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Abstract 

Recent trends in commercial and consumer demand have led to the increasing use 
of multimedia applications in mobile and Internet telephony. Although audio, video 
and data communications are becoming more prevalent, a major application is and will 
remain the transmission of speech. Speech coding techniques suited to these new trends 
must be developed, not only to provide high quality speech communication but also to 
minimise the required bandwidth for speech, so as to maximise that available for the 
new audio, video and data services. 
The majority of current speech coders employed in mobile and Internet applications 
employ a Code Excited Linear Prediction (CELP) model. These coders attempt to 
reproduce the input speech signal and can produce high quality synthetic speech at bit 
rates above 8 kbps. Sinusoidal speech coders tend to dominate at rates below 6 kbps but 
due to limitations in the sinusoidal speech coding model, their synthetic speech quality 
cannot be significantly improved even if their bit rate is increased. Recent developments 
have seen the emergence and application of Pitch Synchronous (PS) speech coding 
techniques to these coders in order to remove the limitations of the sinusoidal speech 
coding model. 
The aim of the research presented in this thesis is to investigate and eliminate the factors 
that limit the quality of the synthetic speech produced by PS sinusoidal coders. In 
order to achieve this innovative signal processing techniques have been developed. New 
paxameter analysis and quantisation techniques have been produced which overcome 
many of the problems associated with applying PS techniques to sinusoidal coders. In 
sinusoidal based coders, two of the most important elements axe the correct formulation 
of pitch and voicing values from the input speech. The techniques introduced here 
have greatly improved these calculations resulting in a higher quality PS sinusoidal 
speech coder than was previously available. A new quantisation method which is able 
to reduce the distortion from quantising speech spectral information has also been 
developed. When these new techniques axe utilised they effectively raise the synthetic 
speech quality of sinusoidal coders to a level comparable to that produced by CELP 
based schemes, making PS sinusoidal coders a promising alternative at low to medium 
bit rates. 
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Chapter I 

Introduction 

1.1 Background 

Human speech sounds must be efficiently transmitted and stored in order to be used 

effectively. Designers of mobile communication systems, wireless computer networks 

and multimedia systems are all searching, for improved techniques for handling speech. 
Speech coding research has found applications in mobile and computer networks, au- 

tomation, biomedical systems, consumer products and military applications and almost 

everywhere that digital communication is needed. 

In order to transmit speech information digitally it must first be converted from its 

original analogue format. Once a digital representation has been achieved it can be 

compressed using digital signal processing techniques. The first implementation of a 
digital system began with Pulse Code Modulation (PCM) which offered the possibility 

of high-fidelity transmission and storage. Today many of the Public Service Telephone 

Networks (PSTN) axe based on this method. PCM is a straightforwaxd method for 

discrete time amplitude approximation of analogue waveforms. However it does not 

offer any mechanism for redundancy removal therefore new techniques were designed 

and implemented which exploited the natural redundancies in the speech signal. 

The past few decades has seen substantial application and progress of speech coding to 

communication systems. Central to this progress has been the development of speech 

1 



I. I. Background 

coders capable of producing high quality speech at low to medium bit rates of 4 to 

16 kbps. A number of these coders have been adopted in national and international 

telephone standards. 

Many of the adopted standards used in mobile telephone networks operate in the range 

of 5 to 16 kbps. The great majority of these standards utilise Hybrid speech coders 

that use a Code Excited Linear Prediction (CELP) model. Hybrid coders aim to 

directly match the input speech waveform, this waveform matching is achieved by 

minimising the error in the speech domain by using closed loop techniques. However, 

the performance of these coders begins to degrade below 8 kbps as they fall to exploit 

the perceptual redundancy present in the speech signal. 

Sinusoidal speech coders can produce good quality synthetic speech at bit rates of 6 

kbps and below. Their model aims to produce perceptually intelligible speech without 

matching the speech waveform. They axe able to operate at a lower bit rates than 

the hybrid type coders by not transmitting the speech information that is perceptually 

unimportant. These coders operate Time Synchronously (TS) as they extract the 

speech information to be coded at fixed points of the input speech signal. However, 

due mainly to the models lack of robustness of open loop speech parameter estimation 

and inadequate modeling of non-stationary speech segments, increasing their bit rate 

will not significantly improve their synthetic speech quality. 

Recently developments have seen the emergence and application of Pitch Synchronous 

(PS) coding techniques to sinusoidal coders. These techniques aim to improve synthetic 

speech quality by decomposing the input speech signal into individual pitch cycles and 

estimating paxameters for each cycle. The aim of the research presented in this thesis 

is to investigate and eliminate the factors that limit the quality of the synthetic speech 

produced by PS sinusoidal coders. Such coders would be a promising alternative to 

CELP based schemes and could be applied in many systems such as mobile and military 

telephony and voice Internet communications. 
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1.2 Outline of Thesis 

The first paxt of this thesis presents the background to speech coding and sinusoidal 

speech coding in particulax. The second part of this thesis presents the investigation 

and subsequent results of the reseaxch. The thesis is organised as follows: 

Chapter 2-A review of speech coding techniques is presented. The main types of 

speech coders are discussed and the criteria for speech coder design is introduced. The 

main applications of speech coders are also reviewed. 

Chapter 3- Presents a review of speech coding techniques, these techniques such as 

linear predictive coding, quantisation and pitch prediction are common to most speech 

coders. 

Chapter 4- Sinusoidal and pitch synchronous sinusoidal speech coding axe presented, 
the PS Split Band Linear Predictive Coder (SB-LPC) which forms the basis of this 

thesis is discussed in detail. 

Chapter 5- The development of a novel voicing classifier technique for use in sinusoidal 
based speech coders is detailed, the application of a new speech coding analysis tool is 

also presented. 

Chapter 6- The development of open and closed loop pitch cycle detection and seg- 

mentation algorithms in a PS sinusoidal speech coder is presented in some detail. 

Chapter 7- Methods to improve the quantisation of spectral amplitude information in 

a PS sinusoidal speech coder axe presented. 

Chapter 8- The PS processing techniques presented in this thesis are applied to the PS 

SB-LPC and the resulting synthetic speech is formally tested against other sinusoidal 

and CELP based speech coders. 

Chapter 9-A concluding review of the research presented in this thesis is given. 

1.3 Original Achievements 

*A speech analysis design tool has been developed that allows the user to determine 

the cause and effect of audio distortion in a sinusoidal speech coder. This tool has 
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also been used to construct speech databases for use in novel classifier techniques. 

*A novel voicing classification method has been developed. When compared to 

a established method used in a standard sinusoidal. based speech coder cleax 

improvements were found. 

A complete closed loop pitch detection and segmentation system has been es- 

tablished in a sinusoidal based speech coder. Methods to pitch synchronously 

produce an approximately zero phase signal from original speech have been de- 

veloped, when utilised in the closed loop matching system, a good match of the 

pitch pattern in original speech has been established. 

*A method to accurately quantise sets of pitch synchronous spectral amplitude 

information at a fixed rate has been developed. 

eA pitch synchronous sinusoidal speech coder operating at 4.8 kbps has been de- 

veloped. When formally compared to CELP based speech coders operating at 

similar and higher bit rates, good test results have been produced. 



Chapter 2 

Digital Speech Coding 

2.1 Introduction 

The past few years has seen huge growth in the field of communication techniques and 

applications. For the majority of these applications speech remains the most popular 

method of real time communication between humans. Most of these applications re- 

quire that the speech signal is in digital format so that it may be processed, stored or 

transmitted. If uncompressed this digital speech signal has high bandwidth and stor- 

age requirements. Speech coding therefore is aimed at compressing this digital speech 

signal so that its transmission and storage requirements are significantly reduced. 0 

This chapter gives an overview of digital speech coding. The criteria that forms the 0 
specifications of a speech coder are introduced and the many types of speech coders 

that have been designed and implemented are summarised. 

2.2 Design Criteria 

The application to which any speech coder is to be applied determines the majority 

of the speech coder design parameters. There are several design parameters to be 

considered, and improving one usually has the effect of causing degradation in another. 

5 
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2.2.1 Bit Rate and Quality 

The two most important design parameters are the coder operational bit rate, and the 

decoded speech quality. When an appropriate algorithm needs to be selected, or a new 

speech coding algorithm is to be designed, one of these paxameters must be specified. In 

conditions where the available bandwidth is limited, the bit rate of the coder is specified 

and the algorithm with the highest quality at that bit rate is selected. Each coding 

algorithm is suited to operation over a specific range of bit rates. There will exist a 

rate below which the obtainable quality from an algorithm will diminish significantly. 
An upper limit will also exist, above which little improvement in quality is observed 
despite the additional bit allocation. 

Objective speech quality measures such as signal to noise ratio, do not account for the 

perceptual properties of the ear. Therefore subjective evaluations are required since 

the design of most low rate algorithms is based on perceptual criteria. 

A subjective quality test that is used to assess coders at all rates is the Mean Opinion 

Score (MOS) [1]. The MOS test is a widely used procedure that has been standaxdised 

and used during the standardisation of many speech coders. In the MOS test subjects 

are required to score individual coded speech samples on a scale of one to five. The 

overall average score is used as the final score for a system. A MOS scale is depicted 

in Table 2.1. 

Grade Subjective Opinion Quality 

5 Imperceptible Týansparent 

4 Perceptible, but not annoying Toll 

3 Slightly annoying Communication 

2 Annoying Synthetic 

1 Very annoying 

Table 2.1: The MOS speech quality scale 

Toll quality speech is intelligible from the original with no distortion, Communica, 

tion quality indicates some distortion present but the synthetic speech is stiR highly 
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intelligible. 0 

2.2.2 Coding Delay 

The three main delay components in a speech communication system axe algorithmic, 

processing and the delay caused by the communications network. The algorithmic de- 

lay is caused as speech coders buffer in a frame of speech before encoding and they 

employ frame look ahead to remove redundancy in the speech thus improving com- 

pression. Processing delay is caused by the processing that must be carried out on 

each speech frame and may be reduced by using a lower complexity algorithm or faster 

processor. The communications delay of the network consists of signal propagation and 

multiplexing delay. 

The end to end delay is an important factor for transmission applications. Communi- 

cation delays of greater than 400 ms make full duplex conversation impossible. A delay 

of 250 ms is acceptable [2]. Delays of 50 ms introduce echo, requiring the need for echo 

cancellation either within the network or in the terminal equipment [31; this impacts 

on communication system cost and complexity. 

2.2.3 Complexity 

The computational complexity and memory requirements of the coding algorithm de- 

termine the cost and power consumption of the Digital Signal Processor (DSP) used. 
Lower bit rates and higher quality can be achieved by increasing the complexity of 

an algorithm. However increasing coder complexity increases power consumption and 

cost, factors which axe essential for mobile applications. For mass market applications 
fixed point processors are usually used due to their lower unit cost and lower power 

consumption though they can require greater programming effort. Although not com- 

paxable between CPU architectures a rough guide to processor speed is given in terms 

of Million Instructions Per Second (MIPS). 
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2.2.4 Error Robustness 

The received bit stream at the speech decoder can be corrupted by channel errors. 
Therefore the ability of the speech coder to be robust to varying channel conditions in 

a different communication environments is important. These environments may include 

PSTN, voice over Internet Protocol networks, mobile and satellite based communica, 

tion. These channel errors can be classified as random and burst errors, burst errors 

are typical in mobile applications. Robustness against random errors can be guarded 

against by adding redundancy into the encoded information. Burst error detection 

schemes axe used to classify transmitted frames as unusable and then remedial action 

can be taken to conceal the effects of the loss of a frame. Modern speech coders such 

as the Adaptive Multi Rate (AMR) coder [4) operate at different rates and different 

source-channel coding ratios according to channel conditions. This means that in poor 

channel conditions more bits can be allocated to preventing quality degradation due to 

channel errors. 

Coders which use long term prediction are more sensitive to channel errors [5] as this 

causes errors in one speech frame to impact over several frames of speech. In order 

to improve the robustness of modern speech coders used in increasingly popular voice 

packet networks redundancy can be added in the packets at the encoder or the level of 
inter-frame dependencies at the encoder can be reduced [6]. Recently sinusoidal speech 

coders have been applied to voice packet networks [7], these coders do not utilise long 

term prediction as a consequence good packet loss results have been achieved when set 

against CELP based schemes. 

2.2.5 Input Signal Requirements 

Low bit rate speech coders are aimed at the compression of human speech, the ability 

to carry non-speech signals may be required. For example, the PSTN uses Dual Tone 

Multi Requency (DTMF) system for signaling telephone digits and modem tones. The 0 
statistical properties of such voice-band data signals are quite different from those of 

speech, therefore the coder employed must be capable of processing both types. 
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The input speech signal processed by the speech coder may be badly contaminated 
by background noise such as found in militaxy situations or street noise in mobile 

applications. Therefore the speech analysis and parameter estimation process should 
be robust in the presence of background noise. 

2.3 Speech Coding Techniques 

In this section the three main classes of speech coder are summaxised, they can be 

classed as Parametric, Waveform. and Hybrid. 

2.3.1 Parametric Coders 

Parametric speech coders are based upon a set of model parameters, they are also known 

as vocoders (voice coders). In these coders, the extracted parameters axe quantised and 
transmitted to the decoder where they are dequantised and used to produce synthetic 

speech. The speech production model does not attempt to match the original speech 

waveform to the synthetic speech and the model parameters are extracted by an open 
loop process. The speech quality does not converge to transparent speech quality with 
better quantisation due to the limitations of the speech model. As waveform similarity 
is not preserved the speech quality should be assessed subjectively. 

2.3.1.1 Linear Prediction Coders 

Linear Prediction (LP) coders model the vocal tract with a linear prediction filter. The 

excitation signal to the LP filter is provided by periodic pulses and random noise which 

represent glottal pulses and turbulent air flow respectively from the vocal cords, this 

speech production mechanism is introduced in Chapter 3. The main weakness of LP 

based coders is the binary voicing decision of the excitation which fails to model mixed 
type signals effectively, later LP based coders improved upon this process by making 

voicing decisions in the frequency domain. 
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2.3.1.2 Sinusoidal Coders 

Sinusoidal coders represent the speech as a sum of sinusoidal components. The model 

parameters such as the amplitudes, frequencies and phases axe estimated at regulax 
intervals from the speech spectrum. At low bit rates the phase information is not 

transmitted but is modelled at the decoder. Sinusoidal speech coders are discussed 

further in Chapter 4. 

2.3.2 Waveform Coders 

Waveform coders focus on representing the original speech waveform as accurately as 

possible. Modern waveform type coders (Hybrid coders) do this by minimising the 

error between the original and synthetic speech. Older waveform coders attempted 

to directly quantise the speech signal. International Telecommunications Union (ITU) 

G. 711 [8] PCM employed logarithmic quantisation techniques to code speech at 64 

kbps. Later standards such as G721 [9] at 32 kbps employed Adaptive Differential 

Pulse Coded Modulation (ADPCM) techniques to quantise the difference between the 

current sample and predicted value. 

2.3.3 Hybrid Coders 

Hybrid coders combine the advantages of parametric and waveform coding. They 

employ similax modeling techniques used in parametric coders (see Section 3.2) but 

they have a feedback loop that attempts to copy the input waveform (as in waveform 

coders) using a suitable error criterion. This is can be done by employing a closed loop 

Analysis by Synthesis scheme (AbS) to select the optimum sequence. The most widely 

used variant is the Code Excited Linear Prediction (CELP)[10] model which uses AbS 

to select the optimum sequence from one or more stored codebooks. 

CELP coders usually offer better performance at the cost of greater computational 

complexity. Improvements in signal processing technology and the general increase in 

computational power have made complexity less important than before, and CELP 

coders now dominate in the field of mobile telephony and in related application areas. 
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The coder of choice in European 2nd and 3 rd Generation (2G/3G) networks, the AMR 

coder and a populax coder for Voice over Internet Protocol (VoIP) applications, G729 

[11] are both based on the CELP model. 

2.3.3.1 Multi Mode Coders 

Multi mode coders axe classified here as hybrid coders. These coders can switch coding 
techniques according to the characteristics of the speech signal. Parametric based 

coders typically estimate the speech signal at regular intervals and interpolate between 

these points. This can produce high quality speech at periodic speech sections but at 
transitional speech sections where speech may not have strong periodic chaxacteristics 

parametric based coders cannot reach the quality of waveform type coders that attempt 
to match the target waveform and can represent irregular features of speech well. These 

coders therefore combine paxametric based coders at periodic speech sections with a 

waveform type coder that are more suited at transitional speech regions. These multi 

mode coders [12] and (13] need to use complex algorithms to ensure artifacts are not 

produced when switching between coder type. 

A diagram showing the quality against bit rate of the various types speech coder is 

given in Figure 2.1. 

2.4 Standardisation 

Several international boards exist that have standardised speech coders. One such 
board is the International Telecommunication Union (ITU) that has released many 

populax standards commonly used in PSTN. Since the development of mobile phone 
technology many standardisation bodies have been set up. This standardisation process 
has been the main driving force behind speech coding research. One of the major stan- 
da, rdisation bodies in Europe is the European Telecommunications Standards Institute 

(ETSI) which publishes standaxd coders for the European mobile network. There are 

similar standardisation bodies in North America and Japan. Table 2.2 shows the most 
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Waveform coders 

Z, 

Poor 
148 16 32 64 

Coding Bit Rate in kbps 

coders 

Figure 2.1: Quality vs Bit Rate for different speech coder types [14] 

important speech coders developed in the past 30 years, the great majority of these in 

the mobile environment are based on the CELP model. 

2.5 Speech Coder Applications 

The major application of digital speech coding is telecommunication systems. This C. 
usage can be divided into terrestrial, satellite and Internet based communications. 

2.5.1 Terrestrial Based Communication 

These include PSTN, Integrated Services Digital Networks (ISDN) and mobile radio 

systems. The initial PSTN international standard used 64 kbps compounded PCM. 

Risin- consumer demand led to the adoption of a 32 kbps ADPCM speech coder the 

G. 721 [9] as a standard for PSTN. Advances in speech coding led to the development 

G. 728 at 16 kbps [15] and G. 729 [11] at 8 kbps. Both produce neax toll quality speech 
but are very complex compared to original PCM coders and have longer delays. They 

axe used on networks where there is a high subscriber demand. 

Integrated Services Digital Network (ISDN) is a circuit-switched telephone network 
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Standard Year Algorithm Application Bit Rate MOS Delay 

G. 711 1972 PCM PSTN 64 4.3 0.125 

G. 721 1984 ADPCM PSTN 32 toll - 

G. 722 1984 SB-ADPCM ISDN 64/56/48 toll - 

FS1015 1984 LPC-10 Military 2.4 synth 112.5 

GSM FR 1989 RPE-LTP Mobile 13(22.8) 3.7 20 

IS54 1989 VSELP Mobile 7.95 3.6 20 

Inmarsat-M 1990 IMBE Satellite 4.15 3.4 78.75 

G726 1991 VBR-ADPCM PSTN 16/24/32/40 toll 0.125 

FR PDC 1991 VSELP Mobile 6.17 (11.2) comm. 20 

FS1016 1991 CELP Military 4.8 3 37.5 

HR JDC 1993 PSI-CELP Mobile 3.45 (5.6) comm. 40 

G. 728 1994 LD-CELP PSTN 16 4 0.625 

GSM HR 1994 VSELP Mobile 5.7(11.4) 3.5 24.375 

G. 729 1995 CS-CELP PSTN 8 4 15 

G. 723.1 1995 A/MP-MLQ CELP IP based 5.3/6.3 toll 37.5 

GSM EFR 1995 ACELP Mobile 12.2 (22.8) 4 20 

FS 2.4 1997 MELP Military 2.4 3 45.5 

GSM AMR 1998 Multi Rate ACELP Mobile 4.75 to 12.2 - 40 

SMV 2001 Multi Rate eX-CELP Mobile 0.8-8.5 comm. - 

ILBC 2002 ACELP IP based 13.967 4 

AMR-WB 2002 Multi Rate ACELP WB Mobile 6.6 to 23.85 - 

Table 2.2: A table of primary speech coding standaxds. Bit rate is in kbps with com- 
bined channel and source coding rate in brackets. The delay figures axe in milliseconds 
[141 and [2] 
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system, designed to allow digital transmission of voice and data over ordinary telephone 

copper wires, resulting in better quality and higher speeds than that is available with 

the PSTN system. A 16 kHz sampling frequency speech coder the 64 kbps ITU G-722 

Sub Band ADPCM is used for these applications [161. Recently higher bandwidth 

technologies such as Asynchronous Digital Subscriber Line (ASDL) have reduced the 

relevance of ISDN. 

Due to the high number of subscribers and limited radio bandwidth, the compression of 

speech is very important in mobile communications and the majority of recent speech 

coding research has been applied in this axea. The Global System for Mobile commu- 

nication (GSM) is a European mobile system that covers most of the continent. The 

first GSM standard phone was the 13 kbps GSM Full Rate (GSM FR) [17], followed by 

the 12.2 kbps GSM Enhanced Full Rate (GSM EFR) [18] and the 5.6 kbps GSM Half 

Rate (GSM HR) [19]. Due to the channel errors that can occur in mobile networks the 

GSM FR and GSM EFR coders have gross rates of 22.8 kbps, the GSM HR has 11.4 

kbps with channel coding. 

The AMR (Adaptive Multi-Rate) standaxd is a speech coding algorithm operating at 

variable bit rates in the range of 4.75 to 12.2 kbps. This technology was initially 

developed for GSM systems, the single most deployed 2G mobile telecommunication 

standard worldwide. This AMR narrow band codec was standardised by the ETSI and 

adopted by the 3rd Generation Partnership Project (3GPP) as the mandatory coder 
for 2.5G and 3G wireless systems based on the evolved GSM core network. A wide 
band implementation of this coder AMR-WB is the required coder in GSM and 3G 

networks for wide band speech and for multimedia services when wide band speech 
(with 16 kHz sampling frequency) is supported. The AMR-WB coder operates on nine 

speech coding , rates between 6.6 and 23.85 kbps [20]. 

2.5.2 Satellite Based Communication 

A satellite phone is a mobile phone that communicates directly with orbiting commu- 

nications satellites. Depending on the architecture of a particulax system, coverage 

may include the entire Earth, or only specific regions. Satellite communication systems 
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use low bit rate speech coders as there is a limited bandwidth, satellite phone systems 
frequently suffer from high latency due to the distances involved and bursty channel 

errors due to fading from multi path effects and shadowing. Satellite systems such as 
Iridium use the 2.4 kbps Advanced Multi Band Excitation coder (AMBE) [21]. The 

Immarsat-M Improved Multi Band Excitation (IMBE) [22] is another coder used with 

a 4.15 kbps bit rate with channel coding this is increased to a rate of 6.4 kbps. 

2.5.3 Internet Based Communication 

One of the greatest growth developments for speech coding in recent years has been 

the increase in voice communication over the Internet known as Voice over Internet 

Protocol (VoIP). This initially was applied to PC based communication but recently 

this technology has been applied to mobile phones and is known as VoIP Mobile. VoiP 

allows voice communication between Internet users or an Internet user and a user on 

PSTN. Two populax coders used in VoIP applications are a 5.3/6.3 kbps coder called 

G. 723.1 [231 and the 8 kbps coder G729, both axe used in VoIP applications due to 

their relatively low bandwidth requirement. 

The CELP based G729 in particular has become standard in VoIP applications due its 

toll quality speech performance at 8 kbps. However CELP based coders axe sensitive to 

packet losses because of inter-frame dependencies in their predictor states [5]. A more 

recent CELP based coder is the Internet Low Bit Rate Coder (iLBC) [24]. This coder 
treats each packet individually removing memory and packet loss error propagation 
that is present in many standard CELP coders but at the increased bit rate of 13.697 

kbps compaxed to G729 at 8 kbps. 

2.6 Concluding Remarks 

This chapter has given an overview of digital speech coding and its applications. Exist- 

ing speech coders can be classed as parametric, waveform or hybrid based. The work 

presented here is based on a parametric coder employing a sinusoidal model. 
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The criteria that are involved in design of a speech coder has been presented. The 

relevant speech coding technologies that are currently employed in commercial use 

have been reviewed. 

The next chapter will introduce the basic ideas that lie behind many of these speech 

coding technologies and standards. 



Chapter 3 

Digital Speech Pundamentals 

3.1 Introduction 

Most of the techniques used by low to medium bit rate speech coders to compress and 

code speech are based on the source filter model, which is a mathematical representation 

of the human speech production mechanism. The parameters required for this model 

are found by analysis, quantised and then transmitted for synthesis. These paxametric 

modelling and quantisation techniques axe employed in many of todays speech coding 

technologies, this chapter presents an overview of these fundamental techniques. 

3.2 Speech Analysis 

Figure 3.1 demonstrates the human speech production mechanism. The speech pro- 
duction mechanism is considered to be the result of excitation and modulation. The 

lungs and vocal cords produce the excitation. The vocal tract modulates the excitation 
by changing its shape. 

Speech can be considered as quasi-stationary over short segments, typically 5-20 ms. 
It can be classified as voiced, unvoiced or mixed. The periodic excitation which is 

characterised by the fundamental or pitch frequency is used for voiced sounds and 

represents the airflow through the vocal cords as they vibrate. These air flow pulses 

17 
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Figure 3.1: Human speech production mechanism [25] 
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Figure 3.2: A section of voiced speech and its frequency spectrum 
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Figure 3.3: A section of unvoiced speech and its frequency spectrum 
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then travel along the vocal tract and are shaped by the tongue, jaws, lips and teeth. 

