the Euclidean distance was inappropriate to deal with perceptual scales. 
Experiments involving the PLSF confirmed this hypothesis. 

In chapter 6, we have evaluated the system performance at identifying and classify- 
ing melodic phrases extracted from commercial recordings. Following the conclusions 
drawn in chapter 5, we have justified the use of the generative approach in a melodic 

context and it has been shown how well it performed in realistic recording conditions. 

It has been found that training models on melodic phrases yields better performance 

than training models using isolated notes. We have also confirmed that for similar 

considered features, a classification approach using SVM yielded better performance 

than a learning approach using K-means. 

Thesis achievements 

This thesis proposed an approach to the musical instrument identification problem 

specifically designed to preserve the coherence between physical and perceptual con- 

siderations of timbre. Each layer composing our system has been related to the 

principles governing the formant theory of musical timbre. 

The use of the LSF as spectral envelope and formant structure descriptors has 

been presented in a musical instrument context. Drawing on research in speech 

coding, we have justified their use with the K-means for building acoustic musical 
instrument models. The combination LSF/K-means as well are the interpretation of 
the learning process are novel in this particular research field. 

We have shown that choosing too low or too high prediction orders degraded the 

system's performance. This can be explained as follows: although small order LP 

analyses can estimate spectral envelopes, they do not accurately capture the detailed 

information carried by the formant structure. On the other hand, high prediction 

orders tend to model too much spectral information such as salient partials that the 
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spectra can exhibit. This way, we confirmed that formant structures were important 

features for distinguishing between acoustic musical instrument sounds. It has been 

further advanced that they are important timbre correlates. 

Although research works in speaker recognition use the LSF as acoustic descrip- 

tors, state-of-the-art systems are often based on the combination MFCC/GMM. In 

our experience, it has been found that the pair MFCC/GMM on the one hand and 

MFCC/K-means yielded worse performance that the combination LSF/K-means. This 

can be interpreted as follows: in speech, the mechanisms of speech production across 

speakers are similar so that the formant structure cannot be considered as being a 

salient characteristic of a speaker. 2 By contrast, one principle of the formant theory 

of musical timbre states that the formant structure is a salient characteristic of the 

instrument, so that it can be used to uniquely characterise it. This can explain the 

good performance of the combination LSF/K-means to deal with orchestral musi- 

cal instruments. This leads us to advance that the combination LSF/K-means can 

efficiently be used to discriminate between speech and acoustic musical instrument 

sounds, if speech is considered as a class of instrument on its own. Indeed we have 

shown in [CDS05b] that the system presented in this thesis yielded good performance 

in discerning singing voice sounds from acoustic musical instrument sounds. 

We have shown that pitch influences LSF so that building models over different 

frequency registers improved the system's performance. These experiments lead to 

the following concept of pitch abstraction or dependence in musical instrument iden- 

tification system design. The spectral envelopes of a musical instrument sound - as 
have been used here - are related in some ways to the pitch, and in a similar manner, 

timbre is related to the pitch. On the one hand, an ideal system should model the 

timbre independently of the pitch whereas on the other hand, another model should 
be able to quantify the timbral variation as a function of pitch. 

Limitations 

The challenge in timbre modelling is to capture salient properties characterising the 

tone colour of sound. Since timbre is believed to be a multi-dimensional attribute, 

a computer approach involving a multi-feature extraction stage should theoretically 
better fit this reality. Corresponding systems abound in the literature and are preva- 
lent directions for investigation for many researchers within the MIR community. In 

2note that this remark is not valid if one considers speakers with vocal tracts of different sizes, 
i. e. males vs females vs children 
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particular, the multi-descriptor based approaches including automatic feature selec- 

tion algorithms belongs to this category. However, the a-posteriori interpretation of 

the results, that is, trying to understand why a particular set of features is performing 
better than others is often impossible. Although constituting the most promising 

approaches for classification tasks, they also mark the upper-limit in terms of perfor- 

mance achievable using supervised systems. That is: systems that learn the timbre3 

from a set of acoustic descriptors can see their performance increase if the database 

as a whole is considered, or in other words, if a discriminative approach involving 

all the instrument feature distributions in the database is chosen. The experiments 
involving SVM conducted in chapters 5 and 6 illustrates this fact. However, strong 
limits are set on the practical use of such systems, especially in terms of modularity, 

since the addition of a new instrument in the database necessitates a new training 

and the determination of new database models. 
Our approach tackles the problem from a different learning perspective. In essence, 

the acoustic timbral descriptors have been chosen a-priori so that each of them tend 

to model one particular aspect of timbre. These hypotheses were then experimentally 

verified or refuted. Spectral envelope descriptors, and in particular the LSF, have been 

found to be an essential contributor to modelling the timbre of sound. However, it is 

known that they only represent one of the various facets of timbre. 

The challenge in this research field is to relate our understanding of timbre, from its 

perceptual attributes to its acoustic correlates, to a system biased at several layers. 