Unvoiced sounds represent the noise created by forcing air past constrictions through 0 
the vocal tract. Mixed voiced sounds such as fricatives are produced by constrictions 
in the tongue, lips and teeth and may be accompanied by voiced excitation generated 
by the vocal cords. Plosives are generated by completely closing a part of the vocal 
tract and then by releasing the accumulated pressure. 

Figures 3.2 and 3.3 show examples of voiced and unvoiced speech respectively. Voiced 

speech as shown is periodic in the time domain and has a harmonic structure in the 

frequency domain up to around 4 kHz whereas unvoiced speech lacks a clear structure. 
The peaks that axe visible in the frequency domain plot of voiced speech axe known as 
formants, they represent the resonant modes of the vocal tract and axe very important 

perceptually. This formant structure is shown as the dotted line in Figure 3.2. 

A simple speech production model is known as the Source Filter Model. The filter 

models the behaviour of the vocal tract, the filter parameters as such are modeled as 
Linear Predictor Coefficients. The model assumes that speech is produced by exciting 

the filter by random noise for unvoiced speech or an impulse train for voiced. The 

source filter model is based on a number of assumptions and simplifications. The main 

assumption is that there is no interaction between the vocal tract shape and larynx. 
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The second assumption is that the vocal tract has a linear transfer function. Although 

these assumptions are not strictly true the removal of redundancy has meant that the 

source filter model has been widely used in simple vocoders in the past. 

4-+ Pita period 
ttf 

Voiced/ 

I 
Unriced 

Impulse trair mtch 

Random noise G in a 
generator 

I Sýmthctic 

LPC filter 
coefficients 

Figure 3.4: Source Filter Model 

3.3 LPC Analysis 

Linear Predictive Coding is used to derive the coefficients of the vocal tract filter of 

the source filter model. The heaxt of the LPC is the linear predictor, the time varying 
filter which represents the combined effects of vocal tract, glottal flow and radiation of 

the lips. It can be represented by 

p 
G1-E 

H(z) = 
S(Z) j=l 
X(Z) p F, cejz-i 

j=l 

(3.1) contains both poles and zeros, however if the order of the denominator is high 

enough [26] an all pole approximation can be used. This assumption produces a syn- 

thetic spectral envelope that contains peaks that correspond to the formants in human 

speech. A conjugate pair of poles is required to model a single formant and as speech 
is assumed to contain one formant per kHz, a signal of bandwidth 4 kHz will assumed 

to have four formants. Therefore it is common to use a loth order linear prediction 
filter and use the remaining poles to model other spectral characteristics. The all pole 
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transfer function can be thus written as 

H(z) 
GG (3.2) 

p A(z) 
E ajz-i j=l 

The z-domain transfer function of (3.2) can be written in the form of a difference 

equation in the time domain 

p 
s(n) = Gx(n) +E ajs(n - j) (3.3) 

j=l 

(3.3) states that the present speech output s(n) can be obtained by summing the 

weighted present input, Gx(n) and a weighted sum of the most recent past p out- 

put samples. The gain term is usually set to unity; so the next step is to determine the 

coefficients of the predictor, i. e. aj for j=1,2 . ..... p where p is the order of the filter 

assumed here to be loth order. 

If the speech signal s(n) is filtered by the inverse of the predictor filter the output e(n) 
is called the residual signal 

p 
e(n) = s(n) -E cejs(n - (3.4) 

j=l 

This residual signal is commonly used in speech coders to determine the pitch period. 
The objective is to find the predictor coefficients which minimise the residual energy E 

p 
E{e 2 (n)}=E [s(n)-Eajs(n _ j)]2 (3.5) 1 

j=l 

I 

Setting the partial derivatives of E with respect to aj to zero for 1,..., p it can be 

shown that (3.5) reduces to 

5 aj 0�, (i, j) = 0� (i, 0), for i=1,2,..., p (3.6) 
j=l 

where 

= Els(n - i)s(n - j)} (3.7) 

A major assumption in the derivation of (3.6) is that the signal is stationary. This is not 

true for speech over long segments but for shorter segments is realistic. Consequently 0 
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our expectations in (3.7) axe replaced by finite summations over a short length of speech 

samples. This is achieved by replacing the expectations of (3.6) by summations over 
finite limits, i. e. 

= Els(n - i)s(n - j)} 

E S,, (M - i)s,, (m - j) for i 2,..., 
m 

(3.8) 

(3.9) 

The two most popular methods that can be used to obtain the predictor coefficients 

axe the autocorrelation and covaxiance methods. 

3.3.1 The Autocorrelation Method 

For the Autocorrelation Method (AM) the speech segment s,, (m) is assumed to be zero 

outside the interval 0<n<N-1 where N is the length of the sample sequence. Since 

for N<m<N+p the aim is to predict zero sample values (which axe not zero) 

the prediction error for these samples will not be zero. Similarly, the beginning of the 

current frame will be affected by the same inaccuracy from the previous frame. The 

limits for (3.9) can be shown to be: 

N-1-1(i-j)l 
E S. (M)S. (m + li - A, '<-i<-P, 0<-i: 5p (3.10) 
M=o 

(3.10) can be reduced to the short time auto-correlation function as given by, 

0, (i, j) = R,, (Ii -j 1), for i=1,2,..., P, i= 

where N-1-j 

R,, (j) =Es,, (m) s,, (m + j) (3.12) 
m=O 

Using the AM (3.6) can be shown to be 0 
p 

E ajR. (Ii - ji) = R. (i), 1<i<p (3.13) 
j=l 
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or in matrix form as 

&(0) R,, (l) 

&(l) Rý(O) 

&(2) Rn(l) 

R,, (p 1)) al) 
(R,,, (l)) 

&(p 2) a2 &(2) 

R,, (p 3) Ce3 

ýR� (p - 1) R� (p - 2) R� (p - 3) . R� (0) j ýapj ýR�(p)j 

(3.14) 

Straight forward application of Gaussian elimination to solve such matrices is rather 

inefficient, with complexity 0(n3)1. Since all the elements on each diagonal of this 

symmetrical matrix are equal, i. e. it is a Toeplitz matrix, some efficient algorithms 

exist to solve the problem. The most widely used technique is a recursive algorithm 
known as the Levinson-Durbin [27] which has a complexity of O(n 2). 

3.3.2 The Covariance Method 

The covariance method (CM) differs from the autocorrelation method as it does not 

make any assumptions about the signal outside the range used in the calculation. The 

interval over which the mean square error is calculated is fixed. 
N-1 

E e(m) (3.15) n 
M=0 

(3.9) can be written as 
N-1 

0. (i, j) =ES, (M - 0S. (M -A M=0 

Changing the summation index 

N-i-i 

E s, (M)S,, (M+i-j), 
M=-i (3.17) requires the use of samples in the interval -p :5m<N-1. (3.16) is not a 

true autocorrelation function but a cross correlation between two very similar but not 

identical, finite length sample sequences. Rom (3.16) it can be shown that the original 

LPC equation (3.9) can be expressed as 
P E Cei 0. (i, j) = 0. (i, 0), 1-<i-<P, 0-<i: 5p (3.18) 

j=1 
'where 0(. ) is a measure of complexity in regard to the problem. 

J<i<p, O<j:! ý, p (3.16) 

J<i<p, O<j: 5p (3.17) 
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in matrix form (3.18) becomes 

0(l, l) 0(1,2) 0(1,3) 

0(2,1) 0(2,2) 0(2,3) 

0(3,1) 0(3,2) 0(3,3) 

ýO(p, 1) 0 (p, 2) O(p, 3) 

0(i, p)) cc, ) (1,0) 
0(2, p) Ce2 0,, (2,0) 

0(3, p) a3 0,, (3,0) 

. O(P, P)/ \ap/ \'O. (P, 0) / 
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(3.19) 

No assumptions axe made therefore about the signal outside the calculation interval. 

The matrix here is not Toeplitz in structure, therefore the Levinson-Durbin algorithm 

cannot be used. A inversion method known as Cholesky Decomposition can be used 
[281. Both the autocorrelation and covaxiance methods have been used in the reseaxch 

presented in this thesis. 

3.4 Quantisation of LPC Coefficients 

The spectral envelope defined by the LPC coefficients is sensitive to slight changes in 

coefficient values which may be introduced by the quantisation process. Quantisation 

may also affect the coefficients to such an extent that the stability of the filter may 
degrade. Therefore it is usual to transform the LPC filter coefficients into an alternative 

representation where small changes during quantisation will not have a dramatic effect 

on the LPC filter. There are several such representations available, the most popular 

of which being that of Line Spectral Frequencies (LSFs) [14]. 

3.4.1 Line Spectral Frequencies 

LSFs are directly computed from Line Spectral Pair (LSP) coefficients. LSFs measured 
in Hz axe related to LSPs by the relation 

LSFi = 
fs 

cos-1 (LSPi) (3.20) 
27r 
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where fs is the sampling frequency. The LSPs can be defined as follows: the all pole 

pth filter H(z) can be derived from the linear prediction analysis given by: 

H(z) =1=1 (3.21) 
1+p ajz-j 

A(z) rl 
j=l 

For an even value of p and a stable filter, the polynomial A(z) can be decomposed as 

even and odd parts P(z) and Q(z). A(z) has complex roots anywhere within the unit 

circle but P(z) and Q(z) have the very useful property of only having roots on the unit 

circle. Since they exist as palindromic polynomials it is possible to reduce the degree 

of the polynomial by two. 

P(z) = A(z) + z-(P+')A(z-') (3.22) 

and 
Q(z) = A(z) - z-(P+')A(z-1) (3.23) 

wherein 
A(z) = 

P(z) + Q(Z) 
(3.24) 

2 

P(z) and Q(z) can be written as 

P(z) = A(z) + z-(P+')A(z-) (3.25) 

pp 

l-Eajz-j +z-(P+l) l-Eaj(z-')-i (3.26) 
j=l jý-l 

+ (ap - al)z- 1+.... + (a, - ap)z-P + z-(P+l) (3.27) 

P+I 
P(z) = z-(P+l) H (z - aj) (3.28) 

j=0 

P+1 
Q(Z) = z-(P+I) 11(Z 

-, 3j) (3.29) 
j=0 

The roots of P(z) and Q(z) lie on the unit circle and occur in complex conjugate 

pairs with the exception of the roots at z= -1 in the case of P(z) and z=1 for Q(z). 

Therefore there axe p unknowns to find which axe the axguments of aj and Oj, the roots 

of P(z) and Q(z). Since the roots lie on the unit circle, the all pole models P-1(z) 
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and Q-1(z) will have infinite values at these locations. In terms of the spectrum, these 

roots can be seen as vertical lines at frequencies corresponding to the angle of each 

root; the Line Spectral Frequencies, see Figure 3.5. 

Various methods exist for solving the roots including the real root method, ratio filter 

method and Chebyshev series method [29]; this project used the real root method to 

solve the polynomials as described further in [30]. 
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Figure 3.5: LSFs and LPC frequency response for voiced (left) and unvoiced speech 
(right) 

LPC filter stability is guaranteed provided that the LSFs are monotonically increasing 

and axe bound between the limits 0 Hz and f, /2 where f, is the sampling frequency, 

i. e. O<fl <f2< ... < fp < f, /2. As shown in Figure 3.5 closely grouped LSFs 

indicate formant presence also the closer formants are to each other the smaller the 

formant bandwidth. Any error that occurs in a particular LSF is localised to that LSF 

region and will not affect the spectrum as whole. 
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3.5 Pitch Detection 

Low bit rate sinusoidal speech coders rely heavily on extracting the correct speech pa- 

rameters from a given speech signal. The correct estimation of the signal's pitch is 0 
vitally important, pitch conveys information such as speaker; identification, emotional 

state and intonation. Other paxameters such as spectral amplitudes also rely on accu- 

rate pitch estimation. Therefore the reliability of the Pitch Detection Algorithm (PDA) 

has a dramatic effect on the quality of the synthesised speech [2]. 

The pitch period is defined to be the time between glottal pulses generated by the 

opening and closing of the glottis (vocal cords). During steady voiced speech this 

value usually varies little but it can become irregulax at some speech sections such as 

transitions. During unvoiced speech sections, the pitch period is irrelevant and can be 

discarded. Analysis to find the pitch period or pitch frequency (separation between 

harmonic frequencies) is usually achieved in PDAs by windowing the signal and assum- 

ing the pitch value to be stationary under the analysis window. Pitch determination 

can be caxried out in time or frequency domain. A review of some pitch detection 

algorithms will now be described. 

3.5.1 Time Domain 

A PDA which employs time domain methods uses periodic similarity to identify the 

pitch. This is achieved by compaxison of the speech signal with a delayed version 

of itself, the delay with the highest similarity is identified as the pitch value. Two 

methods to achieve this are the Autocorrelation method [2] and the Average Magnitude 

Difference Function [27]. The autocorrelation method is a measure of similarity, the 

correct value of delay will correspond with a maximum in the autocorrelation signal. 

The autocorrelation function can be defined as 

N-1 
R(T) =E s(n)s(n - -T) (3.30) 

n=O 

where N is the analysis frame length and 7- is the delay. Energy normalisation is often 

employed in this method as errors can occur during rapid energy fluctuations that can 
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occur within the analysis frame. 

The AMDF was a popular PDA, it measured signal disagreement and so gave the 

minimum value in the AMDF function corresponding to the pitch value. 
N-1 
E Is(n) - s(n -, r)l (3.31) 
n=O 

where 7- is the delay. AMDF was popular before current DSP technology became 

widespread because of its simpler computational structure. 

3.5.2 Requency Domain 

Frequency domain pitch determination algorithms extract the fundamental frequency 

from the harmonics of the speech spectrum. Sinusoidal Speech Model Matching PDA 

(SSMM-PDA) is a technique that was developed by [311 and modified by [321. This 

method assumes the speech to be composed of a sum of sinusoidal components with no 

assumption on frequency or phase, given by: 

L 

s (n) Al ei (3.32) 

where Al, wl and 01 axe the spectral amplitude, frequency and phase of the Ith sinusoidal 

component respectively. Then a synthetic signal A(n, wo), is generated, composed of 

entirely haxmonically related sinusoids, as follows: 

K(wo) 

9(n, wo) 
Alei(nlwo+01) (3.33) 

where Al represents the spectral amplitude of the synthetic spectrum for the 1th har- 

monic. The fundamental frequency of the pitch is then obtained by finding the value 

of wo which minimises the MSE between the spectra of s(n) and (§, wo). 

1 N-1 

Wo)]2 f(wo) =T1: [s(n) - 9(n, (3.34) 
n=O 
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Direct evaluation of (3.34) for all the possible wo and choosing the wo corresponding 

to the minimum f(wo) is a computationally intensive process. [311 simplified the search 

procedure based on a number of assumptions [32]: 

1. The spectra of s(n) and 9(n, wo) axe well resolved and can be approximated by sinc 
functions at each component frequency and scaled by Al for s(n) and located at 

each harmonic of the candidate fundamental frequency wo, scaled by the spectral 

envelope at the haxmonic frequencies for 9 (n, wo). 

2. The matching of one sinusoidal component from s(n) to another from 9(n, wo) is 0 
given by the product of their harmonic amplitudes, i. e. At and At weighted with 

a distance function D(w, - kwo). The value of which may be pre computed and 

stored in a look up table. 

3. Each sinusoidal component of s(n) is represented by only one of its counterparts 
from 9 (n, wo) the one which has the greatest matching, usually the closest. 

4. Minimising the error j: N 
0 [x(k) - y(k, a, b, C'.. )]2 over the variables a, b, c,... is k= 

x: N 
equivalent to maximising the function k=O y(k, a, b, c,.. )[x(k) - ly(k, a, b, c,.. )]. 2 

After simplifications, the fundamental frequency can be determined by maximising 

p(wo) with respect to wo where p(wo) is given by: 

K(wo) 

p(wo) A(kwo) (maxi[AID(wi 
- kwo)] -2 A(kwo)) (3.35) 

k=l 

where K(wo) = [7rlwo] is the number of harmonics for the given pitch value. W1 and 
Ith 27r Al axe the frequency and amplitude of the peak in the original spectrum. WO =T 

is the fundamental frequency corresponding to the pitch candidate P. A(kwo) is the 

amplitude of the k th harmonic in the synthetic spectrum. D(wj - kwo) is a distance 

measure defined as 

! i2Lxl with x= 27r"-k'o x< 7r 
D(wl - kwo) =x Wo (3.36) 

10X> 

7r 
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The amplitudes A(kwo) of the kth haxinonic in the synthetic spectrum are approximated 

by the spectral envelope of the original spectrum at the corresponding frequency. This 

envelope can be approximated by interpolating between the peaks in the spectrum. 

This pitch detection process forms the basis of the pitch detection method used in [33] 

and [30]. 

3.6 Voicing Estimation 

Most sinusoidal coders classify input speech according to the source of the excitation. 
Voiced speech is produced by the vocal cords which produces a periodic signal, unvoiced 

by turbulent air flow resulting in a random like signal. The correct voicing classification 

and the degree to which speech is voiced is crucial for producing quality synthesised 

speech. Voiced speech classified as unvoiced produces rough and intelligible speech, 

unvoiced declared as voiced produces speech with a metallic characteristic. Modern 

sinusoidal coders use a mixed excitation mode which allows speech to consist of both 

types. They use a hard decision to classify input speech as voiced or unvoiced; a soft 
decision is then made to further classify the degree of voicing present in speech classified 

as voiced to improve the synthetic speech quality. 

3.6.1 Hard Decision Voicing 

Some of the main methods to discriminate between voiced and unvoiced speech are 
described. 

3.6.1.1 Zero Crossing Ratio 

The number of times the speech signal changes sign from one sample to the next is 

a good indication of voicing classification [2]. The random nature of unvoiced speech 

means its Zero Crossing ratio (Z, ) will be higher than for voiced speech which will 

change sign less from sample to sample over the length of the signal. 
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3.6.1.2 Peakiness 

The energy of voiced speech is usually concentrated around the main pulse in the pitch 

cycle, the energy of unvoiced speech tends to be spread out over the pitch cycle as there 

are no pitch pulses. This effect is more pronounced in the LP residual signal where 

voiced speech tends to be peaky whereas unvoiced speech is not. If the signal is voiced 
i. e. contains large peaks the Peakiness (Pk) ratio given as (3.37) will be high, typically 

higher than 1.5 for voiced speech 

N-1 
(3.37) 

F, jr(n)l 
n=O 
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Figure 3.6: A section of speech and the Zero Crossing ratio (middle) and Peakiness 
(top). Suggested threshold values axe shown (dashed) C, 

where r(n) is the LP residual and N is the length of the signal. Figure 3.6 shows a 

plot of Peakiness (Pk) and Zero Crossing Ratio (Z, ) with suggested voiced/unvoiced 
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threshold. 
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Figure 3.7: A section of speech and the Energy to Peak Energy Ratio ElEp and Low 

Frequency Band to Full Requency Band Ratio LFIFF. Suggested threshold values 

are shown (dashed) 

3.6.1.3 Energy to Peak Energy Ratio 

Voiced speech is usually higher in energy than unvoiced. As the dynamic range of speech 

can vary the energy of speech is not a very reliable method. Therefore a comparison of 

energy to tracked peak energy E ...... is used. When voiced the energy will be closer to 

the tracked peak energy, when unvoiced it will be lower. Energy to Peak Energy Ratio 

(ElEp) is defined as 
2E,, ElEp 
+ 

(3.38) 

where E,, is the energy of the current signal. This tracking is detailed in [34]. 
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3.6.1.4 Low Band to Pull Band Energy Ratio 

Voiced speech usually follows the pattern of having more energy in the lower part of 

the spectrum. Unvoiced speech does not follow this pattern as it tends to have a flat 

spectrum with even energy across the band of frequencies. The energy ratio of the signal 

between 0 and 2 kHz and the energy of the speech spectrum gives a good indication 

of the voicing content of the speech signal. Voiced speech will give a high LF/FF ratio 

close to unity whereas unvoiced will give a lower LF/FF ratio. Figure 3.7 shows a 

plot of Energy to Peak Energy Ratio ElEp and Low Band to Full Band Energy Ratio 

LFIFF. 

3.6.1.5 Normalised Correlation 

The PCWs of voiced speech are very similax to their neighbours, the structure of 

unvoiced PCWs are considered to be random in nature with no obvious repetitions of 
the signal. This factor is given by 

N-1 
F, s(n)s(n - N) 

Rp n=O (3.39) 
r- - 

where N is the length of the signal and s(n) is the current speech sample. The Nor- 

malised Correlation is calculated between the current pitch cycle and the two neigh- 
bouring cycles. Shifts of five samples either side are used to prevent incorrect values 
due to errors in the exact location of the pitch cycles. The maximum value from the 

correlation with the two neighbouring cycles is selected. 

3.6.1.6 Pre-Emphasis Energy Ratio 

A higher sample to sample correlation is present in voiced speech than unvoiced. For 

voiced speech the normallsed pre-emphasis energy ratio will be low, unvoiced speech 

with its low sample to sample correlation will have a high normalised Pre-Emphasis 

Energy Ratio. The ratio therefore exploits first order correlations and is defined as 
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Figure 3.8: A section of speech and the correlation values Normalised Correlation Rp 

and Pre-Emphasis Energy Ratio P,. Suggested threshold values are shown (dashed) 

N-1 

Es (n) 
Pe = N-1 

n=1 (3.40) 

E Is(n) - s(n - 1)1 
n=O 

where s(n) is current speech sample. Figure 3.8 shows a plot of Normalised Correlation 

Rp and Pre-Emphasis Ratio P,. 

Each of the paxameters described above provides a good indication of whether the 

speech section under consideration is voiced or unvoiced. Most parameters will give 
the same decision but frequently one or more of the parameters gives the incorrect 

indication. Therefore a final weighting decision is made based on all the parameters, 
this usually involves the construction of thresholds which axe frequently determined 

perceptually. This decision logic is described further in 4.5.2.5 in the case of a haxd 

decision used in the PS SB-LPC. 
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3.6.2 Soft Decision Voicing 

Soft decision voicing is employed to make a decision when speech is considered to be a 

mixture of voiced and unvoiced speech. This is typically caxried out in the frequency 

domain by sepaxatincy, the spectrum into several bands and making a decision for each 13 
frequency band. This is described in more detail in Sections 4.5.2.6 and 5.4.2.1. 

3.7 Quantisation 

In general, a digital speech signal is obtained by sampling and quantising a low-pass 

filtered version of the continuous speech signal. Ideal sampling of a band-limited signal 

is a process in which no information is lost. Digital speech is obtained by quantising and 

coding the sampled speech signal, thus representing each sample with finite precision. 

Quantisation is a lossy process and distortion always occurs, quantised speech can 

generally be modeled as a perfect, infinite resolution sampled signal plus a quantisation 

error. The goal therefore of any quantisation process must be to minimise this error. 

There are two fundamental quantisation techniques: scalax and vector quantisation. 

3.7.1 Scalar Quantisation 

Scalar quantisation maps each value to the nearest quantiser level from an infinite set 

of levels. The number of bits B required to represent 1 levels is given by 

1092 (1) (3.41) 

For a uniform quantiser the quantisation step size is given by D11 where D is the 

dynamic range of the input signal. Uniform quantisers assume that the distribution of 
the input values is even across their dynamic range. In speech coding this is rarely the 

case so due to their poor performance they are haxdly used. Quantiser performance 

can be improved by adding more levels across sections of the. input signal which are 

more densely populated therefore matching the statistical properties of the input signal. 
These nonuniform quantiser schemes axe generally based on compounding logarithmic 

sampling such as A-law and ji-law PCM [35]. 
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As speech is a non-stationary signal whose characteristics change with time, adaptive 

quantisers whose characteristics dynamically change to match the properties of the 

speech signal were introduced. The basic idea is to vary the step size of the quantiser to 

match the variance of the input signal. Adaptive quantisers have been introduced that 

significantly increase the signal to noise ratio when compared to nonuniform quantisers 

at the same bit rate. Adaptive Differential PCM [91 operates on narrow band speech 

at 32 kbps at quality equal to logarithmic PCM at 64 kbps [8]. 

Scalax quantisation is a simple process that requires little storage space, is robust to 

channel errors and low in computational complexity. A more efficient quantisation 

method used in speech coding is known as Vector Quantisation. Vector quantisation 

(VQ) considers a entire set of values as an entity and allows for direct minimisation 

of the quantisation distortion. As many of the parameter sets used in speech coding 

such as LPCs exist in inter related sets, VQ of these sets exploits many of the intra-set 

correlations. 

3.7.2 Vector Quantisation 

Vector quantisation uses the basic idea to code values from a multidimensional vector 

space into values from a discrete subspace, of lower dimension. The lower space vector 

requires less storage and the data is thus compressed. The transformation into the 

subspace is achieved by the use of a codebook. The X dimensional input vector of am- 

plitude levels [X1, X2, ... Xk] is compressed by choosing the nearest vector (codeword) 

from a set of N dimensional vectors [Y1 
i Y2 i .... y,, ]. All possible combinations of the N 

dimensional vector form the codebook. The codebooks used within a vector quantiser 

axe precomputed and require a training process in order to be populated. 