In other words, what one believes to be an appropriate timbral descriptor a-priori 

might not necessarily contribute to improve the system's performance. Experiments 

conducted in section 6.3 using the delta LSF illustrated this. Hence the narrow 
relation between the type of acoustic features and machine learning algorithms. 

The consideration of psycho-acoustic principles at the feature level has shown 
its limitation. Although improvements at the instrument-level have been noticed in 

experiments involving isolated notes, none of the proposed perceptual versions of 
the LSF (WLSF and PLSF) have shown to significantly improve the average correct 
identification rates. 

While our system showed performance comparable to what humans can achieve, it 

still performs worse on average in terms of exact instrument identification. Another 

key point worth mentioning is concerned with the confusions between instruments 

and families of instruments that can occur. We have stressed that computer systems 

sometimes make non-meaningful and un-expected confusions so that a wind instru- 

3note the term timbre might not be appropriate for these types of systems 
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ment sound can be mis-identified as a bowed string instrument sound, and this at a 

non-negligible rate. This fact has been observed in our experiments. It can therefore 

be expected that since such systems are by nature intended to be compared to human 

performance, there is obviously room for improvement. 

Looking back at figure 2.3, where an ideal musical instrument identification system 

is depicted, one can see the tasks remaining to be tackled. This thesis investigated a 

possible solution for the identification of mono-timbral orchestral instrument sounds. 

Other research works focus on the identification of percussive sounds [GR04] [HDG03]. 

The challenging extension of any research work in musical instrument identification 

is concerned with the identification of poly-timbral mixtures. Indeed, another aim 

of musical instrument identification systems is to model this ability of humans to 

differentiate between two sound objects played in unison. It has been mentioned in 

section 2.2.4 how a supervised approach to a pattern recognition problem could be 

used to deal with polyphonic mixtures. In essence, models have to be trained for all 

possible combinations of all possible instruments. This approach is perfectly suitable 

for particular and specific tasks such as the identification of jazz ensembles, duos or 

trios but inherently lacks generalisation properties, as has been shown in [ERDaJ. 

Perspectives 

Research perspectives towards the formant theory of timbre are twofold. First in 

[PA93], it is mentioned that the use of weighted LSF distance measures during the 

similarity measure calculation improved the codebook design in terms of introduced 

quantisation noise. Likewise a similar weighting has been proposed in [PaI88] for 

speech recognition purposes. By extending this concept to musical instrument identi- 

fication, one could think about designing a similarity measure in which the contribu- 

tion of each LSF parameter is individually weighted. In essence, these weights could 
be determined using an empirical approach, by using genetic algorithms, for example, 
in a similar way to that described in [Fuj98]. Second, from a perceptual perspec- 
tive, one can attempt to quantify the precise contribution of the formant structure to 

timbre in an analysis/synthesis framework. For instance, by using a sinusoidal or LP 

model, an algorithm can be designed to alter the sound formant structure on a short- 
term basis. Modifications such as formant bandwidth expansion, formant emphasis, 
formant flattening or formant shifting could be studied in such framework. Finally, 

alterations of the quality of sounds could be explored using listening tests. 

At the signal level, a joint feature extraction between formant structure and resid- 
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ual signal in a LP framework can be envisaged. It has been mentioned in section 
3.2.1 that using LP analysis, the contributions of the resonating body and excitation 

can be characterised. Musical instruments have different mechanisms of sound pro- 
duction so that it can be argued that descriptors extracted from the residual signals 

might characterise the different excitations, or different families of excitations (e. g. 

reeds, double reeds, winds or bowed strings). Likewise a transient/sinusoidal signal 

separation in a. sinusoidal modelling framework can be employed for similar reasons: 
to characterise the tonal musical property of the sound on the one hand, and the noisy 

or transient characteristics of the signal on the other hand. These two orientations for 

future research involve the calculation of acoustic features from two types of signals. 
From there arise concerns about the strategy for merging several features in a single 

system. The usual procedure encountered in the literature is to perform the fusion at 
the feature level, by concatenating the descriptors in a single vector .4 This approach 
has shown its limitation so that automated feature selection are now preferred. On 

the other hand, the use of data fusion techniques at the classifier level, which is a 

research field on its own, shouldn't be ruled out. 
When modelling timbre, our system and the ones encountered in the literature 

lose time consideration. In other words, the temporal organisation of the various 

acoustic events is not represented at the model level. This approach is understand- 

able if one considers timbre as a global attribute of sound. However, we showed in 

our experiments that, for example, onset and steady-state segments of tones have 

different characteristics, so that they each contribute to a particular aspect of tim- 
bre. Instead of averaging them in one single model, one could think of independently 

and explicitly modelling them. Similar to speaker recognition, the incorporation of 
Dynamic Time Warping (DTW) or Hidden Markov Models (HMM) can constitute a 

possible orientation for future research. 
A prevalent direction in modern research in musical signal processing is concerned 

with the consideration of mid-level musical knowledge during the signal analysis. As a 
consequence, the waveforms are not only seen as audio signals but musical priors are 
set on their spectral and temporal structures. For instance, such priors can consist of 
the consideration of the Western equally tempered frequency scale when one wishes 
to analyse the pitch of a sound, or of the harmonic content when one wishes to 
decompose a signal into harmonic objects or again of the temporal organisation of 
musical events such as notes succession, beats and rhythm. 

The harmonic matching pursuit algorithm described in appendix B can fit this 

4 as has been performed with the delta LSF in section 6.3 
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purpose. By considering a signal as a sum of harmonic plus sinusoidal components 

plus noise, information about harmonicity, inharmonicity and spectral harmonic energy 

can be isolated and used as input to a musical instrument identification system. It can 
further be advanced that such technique could serve the determination of multiple 

pitches in polyphonic mixtures, thus constituting in some ways a possible approach 

to the poly-timbral musical instrument identification problem. 
Automated classification of songs by genres, artists, bands or groups is more 

and more needed and constitutes to a certain extent the natural prolongation of our 

research. In particular, spectral similarity evaluation has found numerous applications 
in musical genre classification and automatic playlist generation. Also termed as 
texture similarity evaluation, a common approach to the problem essentially consists 
of transposing a supervised algorithm to a classification problem involving much more 
complex sounds than the ones used in this thesis. In essence, acoustic features are 

extracted from entire musical pieces, or songs, that have been previously organised 
into classes of interest. 

At the expense of losing the temporal organisation of sound objects that char- 

acterises music, this approach relies on the predominance of characteristic sound 
textures in the mixtures. It is assumed that this predominance is reflected at the 

acoustic descriptor level and captured by the models. 

Semantic Interaction with Music Content (SIMAC) 

Part of this research work has been carried out within the SIMAC [SIM] project, a 
European funded network aimed at investigating novel methods and algorithms for 

the automatic manipulation of audio and musical contents. Concentrating at the 

same time on both low- (acoustic) and high- (metadata) level aspects of music, the 
SIMAC project proposes to apply complementary approaches to tackle the problem 
of archiving, classifying and retrieving musical information. Our contribution towards 

an integration of our system in such wide framework relied on the proposal of novel 
acoustic features for this research field and computationally efficient methods for 

acoustic timbral modelling (see section 6.4). We have also accompanied our work by 

an extensive evaluation of the system's performance for the task of identifying and 
classifying orchestral musical instrument sounds. 
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A. Overview of the MP EG-1 layer 11 

psycho-acoustic model 

Psycho-acoustic models are of common use in modern audio and musical signals 

processing algorithms. Fundamental principles of psycho-acoustics and mechanisms 

of hearing have been introduced in chapter 1. In particular, the notions of absolute 

threshold of hearing, frequency and temporal maskings have been recalled. 

This appendix is concerned with the description of the MPEG-1 layer II psycho- 

acoustic model. After having briefly recalled the scope in which such models are used, 

the process yielding the calculation of the global masking curve for a frame of signal 

is detailed step by step. 

A. 1 Principle 

The aim of perceptual models is to give a quantitative indication about the frequencies 

that are perceived and about the ones that are masked. The principle of psycho- 

acoustic driven encoding schemes is optimum in terms of quantisation noise shaping. 
For instance, common audio codecs tend to minimise the quantisation noise, which 
is uniform in all the frequency bands. ' However, it may happen that this noise, 
introduced by the quantiser, has a level close to the signal level and becomes audible, 

as illustrated in figure A. 1(a). 

In perceptual codecs, the use of psycho-acoustic knowledge helps to shape the 

quantisation noise level in a way that it always stays below the signal level that have 

to be encoded (figure A. 1(b)). Traditionally performed after a subband analysis, the 

process consists of injecting as much noise in each frequency band as possible by 

allocating in each band a number of bits determined by the psycho-acoustic model. 

lthis is case in the PCM quantiser in which samples are uniformly quantised to 16 bits 
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Figure A. 1: Diagrams showing the effects of shaping the quantisation noise in perceptual codecs. (a) 
Uniform quantisation noise and (b) Quantisation noise shaped according to the signal instantaneous 
frequency content. 
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Figure A. 2: Block diagram of a general perceptual encoder (top) and decoder (bottom). 

In figure A. 2 is depicted a basic block diagram of a perceptual coder/decoder 

system. It consists of the following: 

  Analysis/synthesis Filterbank: it is used to decompose the input frame accord- 

ing to a time-frequency representation. The outputs of the analysis filterbank 

are subsampled version of the time domain input samples calculated for each 
frequency band. The analysis/synthesis filterbank system is usually designed in 

order to respect a quasi-perfect reconstruction constraint. 

  Perceptual model: the perceptual model, by determining first the individual 

masking thresholds for both tonal and non-tonal components, and then by tak- 

ing into account the absolute threshold of hearing, outputs the global masking 

threshold. The latter determines the maximum level of inaudible noise that can 

be injected in each subband. 

signal 

Quantisation noise 

  Bit allocation and quantisation: given a targeted bit rate, the global masking 
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threshold is used to optimally allocate the number of bits for the quantisation 

of the parameters in each subband. Depending on the codec, the encoded 

parameters are either the time/frequency domain samples, or their transformed 

version after a MDCT. 