The operation of a vector quantiser is summaxised in Figure 3.9. The VQ encoder takes 

the input vector x and outputs the index i of the codeword from the N dimensional 

codebook that offers the lowest distortion. The lowest distortion is found by evaluating 

a measure such as the Mean Squared Error (MSE) distance between the input vector 

and each codeword in the codebook. Once the closest codeword is found, the index of 
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that codeword is transmitted to the VQ decoder. When the VQ decoder receives the 

index of the codeword, it replaces the index with the associated codeword 1. 

i 
VQ Encoder --------- VQ Decoder 

Channel 

Codebook II Codebook 

Figure 3.9: A block diagram of vector quantisation system operation 

Vector quantisation can produce good results though the subsequent complexity and 

memory requirements axe prohibitively high. Because of this sub-optimal VQ routines 
have been investigated one of the most popular is known as Split Vector Quantisation 

(SVQ). 

3.7.2.1 Split Vector Quantisation 

Split vector quantisation can reduce the complexity and memory requirements of VQ 

by splitting the vector into several paxts and quantising the sub-vectors with sepaxate 

codebooks. In a SVQ system, an input vector x can be represented by a vector i given 
by 

{{Yoto (0) .... yso (No) 1, ..., fy%K-1 (0),..., y%K-1 (N K_l M (3.42) 0 K-1 K-1 

th where the vector x is divided into K sub-vectors each of length Nk. Y3k(n) is the n 

element of the jth codevector from the kth codebook, ik is the codebook index for the 

kth sub-vector. 

The complexity of a full vector seaxch process requires one multiply add instruction to 

compare each of the N vector elements in the vector, the complexity of the search in a 

codebook with L vectors, with L= 2B with B the number of bits, is given by 

C=NL=N2 B (3.43) 
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The memory location to store the codebook assuming each codevector requires N loca- 

tions is given by 

M=NL=N2 B (3.44) 

The complexity and memory requirements for SVQ are the sum of the requirements 

of the various sub-vector quantisers. Splitting the vector into K sub-vectors of lengths 

IN1, N2,..., NK} and quantised with codebook sizes 12BI, 2B2, ..., 2Bk} will have the 

following complexity and memory requirements C, 
KK 

C=J: Nk 2 
Bk, M= ENk 2 

Bk (3.45) 
k=l k=l 

Complexity and memory storage for VQ and SVQ is given in Table 3.1 for a 10 element 

vector. 

Sub-vectors Vector Sizes Bits Complexity Memory storage 

1 10 24 1.67 x 108 1.67 x 108 

2 5,5 12,12 40960 40960 

3 4,3,3 8,8,8 2560 2560 

Table 3.1: Complexity and memory requirement comparison between various SVQ 

schemes 

The complexity is measured in terms of required operations. A comparison between 

two vectors of length Nk requires Nk operations, therefore in a full search codebook of 

size 2Bk the search requires 2BkNk operations. Memory storage is in terms of memory 

words, assuming one codebook entry can be stored using one memory word. 

I)rpically these need to be performed every 20ms in a speech coder, i. e. 50 times per 

second. The complexity and storage for the case of 1 sub-vector are clearly impractical, 

keeping in mind that typical complexity figures for existing standard coders are in the 

20-50 MIPS range [14]. The case for 2 sub-vectors is still rather complex, as typically 

2 MIPS would be used for complexity which is a large chunk out of 20 MIPS, and 

the memory requirement is high at 40k words just for the quantisation tables when 
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typically the Read Only Memory (ROM) used in speech coders is normally less than 

5-6k words [14]. 

A major disadvantage of SVQ is that the correlations between elements in different 

sub-vectors are not exploited and the quantisation efficiency decreases as the size of 

sub-vectors reduce. Multi-stage vector quantisation (MSVQ) is an attractive alternative 

as it has a better ability to exploit the correlation advantage and has been shown to 

outperform the split codebook approach [36]. 

3.7.2.2 Multi Stage Vector Quantisation 

Multi Stage Vector Quantisation (MSVQ), first proposed for the quantisation of LPC 

coefficients by [37] is a technique that reduces memory as well as computational com- 

plexity. The encoding error of a vector quantiser is formed by taking the difference 

between the original and quantised vectors and then feeding it into a second stage 

vector quantiser. The process can be repeated by feeding the second stage error into 

a third stage vector quantiser and so on. Therefore during MSVQ the input vector x 
is quantised in several stages by a number of codebooks and the quantised vector 1 is 

formed by summing the vectors for the various codebooks 

y0io + ylil ++y 
iK-1 

(3.46) K-1 

where K is the number of stages, y3k is the jII code vector from the kth codebook 

and ik is the codebook index for the kth stage. The codebooks at each stage can be 

relatively small, reducing storage requirements. This approach leads to a reduction 
in both complexity and memory storage compared to single stage VQ. The general 

memory requirement of a MSVQ is 

K 

M=NI: 2 
Bk (3.47) 

k=l 

where K is the number of stages, each of Bk bits and N is the length of the input vector. 
As the entire vector is quantised at each stage the gain from intra vector correlation 
is not lost though memory and computational complexity can be higher than SVQ. 
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During VQ each vector in each codebook is searched once, there are several search 

strategies available such as the sequential and full seaxch [2]. In the sequential seaxch 

strategy the input vector x is quantised by the first codebook Yo with the vector y0'0 

of index io chosen to minimise the quantisation error. The index of the first codebook 

io is then fixed and the quantisation error x- y0'0 is then computed. The error from 

this stage is then used as the input to the next stage and is quantised. This strategy is 

then repeated for each stage in the codebook, the complexity of this seaxch is equal to 

the complexity of a full search through each codebook and is given by 
K 

C=NE2 BA: (3.48) 
k=l 

The sequential method is sub-optimal as there is no guaxantee that the set of code- 
books vectors giving the lowest overall distortion will also give the lowest intermediate 

distortion. The full search strategy is optimal as it performs a full search on all code- 
books jointly. Every combination of codebook vectors y0'0 + y" + ... + y'K-1 is 1 K-1 
tested against the original input vector. This optimisation comes at the cost of greater 

complexity of 
K 

E 2Bk 

C=N 2k=l (3.49) 

A reduced complexity method which keeps many of the full search advantages is known 

as M-best tree search. A M-best trees search operates by exploring a certain number 

of M paths in the quantsiser tree. At each stage the M-best vectors axe chosen. M 

quantisation errors axe computed and each one is passed to the second stage. The 

second stage is searched M times one for each of the error vectors. After the second 

stage the M vectors that achieve the lowest overall distortion at the end of the second 

stage axe kept. This procedure is repeated for each stage of the codebook. At the last 

stage the path with the lowest overall distortion is selected. 

This process is illustrated in Figure 3.10. M here is equal to 2. At the the first stage 

two paths are selected from codebook YO, at the second stage codebook YI is searched 

to find the M vectors matching the best X. At the third stage this process is repeated 

and the final M path is shown, of these the path with the lowest distortion is chosen. 

The complexity of this tree search method can be shown to be 
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x 

Figure 3.10: M-best tree search in MSVQ 

41 

K 

C= N(2 Bi +MI: 2 BA, ) (3.50) 
k=2 

For M=1 the complexity is the same as the sequential search. As the M factor does 

not apply to the first stage this can exploited when designing the codebook structure. 
This method has been shown to give good results [34] and is widely used in this project. 

3.7.3 Codebook Training 

The codebooks used in VQ axe stored for use and require a period of training in order to 

fill the codebooks. A popular method to train the codebooks used in vector quantisation 
is the Linde Buzo Gray (LBG)[38]. This is an iterative algorithm that will produce 

a codebook to minimise the total quantisation error over the whole of the training 

database. During the training process it designs aL level codebook by partitioning 

the N dimensional space into L non overlapping cells of Ci. Each cell being assigned a 

vector yi. If x is found to belong within Ci during quantisation then it is represented 

YO Yl Y2 
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by yi. LBG is a relatively fast and can give good results; it has been widely used in 

this project. 

3.7.3.1 The LBG Algorithm 

A detailed description of the LBG algorithm follows: 

1. Initialisation: An initial one entry codebook is chosen C, with the first codevector 
Cl (0) computed as the average of the M vectors x,,, in the training database 

Ci (0) =Z xm 
m=l 

This is design stage N=1. 

2. Splitting: Each vector in the codebook CN is split in two, generating codebook 
CN +1 

CN+l(k) = (1 + c)CN(k) (3.52) 

CN+1(2 N-1 + k) = (1 - c)CN(k) (3.53) 

where E is a value very small in magnitude 

3. Optimisation: Step A) The training vectors axe partitioned into clusters, each 

cluster being associated to a codevector CN(k). Each training vector x.. is al- 
located to the cluster corresponding to the codevector CN(k) which minimises a 
MSE measure. Step B) Each codevector is updated as the average of the train- 

ing vectors present in the corresponding cluster. This reduces quantisation error 

in the cluster. Steps A) and B) axe then repeated until there is no significant 

improvement in quantisation error 

4. Steps 2 and 3 above axe repeated until the codebook of desired size has been 

found. 

MSVQ codebook training 

The LBG algorithm is not designed for the multistage codebooks as used in MSVQ 

routines. However it has been adapted for MSVQ codebook training. Initially a se- 

quential optimisation technique was designed. This LBG based technique first designs 
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a codebook for stage 1 of MSVQ, the quantisation errors for the training database are 
then found and the codebook for stage 2 MSVQ is trained over them. This is then 

repeated for each stage giving the final set of codebooks. 

A better technique is known as iterative sequential optimisation. Using sequential opti- 

misation an initial set of MSVQ codebooks are chosen for each stage. Each codebook is 

then optimised by assuming all the other stages are fixed and known, i. e. the quantisa, 

tion error using all the other stages except the current one is computed and an updated 

version of the current codebook is found. The process is iterated until the codebooks 

have converged. 

A method to jointly optimise all codevectors of all stages after each iteration using 

simultaneous joint codebook design was proposed in [36]. Although highly complex it 
0 

results in better performance than iterative sequential optimisation and has been used 

in this project to train the MSVQ codebooks. 

3.8 Concluding Remarks 

In this chapter the main parameters required to accurately code the speech signal 

have been introduced. The pitch, voicing and LPC paxameters must be accurately 

represented if speech is to be successfully reproduced synthetically. In order to be 

used in a practical system these values must be accurately quantised. Many of these 

concepts have been applied during the course of this research and they form the basis 

of the following chapters. The next chapter will discuss sinusoidal speech coding in 

general and give a detailed discussion on the PS SB-LPC which forms the basis of this 

work. 



Chapter 4 

Sinusoidal Speech Coding 

4.1 Introduction 

This chapter introduces sinusoidal speech coders and in particular PS sinusoidal speech 

coders. Vocoders are parametric coders that model the main features of the human 

speech production mechanism; vocal tract, pitch period and voicing status. Sinusoidal 

coders [39] treat speech as a sum of sine waves but can be considered to be a variant 

of vocoders as they make use of these three elements described above to reduce their 

bit rate. 

The first part of this chapter summaxises the main work that has been produced in 

relevant low bit rate coders in the past. The second half of this chapter introduces the 

Pitch Synchronous Split Band LPC (PS SB-LPC) [40) a PS sinusoidal coder that was 

used as a basis of the work presented in this thesis 

4.2 Existing techniques 

4.2.1 Channel Vocoder 

The first practical vocoder was demonstrated in 1939 by Homer Dudley [41]. In a 

channel vocoder the speech spectrum magnitudes are modeled by channels of contiguous 

44 
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vaxiable-gain bandpass filters. Unvoiced speech was modeled with random noise and 

voiced speech with a pulse train generator, the period of which is set by a derived 

pitch. The excitation is then scaled at the decoder by the magnitudes of the frequency 

channels. Due to technological limitations the synthetic speech produced was poor and 

also a large number of filter channels (with consequent high digit rate) were required. 

,y produced speech at rates between Later implementations with more modern technolog 

2.4 and 1.2 kbps [42]. 

4.2.2 Cepstral Vocoder 

This coder sepaxates the speech waveform, which is assumed to have been produced 
by the convolution of the excitation spectrum E(w) and vocal tract frequency response 
H(w), using time frequency domain relationships. Applying a log function to the speech 

magnitude spectrum separates the speech spectrum into the sum of two functions 

logIS(w)l = logIE(w)H(w)l = logIE(w)l + loglH(w)l 

Applying an inverse Fourier Transform transfers the signal into an alternative time 

domain where the excitation and vocal tract occupy different regions. The vocal tract 

response varies slowly whereas the excitation varies quickly thereby occupying different 

regions in this new domain. The vocal tract information may be obtained by firstly 

multiplying the signal by a rectangular window (lifter) of unit height and of a length 

long enough to contain all the low frequency information pertaining to just the vo- 

cal tract. A process known as Cepstral or Homomorphic deconvolution. This vocal 

tract information is then quantised and transmitted and the process is reversed at the 

decoder. These coders can produce good quality at low rates [43]. However the per- 

formance of the sepaxation process of (4.1) degrades when the speech contains noise 

as the speech spectrum is no longer simply the multiplication of excitation and vocal 

tract information. 

4.2.3 LPC Vocoder 

Linear Predictive Coding (LPC) coders model the vocal tract by using a linear pre- 
dictive filter and model the excitation using a pulse generator, using the source filter 
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model as described in Section 3.2. LPC modeling allows the speech spectral shape to 

be accurately represented and efficient parameter quantisation is possible. Also the ex- 

traction of the LPC values is relatively straightforward. Many coders are based on this 

model including the Mixed Excitation LP (MELP) and the Split Band LPC (SB-LPC) 

both of which are introduced in this chapter. 

4.2.4 MELP Vocoder 

The MELP [44] coder is a United States Depaxtment of Defense speech coding stan- 

dard used mainly in military applications and satellite communications, secure voice, 

and secure radio devices. MELP is based on the traditional LPC sinusoidal model 

but includes additional excitation modes to produce more natural sounding speech 

as these additional modes can represent a richer ensemble of possible speech charac- 

teristics. These are mixed excitation, aperiodic pulses, pulse dispersion and adaptive 

spectral enhancement. The mixed excitation makes the MELP coder robust in difficult 

background noise environments making it popular in military applications. 

Pulse Pulse se Adaptive 

- Position Shaping +- specw 
Generator Jitter Filter Enhancement 

Noise LPC Synthetic speech 
Noise Pulse 

Shaping 
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Synthesis - Gain Dispersion 0 Generator 
Filter Filter 

> 

Filter 

Figure 4.1: Block diagram of MELP decoder 

The mixed excitation is implemented using a multi-band mixing model simulating the 

frequency dependent voicing strength by using a filter bank, this reduces the buzz 

associated with simplistic voiced/unvoiced LPC coders. Aperiodic pulses model speech 

transitions where erratic pitch pulses can occur, pulse dispersion is used to spread the 

energy of the pulse within a pitch period. Adaptive spectral enhancement is applied to 

enhance the formant structure in the synthetic speech. A block diagram of the MELP 
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decoder is given in Figure 4.1. 

4.2.5 MBE Vocoder 

The Multi Band Excitation (MBE) vocoder [45] is a sinusoidal coder that models speech 

as a linear combination of sinusoidal waveforms with time varying amplitudes, phases 

and frequencies. It transmits a voicing decision for several frequency bands allowing the 

synthetic speech to be a mixture of periodic and noise like signals. The sinusoids are 

assumed to be all harmonics of a single fundamental frequency, given by the pitch of the 

input speech. The pitch is extracted by synthetic spectral matching. The speech is then 

sepaxated into a number of frequency bands and the voicing of each band determined. 

The magnitudes and phases of the haxmonics are extracted from the short time Fourier 

Transform. The decoder uses a bank of sinusoidal oscillators to generate the voiced 
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Figure 4.2: Block diagram of IMBE coder 

paxt of speech and utilises the amplitudes and phases to produce synthetic speech. 
Spectrally shaped random noise is used to generate the unvoiced part of speech. For 

voiced parts the parameters axe interpolated across the frame with a haxmonic birth 

and death process to provide for voicing changes which cause harmonics to appear or 
disappear. The Improved Multi Band Excitation (IMBE) [46] coder does not transmit 
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the phases as synthetic phase is used at the decoder. A block diagram of the IMBE 

coder is given in Figure 4.2. 

4.2.6 SB-LPC Vocoder 

The SB-LPC is a high quality speech coder which has been developed at the University 

of Surrey [30] and [341. The PS SB-LPC model of Section 4.5 is based upon the SB- 

LPC. The SB-LPC uses a sinusoidal model to synthesise an excitation sequence, this 

sequence is then used to stimulate an LPC filter which models the vocal tract. It can 
be considered to be an amalgam of a sinusoidal and LPC coder. However whereas 

the MBE coder uses a voicing decision for every harmonic or group of harmonies the 

SB-LPC assumes all bands to be voiced from DC to a unvoiced cut off frequency. It is 

this Split Band Voicing hypothesis which gives the coder its name. A block diagram of 
SB-LPC decoder operation is given in Figure 4.3. 

Voicing Unvoiced 
I ýxcitation frequency marker- 

Spectral 
Output Speech 

amplitudes LPC filter 

Voiced 
Pitch 0 Excitation 

Figure 4.3: Block diagram of SB-LPC decoder operation 

The SB-LPC encoder operates on either narrow band speech at 8 kHz or wide band 

speech sampled at 16 kHz. Parameters are extracted every 10 ms or 20 ms depending 

upon the mode. The parameters used to represent the speech are: 

e LPC coefficients, loth order for narrow band (8 kHz sampled speech) and 16th 

order for wide band (16 kHz sampled speech). 
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" Pitch Period. 

" Voicing cut off frequency. 

" Spectral Amplitudes. 

" Speech Energy. 

In this section the main vocoders and sinusoidal based vocoders have been summarised. 
The next section describes PS coding in more detail and the motivations behind it. 

4.3 Pitch Synchronous Speech Coding 

'11aditional TS speech coders such as the SB-LPC and MELP cannot currently produce 

speech of toll quality owing to the inaccurate modeling of perceptually important speech 0 
transitions and the lack of accurate speech parameter analysis [12] and 147]. In order to 

improve the quality of TS speech coders, several PS speech coders have been proposed. 
By extracting and analysing speech on a smaller pitch cycle basis rather than at regular 
discreet points PS coders can overcome the disadvantages of the TS coders. 

4.3.1 Introduction 

The limitations of the model employed by TS coders means that even with an increase 

in the bit rate the decoded speech quality does not increase significantly. Previous 

analysis of the SB-LPC showed that a major weakness lies in the model's lack of 

ability to accurately reproduce non-stationary sections of speech in the original speech 

waveform; these sections axe only a small percentage of the original speech signal but 

convey a lot of information and their faithful reproduction seems to be very important 

perceptually [48]. During sections of regulax speech where the original speech signal is 

stationary the decoded speech produced by the SB-LPC is of the highest quality. 

The 4 kbps SB-LPC extracts parameters every 10 ms. A laxge window centred at an 

analysis point on the speech waveform. is used to extract the parameter data. These 

windows need to be long enough to capture enough speech information but not so 
long that temporal resolution is seriously degraded. This model assumes that speech is 
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stationaxy durino this extraction, however speech is not stationaxy at all speech sections 

such as onsets, offsets and transitions, as* a result smoothing at these speech sections 

can occur. 
Figure 4.4 demonstrates the smoothing that can occur between the 10 ms extracted 

(D 
13 
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Figure 4.4: Interpolation in TS sinusoidal coder. Parameter extraction at analysis 

using, windows (top) and interpolation between parameter sets at synthesis (bottom) 

parameter sets at the decoder. In the figure (top) a extracted speech segment can 
fall under three analysis windows at the analysis stage. Interpolation between these 

segments at the decoder (bottom) can therefore affect up to 40 ms of speech which 

results in a smoothing of the speech waveform. This interpolation at the decoder is 

done to remove the steps between the 10 ms extracted parameter sets at analysis. 
Figure 4.5 shows a section of speech synthesised by the SB-LPC. The SB-LPC smooths 

the onset and the fine detail in the original speech has been lost. This smoothing is the 

result of the large analysis window used to extract the parameters and secondly, as the 

decoder interpolates between the parameters extracted at 10 ms intervals as shown in 

Figure 4.4. This is also illustrated in Figure 4.6 which shows a speech transition. The 

SB-LPC has failed to model the two cycles of speech starting at 640 samples which 
have noisy content in the original speech. 

Figure 4.7 compaxes the synthetic speech produced by a TS coder and the PS SB-LPC. 

Four areas of speech, namely onsets and offsets, are highlighted. Highlighted sections 
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Figure 4.5: A speech onset. Original speech (top) and synthetic speech produced by 

the SB-LPC (bottom). The dashed vertical lines indicate the TS analysis points [401 

Tin* In Samples 

Figure 4.6: A speech transition. Original speech (top) and synthetic speech produced 
by the SB-LPC (bottom). The dashed vertical lines indicate the TS analysis points. [40] 

a and d show two speech onsets. The PS speech is cleaxly closer to the original speech 

than the TS solution. At section b the small region of unvoiced speech is not reproduced 

in the TS coder as the analysis window used does not allow for small regions of speech 

to be accurately reproduced. 

Figure 4.8 highlights three speech transitions where the speech modeling of the PS SB- 

LPC is superior to that provided by a TS coder - the SB-LPC. In the TS coder at section 
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Figure 4.7: Compaxison of synthetic speech produced by the SB-LPC (middle) and 
PS SB-LPC (bottom) 

Time in Samples 

Figure 4.8: Comparison of synthetic speech produced by the SB-LPC (middle) and 
PS SB-LPC (bottom) 

a the speech transition is smeared and at sections b and c the cycles do not contain cycles 

with the correct voicing characteristics. The following section describes PS coding of 0 
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speech in more detail. Several PS coders discussed and a detailed description of the PS 

SB-LPC which forms the basis of this project is presented. 

4.3.2 Pitch Synchronous Multi Band Coder 

In [491 the Pitch Synchronous Multi Band (PSMB) coding of speech was presented. 

The PSMB coder uses an MBE speech model to generate a PCW that is coded and 

transmitted as a representation of a speech frame. The MBE model is used to generate 

the PCW at the encoder, the PCW is then synthesised and replicated to produce a 

frame of synthetic speech. If the PCW is similar to the PCW from the previous frame 

it is encoded using a Length Converted Excitation (LCE) codebook and a stochastic 

codebook. A Band Limited Single Pulse excitation (BPSE) codebook and stochastic 

codebook are used if the PCW is different from the previous frame. An AbS procedure 

is used to determine whether the PCWs from different frames are related. The general 

structure of the PSMB encoder is presented in Figure 4.9. 

FFT I VIUV 
decision 

Voicing 

Frame of Bod 

speech Division 

Spectnn 
I -PCw-L 

Encoding Pitch V 
Detection estimation generation 

ý 

PCW 

PCW parameters 

Pitch 

Figure 4.9: Block diagrwn of the PSMB encoder 

The choice of excitation from one of the two codebooks and the entry from the stochastic 

codebook is then used at the decoder to excite a LPC filter producing frames of synthetic 

speech. 
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4.3.3 Waveform Interpolation Coding 

Waveform Interpolation (WI) coding was first introduced by [50], the first version was 

called Prototype Waveform Interpolation (PWI) coding. PWI encoded voiced segments 

only, unvoiced segments were coded with other schemes. PWI coding assumes that 

speech evolves slowly and instead PCWs are transmitted at regulax intervals and at 

the decoder the PCWs recovered through interpolation. In [51] PWI became WI coding 

which can code both voiced and unvoiced speech segments. WI coding separates the 

Characteristic Waveforms (CW) into a Slowly Evolving Waveforms (SEW) and Rapidly 

Evolving Waveform (REW). The SEW describes the periodic component of the speech 

signal, the REW describes the noise component of the speech signal. Since these 

two waveform types axe different perceptually they can be processed differently thus 

enhancing coding efficiency. 

LP analysis is carried out on the speech to produce the residual signal. Then the 

pitch is estimated and the residual is decomposed into a series of CWs. The CWs are 

subsequently aligned and normalised in power so that they can accurately represent a 
2-D surface describing the evolution of the waveforms. The quantiser carries out the 

SEW-REW decomposition and parameter quantisation, at the decoder the parameters 

are dequantised and the CWs axe reconstructed from the transmitted SEWs and REWs. 

The residual signal is then reconstructed from the CWs and passed to the synthesis 
filter where the speech is reconstructed. The general structure of a WI decoder is 

presented in Figure 4.10. 

4.3.4 Pitch Synchronous MELP 

In [52] a PS MELP coder was proposed, known as the I-MELP. This coder uses a 
improved sub frame based correlation method to estimate the pitch (PEA). The low 

pass filtered residual is used to find pitch boundaries. The normalised correlation based 

algorithm searches a range of pitch lags around the average pitch of the frame. When 

the estimated largest pitch lag correlation is found, the PEA is repeated on N times 

the up sampled signal around the integer lag estimate to find the cycle length in 11N 

sample resolution. N is set to 10 in the I-MELP. This procedure was found to improve 
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Figure 4.10: Block diagram of WI decoder 
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pitch determination accuracy especially for female speakers with smaller pitch lengths 

especially at onsets. 

4.4 Overview of Pitch Synchronous SB-LPC 

In the PS SB-LPC harmonic analysis is carried out on individual pitch cycle waveforms 
(PCWs) rather than using a large window. The PCWs axe segmented using an initial 

pitch detection algorithm (PDA) [34] and an algorithm that analyses the low pass fil- 

tered rectified speech residual energy as described in [531. Once the speech has been 

segmented, the PCW parameter information is estimated for each PCW. The paramet- 

ric information is quantised using a Joint quantisation Interpolation (JQI) scheme [54]. 

An overview of PS SB-LPC operation is given as Figure 4.11. 