A. 2 The MPEG-1 layer 11 psycho-acoustic model 

The MPEG standard (1 and 2) (layer I, II or III) is by far the most spread algorithm for 

audio compression purposes. It can operate at several bit rates (fixed and variable), at 
different sampling rates, and in different spatial configurations (monophonic, stereo 

and joint-stereo). More information about the codec can be found in the standard 
[ISO] and in [Pan95]. 

In its first version, the MP3 codec allows to compress signals at rates up to 6: 1 

without perceptible loss in quality: in such a configuration, the bandwidth of a 16 bits 

stereo signal sampled at 48 kHz can be reduced to 256 kbits/s. Note however that 

the Sony ATRAC (Mini-Disc), and its successor the ATRAC-3, AAC and Ogg-Vorbis 

codecs include similar psycho-acoustic models. 
In this section, the MPEG-1 layer II psycho-acoustic model is presented. In MPEG, 

the bit allocation of the S= 32 subbands is calculated on the basis of the signal-to- 

mask ratio (SMR) calculation in each subband. It measures the difference between 

the signal level and the noise level that can be added in each subband. It is therefore 

necessary to determine for each subband its maximum signal level and its corre- 

sponding minimum masking threshold. The determination of the SMR is based on 
the following steps: 

1. Calculation of the FFT for the spectral analysis 

2. Calculation of the acoustic pressure level in each subband 

3. Determination of the tonal (sinusoid-like) and non-tonal (noise-like) compo- 
nents 

4. Selection of the components used for the masking threshold calculation 

5. Calculation of the individual masking thresholds 

6. Calculation of the global masking threshold 

7. Determination of the minimum masking threshold in each subband 

8. Calculation of the SMR in each subband 
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In the following, we will assume that the signal x(n) is sampled at fe = 22.05 

kHz. For the illustrations, one frame of trumpet sound is considered. 

A. 2.1 Power Spectral Density (PSD) calculation 

The layer II psycho-acoustic model is based on the 1024 point power density spectrum 
(PSD) X(k) calculated for the input frame x(n) weighted by a Hann window w(n): 

N-1 NX 
(k) = 20log10 N w(n)x(n)e-27r ,k=0,..., 2 -1 (A. 1) 

n=o 

where w(n) is the Hann window defined as 

w(n) =2 8/3(1 - cos(27rn/N)), n=0, ..., N -1 (A. 2) 

The PSD is then normalised to the reference level of 96 dB SPL. 

A. 2.2 Sound pressure level calculation 

The sound pressure level Lay in each subband s is computed by: 

Lab(s) = mk x X3(k) (A. 3) 

where X8(k) is the sound pressure level of the kth spectral line within the subband 
S. 

A. 2.3 Determination of the tonal and non-tonal components 

The tonality has an influence on the masking threshold. The tonal (more sine-like) 

and non-tonal (more noisy-like) components are then determined using the PSD 

X(k). This step starts with the determination of the local maximum, then extracts 
the tonal components and estimates the intensity of the non-tonal components within 

each critical band. 

A spectral line is labelled as local maximum if 

X (k -1) <X (k) >X (k + 1), k=2,..., 500 

The bandwidth of the critical bands varies from 100 Hz at low frequency to 4000 

Hz at high frequency. To determine if a local maximum may be a tonal component, 
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a frequency range öf around the local maximum is examined: 

86.133 Hz if 0 kHz <f< 2.756 kHz 

6f = 129.199 Hz if 2.756 kHz <f< 5.512 kHz 
258.398 Hz if 5.512 kHz <f< 10.336 kHz 

A local maximum is labelled as a tonal component when its sound pressure level 

is 7 dB above the spectral lines over the considered window Sf. In other words, k 

corresponds to a tonal component when: 

X(k)-X(k+j)>_7 dB 

where 
-4, +4 for 4 <k< 128 

j= -6,..., -2, +2,. .., +6 for 128 <k< 256 

-12,..., -2, +2,..., +12 for 256 <k< 500 

Next, the new sound pressure levels of the tonal components are calculated by 

averaging the PSD over a small neighbourhood of the local maxima: 

Xt(k) = 10log10 110X(k-1)/10 + 10X(k)110 + 10X(k+1)/101 

Once the tonal components are determined, the non-tonal components are calcu- 
lated from the remaining not examined components. Within each critical band (26 

are considered in layer II for f8 = 22.05 kHz), the spectral lines powers are summed 
to form a new unique non-tonal component whose new index k is the index of the 

nearest spectral line to the geometric mean of the critical band. 

A. 2.4 Decimation of tonal and non-tonal masking components 

This stage is used to reduce the number of maskers which are considered for the 

calculation of the global masking threshold. Firstly, only the components (tonal and 
non-tonal) above the absolute threshold of hearing in quiet LTq are retained. LTq 
is determined from psycho-acoustic experiments. Secondly, no more than one tonal 
component is selected within a distance of 0.5 Bark. In practice, the highest power 
component over the window is kept and the others are discarded from the list. 
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Figure A. 3: PSD (solid line) normalised at 96 dB SPL, tonal components (diamonds markers), 
non-tonal components (plus markers) and critical band boundaries (dotted vertical line). 

A. 2.5 Individual masking thresholds calculation 

In MPEG, only a subset of the N/2 samples are considered for the global masking 
threshold calculation. In layer II, their number is 132 and they are referenced in 

tables. Every tonal and non-tonal component is assigned the frequency value taken 
from the tables that closely corresponds to the frequency of the original spectral line 
X(k). The individual masking thresholds for both tonal and non-tonal components 

are then individually calculated using: 

LTtm[z(j), z(i)] = Xtm[z(j)] + avtm[z(j)] + of [z(9), z(i)] dB 

LTnmm[z(j), z(i)] = Xnm[z(j)] + avnm. [z(j)] + of [z(j), z(1)] dB 

where LT*�, and LT*�a represent the individual masking thresholds at critical band 

rate z in Bark of the masking component at the critical band rate of the masker 
z�, in Bark. The values in dB can be either positive or negative. The term X. m is 
the sound pressure level of the masking component with the index number j at the 
corresponding critical band rate z(j). The term av*�, is given by: 

avtm = -1.525 - 0.275 * z(j) - 4.5 dB 

avnm = -1.525 - 0.175 * z(j) - 0.5 dB 
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Figure A. 4: Circled markers correspond to the retained components for the calculation of the 
individual masking thresholds, the others are discarded. The line at the bottom marks the level of 
the absolute threshold of hearing in quiet. Note that the analytical formula in section 3.5.3.1 has 
been used in our implementation instead of the table given in the standard [ISO]. 

The masking function of of a masker is characterised by different lower and upper 

slopes, which depend on the distance in Bark dz = z(i) - z(j) to the masker. It is 

given by: 

17(dz + 1) - (0.4X [z(j)] + 6) dB for -3 < dz < -1 Bark 

vf 
(0.4X[z(j)] + 6)dz dB for -1 <dz <0 Bark 

= 
-17dz dB for 0< dz <1 Bark 

-(dz - 1)(17 - 0.15X[z(j)]) - 17 dB for 1< dz <8 Bark 

where X[z(j)] is the sound pressure level of the jth masking component in dB. Finally, 

the masking is no longer considered if dz < -3 Bark or dz >8 Bark. 
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Figure A. 5: Individual masking thresholds for tonal (dash-dotted line) and non-tonal (dashed line) 
components. 

A. 2.6 Global masking threshold calculation 

The global masking threshold LT9 is calculated by summing the powers corresponding 

to the individual masking thresholds and the threshold in quiet. Mathematically, 

m 
LT9(i) =101og10(lOLTq(i)/10 +E 1OLTc,,, [z(j), z(i)]/10 

j=1 
n 

+E 1OLT. m[z(j), z(i)]/10) 

j=1 

The total number of tonal maskers is given by m, while the total number of 
non-tonal maskers is given by n. 

A. 2.7 Minimum masking threshold determination 

The minimum masking level LTmin(n) for each subband n is determined by: 

LTmin(n)=minLT9(i) dB 

where k is the index of the spectral line within the frequency band n. 
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Figure A. 6: Global masking threshold (bold solid line) calculated as the sum of the individual 

masking thresholds with the absolute threshold in quiet. 

A. 2.7.1 Signal-to-mask ratio calculation 

For every subband, the signal-to-mask ratio is computed using: 

SMRsb(n) = Lsb(n) - LTmin(n) dB 

The signal-to-mask ratio represents the level of noise that it is possible to inject 

in each subband. In most codecs, the SMR is used to drive a bit allocation scheme 

responsible for the parameters quantisation. The operation is usually performed in a 

transform domain (e. g. MDCT, MCLT). Starting from a total number of available 
bits (fixed for each frame in the case of fixed bit rate transmission or variable and 

taken from a bit reservoir in the case of a VBR scheme), the algorithm firstly allocates 

the bits to the subbands having small SMR before sharing the remaining bits between 

the other subbands. 



B. A two-stage implementation of 
Harmonic Matching Pursuit 

In this chapter, the sinusoidal analysis/synthesis technique presented in section 3.5.2 

is extended for the analysis and processing of audio signals created by musical instru- 

ments. In particular, a novel approach to the iterative atomic decomposition problem 

is proposed. This technique provides a computationally efficient and meaningful ap- 

proach to the harmonic grouping principle encountered in auditory scene analysis (see 

section 1.2). 

An efficient two-stage implementation of the Harmonic Matching Pursuit (HMP) 

algorithm for fixed atom duration is proposed. Its application in a musical context 

is illustrated by two examples of pitch determination for musical phrases and piano 

notes separation respectively [DCSD04]. 