The speech is segmented into separate PCWs by analysis of the cycle energies. The 

algorithm used to segment the speech produces jitter and size errors in the PCW lengths 

and therefore a smoothing algorithm at the analysis stage is used to prevent axtefacts 
being produced in the synthesised speech. 

Once the PCWs have been found, for each cycle of speech the following paxameters are 

extracted: 

9 Linear Prediction Filter Coefficients 
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Figure 4.11: Basic operation of the PS SB-LPC 

" Cycle size. 

" Voicing cut off frequency. 

" Spectral Amplitudes. 

" Cycle Energy. 

output 

The quantisation techniques employed aim to efficiently quantise the data whilst cap- 

turing the evolution of the parameters within the frame. No parameter smoothing is 

included in the decoder, any necessary interpolation is included in the quantisation rou- 

tines. The encoder passes parametric information for each pitch cycle to the quantiser, 

the decoder receives the parametric information for each pitch cycle and treats them 

as if they were directly from the analysis stage. At the decoder of the PS SB-LPC the 

dequantiser passes parameters one cycle at a time to the synthesiser. 

4.5 Detailed description of PS SB-LPC 

The following section describes work that has been previously carried out in the de- 

partment and is detailed in [40]. This research presented here forms the basis of the 

work carried out in the following chapters. 
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4.5.1 Pitch Cycle Detection 

The PS SB-LPC is reliant on a pitch cycle detection algorithm to segment the speech 
into PCWs. Incorrect identification of individual PCWs may result in either roughness 
in the synthesised speech or an abrupt change in pitch which causes artefacts in the 

sythesised speech. This section presents the method used and then describes a post 

processing algorithm that eliminates many of the effects of incorrect cycle detection. 

The method used to carry out the segmentation is known as the Trapezoidal Search, 

this operates on the modified low pass filtered LPC residual known here as Modified 

Time Envelope (MTE). 

LPC parameters axe extracted every 10ms using a 25 ms Hamming window. The 

residual is obtained by partly inverse filtering using LPC parameters interpolated at 4 

points within each 10 ms frame. In some speech areas where the vocal tract is highly 

resonant, the excitation signal (residual) does not always contain any excitation pulses 
to identify. Therefore a limited amount of LP inverse filtering using a pole-zero filter 

based on the LP coefficients was used. This removes some of the effect of the vocal 
tract but leaves enough energy so that in highly resonant areas a large enough signal 

exists to allow the peaks to be identified. The transfer function of this chirped LPC 

filter used is shown in (4.2) 

H(z) = 
A(z/a) (4.2) 
A(zlO) 

When a=1 and 3=0 the filter has the same effect as the LP analysis filter, in that 

it removes the majority of the frequency domain shaping. If a=1 and 3=I the filter 

has no effect. If a=0 and 0=1 the filter becomes an LP synthesis filter. In order to 

vaxy the amount of LP filtering a is set to 1 and, 8 is varied between 0.9 and 0.7. When 

the pitch value is below 30 samples the speech is more likely to be female and contain 
the highly resonant areas with little excitation. In such areas only a small amount of 
inverse filtering is required with a=1 and 0=0.9. Speech with a longer pitch value 

greater than 60 samples the value of # is set to 0.7. This gives a large amount of LP 

inverse filtering and gives a signal that is closer to the excitation signal than the speech 

signal. For pitch values between 30 to 60 samples the values of 0 are varied lineaxly. 
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This low pass filtered rectified residual is then used to calculate the MTE, sENC(n) 

SENC(n) = s(n) + 0.3s(n - To) + O. ls(n + To) (4.3) 

where s(n) is the low pass filtered rectified residual. To is the estimated pitch from the 

PDA. 

0 100 200 300 400 500 600 700 
Time in Samples 

Figure 4.12: Original Speech (top), LP Residual (middle) and MTE signal (bottom) 

This filtering raises any peaks that have periodicity of To and will increase the value 

of the troughs that do not have periodicity of To. This resultant signal is therefore 

periodic at the multiples of the estimated pitch period. sENC is then time shifted to 

align it with the original speech signal. The original speech, LP residual and resultant 
MTE signals are shown in Figure 4.12. 

Pitch cycles are then searched using a weighted cross correlation with a trapezoidal 

window of length T, where T is estimated pitch from PDA. The effect of the trape- 

zoidal window is to seaxch for troughs sepaxated by the estimated pitch value T. The 

correlation process begins at the end of the previously selected PCW. Circular cross 

correlations of the trapezoidal window and a segment of T samples of the MTE sig- 

nal is computed. The maximum weighted value of correlation identifies the PCW start 
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location. The signals used axe shown in Figure 4.13. The PCW identified by the Trape- 

m 

Figure 4.13: Týapezoidal shape (top), MTE (middle) and Original speech (bottom) 

zoidal Search contain large amounts of jitter in the cycle sample size. This is caused 
by the fact that the troughs of the MTE axe wide and the identified PCW boundaries 

may vary slightly. Therefore the boundaxy locations are moved slightly to remove the 

cycle size jitter. In order to remove the cycle size jitter, 0 in (4.4) is minimised 

NN 
(Pi+l - Pi) - (Pi - Pi-1) SENC (Pi) 

i9=a' (4.4) 

where pi is the location of the staxt of the ith PCW, N is the number of cycles in the 

frame and s,, (pi) is the value of the input signal at the position of the PCW boundary. 

V is minimised by allowing each boundary location pi to vary by two samples either 

side of its initial location. Therefore there are 5N+I possible combinations searched. 
The values of a and P were set experimentally to a=3 and 0=1. 

4.5.1.1 Cycle Size Post Processing 

The Trapezoidal Search routine correctly segments the speech in a high percentage 

of cases but occasional cycle detection errors occur which limit the synthetic speech 

quality. This is illustrated in Figure 4.14. At a speech transition the filtering operation 
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Figure 4.14: PCW sizes (top), Input speech (middle) and MTE (bottom). The dotted 

lines indicate pitch boundaries identified by Týapezoidal Seaxch 

has produced a uneven cycle leading to an incorrect vaxiation in PCW sizes. This 

causes an audible distortion in the synthesised speech. The method chosen to solve this 

problem is to ignore or expand the partial cycles during synthesis. During analysis, 

PCWs following a cycle detection error axe not modified. The erroneous cycle sizes 

are adjusted and the analysis size expanded to the adjusted cycle length. The partial 

cycles are expanded to the size of a complete cycle or discarded. 

Three rules were designed by identifying changes in pitch cycle lengths that are likely 

to be due to pitch cycle detection errors. Firstly single cycles that significantly laxger 

or smaller than the cycles either side of them axe smoothed. Si the size of cycle i is 

adjusted as follows (4.5): 

Si_l + Sj+j 
if 

I (Si > aSi+l and Si > aSi-1) (4.5) 
2 

or (Si > OSi+l and Si > PSi- 

I 

Values of a=1.1 and P=0.83 were found to give the best perceptual results. Secondly, 

smoothing cycle size errors in regions where the surrounding cycle sizes are constant or 
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smoothly evolving. Single cycles with sizes different to those axound them are adjusted 

as follows (4.6) - (4.7): 

(Si-1 > Si+1 and Si+1 = Si+, ) 

Si = 
Si-I + Si+-1 

if and 2 
(Si > Si-1 and Si > Si+, ) or (Si < Si-1 and Si < Si+1) 

(4.6) 

Si = Si-I YI Si-2 = Si-1 = Si+l or Si-I = Si+l = Si+2 (4.7) 

Thirdly a rule was added to remove jitter cycle sizes caused by non-integer pitch values. 
Cycles that are only one sample longer or shorter in length than their neighbouring 

cycles are adjusted as follows (4.8) - (4.9): 

(Si = Si-i +1 and Si >= Si+, ) 

3i = Si-i if or (4.8) 

A= Si-i -1 and Si < Si+, ) 

(Si = Sj+j +1 and Si >= Si-1) 

3i = Si+l if or (4.9) 

(Si = Sj+j -1 and Si < Si+l) 

I 

These cycle size smoothing routines in conjunction with cycle size jitter removal in 

(4.4) significantly reduce the number of speech axtefacts caused by pitch size errors. 
The next section details how the parametric information is taken from the identified 

cycle waveforms. 

4.5.2 Pitch Cycle Based Analysis 

This section describes the methods used to estimate the speech paxameters from indi- 

vidual pitch cycle waveforms. Methods are described which estimate the LP coefficients, 

speech energy, spectral amplitudes and voicing cutoff frequency. 
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4.5.2.1 LPC Analysis 

Many sinusoidal speech coders such as the SB-LPC extract LP speech parameters from 

fixed length portions of speech using the Autocorrelation Method (AM) [26]. The AM 

method is used as the estimated parameters are guaranteed to be stable. In addition 

the method can be implemented with a relatively simple algorithm. 

An alternative method for estimation of the optimum LP filter coefficients is the Covaxi- 

ance Method (CM) [261. Both of these techniques were described in Section 3.3. The 

AM method assumes that the signal is zero outside of the analysis period, to achieve 

this the signal is multiplied by a window that tapers to zero at each end. Therefore to 

obtain reliable LP coefficients the duration of the analysis period must be sufficiently 

long so that the tapering effect of the window has little influence. An analysis pe- 

riod of several pitch periods is needed to obtain reliable coefficients [26]. This is in 

contradiction with the aim of PS analysis. The CM is better suited to PS analysis 

as no assumption is made about the signal outside of the analysis region and the LP 

parameters can be computed directly from a PCW. 

In [401 a investigation into the optimum method of extraction of LP coefficients was 

carried out. It was found that for analysis periods equal or less than one pitch cycle 

the CM outperformed the AM. Both the autocorrelation and covariance method have 

been implemented in this project for the PS extraction of LP parameters. 

4.5.2.2 Energy 

The PS SB-LPC speech model requires that the energy of each PCW be extracted. 

The energy value is used during speech synthesis to restore the relative amplitudes of 

the speech. In the PS SB-LPC an individual energy value is calculated for each PCW 

Eci =I 
n<fi 

)2 
)1/2 

(4.10) 
A- si 

E (s(n) - 9(n) 
(n=si 

where Ei is the energy of the ith PCW which starts at location si and finishes at location 

fi within the speech signal s(n) which has a mean value of s(A). 
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4.5.2.3 Spectral Amplitudes 

In the SB-LPC and PS SB-LPC encoders the LP filter models a large proportion of 

the spectral characteristics of the speech. Spectral amplitudes are used to transmit the 

remaining spectral characteristics. PS estimation of the amplitudes is carried out by 
0 

taking the Discrete Fourier Transform (DFT) of a single PCW over its length N from 

15 to 150 samples. The DFT S(k) of PCW s(n) is given by 

N-1 N1 27rnk 27rnk 
S(k) s(n)eXp -27rnki/N s(n) cos(-) - jsin(- (4.11) 

ILd NN 
i=O i=O 

for k=0,1,2,.., N-1. Since s(n) is real, the amplitude of each harmonic Ak is calculated 

as IS (k) I and is given by 

Ak = IS(k)l = s(n)cos( 
27rnk 2+ N-1 

s(n)sin( 
27rnk ))2) 

1/2 
(4.12) 

NEN 
i=O 

( 

assuming s(n) is a PCW speech residual found by caxrying out LPC analysis as de- 

scribed in Section 3.3. 

4.5.2.4 Voicing 

The PS SB-LPC firstly uses hard decision techniques to classify the speech as voiced 

or unvoiced using the measurements introduced in Section 3.6. Then a time domain 

method based on peakiness is used to determine the correct cutoff frequency for indi- 

vidual pitch cycles which axe voiced. This method is applied as many of the standard 

metrics used for analysis in TS coders such as the SB-LPC are based on periodicity 

which require several cycles of speech, these cannot be used with great accuracy for 

voicing analysis of single cycles which is required here. 

4.5.2.5 Final Hard Decision Voicing Estimate 

The hard decision voicing estimate uses a majority voicing scheme to classify the PCW 

voicing status. The six measurements are used with the threshold values in Table 4.1 
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to classify each cycle as either 

9 Fully unvoiced 

* Partially or Fully Unvoiced 

* Uncertain 

Measurement Unvoiced threshold Voiced threshold 

zC > 0.36 < 0.14 
Pk < 1.0 > 1.4 

LFIFF < 0.51 >0.97 
ElEp 0 > 0.67 

RV < 0.3 > 0.9 

P. > 1.05 < 0.5 

Combined < 0.49 > 0.49 
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Table 4.1: Voiced and unvoiced threshold values used for the six voicing measures 
and the combined measure when making final hard decision 

If the number of measurements that classify a cycle as voiced is greater than the number 

as unvoiced, then it is voiced. The opposite case is also true. If all the measurements 

are indecisive then a decision is made from a combination of the values. To form the 

combined voicing measurement, each of the individual measurements are scaled so that 

the range between the threshold values is equal to one. The scaling is given by 0 

THL if x< THL 

x= THu if x> THU (4.13) 

(x - THL)I(THU - THL) otherwise 

where x is the value of the voicing measure, THL is the lower voicing threshold and 
THU is the upper. The values axe arranged such that values close to one indicate voiced 

speech and values close to zero indicated unvoiced. The arithmetic mean of these values 
is then used as the combined voicing measure. A threshold value of 0.49 was found to 
distinguish unvoiced from partially voiced speech. 
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4.5.2.6 Soft Decision Voicing 

Voiced speech residual energy is usually concentrated axound the glottal pulse resulting 
in higher peakiness values whereas unvoiced speech residual energy is spread, resulting 
in lower values. Using this information band-limited peakiness is used to determine 

the voicing cutoff frequency for those cycles declaxed as voiced by the haxd voicing 
decision. If the PCW is fully voiced with the continued addition of higher frequency 

levels the voiced harmonics should continually raise the peakiness value. When the 

PCW is mixed voiced, the voiced harmonics should raise the peakiness value whereas 

the unvoiced should not, indicating that when the peakiness value levels or falls off the 

highest voiced level has been found. 

Voicing in PCWs of the PS SB-LPC axe classified into one of seven levels ranging from 

0 to 4000 Hz, with the highest level indicating the voicing level cut off. The PCWs are 
band-limited in the spectral domain so each contains the frequency content of 

OHz to f (Vicut)Hz (4.14) 

The peakiness of each of the seven signals is then computed. The following is then 

repeated for each of the seven candidate voicing cut off frequencies. 

" The PCW LP residual is DFT transformed into the frequency domain. DFT 

length is equal to the length of the PCW. 

" Frequency content above the candidate voicing cut off frequency f (Vicut) is set 

to zero. 

" The band-limited signal is inverse transformed by a IDFT back to the time do- 

main. 

" The peakiness of the band-limited LP residual is measured. 

The voicing cutoff frequency is determined by analysing the change in the band-limited 

peakiness values. Figure 4.15 shows a section of speech that is partially voiced. The 

band-limited peakiness falls from level five onwards indicating that frequency content 

above this is unvoiced. 



4.5. Detailed description of PS SB-LPC 66 

10 20 30 
Time in Samples 

M 

ii 

M 

VQftin#CuUff: 7(0-40WHi) 
Vcýcint Cutoff 3 (0 - 2857 Hx) 
Voiclas Cutoff- 1 (0-570 Hz) 

ý 

vvý 

2345670 10 20 30 
Voicing Cutoff Level Time in Samples 

Figure 4.15: Peakiness calculation for mixed voiced speech, (a) PCW, (b) Bandlimited 

peakiness values and (c) Bandlimited LP residual PCW values, offset for clarity 

The voicing cut off frequency should be equal to the value that gives the highest peaki- 

ness measurement but it was found that the band-limited peakiness measurement itself 

sometimes varies slightly from cycle to cycle. To counteract this a small amount of 
historical bias was added. The peakiness value for the cut off level selected as the 

previous PCW voicing level is multiplied by a factor of 1+ F- A value of f of 0.07 was 
found experimentally to remove rapid chancres in the voicing level. This is discussed 4D 
further in Section 5.3.2. 

4.5.3 Quantisation 

To implement the speech coder into a communications network the speech parameter 
data must be quantised. Unlike TS sinusoidal coders the PS SB-LPC does not extract 

parameters at a fixed rate but does so according to the pitch lengths of the speech 

signal. Direct quantisation of the PS parameter sets would therefore lead to a coder 

with a source rate that would vary according to these pitch values. The majority of 

communication systems use fixed rate coders therefore quantisation techniques were 
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used to allow the PS sinusoidal, data to be quantised at a fixed rate. 

4.5.3.1 Pitch and Voicing Quantisation 

For a frame containing only voiced cycles, the first and last PCW sizes are jointly 

quantised using a 8-bit vector quantiser. Using the dequantised boundary PCW sizes 

and a 2-bit shape codebook all four possible sequences of PCW size are searched. The 

shape codebook is a four entry vector table containing interpolation factors. One entry 

is for linear interpolation and three entries for stepped interpolation. 

For unvoiced frames the two PCWs are set to the same length and the length is quan- 

tised using a 8-bit linear quantiser. Smoothing causes the encoder and decoder to lose 

synchronisation, for this reason the unvoiced frames are adjusted. If the decoder is 

ahead of the encoder the unvoiced frame is reduced in length, the frame is extended if 

the encoder is running ahead of the decoder. 

For mixed voicing mode, the voicing levels of the voiced PCWs are quantised by av- 0 
eraging and quantising with a 3-bit scalax quantiser. The lengths of the voiced PCW 

are averaged and quantised using a 7-bit non-lineax quantiser. The three bits that axe 

used to quantise the PCW length interpolation factor in the voiced mode quantiser axe 

used here to quantise the unvoiced PCW size. 

4.5-3.2 Energy Quantisation 

Sets of PCW energies are quantised using a joint-quantisation interpolation scheme 

using 14-bits. The quantiser operates similarly to the PCW length quantiser in that 

two boundary values and a shape vector axe quantised. The energies of the first and 

last PCW in the frame are quantised. These boundary values axe quantised using a 8- 

bit logaxithmic joint quantiser with second order moving average prediction. The intra 

frame evolution of the energy is quantised using a 6-bit shape codebook. A separate 

codebook is used for each possible number of PCW per frame, no codebook is needed 

for frames containing two PCWs. The codebooks were trained using the LBG algorithm 

detailed in Section 3.7.2. 
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4.5.3.3 LSF Quantisation 

68 

The LSFs in the PS-SBLPC are quantised using a Joint Linear Interpolation Quantiser 

as described in [54]. An optimum interpolation function is selected to describe the vaxi- 

ation of LSFs over the frame, secondly boundary sets of LSFs are selected to minimise 
the overall quantisation distortion. This non linear description is shown as Figure 4.16. 

The boundary vectors 11 and 12 and the interpolation function are selected so as to 

fimction 

PCW bou-ndaties 1 4 

0 so 160 
Time in samples 

Figure 4.16: Quantisation using non-lineax interpolation. 0 are the estimated param- 
eter values, x axe the quantised parameter values 

minimise the overall quantisation distortion. 

The quantised PS LSF values axe calculated by taking a weighting combination of the 

optimum boundary parameter sets. The kth set of quantised PS LSF Ykj is calculated as: 

Ykj = (1 - ak)lj-l + akijl (4.15) 

if the kth PCW falls within the first half of the frame, or: 

2 (4.16) Ykj + AV 

if the kth PCW falls within the second half of the frame. is the dequantised optimum 

set of j LSF from the previous frame. iJ, and P2 are the dequantised optimum sets 
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from the current frame. a and 3 vaxy lineaxly from zero to one during, the two halves 0 
of the frame. The restriction of the values of a and 8 limits the paxameter variation to 

linear. 

To allow the PS LSF parameters to vary freely within a frame, the JQI defines the PS 

parameters as a weighted combination of X., and -J2 and three weights -y, a and 3. the 

synthesised PS LSF paxameters are then calculated as: 

Yj 'YOLl + Cekijl + AV2 (4.17) 

In order to restrict the range of quantised PS LSF the values of the shape function 

(represented by the weightings -y, a and 3) axe restrained such that -y +a+ 0 
Hence -y =1-a-0. therefore the synthesised PS LSF parameters are calculated as: 

Ykj ak - i3k)-ýLj + Ctk-Vi + AIJ2 

This is then used to find the total quantisation error E, between the K sets of quantised 
LSF parameters Yj and the original estimated parameter sets A3k. This error can be 

calculated as: K-1 P-1 

E 
(E(, 

\! j)2) (4.19) Ek- Yk 

k=O j=O 

The total quantisation error E can be minimised with respect to ak and Ok by taking 

OE119Cfk =0 and (9EI00k =0 and solving for Cfk and 6k. As a result the optimum 

shape vectors Ok and Ok axe calculated to minimise the total quantisation error given 

xýj and x3l and x32. xi 1 is calculated for the previous frame and is fixed. 

Once OPtiMUM ak and flk have been calculated, the quantisation error E is then min- 
imised in terms of the edge parameters x, and x32. By defining the overall individual 

error on LSF j as: 
K-1 (, j) 

K-1 2 

Ej= Ek- 
((l 

- ak - 001ý1 + akil + Olci2 (4.20) X1 - Y' 1: 
k 

k=O k=O 

and minimising with respect to each set of LSF by setting MilaxI, 0 and aEjlax, 2 
0 and solving for x7l and x2 [54], results in a optimum sets of LSF x3l and x22 (the edge 
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vectors) given a fixed shape vector (ak and )3k) - An iterative calculation of 2: 31, ak 

and 3k is therefore used to obtain a near optimum solution. This iterative calculation 

of the edge and shape vectors is summarised in the flow chaxt of Figure 4.17. 
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Figure 4.17: Iterative parameter calculation of LSF quantisation edge vectors xj and 

X2 and shape vectors, ak (alphak) and Ok (betak) 

The JQI scheme therefore requires the quantisation of two sets of LSF paxameters 
(edge vectors) and two shape vectors of length K. The two sets of LSF parameters axe 

quantised using a 30-bit MSVQ. The shape vectors axe jointly quantised as a single 

vector of length 2K using the LBG algorithm with a codebook size of 6 bits. The shape 0 
vector is quantised using a separate vector codebook for each of the possible values of 
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K. Nine codebooks are required for values of K from 3 to 11. 

4.5.3.4 Spectral Amplitude Quantisation 

When quantising spectral amplitude information the number of amplitudes to be quan- 

tised is dependent upon the pitch length P of the pitch cycle. The number of amplitudes 
N present is given by 

px0.4625 
P (4.21) 

f. 

where f. is the sampling frequency of 8000 Hz and f. is the cut off frequency typically 

3700 Hz. 

The SB-LPC uses a amplitude peak picking algorithm to convert the vector to fixed 

length [34]. This process selects and quantise the perceptually important amplitudes. 
This algorithm was utilised in the PS SB-LPC in order to quantise the spectral ampli- 

tudes. This algorithm is described further in Section 7.3.1. 

Peak picking will pick amplitudes from different axeas of the speech spectrum during 

different pitch cycle waveforms; during the frame. If the frequency of the pitch cycles is 

varying over the frame the shape vector would be attempting to model the amplitudes 

of different frequencies during different sections of the frame. Rather than using the 

respective LP spectrum for each PCW contained in a frame, amplitudes axe selected 

using one LP spectrum per frame. The spectral amplitudes are selected from the LSF 

parameters found over a frame from 

K-1 
E Wkf7kj (4.22) 
k=O 

xi is the j'4 LSF. ^ý is the j4 quantised LSF from the kth Yýl PCW- Wk is the weighting 

of the kth PCW. The weighting function is defined as 0 

'5- 
w(k) = v/ek (4.23) 

K-1 
F, v re7i' 
i=O 
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where 6k is the quantised energy from the k th pitch cycle. This single set of LSF values 

is found for all PCW contained within the frame and then peak picking is performed 
for each PCW. If the PCW has less than fourteen harmonics all of them are selected. 
If not then the first two amplitudes axe selected as LP modeling can be poor at lower 

frequencies. Next three amplitudes are selected around the four largest peaks in the 

LP spectrum for the frame. This results in fourteen spectral amplitudes being selected 
for each PCW. The peak picking algorithm was implemented in the PS SB-LPC. For 

each frame two sets of spectral amplitudes were quantised using JQI as described in the 

LSF quantiser. The 14 edge element amplitudes were jointly quantised using a 24-bit 

3 stage MSVQ. In addition to the two edge vectors an an optimum shape vector was 

calculated. This shape vector was quantised using a 6-bit vector quantiser trained with 

the LBG algorithm. 

4.5.4 Coder Evaluation 

This results in a PS sinusoidal coder operating at 4.8 kbps. This coder segments 

the speech into constituent pitch cycles and then carries out paxameter analysis on 

these cycles. The pitch cycle information is quantised and transmitted to the decoder. 

Because of errors in the pitch cycle detection and segmentation process the analysed 

cycle sizes have to be altered so pitch size artefacts are removed from the speech coding 

process. 

Although this coder at certain sections clearly improves over the TS method as shown 

in Figures 4.7 and 4.8 when evaluated in its unquantised mode over several seconds 

of speech, artefacts were present that degraded the synthetic speech quality. This 

was believed to be mainly caused by errors in the analysis process namely pitch cycle 
detection, pitch cycle size smoothing and voicing estimation algorithms. 

When the speech information was quantised there was further distortion, this was 
believed to be caused by the spectral amplitude quantisation method of Section 4.5.3.4. 