B. 1 Harmonic signals 

A harmonic signal is defined as a signal composed of several sinusoidal components 
having their frequencies as integer multiples of a fundamental frequency fo. In figure 

B. 1 are shown the waveform, magnitude and phase representations of a harmonic 

signal. 
There is an infinite number of acoustic signals having harmonically or locally 

harmonically related components: most musical tones than can be produced by in- 

struments or the voiced sounds produced by the human voice box exhibit harmonic 

properties. 
The fundamental or first partial is defined as the lowest frequency of the harmonic 

series. The second partial is twice the frequency of the fundamental, which makes 
it an octave higher. The third harmonic partial, at three times the frequency of 
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Figure B. 1: Harmonic signal time-domain waveform (top) and frequency representation using the 
STFT. Magnitude (bottom left) and phase (bottom right) after Hanning windowing. 

the fundamental, is a perfect fifth above the second harmonic. Similarly, the fourth 

harmonic partial is four times the frequency of the fundamental; it is a perfect fourth 

above the third partial (two octaves above the fundamental). 

However, not all musical instruments have partials that exactly match the har- 

monic series described above. In [BIa65], it is quoted that 

Most musical instruments produce tones whose partial tones, or overtones, 

are harmonic: their frequencies are whole-number multiples of a 

fundamental frequency. The piano is an exception. 

In music, the concept of inharmonicity refers to the degree to which the frequen- 

cies of the overtones of a fundamental differ from whole number multiples of the 

fundamental frequency. These inharmonic overtones are often distinguished from the 

harmonic ones: since the harmonics contribute to the sense of sounds as pitched or 

unpitched, the more inharmonic a sound, the less definite it becomes in pitch. Many 

percussion instruments such as cymbals, toms, chimes or the piano create complex 

and inharmonic sounds. 
The decomposition of audio signals into harmonic atoms is interesting for the 

following reasons: 

  first in terms of high-level musical interpretation. As mentioned in section 1.1.5, 

the harmonic relation between partials characterises among other factors the 

pitch and the timbre of musical signals. The concept of pitch used in musical 

annotation to classify notes and chords on a quantised frequency scale is related 

to the partials frequency distribution. Techniques for harmonic signal decom- 
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position have found numerous applications in automatic music transcription 
[KlaO3] or more generally for signal analysis and modelling purposes. 

  second for coding and compression purposes. The use of harmonic or harmonic 

plus noise models (e. g. Harmonic and Individual Line plus Noise models (HILN) 

in the MPEG-4 standard) allows the bit rate to be significantly reduced com- 

pared to conventional algorithms using sinusoidal components. The principle 
is to decompose the input signal into harmonic audio objects corresponding to 

more appropriate models regarding the signal structure. For instance, objects 

such as sinusoids, harmonic tones, and noise are used in the HILN coder. This 

approach allows the introduction of more advanced source model than merely 

assuming a stationary signal for the duration of a frame. 

B. 2 Principle 

Harmonic Matching Pursuit (HMP) algorithms are a direct extension of the Matching 

Pursuits Decomposition (MPD) introduced by Mallat and Zang in [MZ93]. This 

iterative procedure consists of finding a sub-optimal signal representation in a highly 

redundant dictionary of Gabor atoms of the form: 

t1U 
(t sul ý2ýC(t-u) B. 1 9s, u, E() =sJ 

where u, s and e are the amplitude scaling, time and frequency shift factors respec- 
tively of a mother window w(t). Due to the harmonic nature of audio and musical 

signals, it is interesting to consider harmonic atoms for the decomposition. The HMP 

theoretical background has been exposed in [GB03]. In essence, an harmonic atom 
is of the form: 

K 
h(t) _> ck9s, u, {k(t) (B. 2) 

k=1 

where the factors ck weight the contribution of each Gabor function in the atom 
h(t). It is further assumed that £k kýo, k=1,..., K, models the harmonic rela- 
tionship between fundamental and overtones frequencies. By considering real-valued 
atoms, the problem of extracting, at each iteration, the harmonic series removing 
the most energy from the signal can be tackled in the frequency domain using the 

analysis/synthesis techniques described in the preceding sections. 
Although having been independently carried out, the work presented in this section 

and the one reported in [GB03] share the same basic principles. The main difference 
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Figure B. 2: Spectral plots of both (a) low and (b) high violin notes showing respectively a missing 
partial and a weak fundamental frequency. 

between the two techniques is concerned with the resolution used. In [GB03], the 

notion of duration or scale of the harmonic grain is introduced. In essence, the tech- 

nique requires the calculation of multiple FFT (one for each scale) at each iteration. 

Although being more crude, this approach deals with fixed resolution atoms and aims 

at decomposing locally stationary signals that can be obtained, for example, after a 
transient/sinusoidal signal separation. 

In basic matching pursuit, atoms from a continuous and overcomplete dictionary 

have to be considered at each iteration. As a consequence, this exhaustive search 
often leads to large computational requirements. A modified two-stage implementa- 

tion for fixed-scale atoms is presented in the following. More specifically, it consists 
of a dual resolution spectral approach that significantly reduces the computational 

requirements while still maximising the energy extracted at each stage. 
It has been mentioned in section 1.1.5 that the fundamental frequency may not be 

present in the signal for some musical tones without having an effect on the perceived 
pitch. Likewise, musical sounds might have missing partials. As an illustration, figure 
B. 2(a) shows a missing partial, and figure B. 2(b) shows a weak fundamental frequency 

component for two violin tones. These two sounds are however perceived as if the 
latter frequency components were present. 

Because of these issues, simply choosing the position of the lowest frequency high 
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energy sinusoidal component as a possible fundamental frequency may not be relevant 
in terms of meaningful grain extraction. Therefore, we propose to use a harmonic 

energy criteria for the harmonic grain selection. More generally, the algorithm consists 

of an initial low-resolution pitch analysis followed by a high resolution harmonic grain 

extraction based on local complex interpolation within the spectral domain. It is 

composed of: 

  Low resolution harmonic energy analysis: during this stage, the harmonic energy 
is calculated for each potential fundamental frequency within a FFT frame. The 

harmonic series corresponding to the maximum harmonic energy is chosen. 
A rough value of the fundamental frequency is then estimated from the bin 

location of the fundamental and its overtones. 

  High resolution harmonic grain extraction: using the selected value of the fun- 

damental frequency from the previous stage, local interpolation of each partial 

within the FFT frame is performed in order to determine more accurate values of 
the frequencies together with their corresponding amplitudes and phases. The 

resulting harmonic grain is then synthesised and subtracted from the original 

grain. 

B. 3 Low-resolution harmonic energy analysis 

Within an FFT frame, a frequency domain component contributes to the harmonic 

energy of the series if it is the maximum component within the corresponding har- 

monic window. This window increases in width linearly with the partial number. 
To be more specific, let us consider an FFT frame with a resolution of 20 Hz 

and a harmonic series corresponding to the fundamental frequency bin 100-120 Hz. 
The first partial can appear anywhere between 200 and 240 Hz, corresponding to a 
harmonic window twice the width of the resolution value. Similarly, the next partial 
can appear anywhere between 300 and 360 Hz, i. e. three times the initial window 
width. The harmonic window width (in bins) as a function of the partial number p is 

given by: 

V(P) = p, p =1, ..., P 

where p is the partial number; p=1 represents the fundamental and p the total 

number of overtones. The use of such harmonic windows has the other advantage of 
being able to capture a certain degree of inharmonicity that the signal could exhibit. 
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Figure B. 3: Three masking functions used for the calculation of the spectral harmonic energy. The 
fundamental frequencies are (from top to bottom): 281.25 Hz, 437.50 Hz and 593.75 Hz. They 

correspond to integer multiples of fs/N. 

In figure B. 3, three masking functions corresponding to three fundamental fre- 

quencies used to weight the short-term spectra before the harmonic energy calcula- 

tion are depicted. The maximum number p of retained overtones is respectively 7, 

12 and 11 for the three fundamentals frequencies 281.25 Hz, 437.50 Hz and 593.75 

Hz as shown in figure B. 3, for a 16 kHz sampling rate. 

The harmonic energy A(k) is calculated for each potential fundamental index k 

as: 
P 

A(k)=IX(k)l'+> maxlX(kp+v(p) - 1)12 
P=2 

where X (k) is the complex FFT of the input frame. The harmonic series with the 
highest energy is then retained. 

The selected series is used to calculate an approximation of the fundamental 

frequency: 

IP iko, P fo =- P 
p=1 

p 

where fko, 
p is the frequency corresponding to the maximum amplitude over the con- 
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Figure B. 4: Harmonic energy calculation. The input frame (N=512) have been extracted from a 
clarinet solo phrase resampled at f, = 16 kHz. The FFT magnitude is shown in (a). In (c) are 
plotted the logarithm of the harmonic energy calculated for each possible fundamental frequency. 
The retained fundamental frequency value is determined from the maximum of the function and its 
corresponding harmonic comb is shown in plot (b). 

sidered window v(p). kp is the bin index of the retained fundamental: 

fko, 
p - 

fmaxv IX(kop+v(P))l 

This new measure of the fundamental frequency is used to select the most relevant 

partial bins fp, p=1,..., p, by rounding the expected partial position 

fp = pfo, p =1, ..., P 

to the nearest bin value. These bins values are used in the high resolution harmonic 

grain extraction stage. 

B. 4 High-resolution grain extraction 

Prior to the grain extraction, frequencies and corresponding phases of the selected 
fundamental and partials are interpolated in order to counterbalance the FFT finite 

resolution and therefore to maximise the energy extracted at each iteration. 
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Figure B. 5: Illustration of a harmonic grain extraction within a FFT frame. (a) original FFT frame. 
(b) FFT of the extracted grain after interpolation. (c) FFT of the residual without interpolation. 
(d) FFT of the residual after interpolation (t = 20). 

The interpolation is done using a complex local interpolation scheme similar to the 

chirp Fourier Transform. This technique is identical to a zero-padding, but is applied 
locally to a region of the FFT around the considered peak (typically the width of 
the harmonic window as defined in section B. 3, extended by 2,3 or 4 bins). It has 

the advantage of interpolating both phase and amplitude together. Note also that 

quadratic interpolation techniques such as the one presented in section 3.5.2.2 can 

also be used. 