Also the artefacts present from the analysis process were boosted by the quantisation 

which further degraded the synthetic speech quality. 
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The background to sinusoidal speech coding and current sinusoidal speech coders has 

been discussed. The motivations behind PS coding of speech has been demonstrated 

and several PS low bit rate speech coders have been introduced. The PS SB-LPC which 
forms the basis of this project has been described in detail. This coder produced high 

quality synthetic speech at most speech sections however it was not robust to all input 

speech categories and consequently perceptually displeasing artefacts were present in 

the synthetic speech which limited the final speech quality. The next chapter will detail 

the investigation and possible solutions found to improve this coder. 0 



Chapter 5 

Classifier Based Voicing 

5.1 Introduction 

The PS SB-LPC was introduced in chapter 4, this coder can produce high quality 

synthetic unquantised speech, however occasional axtefacts are produced which limit 

the speech quality. It is believed that these problems axe mainly caused by deficiencies 

in the pitch and voicing analysis algorithms. These algorithms utilise a number of 
heuristic measures to improve their performance. It is considered that these measures 

cannot accommodate all speech inputs thus causing a degradation in algorithm ability. 

The first section of this chapter describes the actions taken to find and eliminate these 

artefacts in order to raise the quality of the synthetic speech produced by the PS SB- 

LPC. The second section and greater part of this chapter is concerned with the design 

of a voicing classifier intended to improve voicing decisions in the PS SB-LPC. Both 

of these paxts utillse a graphical user interface (GUI) based tool called the Bit Stream 

Editor (BSE). This tool allows the user to manually set and save to file analysis values 

at the encoder of the PS SB-LPC and evaluate their effect upon the decoded speech. 

5.2 Bit Stream Editor 

The Bit Stream Editor has been developed with the Tcl and Tk programming languages 

and is based on Snack Toolkit [55] and previous work on the SB-LPC [56]. Tcl is a 
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scripting language and is used extensively in GUI and embedded applications, Tk is 
C, 0 

an open source library of basic elements for building a GUI: the combination of Tcl 
0 

and Tk GUI toolkit is known as T(! I/Tk. Snack is a Tcl based too] which also allows 

executables to be called in the C programming language. Snack has functions for basic 

sound 11,11)(11ing such as playback, recording, file and socket 1/0. It has calkible functions 

which allows users to open a input speech file, for example in several audio formats, 

from disk storage an(] then view and listen to the speech file. A summary of how Snack 

and T(-]/Tk elements slot into the BSE prograinining environment is shown in Figure 

5.1. 

Sound Playback, Frequcncy 
Analysis 

Snack Sound 
Toolkit 

(iraphical User Interface. 
Drawing 

TK 8.4 

Bit Steam Editor 

TCL 8.4 
(Tool Command Language) 

Figure 5.1: Bit Stream Editor programming environment 

A screen shot of the BSE is shown as Figure 5.2. The user options at the far left 

are basic functions for dealing with the waveforin signal such as open, copy, save and 

zooin, etc. The call encoder button executes the encoder with initial pitch positions 

and voicing levels. Functions have been added to Snack so that these values can be 

loialed onto the screeii and edited manually with electronic inouse operation. The PS 

Encoder mo(I an(] PS Decoder mod buttons re-encode and decode with these niamially 

edited pitch and voicing files, producing the output speech shown at the bottain of the 

plot. A playback toolbar is built into the BSE for the playback of input/output speech. 

The general structure of the BSE operation is shown as Figure 5.3. 
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Figure 5.2: Screenshot of BSE 
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It is believed that flic 1110st, likely cause of the artefacts that hinit the (juality of synthetic 

speech produced by the PS SB-LPC are [40]: 

" Pitch cycle detection - occasional errors in t lie pitch cycle detection process results 

in incorrect pitch sizes being analysed producing pops and roughness in the voiced 0 C, 
sYnthetic speech. This requires post-processing to be carried out a. s described in 

Section 4.5.1.1. However these post-processing routines do not eliminate all pitch 

cycle size errors. 

" Voicing est iniator - the voicing est iniator is believed to incorrect ly select, a voicing 

level which corresponds to a frequency level higher than should be expected for 

the speech waveforin at certain sections. This results in synthetic speech that 

does not have the sailic perceptual quality as the original. 

The BSE (! an be used to determine the if pitch and voicing estimation errors 



5.3. , Utilisation of Bit Stream Editor 77 

Figure 5.3: General structure of BSE operation 
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are definitely causing the majority of errors heaxd in the synthetic speech. The 

aim therefore is to use the BSE to manually set the pitch and voicing values on 

the screen of the interface through mouse operation. This allows the maximum 

speech quality of the speech coder to be determined. The technique of interfacing 

a speech coder to a GUI analysis tool has not been presented in any relevant 

literature as fax as the author is aware. This technique is an efficient and modern 

approach to improving speech coder performance. Its operation is summaxised in 

flow chart form as Figure 5.4 and is described in Sections 5.3.1 and 5.3.2. 

Open speech rile 

Use existing I 
algorithm 

Execute 
Coder Alterpitch 

II. 

tic pto-li ons it, 

distortion ! ýyes 

no 

Execute 
Iter voicing 

F 

levels 

no 

Pitch/Voicing 
errors eliminated 

yes 

Figure 5.4: Process of removing speech artefacts in BSE 

5.3.1 Pitch Cycle Position Editing 

All operations take place on 16 kHz PCM files from the NTT database [57] which 
have been down sampled to 8 kHz to allow for use in the PS SB-LPC. The PS SB- 

LPC encoder is executed without any smoothing algorithm in place and the pitch 
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cycle sizes written to a text file. These pitch cycle positions can then be plotted onto 

the BSE window, adjusted and then the encoder/decoder executed with these new 

positions and the decoded speech evaluated perceptually on the BSE. The Modified 

file 

Encode 
Decode 

isplay data 
to screen 

Zoom to 
Decoded 
eech section 

position 

, -Need: -ý,, no I Move to next 
-<Correction section of 
Y. 

Move pitch 
position in 

window 

Save pitch 
file 

Encode/ 
Decode 

Display data 
to screen 

'End o 
no rile ? 

yes 

Close speech 
nle 

Figure 5.5: Flow chart of pitch cycle position editing 

Time Envelope (MTE) signal used by the Trapezoidal Seaxch can be viewed on the 

Editor as a guide to estimate PCW positions as it is time aligned to the encoded 

speech. Major modifications to Snack, the BSE and the PS SB-LPC were needed to 

achieve these goals. This operation is summarised in Figure 5.5. Figure 5.6 shows the 
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Speech an(I (d) decoded speech with artefact removed 
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occasional pitch cycle detection resulting in harmonic damage to the synthetic speech, 

this is perceptually displeasing and easily noticed by the listener. It can be seen at (a) 

and (b) that the pitch sizes variation is not smooth and a sharp change occurs which 
does not correspond to the input speech which is expected to have a regulax pitch 

variation at this point. 

Original Speech 

Modified Tien Envelope 

(b) 

Figure 5.8: Original speech (top), MTE (middle) and original speech residual (bot- 

tom) 

Using the BSE the pitch position was manually adjusted to correspond to the neigh- 
bouring cycles. This is illustrated in Figure 5.7 where the pitch cycle positions have 

been manually adjusted and the speech artefact removed. By listening to the output 

speech on the BSE and manually adjusting all the pitch positions which were causing 

pitch speech artefacts it was possible to remove almost all errors caused by incorrect 

pitch cycle positions. 

It was found on the BSE that at certain sections where there is little excitation and 

only resonance from the vocal tract the MTE does not produce a signal with a cleax 0 
pitch structure. This is illustrated in Figure 5.8 at points (a) and (b), when the MTE 

is processed by the 'IYapezoidal Search routine irregular pitch sizes are produced to 

which post-processing smoothing is applied in the PS SB-LPC. 
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5.3.2 Voice Level Editing 

The operation of altering the voicing levels in the PS SB-LPC and then viewing/listening 
to the effect on the decoded speech is very similar to the operation of pitch position 

editing. This operation is surmised in Figure 5.9. The Snack toolkit upon which the 

BSE is based provides support for visualisation of speech in the frequency domain. 

This is illustrated in Figure 5.10, part (a) shows the voicing levels encoded by the PS 

SB-LPC, these voicing levels have been found from the input speech shown in (c). Part 

(d) shows the frequency spectrum of the input speech at point 1 in (c). By modifying 

the BSE the voicing levels in (a) can be manually adjusted through a simple mouse 

movement or in screen (d) in the frequency domain any changes to the voicing level 

made in (d) will be updated in (a). This gives great flexibility as the voicing levels can 
be set on the BSE both perceptually and in the frequency domain. Snack also allows 
different window types and Fourier Transform lengths to be used which can alter the 

views in the speech spectrum plot of Figure 5.10 (d). It was found using the BSE that 

the current existing voicing algorithm which has been described in Sections 4.5.2.4 and 

4.5.2.6 made excellent voiced/unvoiced decisions. However the soft decision voicing 
levels were generally set too high and at many sections the synthetic speech produced 

was over voiced and as a result perceptually sounded harsh. 

This over voicing is caused by vaxiations in the band-limited peakiness signal. Initially 

when each signal is band-limited the highest peakiness value from each of the seven 

cut off frequencies is chosen as the voicing level for that PCW. Figure 5.11 (right) 

shows three PCW of speech. These PCWs have very similar voicing parameters but 

the centre PCW is considered to be a voicing level calculation of seven from the voicing 
determination algorithm currently used by the PS SB-LPC. Figure 5.11 (left) shows 

the band-limited peakiness values for the three PCWs. 

From this figure the first and third PCWs have a maximum peakiness value at a level 

of two, however although the second PCW vaxies little over a cut off of two by using the 

maximum peakiness value the PCW is declared fully voiced. This change in voicing level 

is not due to the characteristics of the signal but is caused by the voicing calculation 
itself. Although this variation occurs infrequently to overcome these slight vaxiations 



5.3. Utilisation of Bit Stream Editor 

Open 5 eech 

Encode/ 
Decode speech 

Display data to 
screen 

Zoom to 
Decoded speech 

section 

tar IIg S11 rt vo c 41 
level editing 

Need no Move to ex nI 

orr"tio 
tion of see 

speech 
yes 

Modify in Modify In voicing 
frequen w orrectio lot window 

method 

View 
spectrum of 
nput speech Edit voicing 

I el 

Edit voicing level In 
frequency domain 

V 

Save 
voicing file 

Re-encodel 
decode 

Display data to 
screen 

yes Need yes 

orrectio 

no 

End of file 
no 

yes 

Close speech 
Me 

Figure 5.9: Flow chaxt of voice level editing 

83 



5.3. Utilisation of'Bit, Stream Editor 

F, D. CmOd PS Ernst ffiS 

x 

%1, pr, flrn SwUnhi Phhtih mOh 1W 

(1) (dl 

1 4' 1 46 1 47 11 49 1 Sý I 

Fr! 

c*, dnw: Hn,.. *. g - Fr! p&fltl: 517 

I lB I an R. q.: h on an,. cc. .. c.. n: on 

_I. _cI_ Mdh. aMckl. apaltffl. F. p.. t. 

rr. onv: Inc HZ. w. ZH.: Saß dl 1)1.. 

84 

Figure 5.10: Modification of voicing levels ill spectruill window (a) voicing levels 

ellcodc(l (b) pitch cYcle positions (c) input speech and (d) spectrum section of' input 

speech 

that can occur in the peakiness signal a sinall amount of historical bias was originally 

introduced. 

'I'll(, peakiness v; ilii(, for the ban(l clitoff sclected as the previous PC! W voic- 

in,, level is multiplied by a factor of 1 4- f. A value of E of 0.07 was found and set n 

experillient"Ill'y ill ý40]. If applied to the second PCW in Figure 5.11 (right) it will bias 

this PCXV to have a voicing level of 2. However this solution may remove problems 

caused by occasional irregular variations ill the band limited peakiness but it limits 

natural variation that, can occur in voicin. - of the speech signal at some sections. 

This is illustnited iii Figure 5.12 which shows the voicing levels set oil the BSE' knoxvii 

liere is reference voicing md those from the PS SB-LPC through the usual voicing t, 

estinultion '11"(within described iii SectIon 4.5.2.6. For this section of input speecli Ole n 
levels from Hie PS SB-Ll'(! match closely t, liosc of the ideal reference at, the start, of 

the speech wavefol-Iii, however towards the end of the waveforin the levels in the PS 

SB-LPC do not, fall t, o Olose of the reference. hispect, ion of flie hand-limit, ed peakiness 
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values deterinined that this was due to the addition of historical bias, E. 

As a result the synthetic speech produced at such sections sounds perceptually over 

synthetic and does not reflect the natural evolution of the speech waveform. In order 

to remove the heuristic tuning of the voicing levels which cannot accommodate every 

input situation we alm to improve upon the voicing level accuracy by using the man- 

ually tuned BSE reference voicing levels in a database and utilise vector quantisation 

techniques to make voicing level decisions. This will be discussed further in the next 

section. 

5.4 Voicing Estimation 

5.4.1 Introduction 

Standard sinusoidal coders such as MBE and MELP extract parameters at regulax 

intervals; parameter estimation is achieved using the speech waveform falling under an 

analysis window centered on an analysis point. This procedure assumes the speech 

to be stationary during the speech segment under analysis. However speech is non- 

stationary at transitional sections of speech such as onsets, offsets and plosives, which 

although they only account for a small percentage of speech they are very important 

perceptually. Therefore it can be considered that a disadvantage of TS coders such as 

MELP and MBE is that they smooth transitional sections of speech resulting in the 

loss of fine detail. 

PS coders such as the PS SB-LPC operate on a per cycle basis and therefore do not 

smooth transitional sections as they have a shorter analysis window which should result 

in superior performance over TS coders at such sections. Figure 5.13 demonstrates these 

differences when applied to the voicing classification of input speech. The TS coder will 

extract parameters at points 1 and 2, which may be incorrect in its classification (d) 

of the voicing content of the speech signal at points 3 and 4. At point 3 the segment 
is too short compared to the length of the window and at point 4 the TS method does 

not provide the necessary time accuracy at transitions. The PS classification (c) unlike 

the TS method should correctly classify the first and third speech segments as voiced. 
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Figure 5.13: Comparison of voicing classification in TS and PS coder a) Windows 

and analysis points in TS coder, b) Section of speech, c) PS classification and d) TS 

classification 

5.4.2 Classic Voicing Estimation Methods 

After speech is declared as unvoiced or voiced as described in Section 3.6 using a hard 

voicing decision, voiced speech is further classified to estimate its actual frequency 

content. To make this soft decision classic voicing methods such as those in the MBE 

and the SB-LPC typically rely on the comparison of 2 functions: 

9A voicing function computed in the speech spectrum with a value per harmonic 

or frequency band 

*A threshold function computed as heuristic function of several speech parameters. 

The voicing threshold is necessary as the performance of the voicing function is not 

sufficient [341. Several speech parameters axe used to give an indication of voicing. 
The main concern with this method is how to generate a threshold function based on 

these parameters. The next section describes how this is carried out classical sinusoidal 

speech coders. 
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5.4.2.1 MBE Mixed Voicing 

In the MBE coder harmonic voicing is estimated by comparing the error of a synthetic 

voiced spectrum ý(m, w,, ) with respect to the speech spectrum S(M) and comparing 
it against a threshold function for each harmonic band. Using ý(m, w,, ) a voicing 

measure is computed for each band on which the voicing decision is made. These 

bands do not have to be single harmonic bands, they can cover a number of harmonic 

bands. The MBE splits the spectrum in groups of three harmonics and performs the 

voicing decisions on these groups. 
bk 
E 

Dk = 
m--ak 

bk 

E IS(tn)ll 
m=aA, 

(5.1) 

where wo is the selected fundamental frequency and ak and bk are the lower and upper 

boundaries of the decision bands. Each band is declared voiced if its voicing ineasure is 

above the threshold function, unvoiced otherwise. The threshold is defined as Ak(WO) 

Ak(WO) =(a +, 6wo)[1.0- e(k- 1)wo]M(EO, E.,,, E,,, i,,, E,,,.., ý) (5.2) 

where a=0.35,0 = 0.557 and is = 0.4775 are the factors that give good subjective 

quality and 

0.5; E,, < 200 

M(E, E,, vjEmin)Emax) 
(Eo + Emin) (2Eo + Emaý, ) 

; Ea, ý! 200 and Emin < AEmax (EO + IlEmax)(Eo + Emax) 

1 . 0; otherwise 
(5.3) 

is the adaption factor that controls the decision threshold for voicing decisions. A 

favourable value for p is 0.0075. Parameter Eo is the energy of the current frame 

and the parameters E,,,, E,,,, and E,,, i,, correspond to the local average energy, the 

local maximum energy and the local minimum energy respectively. These three speech 

parameters are updated every frame according to [46). 

IS(m) - ý(M, wo) l' 
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5.4.2.2 MELP Mixed Voicing 

The voicing decision in MELP is performed using time domain techniques on bandpass 

filtered versions of the original speech. The original speech is separated into 5-sub 

bands using 6th order Butterworth filter, with pass-bands of 0-500,500-1000,1000- 

2000,2000-3000, and 3000-4000 Hz [441. 

The normalised correlation is then computed at the pitch value P for the first band 

as well as the range P-5, P+5. The maximum of these correlations is then used as 

the bandpass voicing strength for the first band and the corresponding lag is saved 
for use in the computation of the bandpass voicing for the remaining bands. The 

bandpass voicing strength for the other bands is computed again using the normalised 

autocorrelation at the lag chosen for the first band on the bandpass filtered signal, and 

also on the time envelope of that signal. The maximum of these two correlations is 

then taken as the bandpass voicing strength of the considered band. 

These bandpass voicing strengths Vbpi with i equal to 1 ...... 5 are then biased using the 

peakiness of the signal. If the signal is very peaky (Pk > 1.6), Vbpi for i=1,2,3 are 
forced to 1. If it is moderately peaky (Pk- > 1.34), Vbpl is forced to 1.0. Finally the 

voicing decision for each band is made using Vbp,: 

" If Vbpl < 0.6 all bands are declared unvoiced 

" If Vbpl > 0.6, the first band is declared as voiced and each band i is set to voiced 
if Vbpi > 0.6, unvoiced otherwise 

"A voicing pattern of the five bands of 10001 is not allowed and is replaced by 

10000 where 0 indicates unvoiced and 1 voiced. 

The voicing decision itself makes use of two parameters; the normalised autocorrela- 

tion and the peakiness of the signal. This voicing decision is shown as Figure 5.14. 

Although providing good voicing indication, there are cases when both these parame- 

ters fail therefore more parameters are needed for reliable voicing determination. 
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Figure 5.14: Voicing classification technique in MELP coder 

5.4.2.3 SB-LPC Mixed Voicing 

90 

Coders such as the MBE use a voicing decision for each harmonic or group of harmonics 

(typically 2 or 3), the SB-LPC coder assumes all bands to be voiced from DC to a certain 

cutoff frequency and unvoiced above this cutoff frequency. This has the advantage of 

requiring only a small number of bits to represent the cutoff frequency, 3 bits usually 

being sufficient. This represents a large saving over the MBE approach which requires 

up to 12 bits. 

The cutoff frequency decision is made by considering the voicing likelihood for each 
individual harmonic. A voiced band should have a spectral shape similar to the spectral 

shape of the window used, prior to Fourier Transformation. Unvoiced bands will be 

random in nature. The voicing likelihood of each band is measured as the normalised 

correlation between the considered haxmonic band and the spectral shape of the window 

positioned on the haxmonic location. The voicing likelihood V(I) for the Ith harmonic 
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is given by 
S(M)W(21-'M - IWO) 

N 
'17fl, -II V(l) = 

bl 
2 

bt 
Lwl(-g, rm-lwo). > Sý, (M) 
al al 

(5.4) 

where S is the Fourier Transform of the speech and W of the analysis window. The 

value of V(I) is between 0.0 and 1.0 respectively corresponding to fully unvoiced and 

unvoiced cases. This value is then compared to a threshold function T(I) for each 
individual harmonic. This threshold calculation is the most important stage during 

Split Band voicing estimation [341. 

The value of T(I) is determined by taking several factors into account. Firstly the 

lower harmonics are more likely to be voiced so the threshold value is lower for the 

lower harmonics. Secondly a harmonic is more likely to be unvoiced if unvoiced in the 

previous frame, so the threshold is raised for harmonics that were previously unvoiced. 
Thirdly the harmonics are more likely to be voiced if the hard decision voicing metric 

indicated a voiced signal, therefore the threshold is lowered. 

The voicing threshold is biased by using a range of voicing parameters as described 

in Section 3.6 such as zero crossing and autocorrelation. Thresholds are set for each 

of these parameters and if triggered the voicing threshold function is biased towards 

voiced or unvoiced. The pitch value is also used to bias the voicing threshold function. 

An example of voicing likelihood and threshold function is given in Figure 5.15. 

Using a limited number of speech characteristics for the threshold computation does not 
lead to good voicing determination. In the MBE energy alone is not a reliable enough 

voicing indication as there can be high energy unvoiced speech sections. In MELP the 

peakiness factor is not entirely reliable, single peaks can lead to high peakiness, likewise 

for autocorrelation; in the case of pitch variations, normalised autocorrelation may be 

quite low when the speech is voiced. 

By increasing the number of parameters and other speech chaxacteristics, the SB-LPC 

improves upon these two coders when it comes to finding a suitable threshold function. 

However even in the SB-LPC, this threshold function has to be tuned, through trial 

and error of several speech parameters which can be difficult and unreliable as every 
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Figure 5.15: Original Speech spectrum with voicing likelihood, threshold function 

and cutoff frequency [341 

new filtering/noise condition calls for retraining. Given that the voicing has a large 

impact on speech quality we aim to apply a systematic approach to overcome these 

disadvantages. 

This approach uses the BSE to generate reference hand marked voicing files for a speech 

database. This database of speech information can be utilised: 

"A classifier is trained using these and a number of selected speech paxameters 

" Vector Quantisation techniques axe used to cluster speech parameters and asso- 

ciate each cluster with a threshold function. 

" Generate a threshold function computed as giving best classification in the cluster 

according to the training database. 

The PS SB-LPC encoder stores a list of clusters and a voicing threshold function 

for each cluster. It compares speech parameters for current cycle to stored clusters 

and chooses a threshold function associated with best matching cluster. 

This technique should be easy to adapt for use in various filtering/noise conditions. As 



5.4. Voicing Estimation 93 

an example if this approach was carried out and implemented in the MELP, the result 

may be as shown as Figure 5.16, this can be compared to the original MELP approach 

previously shown in Figure 5.14. 

Voiced - 
below 500 IIZ/ Voiced 

Unvoiced \ Voiced below 
1000 Ilz Voiced below 

2000 fIz 

Unvoiced Voiced below 1 
1500 Hz 

Autocorrelafion 

Figure 5.16: Proposed classification technique if applied to MELP voicing 

The next section will describe this method in detail where we employ a Codebook 

classifier technique; during normal PS SB-LPC operation, if the PCW is declared as 

voiced the peakiness values at each frequency cutoff level axe used by the classifier, 

which has been trained to give the best voicing decision. 

5.4.3 PS SB-LPC Voicing Classifier 

Using the BSE, for each PCW several speech parameters are stored along with their 

corresponding reference voicing decision from the manually tuned results and the cor- 

responding peakiness values at each frequency cutoff - this vector is known here as the 

voicing vector. These voicing vectors therefore contain the voicing information for each 
PCW, PCWs which have similar speech parameters usually have a similar evolution of 

peakiness over the seven cutoff frequencies. 

Vector quantisation techniques are used to determine which of the N1 cycles over the 
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range of the training database are the closest. Over the length of the training database, 

9300 cycles, the N1 closest PCW in terms of the speech parameters are grouped together 

by finding the minimum distortion between the current test vector and all vectors in 

the codebook 

Nl LI 

(ki, k21 
.... 

kNl) = argmin E 
(E(X(i) 

_ Ck, j(i))2. IV(i) (5.5) 
j=l i=o 

where W is the training weights applied to the speech parameters, the number of 

weights used is given by L here a value of 9, these are defined in Table 5.1. X is the 

current test vector and C are the vectors in the database. 

Number Speech Parameters Weight 

1 Energy to Peak Energy Ratio 1.5 

2 Peakiness 1.6 

3 Correlation 1.4 

4 Zero Crossing Ratio 1.5 

5 Low Band to Full Band Energy Ratio 1.5 

6 Pre-Emphasis Energy Ratio 1.5 

7 Previous Voicing 3 

8 P, 2.1 

9 Pmax - Pmin 2 

Table 5.1: Weights used in training procedure 

In Table 5.1 PI is the Peakiness value at the cutoff level of one and P,,,. x and P .. j,, 

are the maximum and minimum peakiness values of the seven cut off levels of each 

pitch cycle. The remaining weights are those parameters described in Section 3.6. 

The previous voicing value was normalised by its maximum size of 7 to ensure it had 

similar values to the other weights. These weighting values were found empirically after 

extensive trial and error. 

Once N1 closest vectors have been found from (5.5) a set of thresholds for the N1 

must be found which when input to a algorithm will produce the closest match to the 
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reference voicing. The first step is to determine a good value for NI. This illustrated 

in Figure 5.17 which shows the band-limited peakiness and reference voicing (manual 

voicing) for a PCW. 

2.0 

rA 

P4 

bandlimited pcakiness 
threshold function I 
threshold function 2 

0---0 threshold function 3 
--- reference voicing 

Figure 5.17: Bandlimited. peakiness, reference voicing and threshold functions 

Also shown are some suggested threshold functions. The aim here is to find a threshold 

function which will produce a voicing level of 5- the reference level. In this example 

threshold function one maybe set too low but threshold functions two and three may 
both be suitable, many more threshold functions will be suitable also over the number 

of combinations. As there can therefore, be considerable variation between suitable 

threshold functions for each of the voicing vectors, N1 voicing vectors were used to 

generate the one threshold function. It was determined experimentally that Nl equal 

to 25 was a good value to use. 

A step size J is found from (P,,,,,,, -P.. i,, )/7 of the N1 vectors. The value of the band- 

limited peakiness at each of the seven cutoff frequencies P(I) is then compared to a 

threshold function which corresponds to the current threshold at that cutoff frequency. 

Over every iteration of 5 the value of i which produces the greatest value of matching 
function M is considered to be the calculated voicing. This matching function M(i) is 

34567 
Voicing cutoff levcl 
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given by: 
7 

M(i) = E(P(I) 
- T(l))ViB(t) (5.6) 

1=1 
For any given voicing level i individual voicing decisions Vi(l) will have +1 (i. e. voiced) 

up to the cut off f, (i) and -1 for the higher values (i. e. unvoiced). The matching 
function is computed at each iteration for every possible voicing step i. For any given 
i, each voicing level computed correctly i. e. the product (PQ) - TQ))Vj(I) is positive, 

will contribute to the total sum M(i) proportionally to the difference between the 

band-limited peakiness value at P(I) and the threshold T(I). Each incorrect voicing 
level will decrease the total sum. The weighting B(1) is usually set to 1.0 when unvoiced 
(T(I) > P(I)) and higher for voiced, as it is more important perceptually to get the 

higher voiced levels correctly set. 

The matching function M from (5.6) returns one of the voicing levels (1 - 7), this 

calculated voicing known here as V,. I, for each threshold iteration is compared to the 

reference voicing V,, f (set in the BSE of Section 5.3.2) for each of the N1 vectors. A 

score V. .. is found over all N1 vectors using 

Nl-l 
E Mq W-V. ic(i))' (5.7) 
i=O 

The lowest value of V,,, e corresponds to the best thresholds for these N1 vectors as it 

indicates that the calculated voicing is closest to the reference voicing for each of the 

NI. The parameters associated with these N1 vectors and their associated thresholds 

at each of the seven cut off frequencies are then written to a training database. During 

normal operation of the PS SB-LPC encoder for each PCW the closest N2 vectors 
in the training database, N2 equal to 25, are found using the same weights as in the 

training procedure. The associated thresholds values are then averaged at each cutoff 
frequency and input into (5.6) to determine the voicing level for that PCW. 

We compared the results from the PS SB-LPC classifier method to those employed by 

the 2.4 kbps MELP method of Section 5.4.2.2 at a8 kHz sampling rate. The MELP 

coder makes a voicing decision for each 200 sample frame of speech at the encoder 

and then interpolates voicing across the decoded frame. The speech files used were 
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Figure 5.18: Voicing levels in the MELP and PS SB-LPC against reference voicing 

not included in the training database. A comparison of the manually set voicing on 

the BSE (reference) is shown against the PS SB-LPC classifier and MELP voicing in 

Figure 5.18. 

As shown in the figure at the waveform onset and offset where the pitch cycles are 

changing more rapidly in the time domain, the superior time resolution of the PS SB- 

LPC more closely follows the reference voicing levels set in the frequency domain. In 

addition at the waveform centre where there are no PS issues the PS SB-LPC still gives 

a more accurate result. It was generally found that the classifier method returned a 

voicing level within one voicing level of the reference voicing. 

A comparison was made using cycle sample lengths of the encoded voiced (fully and 

mixed) and unvoiced decisions of each cycle (identified by Trapezoidal Search) of the 

two coders. The results are shown as Table 2.2 with silences excluded. The distinction 

between silence and non silence was based on an energy cutoff level of five. As can be 

seen the performances of the MELP and PS SB-LPC axe comparable when determining 

voiced but very different for unvoiced speech cycles. 

This primarily reflected the effect at onsets and offsets where a MELP speech frame 
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Coder Speaker Type v uv 

V 97.94 48.96 
Fl 

UV 2.06 51.04 

V 97.56 32.02 
mi 

UV 2.44 67.98 
MELP 

V 97.15 40.50 
F2 

UV 2.85 59.50 

V 96.70 3.80 
M2 

UV 2.75 61.57 

V 96.70 3.80 
Fl 

UV 3.30 96.20 

V 96.53 4.13 
mi 

UV 3.47 95.87 
PS SB-LPC 

V 96.98 3.87 
F2 

UV 3.32 96.13 

V 96.80 3.91 
M2 

UV 3.20 96.09 

98 

Table 5.2: Encoded voicing cycle comparison of MELP and PS SB-LPC against 

reference voicing. V/UV comparison is made on percentage of cycles according to 

sample length 

contained only one or a few voiced cycles and a large unvoiced component, consequently 

the MELP decision was to declare such a frame and therefore its constituent cycles as 

voiced. It is possible that the TS nature of the MELP coder may have forced the 

designers to bias the voicing decisions towards voiced as it is usually much better 

perceptually to declare a unvoiced cycle as voiced rather than to declare a voiced cycle 

as unvoiced. 

A good separation of voiced and unvoiced cycles of speech has been achieved. It may 
be possible to use such an algorithm in a speech activity detection system for end point 
detection. Endpoint detection is the detection of speech in non-speech events and 
background noise, it is important in automatic speech recognition (ASR) and speaker 
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verification (SV) environments. Many such systems use pitch detection, zero-crossing 

rate, autocorrelation and peakiness as part of the detection process. In [58] and [59] 

robust endpoint detection schemes were introduced for use in noisy environments, both 

of these methods made decisions on lOms frames of speech sampled at 8 kHz. Better 

results may be obtained if such systems were able to make decisions on cycles of speech 

rather than frames which may contain several cycles. 

5.5 Concluding Remarks 

In this chapter a novel GUI tool has further developed and utilised to determine the 

cause and effect of distortion in a PS sinusoidal speech coder. A novel technique for ac- 

curately measuring the voicing content of a speech signal has also been introduced. This 

has been achieved by the measurement of phase-spread information contained within 

individual pitch cycles. The experimental results show that the methods introduced 

compare favourably with a standard speech coder that operates time synchronously. 
These methods can be utilised not only by PS but also TS coders to make more accurate 

decisions on the voicing content of their speech frames. 



Chapter 6 

Pitch Cycle Detection 

6.1 Introduction 

In order to determine the pitch values contained within a frame of input speech, PS 

coders must segment the input speech into PCWs. Previously it has been shown that 

the PS SB-LPC uses an algorithm known as the Trapezoidal Search to carry out this C, 
task, however this results in pitch errors which subsequently have to be post processed. 

This Chapter will discuss alternative methods of pitch cycle detection and segmentation 

with the aim of minimising the number of pitch errors. 

6.2 Cycle Size Post Processing 

The Trapezoidal Search algorithm correctly segments input speech into PCWs the 

majority of the time but the effects of pitch size errors and jitter degrade the quality of 

the synthetic speech produced. These errors typically occur at speech sections where 

the input speech residual or consequently MTE does not contain a clear pitch structure, 

such as shown in Figure 6.1. Several pitch size glitches can be seen in the analysed cycle 

sizes which have to be smoothed by post-processing as discussed in Section 4.5.1.1. 

During analysis, PCW following a cycle detection error are not modified. The erroneous 

cycle sizes are adjusted and analysis size expanded to the adjusted cycle length. Three 

100 
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Figure 6.1: A section of male input speech (top), speech residual (middle) and Mod- 

ified Time Envelope with analysed cycle sizes from Trapezoidal Search (bottom) 

rules were developed to identify and rectify changes in pitch cycle errors that are likely 

to be caused by cycle detection errors; (1) Single cycles that are significantly larger 

or smaller than cycles either side of them, (2) cycle size errors in regions where the 

surrounding cycle sizes are constant or smoothly evolving and (3) cycles that are only 

one sample shorter or longer in length than their neighbouring cycles. These smoothing 

algorithms remove the great majority of the errors. 

It was considered therefore to improve these post processing routines so the remaining 

artefacts can be removed, however this was not possible for two reasons. Firstly, the 

smoothing algorithms themselves relied on values found experimentally which gave the 

best results overall. 

Si_l + Sj+j 
if 

I 
(Si > aSi+l and Si > aSi-1) 

2 
or (Si > OSi+l and Si > OSi- 

As an example consider (6.1) which was first introduced in Section 4.5.1.1 and is pre- 

sented here again for completeness. This equation fulfils (1) above where Si is the size 
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of the cycle to be adjusted. This equation relies on two experimentally found perceptual 

measures a=1.1 and 6=0.83. These perceptual measures cannot account for every 

input condition and so are not reliable over many speech cycles. Secondly, it is not 

always possible to rely on neighbouring cycle sizes as they too may have been found in 

error. 

Clearly to improve the pitch detection and segmentation processes, new techniques 

must be found. Some other methods which have been investigated and implemented 

will now be discussed. 

6.3 Combined Sinusoidal and Waveform Coding 

Multi-mode coders which combine a CELP based coder for transitional speech sections 

and a sinusoidal based coder for steady state sections were introduced in Section 2.3.3.1. 

It was considered therefore to use a CELP based system at speech sections where the 

PS SB-LPC is currently not of high enough quality and use the PS SB-LPC Iyape- 

zoidal Search for other speech sections where there are limited pitch detection errors. 
Figure 6.2 shows that at transitional speech sections (a) and (b) although in the input 

.I U----. 
A 

avu Ivw 15vu 2(W 2500 
Time in samples 

Figure 6.2: A section of female input speech (top), input speech residual (middle) 

and Modified Time Envelope (bottom). 
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speech there are clear pitch periods, due to the lack of clear excitation in the residual 

the MTE lacks a clear pitch structure. It could be considered therefore to switch to a 

CELP based model at these sections thus improving coder performance. 

The PS-SBLPC carries out smoothing of the pitch sizes for all sections of speech, in 

order to correct pitch detection errors and pitch size jitter. The encoder analyses the 

speech according to the smoothed sizes and passes the smoothed sizes to the decoder. 

However the encoder still segments the speech according to the non-smoothed sizes. 

This is illustrated in Figure 6.3 which shows that after three speech frames the decoder 

is seven samples away from the encoder. After the first frame the input and synthetic 

speech are aligned. Because of cycle size jitter in the second frame smoothing is em- 

ployed and the encoder and decoder become unsynchronised and at the start of the 

third frame are five samples apart. Further size jitter in the third frame requires more 

smoothing resulting in further loss of synchronisation. 

Locations in input speech buffer at encoder 
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Figure 6.3: Loss of synchronisation between encoder and decoder due to cycle size 

smoothing 

Integration of a CELP based model is a considerable challenge. Sinusoidal coders do 

not transmit phase information and time alignment between original and synthesised 
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speech is not present. AbS coders preserve waveform similarity and direct switching 
between these two types degrades speech quality due to phase misalignment [601 and 
[121. Considerable research has been carried out into solving this problem. The loss 

of synchronisation between encoder and decoder meant that it would be even more 

complex to integrate a CELP based system into the PS SB-LPC. In addition cycle size 

errors also occur at steady state speech sections as shown in Figure 6.1. Therefore 

other solutions were sought to remove the artefacts present in the synthesised speech 

of the PS SB-LPC, the next section describes these methods. 

6.4 Group Delay Method 

This method suggested by Yegnanarayana [611 identifies a significant instant of excita- 

tion within a frame of speech. The Group Delay based method is a populax method for 

determination of Glottal Closure Instant (GCI), it determines the instants of glottal 

closure in voiced speech by using the Group Delay function (GD). Firstly, consider a 

unit sample sequence with a delayr, taking the Fourier transform gives e-j". Hence 

the Fourier Transform Phase Function is given by O(w) =- wr. The negative derivative 

of the phase function, known as the group delay is -0'(w) = T. 

Thus the value of the slope of the phase is constant and is equal to the value of the unit 

sample delay in the time domain. If we place a unit impulse in an analysis window and 

the window is moved from left to the right, the value of the GD will linearly increase 

from left to right with respect to the position of the analysis window. Figure 6.4 shows 

that the average group delay is zero when the unit impulse is at the centre of a 40 

sample window. 

6.4.1 Algorithm Specifics 

Direct computation of the phase spectrum using the real and imaginary parts of the 

DFT of the signal results in phase values that are wrapped around the edge -7r and 

7r. Therefore in order to calculate the phase slope the phase spectrum must be first 

unwrapped. This can be complex and the accuracy of computation depends on the 
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Figure 6.4: Unit impulse (top) and its average GD (bottom) when 40 sample win- 
dowed and shifted on each value 

windowing of the signal. Oppenheim and Schafer [121 have shown that the GD function 

of a signal can be calculated directly from the windowed signal. If we take F(w) and 

N(w) as the Fourier Transforms of f (n) and nf (n) then the group delay is given by: 

r(W)2 + F, (W)2) 
,. (w)N, (w) + Fi(w)Ni(w»1(F, (6.2) Ol(w) =, r(w) = (F, 

where F, (w) and Fi(w) are the real and imaginary parts of F(w). 

The GD was evaluated on the LP residual as it shows more clearly the points of exci- 

tation than the original speech signal. It was found that the output of the GD had a 

considerable noise element which made the evaluation of zero crossing points difficult. 

The GD was therefore smoothed with a simple 23rd order lineax FIR filter with a pass- 

band edge frequency of 400 Hz; these values were found experimentally to produce the 

best output for both male and female speech. 

The GD output signal was then filtered with 15th order lineax FIR high pass filter with a 

passband edge frequency 50 Hz with isolated peaks removed by using a 3-point medium 
filter. Figure 6.5 shows a GD output for male voiced to voiced transition. Compared 
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Figure 6.5: Male voiced to voiced transition: Input Residual (top), Modified Time 
Envelope signal used by Trapezoidal Search (centre) and Output of GD (bottom) 

to the MTE signal which is used by the Trapezoidal Search at the centre of the figure, 

the GD signal is considerably smoother and would be less prone to processing errors. 

At points in the LP residual where little excitation was present the GD performance 
degraded. Therefore it was found that at such sections better performance could be 

found by using the MTE with a value of 3 of 0.8 from (4.2) from Section 4.5.1. The 

GD method was found to be very sensitive to both window size and shape. Regarding 

window shape, overall a Blackman window typically gave the best performance as this 

window did not significantly alter the phase characteristics of the signal but tapered 

the signal to zero at the ends. Regarding window size, typically due to the longer pitch 
lengths in male speech a window length of 160 samples gave the best results whilst for 

female a 80 sample pitch length was optimum. 

The GD method was also sensitive to speech sections where the pitch frequency was 

changing relatively rapidly such as onsets and voiced to voiced transitions. Although a 
Hann window with its better frequency resolution than the Blackman partially solved 
this, there was still problems in these areas using GD method. Figure 6.6 demonstrates 

the uneven variation in pitch sizes found at zero crossing points. 



6.5. Closed Loop Pitch Cycle Detection 107 

30 

-10 

20 

10 

0 500 1000 1500 2000 2500 
Time in Samples 

Figure 6.6: Female MTE (top), analysed pitch sizes (centre) found from GD output 
(bottom) with zero crossing line (dashed) Blackman window was used. 

Although the GD method did offer some improvements over the current Trapezoidal 

Search routine such as shown in Figure 6.5 overall it lacked the required robustness 
to be used in the required application. Therefore another method to determine the 

optimum pitch values had to be found. 

6.5 Closed Loop Pitch Cycle Detection 

Closed loop matching methods are essentially used in hybrid coders which utilise an 
Analysis by Synthesis process (AbS) [62]. In the analysis stage speech is represented by 

a compact set of parameters which are encoded efficiently. In the synthesis stage these 

parameters axe decoded and used in conjunction with a reconstruction mechanism to 

form speech. By closed loop analysis the parameters are extracted and encoded by 

minimising a measure difference between the original and reconstructed speech. 

Although this method is of high complexity modern AbS coders such as CELP, which 

extracts from a codebook the excitation sequence that will produce the closest match, 

produce high quality speech as they are able to better perform at speech sections where 
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speech changes rapidly than sinusoidal systems which do not employ any closed loop 

routine [12]. AbS coders such as CELP, by directly coding the original speech signal, 
implicitly allocate an excessive number of bits to the phase information - more than is 

perceptually required. At higher rates the allocation of bits to this phase information 

does not appear to degrade speech quality but at low bit rates this is not the case and it 

is considered that this is one of the main reasons why CELP based coders performance 
degrade below this rate [63]. 

Sinusoidal coders do not extract and transmit this phase information as it is generally 

considered that the human ear is insensitive to it. A sinusoidal system which was better 

able to code transitional speech sections more accurately should produce synthetic 

speech approaching the quality of hybrid coders. If the PS SB-LPC was able to operate 

in a closed loop manner, although there may be an increase in complexity, the synthetic 

speech should be of higher quality as pitch errors introduced in an open loop system 

should be greatly reduced and the need for post processing eliminated. 
However for a sinusoidal closed loop method to operate successfully the input and 

(4) 

(b) 

200 400 600 goo 1000 1200 
Time in samples 

Figure 6.7: Comparison of (a) input speech and (b) output speech of the SB-LPC 

output speech produced must have similar phase properties for the two waveforms to 

be successfully matched. The dissimilarity of the input and synthetic speech in the SB- 
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LPC is illustrated in Figure 6.7. Clearly these two waveforms cannot be compared in 

a closed loop system as they contain different phase information. Therefore the phase 

information must be removed from the original speech or a synthetic phase must be 

utilised by the PS SB-LPC for matching purposes but not transmitted to the decoder. 

A speech coder utilising phase removal was used by [64]. This method was later utilised 

in a MELP/CELP hybrid coder [13]. Known as Zero Phase Equalisation it was used 

in order to remove the phase component in the CELP in order that when switching 
between the coder types artefacts are not produced. As CELP is a waveform coder 

it preserves waveform shape and time synchrony of the input speech, the MELP as a 

sinusoidal coder does not. This method utilises Matched filtering techniques. 

6.5.1 Phase Removal in the PS SB-LPC 

In the 4 kbps hybrid CELP/MELP [13] coder Zero Phase Equalisation is applied to 

the LP residual. The speech domain target signal is generated from the equalised LP 

residual and the estimated LP parameters. In a frame for which the CELP is chosen, 

equalised speech is used as the AbS target. The filter coefficients axe found once per 

20 ms frame and interpolated for each 2.5 ins sub-frame. 

In the PS SB-LPC we do not interpolate values across the frame, so the filter coeffi- 

cients must be found for each cycle, as significant excitation in the LP residual is not 

always present the Zero Phase Equalisation is applied to the input speech waveform. 

The equalisation is performed with time domain FIR filtering utilising matched filter 

techniques. The input is converted into a speech pulse train through the FIR filter 

whose coefficients axe the values of the input speech cycles. The coefficients are gener- 

ated by extending the pitch waveforms with zeros so that the middle of the waveform 

corresponds to the middle filter coefficient. The number of added zeros is such that 

the length of the equalisation filter is equal to length of the input speech frame of 160 

samples. 

From the PDA employed in the PS SB-LPC the average pitch size per 160 samples of 
the input speech frame is found. From sample 10 to 150 of each speech frame every 

sample of the frame is placed at the centre of a Blackman window of the average pitch 
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length. Samples 10 to 150 were used to ensure the cycles chosen were only from that 

particular frame. A Blackman window was eventually chosen over other window types 

as it had a quicker roll off at its centre which would emphasise the important feature 

of tlýe PCW at the centre of the window whilst minimising the signal at the window 

edges. 

Once the window with the highest energy is selected, a DFT the length of the windowed 

signal is performed. The spectral amplitudes of the filter coefficients are normalised, i. e. 

the gain of the filter is set to one, to ensure an approximate all pass filter characteristic. 
The phases are then unwrapped and the IDFT taken. This produces the coefficients of 

an FIR approximate all pass filter that when used to filter the corresponding frame of 

speech will produce an zero phase signal. 

To prevent glitches at frame boundaries in the phase removed signal the filter coefficients 

are adjusted by interpolation to smooth frame boundary effects. Before interpolation 

was carried out it was necessary to align the current with the previous cycle. This was 

achieved by cross correlating the current with previous interpolated cycle and finding 

the delay d which results in the highest correlation value resulting from (6-3). The 

current cycle is then adjusted by the value of d. 
L-1 
F, [(x(i) -5ý)(y(i - d) - 

r(d) = rL-1 
i=O 

L-1 1/2 (6.3) 
[E (X(j) -. t)2 E (y(i - d) - 9)2] 

i=O i=O 

where x is the last interpolated cycle, y is the current not yet interpolated cycle. 

The process of normalising the filter coefficients caused considerable variation in the 

extracted cycles from cycle to cycle. This is illustrated in Figure 6.8. When these 

normalised filter coefficients are used to zero-phase equalise the input speech at sections 

where the input speech changes rapidly glitches appear in the phase removed signal. 
Low pass filtering of the normalised coefficients does smooth their variation from cycle 
to cycle but it also affects their amplitudes which causes the phase removed speech to 

vary considerably in amplitude compared to the original speech. 

To smooth the normalised cycles their frequency -content is band-limited. After taking 

the DFT instead of setting all the spectral amplitudes to one, the root mean square of 
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(a) 

(b) 

(C) 
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Figure 6.8: (a) Input speech, (b) Extracted interpolated cycles and (c) the cycles in 
(b) Normalised (scaled here for clarity) 

the cycle is taken over the length of the window. A limit is then set over which the 

spectral amplitudes are set to one and under which the spectral amplitudes axe set to 

zero. 

It was found experimentally that this limit should be set at a value of 0.6, this smooths 

the normalised cycles without substantially affecting their amplitudes by limiting their 

frequency content. When this is carried out the variation in the normalised cycles from 

cycle to cycle is reduced and glitches in the ZPE signal reduced to an acceptable level. 

This is shown in Figure 6.9. Although we are removing significant frequency content 
from the resulting ZPE signal, this does not significantly affect its pitch structure which 

remains essentially the same as the original speech signal. 

Figure 6.10 shows a section of inale input speech that has a large amount of phase 

information and below is shown its approximately zero phase equivalent. Although 
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Figure 6.9: Cycles after normalisation (top) Cycles after frequency bandlimiting the 

normalised cycles (bottom) 
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Time in Samples 

Figure 6.10: Male Input Speech (top) and approximately Zero Phase Equalised signal 
(bottom) 

there is considerable phase information in the input speech the great majority of this 

information has been removed leaving an approximately zero phase signal with clear 

peaks present. 
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Figure 6.11: Input speech (top) and Zero Phase Equalised signal (bottom) 

When the ZPE was tested perceptually it was very similar to the original speech however 

due to the frequency band limiting effect of the filter coefficients the ZPE does not have 

the same perceptual variation. Also occasional artefacts can be heard which are caused 

by the rapid cutting off in frequency content from cycle to cycle and also by the process 

of phase removal itself. 

In Figure 6.11 at 125 samples in the ZPE we can see that there is not a subtle variation 

from the cycles to the left of this point as there in the original speech. The amplitude 

of the pulse at 125 samples is distinct from its surrounding cycles, this is not seen in 

the input speech. However there is a clear pitch structure present which is the primary 

objective of the phase removal process. 

By utilising matched filtering techniques an approximately zero phase speech signal 

has been produced. This speech signal sounds similar to the original except for a 

few artefacts caused by the phase removal techniques employed. These artefacts were 

reduced to an acceptable level by band limiting in the frequency domain the filter 

coefficients employed and interpolating them across frame boundaries. The next section 

will describe the steps taken to use this signal as a target in a waveform matching 

process. 
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6.5.2 Waveform Matching to Phase Removed Signal 
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A approximately zero phase speech signal has been produced which preserves time 

synchrony with the original speech signal by accurately replicating its pitch track. 

This allows the possibility of utilising AbS waveform matching techniques to match the 

decoded speech of the PS SB-LPC with the ZPE signal while requiring no increase in 

bit rate. 

The aim is to carry out a Root Mean Square Error (RMSE) evaluation for every PCW 

contained within a frame of speech. By altering independently the pitch length of each 
PCW and comparing the subsequent synthetic speech to the ZPE signal the optimum 

pitch track can be found. The comparison that produces the lowest value in error terms 

will give the best pitch values for that frame of input speech. Figure 6.12 demonstrates 

how a comparison of the ZPE signal and the synthetic speech produced by the PS 

SB-LPC can be carried out. 

Input Speech 

RMSE over 
frarne length L 

Encoder 

Adjust Pitch 
length of a 

PCW 

Figure 6.12: Procedure for waveform matching of the ZPE signal and synthetic speech 
from PS SB-LPC. 

The procedure to carry out the matching process is: 

1. Carry out zero phase equalisation over two frames of input speech. 

j 
Zero Phase 

I +f 
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2. From PDA interpolate N PCWs over length L greater than 160 samples. 

3. Execute encoder and decoder over length L to generate synthetic speech. 

4. Over length L compute RMSE: 

1 L-1 

_ y(i))2 
1/2 

RMSE 
G 1: (X(i) (6.4) 

i=O 

where X(i) and Y(i) axe the ZPE and synthetic speech signals respectively 

5. If RMSE < RMSEp,, j,,,,., then save PCW positions and error value. 

6. Alter by one sample length, one of the N PCW over new length L. 

7. Repeat steps 3-6 until all possible combinations tried. 

8. PCW positions associated with lowest RMSE are used for that length L of input 

speech. 

9. Finally execute encoder and decoder with these saved PCW positions over final 

length L to generate synthetic speech. 