1. The interpolation function is calculated using the FFT of a zero padded rect- 
angular window (by a factor C). These values are calculated once and saved in 

a table. 

2. For each input frame, the frequency bins required for the interpolation (the 
fundamental and its related partials) are extracted as vectors and upsampled 
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by the interpolation factor 

3. The vectors are then convolved with the interpolation function values, achieving 

a local, complex-domain interpolation. 

Figures B. 5(c) and B. 5(d) show the advantages of using the interpolation in terms 

of the extracted energy per FFT frame. 

The synthesis is performed using the IFFT/OLA approach described in the previ- 

ous section and illustrated in figure 3.15. The synthesised time-domain grain is then 

subtracted from the original grain and the process is eventually repeated. 

B. 5 Examples of application 

Two examples of applications of our implementation of HMP are presented in this 

section. The first one is concerned with the determination of the pitch of a mono- 

phonic musical phrase while the second one consists of separating a signal mixture of 

two piano notes. 
Tests audio signals (trumpet and jazz guitar pieces) were sampled at 44.1 kHz. 

The analysis stage was performed on successive frames of 2048 samples weighted by 

a Hanning window. Using such a window clearly sacrifices temporal localisation. A 

hop size of 25% (i. e. 512 samples) was therefore used to retain some signal timing 

information. The parameter C was set to 20 and the local interpolation is applied on 

a7 bins vector (the selected peak plus 3 bins on each side). A final point regarding 

robust implementation of this algorithm is to ignore the first three bins corresponding 

to the frequencies 0-65 Hz, as issues related to the lack of orthogonality become more 

preponderant in that frequency range. However, this should not induce severe artifacts 

as it is quite uncommon for musical signals to contain notes at such low frequency. 

Interpolated amplitudes, frequencies and phases are then used to synthesise the time- 
domain grain using the method presented in section 3.5.2.3. 

Figure B. 6 is an example of pitch extraction for a monophonic trumpet signal. 
The algorithm accurately captures the evolution of the fundamental frequency as a 
function of time. Figure B. 7 is an illustration of the complete application of the 
harmonic matching pursuits on a monophonic jazz guitar piece after having removed 
the transients [DDS01]. Figure B. 7 (e) represents the time waveform residual after 

subtraction of the synthesised signal from the original. One can notice that the 

transients are still slightly present, but nevertheless much more attenuated than if 

the whole original signal was used during the decomposition. 
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Figure B. 6: Extracted pitches (fundamental frequencies) as a function of time for a harmonic 

monophonic trumpet piece. 

Finally, an example of two notes extraction from a mixture is shown in figure B. 8. 

An artificial mixture of two piano notes without overlapping harmonics (B-250 Hz 

and F-350 Hz) has been synthesised. Two successive iterations of the algorithm are 

needed to decompose the input frame in two harmonic grains corresponding to the 

two individual notes. Residual signals (plotted in figures B. 8(c) and B. 8(f)) mainly 

contain noise and informal listening tests did not show any perceivable differences 

between the original and extracted notes. 

B. 6 Conclusion 

In this chapter, we introduced an efficient two-stage implementation of the matching 

pursuit algorithm based on a harmonic grain extraction within the spectral domain. At 

each iteration, a complete series of sinusoidal components is extracted, as opposed to 

standard sinusoidal matching pursuit, where only one peak is picked at a time. Thus, 

far fewer iterations are required for the decomposition. Not only dramatically reducing 

the computational requirements, this frequency domain method offers a meaningful 

approach to the musical sounds modelling problem by improving spectral components 

grouping. 

This implementation performs well for stationary audio signals. The quality of the 
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Figure B. 7: Complete HMP analysis/synthesis decomposition of a monophonic jazz guitar signal. 
(a) spectrogram of the original signal. (b) original waveform. (c) spectrogram of the re-synthesised 
using a single harmonic grain per frame. (d) re-synthesised waveform. (e) time-domain residual. 

extraction is good even though we make no assumptions about the type of instrument 

that is played. 

Improvements, however, are needed to make the algorithm more robust and ap- 

plicable to a wider range of signals. Firstly, problems arise with polyphonic audio 

mixtures containing overlapping harmonics. This is a common drawback of all the 

spectral analysis techniques. In such a case, harmonics corresponding to a given pitch 

may be assigned to another harmonic series, thus introducing some false notes in the 

considered grain. This can be overcome for example by making assumptions about 

the harmonic distributions [KIaO1]. Secondly, if the signal is not purely steady-state, 

the residual is shaped into harmonics which may introduce artifacts in the extracted 

signal. Particular attention should therefore be paid regarding the quality of the 

transient/sinusoidal signals decomposition. 
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Figure B. 8: Example of two piano notes separation. (a) and (d) are the original waveforms (respec- 

tively B-250Hz and F-350Hz), (b) and (e) the re-synthesised signals, (c) and (f) the corresponding 
residual errors. 
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