6.5.2.1 Algorithm Specifics 

The pitch range in the PS SB-LPC varies from 15 to 150 samples. To allow for the PCW 

in a frame to vary independently for all values between these limits would produce a 

search which is computationally very high. For example, consider a frame of female 

speech consisting of seven PCWs. Consider now that we vary their lengths between 

only 15 to 50 samples. The number of possible combinations for this frame (complexity 

A) is then given by the number of PCWs raised to the power of the range of samples, 

in this case this gives 357 or 64.34 x 109 possible combinations. 

The major determining factor on the complexity of the search is therefore the number 

of PCWs per frame. This has implications on the quality of the synthetic speech 

produced for male and female speakers as the longer pitch sample length for male 

speakers produces less PCWs per frame. As the number of PCWs per frame cannot 
be reduced clearly some limitation has to be placed on the the possible pitch sample 

search range of individual PCWs. During encoding and decoding some functions will 
be called many times; these functions must be optimised for speed in order to ensure 
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ail optimum search is a practical possibility both in development and implementation 

terms. To reduce complexity a limit is placed on the pitch search range when waveform 
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Figure 6.13: Limiting seaxch range of pitch values, showing the initial start positions 

of PCWs and their pitch sample search range 

matching. The search range is based on Lminsize/2] where minsize and Lxj axe 

the smallest PCW length found over the frame of interpolated PCW sizes and floor 

function respectively. A simple algorithm is then used to ensure all samples between 

the PCW positions are covered. 

Figure 6.13 shows the initial starting positions of PCWs in a frame of speech given 
by interpolating the pitch values from the PDA. To is the starting point of the first 

estimated PCW and cannot be moved as it was set as end point in previous frame. 

In this example the minimum size is 39 samples between T, and T2 so the range is 

based on L3912J = 19 samples either side of the initial start positions. This overall 

procedure was not found to be a limiting factor on synthetic speech quality because of 

the good pitch estimates that are available from the pitch values found by interpolating 

the PDA decision. 

During matching all cycles are declared as fully voiced, this is done because to generate 

the unvoiced portion of a cycle a random number generator is used. When cycles are not 
declared as fully voiced no valid compaxison can be made because of the non-repeatable 

element of not declaring a cycle as fully voiced. Also as the voicing level estimation 

cannot guarantee always the correct voicing result this could introduce errors into the 

matching routine. 
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The PCW positions are then varied independently and for every single sample change 
in a PCW length the matching process is performed. No matching is required at frames 

of speech which can be clearly marked as silence or unvoiced. If all the cycles contained 
in the frame had a energy level lower than 5.0 or were marked as unvoiced using the 

elements of the hard decision voicing no matching is carried out for that frame and the 

interpolated PCW sizes are used. 

6.5.2.2 Waveform Matching at Speech Onsets 

At most sections of unvoiced or silence speech no waveform matching is carried out but 

at some of these sections it is. Here there is no clear ZPE signal to be waveform matched 

and therefore after these sections, at onsets the synthetic speech call be several samples 

away from the ZPE signal. A simple onset detector was therefore designed to reset the 

ZPE signal, this was based on normalised correlation and energy of the interpolated 

pitch cycles. In this section the PCW referred to axe the interpolated values from the 

PDA. 

The normalised correlation is calculated between the current PCW and the two neigh- 
bouring PCWs, to the left and right. The previous PCW (left) compared to the current 
is defined as corricycl, and the next PCW (right) compared with the current as corr,, ycl,. 
At onsets the value of corry, j, will be higher then corrl,.,, I, as this cycle with be highly 

correlated with the next and not the previous PCW. The energy of the interpolated 

PCWs and frames can also be utilised. 

After testing each cycle, the speech containing of N PCWs up to 320 samples then 

contains an onset if: 

corrcompare ý-- 1 and ratiocorr >a and corry,,, >0 and 
(6.5) 

(EfjlEfj-l) >0 and Eci > Eci-I and Eci+l >= Eci 

where 

correompare 
1 if corrcvl, > corri,, d, (6.6) 

10 

otherwise 
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where ratio,, = corrr, ycI, /corrjyj,, Eci is the energy of the ith cycle, Efj is energy 

of current frame. The values of a, 3 and 0 were set experimentally to be equal to 1.05, 

0.75 and 15 respectively. A example of the sections of input speech declared as onsets 

in shown in Figure 6.14. When an onset is detected the synthetic speech is produced for 

1000 2000 3000 4000 
Time in Samples 

Figure 6.14: Sections of input speech declared as onsets. The frames of speech that 

contain onsets are shown as non-zero lines. 

the interpolated pitch lengths and compared to the ZPE signal and the error calculated 

as in (6.4). The synthetic speech is then effectively slid to the left and then to the right 

of the ZPE by reducing and then increasing all the PCW starting points one sample at 

a time for every PCW until Lminsize/2] is reached on both sides. 

If the best match found is a negative index i. e. when the synthetic speech is slid to 

the left of the ZPE signal, then that number of samples is removed between To and T1 

and if the index is positive samples axe added. This ensures that when the waveform 

matching process is carried out the starting positions of the PCWs are not too far 

away from the ZPE signal. Figure 6.15 shows the resultant synthetic speech with and 

without onset adjustment. 
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Figure 6.15: Result of onset adjustment. ZPE signal (top), matched synthetic speech 
(middle) with no onset adjustment and matched synthetic speech (bottom) with onset 
adjustment 

6.5.2.3 Irregular Pitch Size Variation 

At sections of speech where the pitch value can be irregular over the frame, the decoded 

speech was not always successfully matched to the ZPE. This is because to reduce 

complexity we limit our pitch search range according to the minimum size of the initial 

interpolated PCW positions found per frame, see Section 6.5.2.1. When the pitch 

varies greatly within a frame we do not always have enough range of pitch values to 

test all PCW size combinations. In order to detect where such sections might occur 

the variation in PCW sizes V is measured by: 
N-1 ((T )2)1/2 

V= TE i- Ti-1) - T. "g (6.7) 
( 

i=O 
where N is the total number of interpolated PCW sizes of the input speech over length 

L, Tj is the ith PCW position and T ... g is the average size of the PCW over length L. 

It was generally found that at a small number of frames where V was greater than a 

value of 15 remedial action was required. 

If speech over length L is identified to contain an irregular pitch then the following 
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algorithm is executed which is based on a Pitch Grid Array search [531. Over length 

L the ZPE is seaxched and all the positive peaks axe identified. The positions and 

amplitudes of the peaks are stored as p(n) and a(n). The number of peaks is small as 

we operate on the ZPE signal. Firstly the smallest peaks are removed. This is done by 

selecting each peak p(ni) in turn and discarding it if there is another peak p(nj) which 

satisfies the following conditions: 

a(ni) < Ja(nj) and lp(ni) - p(nj) I< af P,,, in and p(ni) < p(nj) 

or (6.8) 

a(ni) < Ja(nj) and lp(ni) - p(nj) I< abPin and p(ni) > p(nj) 

where P .. i,, is the minimum estimated pitch value over L. Experimentation showed 

that the values of 0.65,0.6 and 0.65 for 6, af and ab respectively removed most of 

the significant peaks that exist, leaving behind a sequence containing a few peaks per 

frame. The amplitude of the maximum peak is then set as 0. The value of 0 is then 

successively reduced by 5 percent, at each reduction the revealed peaks are set as the 

PCW positions. The matching process is run and the MSE stored. When 0 reaches 

40 percent of its initial value the process is stopped and the lowest error combination 

taken with associated PCW positions. 

6.5.2.4 Waveform Matching at Steady State Speech 

At some sections of input speech there is very little variation in the pitch values. 

This steady speech does not require a large variation in pitch values and hence the 

complexity of the waveform matching routine can be reduced. Typical speech selected 

as being declared as steady is shown in Figure 6.16. This decision is based on the 

normalised correlation introduced as (3.39). Each cycle within a frame is compared 

with its neighbours and if all cycles have a normalised correlation greater than a it is 

declared as steady state speech, a was set experimentally at the value of 0.98. If the 

frame of speech is declared as steady in nature then the range of values in the search 

routine is limited to value of five samples. This applied to only a small percentage of 
frames. 
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11- a Smpkg 

Figure 6.16: Input speech showing section declared as steady, non-zero value 

Despite taking all the steps described above the complexity of the Full Search is such 

that the coder in its current configuration is not usable in real time operation due to 

the length of the encoding/decoding times. Routines developed over several months 

in the SB-LPC and original PS SB-LPC were not intended to be used in such an 
implementation. The next section describes the steps taken to make the waveform 

matching routine a practical solution. 

6.5.3 Reducing Complexity of Full Search 

In order to ascertain the sections of the speech coder which are most computationally 
intensive a Linux operating system based profiling tool known as gprof [65] was used. 
This produces an execution profile of programs which have been executed in the 'C' 

programming language. Profiling was used to determine where the coder spent its 

time and which functions called which other functions while it was executing. This 

information can show which sections of the coder are slower than expected, and might 
be candidates for rewriting to make it execute more quickly. It also indicates which 
functions are being called more or less often than expected. 

The time taken by the Full Search routine is shown as column A in Figure 6.17. The 
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results are shown for one hundred frames (approximately two seconds) of continuous 
female input speech sampled at 8 kHz from the NTT database [57]. The speech samples 

were deliberately chosen to be the most computationally complex for the coder in that 

the speech file used frequently contained at least seven cycles per frame. 

It can be seen from column A that the coder running the Full Search takes almost 

11 hours to produce synthetic speech from these frames of female speech. The most 

computationally expensive sections of the Full Search will now be described. 

11 
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Figure 6.17: Reducing complexity of Full Search. Time Taken by the Full Search 

with reduced complexity. Column A is most complex and column F is least 

At its decoder the PS SB-LPC uses a DFT based speech synthesis to produce an 

excitation pulse which is used to excite the vocal tract filter defined by the LPC 

values. As the decoder is called for every change in PCW length this means that 

a DFT based routine is applied many times. 

The SB LPC along with many other time synchronous vocoders extract LPC pa- 

rameters from fixed length portions of speech using the autocorrelation method. 

ABCDEF 
Codec Structure 
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The PS SB-LPC can also use covariance method to extract the LP filter coeffi- 

cients for each PCW. However the covaxiance method implemented is considerably 

more complex than the autocorrelation method and therefore more expensive in 

computation time. 

During analysis the PS SB-LPC uses a DFT to determine the spectral amplitudes 
for each PCW. This is necessary to represent tile spectral information that is not 

accurately modeled by the LP filter. If the spectral amplitude information is 

not transmitted the synthetic speech quality is degraded. Setting the spectral 

amplitudes to unity at the encoder does not have a marked effect on the pitch 

structure of the synthetic speech produced but it does degrade the synthetic 

speech quality. 

o During synthesis in order to ensure smooth evolution of the speech signal, energy 

scaling is applied to the speech excitation. The excitation is passed through the 

LPC filter per pitch cycle and the energy of the reconstructed speech per cycle is 

computed. The excitation is then scaled until the the energy of the reconstructed 

pitch cycle matches that of the transmitted pitch cycle energy. This process is 

carried out several times per pitch cycle but is important as the accuracy of the 

matching process degrades if not caxried out to a high degree of accuracy. 

In order to reduce the coder complexity significantly the following changes were made 

to the coder, these progressive changes axe shown as columns B to F in Figure 6.17. 

Changes made in coder configuration B were transferred to configuration C and so on. 

A Full Search routine. Normal PS SB-LPC operation 

B An excitation pulse for each PCW was not generated at the decoder during the 

matching process. Rather a fully voiced pulse was written to file and used to 

generate the excitation pulse. 

C To determine the LP filter coefficients for each PCW the autocorrelation method 

was used instead of the covariance inethod. 

D The spectral amplitudes for each PCW were not found during the matching process 
but were set to unity at analysis. 
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E During analysis the LP coefficients were found by interpolating over the frame rather 
than being found for each PCW 

F During synthesis the LP coefficients are used directly rather than being found from 

converting the Line Spectral Frequencies. 

Once matching was complete, normal PS SB-LPC operation was used to determine 

the parameters for each PCW. The most complex routine remaining is the energy 

scaling of the excitation during synthesis. This accounts for over 20% of the remaining 

complexity. It was not possible to determine a method to replace this without affecting 

the quality of the matching routine. The following section describes a Reduced Search 

matching routine aimed at reducing coder complexity further without degrading the 

synthetic speech produced. 

6.5.4 Reduced Search Solutions 

Even with the measures taken to reduce the complexity of the Full Search routine 

the time taken to fully test all possible combinations was prohibitive. This was most 

noticeable when the PCW lengths were small and hence a high number were present 
in a determined frame of speech. This affected in particular female speech where the 

pitch lengths tend to be smaller than for male speakers. Take for example typical male 

speech which from the PDA is estimated to contain four pitch cycles each of length 

sixty samples. This requires the testing of 304 or 81 X 104 combinations. 

Although we have already limited the search range either side of the PCWs contained 

within each frame according to the interpolated minimum size PCW, consider a female 

speaker which contains six PCW each of length thirty five samples. This requires the 

basic testing of 17 samples either side of each PCW. In complexity terms there are 
176 or 24.14 x 106 combinations to be tested. In order to reduce complexity further 

a Reduced Search routine was developed. This Reduced Search routine is shown as 
Figure 6.18. 

In the figure (a) shows the ZPE which is to be matched, (b) shows the current positions 

of the synthetic speech for the frame which the estimated starting positions for each 
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Figure 6.18: Reduced Search routine. (a) ZPE signal, (b) Synthetic speech with initial 

estimate, (c) starting position for search of T, (d) final position for search of Tj and 
(e) After Tj has been set, new start position for remaining cycles 

shift right by T+ range 

TO Tlmax T2max 
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cycle T from the PDA. In (c) all PCW positions except for To are all reduced by T 

- range until T,,, i,, is reached where range is Lminsize/2j. Then all PCW positions 

are increased by one sample until T,,,, is reached shown in (d), over all changes the 

RMSE is measured over To to T,,,,, ent+l using (6.4). The lowest RMSE gives the best 

position of Teurrent which in this case is T1, which is set in (e) After T, has been set 

as shown in (e) this routine is then repeated for the remaining PCW positions in the 

frame but the Tprevi(yus are not moved. 

It was found that there was considerable jitter in the cycles sizes when this Reduced 

Search routine was implemented. When attempting to match cycles of the ZPE signal 

which are dominated by a solitary peak such as shown below in Figure 6.20 the jitter 

in cycles was minimal and had little impact on perceptual speech quality. However 

when the energy is spread over the cycle and not dominated by a single peak as shown 

below in Figure 6.19 it makes it more difficult for the Reduced Search routine to make 

to decision upon the best pitch sizes based on the current error measure . This jitter 

in size from cycle to cycle caused artefacts in the synthesised speech which affected its 

perceptual quality. 

This was mostly solved by changing (X(i) - y(i))2 of (6.4) to (X(i) - y(i))4, where X 

and Y are the the ZPE and Synthetic speech signals respectively. This placed greater 

emphasis on the highest peak of the PCWs, thus reducing the amount of size jitter 

from cycle to cycle although in some cases it does have an impact on the perceptual 

speech quality and can be heard as a roughness in the synthetic speech. However when 

the PCW lengths are quantised the majority of this remaining size jitter is removed as 

small deviations from cycle to cycle axe removed by the quantisation process. 

Closed Loop Matching Results 

The Full and Reduced Search routines have been integrated into the PS SB-LPC. 

Waveform matching is switched between these two methods by selecting the complexity 

setting X given in Section 6.5.2.1 before matching is carried out for each frame. If 

complexity is above \ then the Reduced Search routine is used for that frame. Figures 

6.19 to 6.22 demonstrate some results for the matching routines at non-steady speech 

sections. As can be seen the ZPE signal and synthetic speech are well matched for 
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different types of input speech and only a small amount of cycle size jitter is present. 
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Figure 6.19: Waveform matching results with at onset and considerable energy spread 
per cycle 
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Figure 6.20: Waveform matching results at voiced to voiced transition with resonant 
section at centre 
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Figure 6.21: Waveform matching results at short speech segment with onset and 

resonant speech at end of section 
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Figure 6.22: Waveform matching results at voiced to voiced transition with consid- 

erable energy spread per cycle 
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6.6 Remaining Issues With Closed Loop Pitch Cycle De- 

tection 

6.6.1 Phase Removal 

The method of phase removal relies oil obtaining an ZPE signal which accurately repli- 

cates the pitch structure in the input speech. This method utilises a cycle per frame 

of the input speech which is considered to have highest energy. This however call be 

problematic at speech sections where the the structure of the original speech is in tran- 

sition from cycle to cycle. This is illustrated in Figure 6.23 which shows a male speech 

offset. From Figure 6.23, in the ZPE signal from point (a) onwards the signal does 

*--o ZPE signal 
Synthetic Speech 
Original Speech 

(a) 

0 200 400 600 800 
Time in Samples 

Figure 6.23: Phase Removal Errors. Original Speech (top), ZPE signal (middle) and 
Synthetic Speech (bottom) 

not accurately follow the original speech shown. This is due to cycle selection and 

processing in the phase removal process which cannot account for all possibilities in the 

original speech signal. As a consequence the synthetic speech shown does not match 

the original speech and some speech distortion can be heaxd. 
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6.6.2 Waveform Matching 

Although good results have been obtained there some existing issues in the matching 

process which are mainly, but not solely limited to the Reduced Seaxch matching rou- 

tine. Figure 6.22 demonstrates some of the problems that currently exist. This figure 

shows a transition from a resonant to non resonant speech section. At sample time 

100 the Reduced Search routine has produced a error in the PCW size. At resonant 

sections like this there can be a large change in PCW size but the resultant synthesised 

waveform shape changes very little due to its low energy. As we have limited the range 
in pitch search to reduce complexity the next and subsequent PCW cannot move to the 

best position because they are too many samples away. These problems are caused by 

the fact that the Reduced Search routine does not currently operate on a frame basis. 
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Figure 6.24: Problems with matching routine in PS SB-LPC 

However there is a possible solution to problems encountered in the matching process. 
Also shown is a calculated final error found for the frame which is calculated by 

FrameError = (Vdiff x RMSE) 1/2 (6.9) 
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where RMSE is given by (6.4) and Vdiff = (Vpast - Vpresent )2. V is simply the variation 

of the PCW sizes given by equation (6.7). Vpast and Vpresent are the variation in PCW 

sizes of the PDA estimate and matched sizes respectively. This biases the frame error 

towards those frames where there is a higher variation in PCW sizes than that of the 

PDA estimate. This is required because as can be seen in Figure 6.22 there is some 

inevitable underlying difference between the ZPE and synthetic speech signals. This 

final error could be fed back into the coding routine to remove matching errors. 

(a) 

(b) 
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Figure 6.25: Comparison of coder output. Synthetic speech produced by Closed loop 

method (top) and Trapezoidal Search (middle). Also shown is the MTE signal input 

to Trapezoidal Search (bottom) 

A comparison of the speech coded by the Trapezoidal Search and the Closed loop 

methods described in this chapter is shown in Figure 6.25 also shown is the Modified 

Time Envelope (MTE) which is the signal used by the Trapezoidal Search for pitch 
detection. 

The MTE signal (bottom) shows a strong pitch structure up to sample time 250 shown 

at point (b), after this point its pitch structure breaks down. As a consequence the 

pitch values in the synthetic speech produced from point (b) onwards must be heavily 

smoothed by post processing. At point (a) the smoothing has failed and as a result 
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an artefact has occurred. The synthetic speech produced by the Closed loop inethod 
(top) does not contain an artefact as it does not rely on the MTE but is coded from 

the original speech which unlike the MTE will have a clearly defined pitch structure. 

6.7 Concluding Remarks 

This chapter has described the techniques used and evaluated to improve the pitch 

cycle detection of speech in a PS sinusoidal coder. Open and closed loop methods were 
described and implemented. A closed loop seaxch routine was described and imple- 

mented. This method though of high computational complexity was able to remove 

most of the problems associated with the open loop method. Although some problems 

remain with this closed loop method, techniques to improve this method were described 

and partially implemented. 



Chapter 7 

Spectral Amplitude Quantisation 

7.1 Introduction 

The majority of the spectral characteristics of the speech in the PS SB-LPC are modeled 
by the loth order LPC filter. The remaining characteristics are provided by the spectral 

amplitudes of the LP residual signal. These characteristics axe required as the LPC 

filter does not model successfully all the spectral components of the speech signal. The 

spectral modeling of the LPC filter is limited by three factors; filter order, all pole 

modeling and speech stationaxy assumptions. Because of these assumptions aimed at 

reducing bit rate, accurate analysis and quantisation of spectral amplitude information 

is required. 

7.2 Background 

The main difficulty when quantising spectral amplitude information is that the number 

of amplitudes to be quantised is dependent upon the pitch length P of the pitch cycle. 
The number of amplitudes IV present is given by 

p 
=7- fc = 0.4625 P 

where f, is the sampling frequency of 8000 Hz and f, is the cut off frequency typically 

3700 Hz. In the PS SB-LPC the pitch cycle length is assumed to vary between 15 
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to 150 samples applying (7.1) results in a vector length of between 7 to 70. Suitable 

quantisation schemes must be designed to take into the account the long length of 

such a vector and the variation in its length as a function of the pitch. Typically VQ 

techniques is the preferred method for low bit rate speech coders due to its enhanced 

performance. Normal VQ routines are applied to fixed vector lengths so alternative 

methods have been produced in order to solve this problem. 

The 2.4 kbps MELP [441 coder uses the fact that low frequency components are more 

important than high frequencies and therefore the corresponding perceptually impor- 

tant components should be quantised more accurately than the rest. This coder utilises 
VQ to quantise the first 10 spectral amplitudes with the remaining amplitudes set to 

unity. This method results in lower distortion when the pitch length is shorter such as 
for females and children but for longer pitch lengths such as in male speech the number 

of harmonics can be high and as a result only a small number of the spectral amplitudes 

are transmitted with accuracy. For example a pitch length of 100 samples produces a 

vector length of over 46 entries, as only accurate information on the first ten values of 

this vector are kept only a small amount of information up to 800 Hz is utilised which 

can lead to rather severe quality degradation. 

In [66] a Mel-Scale Transformation was used to translate the variable length amplitude 

vectors to a fixed length. This method divides the spectrum into frequency bands, 

the amplitudes contained in the bands are averaged and quantised as a single value. 
The frequency bands are selected by a Mel-Scale measure which takes into account the 

variation in sensitivity of the human ear with frequency. In theory, the bands are of 

equal perceptual performance. As none of the spectral amplitudes are discarded this 

results in less synthetic speech quality degradation especially in male speech where the 

number of spectral amplitudes to be quantised is high. The variable dimension spectral 

vector x of length L is converted into a fixed dimension vector z of length Af as 

UM 
z(m) =1Zx2 (k) (7.2) 

um-IM+l k=im 

where x(k) and z(m) denote the kI4 and the Mth elements of the vector x and z 

respectively and 1,,, and u,,, denote the lower and upper harmonic bounds of the 011 
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spectral band [LVm - 0.5] and [LV - 1.5] (with um-1 =L- 1) respectively. The 

fixed length vector z can be quantised through VQ and if it contains enough bands 

the warping technique should be transparent. However to obtain good speech quality 

over M, typically 20, or more bands for male speech are needed, requiring many bits 0 
to quantise this number of values. Although capable of providing good speech quality 

at higher bit rates, for low bit rates this method is not efficient. 

Optimal vector quantisation of variable-dimension vectors in principle is feasible by us- 

ing a set of fixed dimension VQ codebooks. However such a multi-codebook approach 

would be excessive in storage and computational complexity. Variable Dimension Vec- 

tor Quantisation (VDVQ) [67]-[681 attempts to solve this problem by transforming the 

codevectors of the quantisers codebook instead of the input vectors. VDVQ uses a 

single fixed dimension universal codebook covering the entire range of input vector 

dimensions. This technique aims to reduce the quantisation distortion as the input 

vectors axe not subjected to any transformation which in general create losses. 

However this method requires extensive and elaborate training processes to produce 

the universal codebook with a very large number of training vectors especially with a 

codebook of high dimension. This method was tried by [34] but gave poor results. 

The SB-LPC [341 used a peak picking algorithm to transform the vector to a fixed 

length. This method selects spectral amplitudes according to their perceptual impor- 

tance. It was found to produce good quality speech. The PS SB-LPC [40] attempted to 

utilise this method to quantise the spectral amplitudes, although good quality synthetic 

speech could not be produced when this method was used in conjunction with the rou- 

tines outlined in Section 4.5.3.4. The following section describes the actions taken to 

accurately quantise the spectral amplitudes based on the peak picking method. 

7.3 Quantisation of Spectral Amplitudes 

The current method of quantising the spectral amplitudes in the PS SB-LPC was 

summarised in Section 4.5.3.4 is to pick and quantise fourteen amplitudes from the 

first and last cycle in the frame. The fourteen amplitudes per cycle of the remaining 
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0 50 100 150 200 
Time in Samples 

Figure 7.1: Log amplitude of LP spectrum (top) and corresponding spectral ampli- 

tudes (bottom) 

cycles are effectively selected by a Joint Quantisation Interpolation (JQI) across the 

frame. This method was originally designed for effectively quantising the LSFs. This 

is possible because the LSF spectrum shape generally varies in a deterministic pattern 
for each cycle in the speech frame. The spectral amplitudes however do not represent 

a smooth shape, they describe the speech signal after the vocal tract information has 

been de-convolved and are almost noise like in shape. This can be clearly seen in Figure 

7.1 which shows a log amplitude plot of the LP spectrum and corresponding spectral 

amplitudes for several cycles of male voiced speech. 

Currently the edge vector containing twenty eight amplitudes in total from the first 

and last cycle in the frame is quantised with 24 bits and the shape vector with 6 bits. 

If there are two cycles in a frame then the edge vector is not used and the values are 

quantised directly. Male speech with its longer pitch values frequently contains only 
two cycles in a frame, this typically means that for a considerable segments of male 

speech twenty percent of the bits allocated for spectral amplitude quantisation are not 

used. 
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An experiment was initiated to see the effect of raising the bit rate on the JQI inethod. 
The edge vectors were re quantised at 27 and 30 bits, at four stages of 8,8,8,3 and 
8,8,8,6 bits respectively. The effect of this increase in bit rate is shown as Figure 7.2. 

0. 

. 

IU 

Figure 7.2: Average MSE per cycle of JQI spectral amplitudes for male and female 

speech 

The current peak picking algorithm see Section 4.5.3.4 can only pick a maximum of 
fourteen amplitudes. The first two amplitudes and no more than three peak amplitudes 

and one amplitude either side of the peaks; fourteen in total. For testing purposes the 

maximum number of peaks is set at five peaks therefore seventeen amplitudes can be 

(but rarely are) picked for each cycle. For experimental purposes this vector can be 

considered as the taxget as a loth order LP filter is considered to contain two formants 

per peak. The error is measured against this maximum of seventeen amplitudes only 

as the other amplitudes such as those corresponding to formant valleys do not contain 

perceptually important information. The average MSE per cycle is measured as 

N-1 
MSE E (x(i) - l(i))' (7.3) 

i=O 

24 25 26 27 28 29 30 
Edge Vector Bit Rate 
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where x and i are the target unquantised amplitude vector and quantised picked am- 

plitude vector per cycle respectively. 

In Figure 7.2 for both male and female speech the average MSE falls with increasing 

bit rate of the edge vectors, however the fall is greater for male than female speech. 
It is believed that this due to the fact that female speech uses the shape vector more 
frequently than male due its greater number of cycles per frame. This increase in 

bit rate of the edge vectors has a greater effect on male speech as its amplitudes are 

quantised directly without the influence of the shape vector. As male speech with its 

greater pitch length, frequently has only two cycles per frame which do not require the 

use of a shape vector during quantisation. 

The number of spectral amplitudes for any given frame is demonstrated in Figure 7.3 

which shows Frame A with two cycles and a Frame B with six cycles. It is clear that 

despite the variation in the number of cycles between the two frames that the number 

of spectral amplitudes for a given frame size is similar despite the number of cycles per 
frame. This is a direct consequence of (7.1). 

Frame B 
6 

Frame B 
5 

Frame B 
4 

Frame B 

2 
3 

Frame B Frame A 
2 

. . . 
2 

......... .... .... . Frame B Frame A 

0 20 40 
Number of Spectral Amplitudes 

Figure 7.3: Spectral Amplitude allocation for two frames containing differing numbers 

of cycles 

Instead of allocating six bits to a shape vector which interpolates across a noise like 

signal, it may be more efficient to allocate the six bits to a scheme which allocates these 
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bits on a block based scheme. The method to attempt this is known here as Block Amps 

Quantisation (BAQ), the next section will describe the steps taken to implement this 

idea. 

7.3.1 Algorithm Specifics 

An amplitude peak picking scheme was first implemented in [341 for the quantisation 

of spectral amplitudes in the SB-LPC. This method selected a number of spectral 

amplitudes according to perceptual importance, the other amplitudes are deemed to 

be of little importance perceptually and are set to one. The selected amplitudes are 

chosen as: 

1. The first two spectral amplitudes since LP modeling can be poor in this area and 
lower frequencies are more important perceptually 

2. Spectral amplitudes under a peak in the LPC filter frequency response ensuring 

formants are well represented. 

3. Spectral amplitudes either side of the peaks in the spectrum due to errors in LSF 

quantisation which can make the formant positions shift by a few samples 

4. The remaining spectral amplitudes corresponding to valleys in the spectrum are 

considered to be unimportant perceptually and axe set to one. 

This method of selecting the amplitudes forms the basis of the peak picking in the BAQ 

method. It is considered for a loth LPC filter there axe only five peaks available for a 

cycle of speech as each pair of LPC coefficients describes one formant. The maximum 

number of peaks Peakmax which can be picked for each cycle is set at five. The first 

two amplitudes are always selected and five peaks plus the two amplitudes either side 

of these five peaks which gives a maximum total of seventeen amplitudes picked. 

The number of selected amplitudes allocated per frame is set as Ampsf, For example, 
if Antpsf, is set to thirty and there are three cycles in the frame, then the number of 

amplitudes per cycle Amps, y, is 10. If the number of peaks found in each cycle is 3 then 

this results in eleven amplitudes being picked - the first two plus the three peaks with 
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one either side - per cycle and the total number of amplitudes for the frame is thirty 

three. As in this example Ampsf, is set to thirty therefore three amplitudes must be 

de-selected. The amplitudes to be removed are selected from the following list which 

shows the degree of importance. For example we would start at the bottom of the list 

and move up until the correct number has been removed. If the number of amplitudes 

picked is less than Ampsf, then more amplitudes axe selected according to the list. 

1. First two spectral amplitudes per cycle. 

2. The peaks in the cycle. 

3. Amplitudes either side of the peaks. 

4. Further amplitudes either side of peaks. 

If the variation in cycle sizes per frame was found to be greater then six according to 

(6.7) then the number of amplitudes per cycle are found from a simple ratio of the 

number of harmonics per cycle compared to the total number of harmonics for the 

frame, the cycle with the largest number of harmonics is given the largest value of 
Amps, y,. 

Z 

Figure 7.4: Average MSE per cycle with variation in the number of unquantised 

amplitudes selected per frame 

Number of iunplitudes selected per frame 
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Before quantisation can take place it is important to determine what is the optimum 

number of Ampsf, that can be quantised without causing significant distortion. The 

value of Ampsf, was varied in the range of 10 to 50 in the speech coder and the average 
MSE per cycle measured using unquantised values of 1 in (7.3), the results are shown 

as Figure 7.4 

As expected as the number of amplitudes per frame increases the NISE falls in value. 

The steepness of the curve begins to decrease in the region of 25 amplitudes onwards. 
The synthetic speech produced was evaluated perceptually for the various values of 
Ampsf, it was found that only a small amount of distortion was present when a value 

of 30 amplitudes per frame was selected, when a value of 50 amplitudes was selected 

there was little or no discernible distortion present in the unquantised BAQ method. 

7.3.2 MSVQ Experiments 

Various bit rate configurations were trained using MSVQ routines, they are shown in 

shown in Table 7.1. They were implemented in the coder using the M-best tree search 

of Section 3.7.2.2 where M was set to a value of 8 and the average MSE per cycle was 
found using (7.3) for various values of selected amplitudes per frame. The MSE results 

are shown as Figure 7.5. Figure 7.5 shows that initially 26 amplitudes per frame gives 

Number of Bits Bit Allocation 

22 6,4,4,4,4 

24 6,6,4,4,4 

26 6,6,6,4,4 

28 6,6,6,6,4 

30 6,6,6,6 6 

32 8,6,6,6,6 

34 8,8,6,6,6 

36 8,8,8,6,6 

Table 7.1: MSVQ'bit allocation for Figure 7.5 

the lowest average MSE per cycle. But as the bit rates for 30 and 34 amplitudes per 
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frame respectively reach 1 bit per amplitude they give a superior performance. 

0.1 

4) 
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Figure 7.5: Variation in average MSE per cycle at various bit rates during testing 
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Figure 7.6: MSE variation in quantiser training for BAQ methods in Table 7.2 

It was found previously that at a bit rate of 1 bit per amplitude was optimum when 
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quantising spectral amplitudes in the SB-LPC [341. When these values were evaluated 

perceptually little difference could be found between selecting 30 and 34 amplitudes 

per frame. Therefore 30 spectral amplitudes per frame at a resultant bit rate of 1 bit 

per amplitude was selected for the BAQ method. 

To compare the relative performance of the quantisation configurations a spectral am- 

plitude database of 50,000 sets was used. For the purpose of comparison this size of 

speech database is effective and should provide reliable results. For a given bit rate 

the MSVQ can differ in stages. The structure of the quantiser affects complexity and 

memory storage and affects performance. A lower Performance usually results when 

more structure is imposed on the codebooks but at the benefit of reduced complexity 

and storage. MSVQ quantisers have been trained all using 30 bits for various stages 

from 4 to 6. The training results are plotted in Figure 7.6 for the BAQ configurations 

shown in Table 7.2. It can be seen from Figure 7.6 that as more structure is imposed 

on the codebooks the error rises during the training process. 

Method Number Bit Complexity Memory MSE MSE testing 
ofstages allocation testing interleaved 

BAQ 4 8,8,8,6 145920 24960 0.0983 0.0914 
BAQ 5 6,6,6,6,6 63360 9600 0.1031 0.0952 
BAQ 6 5,5,5,5,5,5 39360 5760 0.1068 0.0998 
JQI 3+1 8,8,8+6 130560 23040 

, 
0.1054 N/A 

Table 7.2: Comparison of MSVQ structures when quantising spectral amplitude in- 
formation at a 30-bit bit rate. 

The memory and complexity requirements in Table 7.2 are found from (3.47) and (3.5o) 

respectively. The number of stages in (3.50) during training was set at M equal to 8. 

A comparison can be made between the methods shown here and the JQI method of 

quantising the amplitudes, these are shown in Table 7.2. The MSE results are found 

using (7.3). For compaxison the MSE results axe also shown for the JQI method at 24 

bits plus 6 bit shape vector. The BAQ method at four and five stages gives lower error 

values than the JQI method. The BAQ method at six stages gives a similar error value 
to JQI but at a much lower memory and complexity requirement. 
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7.3.3 Interleaving of Spectral Amplitudes 
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During peak picking several selected amplitudes per cycle are selected for quantisation. 
These selected amplitudes from each cycle are placed into an array and vector quantised. 
Such axrays are demonstrated in parts (a) and (b) of Figure 7.7 which shows the selected 

amplitudes for frames of two and three cycles respectively. 

Frame I 

Cycle A Cycle B Cycle C 

(a)[All A2 I A3 I A4 Býý4 CIi C2 I C3 Selected Amplitudes 

Frame 2 

Cycle AI Cycle B 

(b) 
JAI jA2jA3 I A4 I A5 I A6 I BI I B2 I B3 I B4 I Selected Amplitudes 

Figure 7.7: Example array of selected amplitudes for quantisation for (a) frame of 

two and (b) three cycles 

Selccted Amplitudcs 

(a) 

Interleaved Values 

Dequantised 
Interleaved Values 

0') 

Dequantised Selected 
Amplitudes 

Figure 7.8: Interleaving of selected amplitudes. (a) The axray is interleaved before 

quantisation and (c) the dequantised values 

Qua 
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These arrays are fairly uncorrelated to each other as amplitudes of expected similar 

values are placed at different points in the arrays to be quantised. For example in 

the peak picking algorithm the first two amplitudes are always selected. The values 

therefore of Al, A2, B1, B2, C1 and C2 in frame 1 are at different points to Al, A2, B1 

and B2 of frame 2. As the number of cycles per frame can vary from 1 to 12 and 50,000 

amplitude vectors are used for quantisation training this factor may have a considerable 

effect on quantisation performance. 

It would be better to group similar amplitudes together before quantisation is carried 

out. This procedure is illustrated in parts (a) and (b) of Figure 7.8 where values 

which are likely to be similar are grouped together before quantisation by interleaving. 

This would produce arrays of spectral amplitudes which are more highly correlated for 

frames of varying cycle numbers. The interleaved MSE results from testing are shown 

in Table 7.2 there is a cleax improvement in all cases when the spectral amplitudes are 

interleaved before quantisation. 

Interleaving substantially improves the MSE error results. After interleaving all num- 
ber of stages of the BAQ method give lower error values than the JQI method. When 

examined perceptually the interleaved BAQ method with the number of stages at four 

and five gave a similar level of performance. Given that a five stage interleaved BAQ 

method gives a considerable complexity and memory saving against a four stage im- 

plementation, the five stage BAQ method with interleaving was chosen as the method 

to be used in the PS SB-LPC for quantising the spectral amplitudes. 

7.4 Bit Allocation of Coder 

This chapter has detailed the successful design and implementation of spectral am- 

plitude quantisation routine. This routine can be integrated along with the other 

quantised parameters detailed in the Section 4.5.3. A suggested bit rate allocation for 

this coder is presented in Table 7.3. 
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Parameters Bits per 20ms frame kbps 

LPC 36 1.8 

Spectral Amplitudes 30 1.5 

PCW pitch length and voicing 16 0.8 

Energy 14 0.7 

Total 96 4.8 

Table 7.3: ExamPle bit allocation for 4.8 kbps PS SB-LPC 

7.5 Concluding Remarks 
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This chapter has detaifed the steps taken to carry out quantisation of pitch synchronous 

spectral amplitude information in a sinusoidal coder. Previous reseaxch in the area 

was presented and compared to current research. A new quantisation method was 

presented, known as Block Amplitude Quantisation (BAQ). When this method was 

used to quantise the spectral amplitude information in the PS SB-LPC significant 
benefits over previous methods were found. By carrying out interleaving on sets of 
the spectral amplitude information before quantisation, the sets became more highly 

correlated which resulted in more efficient quantisation. 



Chapter 8 

Coder Quality Testing 

This thesis has presented advanced signal processing techniques for pitch synchronous 

speech coders. The techniques described have been applied to the PS SB-LPC speech 

coder. This chapter describes the evaluation of these new coding techniques against 
CELP based and other sinusoidal speech coders. 

8.1 Listening Tests 

8.1.1 Informal Listening Tests 

Informal listening tests were used extensively during the development of the new ver- 

sion of the PS SB-LPC speech coder. They were used to evaluate developments in 

the signal processing techniques and also to compare with the previous version of the 

PS SB-LPC. From the informal tests it was concluded that there were extensive im- 

provements over the previous PS coder. Artefacts that were present in the pitch and 

voicing algorithms have been substantially reduced albeit at the cost of increased com- 

plexity. Improvements to the quantisation techniques have been made which means the 

quantised speech coder can be fully evaluated by formal listening tests. 
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8.1.2 Formal Listening Tests 
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Formal listening tests are a way of evaluating the speech quality provided by speech 

coders. A standard which defines a set of tests and conditions is available in [69]. These 

tests are typically carried out in an acoustically treated test room with large numbers 

of test subjects and speech files. Tests here have been carried out which have followed 

these methods as closely as possible given the resources available. For example, the 

tests were carried out in a quiet office environment which may be expected to have a 

limited impact on the final results. 

MOS Tests 

To formally evaluate the new version of the PS SB-LPC, MOS tests were carried out 

as described in Section 2.2.1, speech processed by the PS SB-LPC and various coders 

were evaluated. Several coders were included in the test, these coders were: 

1. G. 729 at 8 kbps [11]. This is widely recognised as a toll quality CELP based 

speech coder used in IP networks. 

2. AMR coder at rates of 12.2,7.4 and 4.75 kbps [4]. This a multi rate CELP based 

speech coder employed in GSM and 3G networks. 

3. G723.1 at 5.3 kbps [23]. A CELP based speech coder frequently used in IP 

networks. 

4. MELP at 2.4 kbps [441. A low bit rate sinusoidal based speech coder primarily 

used in military applications. 

5. PS SB-LPC v1 UQ (Unquantised) [40]. This is the starting coder for this project, 

tested in its unquantised configuration. 

6. PS SB-LPC v2 Q (Quantised). The coder produced in this project, quantised at 

a 4.8 kbps bit rate. For male speech an average of 4 percent of the total frames 

were synthesised using the Reduced Search method of Section 6.5.4, for female 

speech this figure was 7 percent. The remaining frames were synthesised using 

the Full Search method of Section 6.5.2 with coder configuration D of Section 

6.5.3. 

7. PS SB-LPC v2 UQ. This is the same as immediately above but unquantised. 
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The tests were prepared as follows; Four files of speech were used from the NTT 

database [571, each file contained two sentences of speech. Two male and two female 

speakers were used, the files were played in random order to eighteen listeners. The 

average age of the listeners was approximately twenty five years of age. Each of the 

listeners were asked to give a score to the samples according to the following MOS 

scale: 

o5- The speech quality is excellent. 

e4- The speech quality is good. 

93- The speech quality is fair. 

92- The speech quality is poor. 

91- The speech quality is bad. 

The MOS test results are shown in Table 8.1 and in a bar chart form in Figure 8.1. The 

test results demonstrate that the signal processing techniques described in this thesis 

have significantly improved the synthetic speech quality produced by the PS SB-LPC 

speech coder. PS SB-LPC v1 UQ had a quality similar to that of MELP 2.4 kbps 

another low rate sinusoidal speech coder however PS SB-LPC v2 UQ had a comparable 

speech quality to the CELP based coder AMR 7.4 kbps, indeed its UQ speech quality 

was rated near to that of the toll quality speech coder G729. 

Coder/ 
Sample 

AMR 
12.2 

AMR 
7.4 

AMR 
4.75 

G729 
8.0 

MELP 
2.4 

G723.1 
5.3 

PS V1 
UQ 

PS v2 
UQ 

PS v2 
4.8 

male 
female 

4.30 
4.14 

3.72 
3.68 

3.30 
3.10 

3.90 
3.91 

3.13 
3.02 

3.20 
3.30 

3.11 
3.18 

3.76 
3.65 

3.48 
3.40 

average 4.22 3.70 3.20 3.91 3.08 3.25 3.15 3.71 3.44 
95 % C/I 0.15 0.14 0.16 0.11 0.19 0.17 0.15 0.13 0.17 

Table 8.1: MOS scores for tested coders, all bit rates shown are in kbps. The 95 
Confidence Interval is also shown. PS corresponds to the PS SB-LPC coder. 

When quantised the synthetic speech quality produced by the new PS SB-LPC v2 Q at 
4.8 kbps was still rated inore highly than the PS SB-LPC v1 UQ and higher than that 
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of MELP at 2.4 kbps. Though quantised the speech quality was not rated as highly as 
AMR 7.4 kbps -a higher rate speech coder - but was still rated better than a higher 

bit rate coder, namely G723.1 at 5.3 kbps and considerably higher than AMR at 4.75 

kbps. 
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Figure 8.1: Average MOS scores for tested coders shown in Table 8.1 

8.2 Test Results Summary 

Quality assessment of the new PS SB-LPC model shows that significant improvements 

have been made over the original PS SB-LPC version. The majority of artefacts that 

cause quality degradation have been identified and removed; when evaluated in its un- 

quantised configuration the final speech quality was greatly improved. Improvements in 

the quantisation process allowed the PS SB-LPC to be fully evaluated at a quantisation 

rate of 4.8 kbps. When tested against some widely used speech coders the quantised 

speech quality was rated more highly than various CELP based speech coders operating 

at similar and higher bit rates. 0 
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8.3 Concluding Remarks 
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This chapter has presented an overview of the test procedures for evaluating the syn- 

thetic speech quality of speech coders. These test procedures were used to evaluate the 

synthetic speech quality of a PS sinusoidal speech coder utilising the new parameter 

extraction and quantisation routines developed in Chapters 5,6 and 7. Formal listening 

tests showed that when compared to various standardised speech coders this coder can 

provide for high quality synthetic speech. 



Chapter 9 

Conclusions 

9.1 Aims 

The subject of this thesis has been the development of a high quality PS sinusoidal 

speech coder. This work has focused on the following areas: 

To determine the cause and possible solutions to the problems in a PS sinusoidal 

speech coder namely the PS SB-LPC which was used as a basis for the work in 

this thesis. By investigating the pitch and voicing algorithms employed by this 

coder the errors which put a upper limit on the speech quality were quantified in 

a thorough and systematic manner. 

The development of new parameter extraction schemes to remove the upper limits 

on the quality of the speech produced by the PS SB-LPC, focusing primarily on 
improving and developing new pitch and voicing algorithms. 

To enable the PS SB-LPC to operate in a practical manner, the extracted pa- 

rameters require quantisation. These quantisation techniques determine the final 

bit rate and speech quality. Quantisation techniques were introduced to enable 

parameters extracted pitch synchronously to be quantised with minimum distor- 

tion. 
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9.2 Concluding Overview 

Chapter 5 presented an investigation into the factors limiting the synthetic speech 

quality produced by the PS SB-LPC. It was determined that the artifacts in the coder 

were produced by errors in the pitch and voicing algorithms. To remove the voicing 

errors present, a GUI tool known as the Bit Stream Editor was applied to the PS SB- 

LPC and developed to form the basis of an advanced voicing classification technique. 

This new technique gave good results when compared to a traditional method employed 
by a standard TS sinusoidal speech coder. 

Chapter 6 focused on improvements to the pitch information extraction algorithms. 
Existing open loop methods were introduced and applied to the PS SB-LPC. In order 
for a closed loop solution to be implemented a method of producing an approximately 

zero phase speech signal from original speech known as Zero Phase Equalisation (ZPE) 

was utilised. Full and Reduced Search closed loop waveform matching techniques were 

successfully developed and applied to this phase removed signal and a good replication 

of the pitch information in the original speech signal was produced. 

In Chapter 7 the quantisation of spectral amplitude information was investigated. Sets 

of spectral amplitude information were quantised using a new block based scheme 
known as Block Amplitude Quantisation (BAQ), interleaving techniques were employed 

to further improve quantisation efficiency. When compared to a Joint Quantisation 

Interpolation (JQI) method in a PS sinusoidal speech coder this method produced 

superior results. 

Chapter 8 presented good formal test results when the new configuration PS SB-LPC 

was compared with other sinusoidal and CELP based coding paradigms. The PS SB- 

LPC was evaluated unquantised and quantised at 4.8 kbps. 

9.3 Future Work 

The pitch detection algorithm is one of the limiting factors in the quality of the un- 

quantised synthetic speech produced by the SB-LPC. Many of the functions present 
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in the coder were developed for open loop operation and subsequently not suitable for 

a computationally complex implementation that is required for closed loop matching 

operation. A investigation into reducing the complexity of this matching process should 
increase the final speech quality. 

Currently the method of producing the approximately ZPE signal relies on finding 

the highest energy cycle per frame of input speech. This can cause problems when 

subsequent cycles are of similar energy but dissimilax phase spread. Methods to select 

the best cycle per frame based on phase content of the cycles may improve the phase 

removal process as more suitable cycles may be selected. 

The limiting factor in the quantised synthetic speech quality is the quantisation of the 

spectral envelope i. e. LSFs and spectral amplitudes. By operating on a PS fashion 

more information has too be quantised therefore JQI and block based schemes were de- 

signed and implemented to enable quantisation of the spectral envelope at a fixed rate. 

Further investigation into these techniques should allow for the quantised synthetic 

speech quality to approach that of the unquantised configuration. 

Sinusoidal coders may be a good alternative to CELP based coders in VoIP systems 
due to their higher resilience to packet losses. The coder presented here has increased 

the synthetic speech quality of a sinusoidal based coder and may find application in 

such a scheme. 



Appendix A 

List of Publications 

R. Edwards, Christian Sturt, S. Villette and Ahmet Kondoz, "Phase Spread Voicing 

Analysis in Parametric Speech Coders", IEE Electronics Letters, Volume 42, Issue 11, 

25 May 2006, pp. 665-666 
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Appendix B 

List of Abbreviations 

AaS Analysis and Synthesis 

AbS Analysis by Synthesis 

ACELP Alebraic Code Excited Linear Prediction 

ADPCM Adaptive Differential Pulse Code Modulation 

AM Autocorrelation Method 

AMDF Adaptive Magnitude Difference Function 

AMR Adaptive Multi Rate 

BAQ Block Amps Quantisation 

BSE Bit Stream Editor 

CELP Codebook Excited Linear Prediction 

CM Covariance Method 

DFT Discrete Fourier Transform 

DTMF Dual Tone Multi-Frequency 

ETSI European Telecommunications Standards Institute 

FFT Fast Fourier Transform 

FIR Finite Impulse Response 

FR-GSM Full Rate GSM 

GSM Global System for Mobile Communication 

HR-GSM Half Rate GSM 

I-MBE Improved Multi Band Excitation 
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ITU International Telecommunications Union 

INMARSAT International Maritime Satellite 

IP Internet Protocol 

JQI Joint Quantiser Interpolator 

LBG Linde Buzo Gray algorithm 

LD-CELP Low Delay Codebook Excited Lineax Prediction 

LP Linear Prediction 

LPC Lineax Predictive Coding 

LSF Line Spectral Requencies 

LSP Line Spectral Pairs 

LTP Long Term Prediction 

MBE Multi Band Excitation 

MELP Mixed Excitation Linear Prediction 

MOS Mean Opinion Score 

MTE Modified Time Envelope 

MSE Mean Square Error 

MMSE Minimum Mean Square Error 

MSVQ Multi Stage Vector Quantisation 

PCM Pulse Code Modulation 

PCW Pitch Cycle Waveform 

PDA Pitch Detection Algorithm 

PS Pitch Synchronous 

PS SB-LPC Pitch Synchronous Split Band Linear Predictive Coder 

PSTN Public Service Telephone Network 

RMSE Root Mean Square Error 

SB-LPC Split Band Linear Predictive Coder 

SSMM Sinusoidal Speech Model Matching 

SVQ Split Vector Quantisation 

TS Time Synchronous 

VQ Vector Quantisation 

V Voiced 
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UV Unvoiced 

ZPE Zero Phase Equalised 
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