546 research outputs found

    On upscaling heat conductivity for a class of industrial problems

    Get PDF
    Calculating effective heat conductivity for a class of industrial problems is discussed. The considered composite materials are glass and metal foams, fibrous materials, and the like, used in isolation or in advanced heat exchangers. These materials are characterized by a very complex internal structure, by low volume fraction of the higher conductive material (glass or metal), and by a large volume fraction of the air. The homogenization theory (when applicable), allows to calculate the effective heat conductivity of composite media by postprocessing the solution of special cell problems for representative elementary volumes (REV). Different formulations of such cell problems are considered and compared here. Furthermore, the size of the REV is studied numerically for some typical materials. Fast algorithms for solving the cell problems for this class of problems, are presented and discussed

    THERMAL BUCKLING AND BENDING ANALYSES OF CARBON FOAM BEAMS SANDWICHED BY COMPOSITE FACES UNDER AXIAL COMPRESSION

    Get PDF
    The bending and critical buckling loads of a sandwich beam structure subjected to thermal load and axial compression were simulated and temperature distribution across sandwich layers was investigated by finite element analysis and validated analytically. The sandwich structure was consisted of two face sheets and a core, carbon fiber and carbon foam were used as face sheet and core respectively for more efficient stiffness results. The analysis was repeated with different materials to reduce thermal strain and heat flux of sandwich beams. Applying both ends fixed as temperature boundary conditions, temperature induced stresses were observed, steady-state thermal analysis was performed, and conduction through sandwich layers along with their deformation nature were investigated based on the material properties of the combination of face sheets and core. The best material combination was found for the reduction of heat flux and thermal strain, and addition of aerogel material significantly reduced thermal stresses without adding weight to the sandwich structure

    Reduced-Order Equivalent-Circuit Models Of Thermal Systems Including Thermal Radiation

    Get PDF
    We established a general, automatic, and versatile procedure to derive an equivalent circuit for a thermal system using temperature data obtained from FE simulations. The EC topology was deduced from the FE mesh using a robust and general graph-partitioning algorithm. The method was shown to yield models that are independent of the boundary conditions for complicated 3D thermal systems such as an electronic chip. The results are strongly correlated with the geometry, and the EC can be extended to yield variable medium-order models. Moreover, a variety of heat sources and boundary conditions can be accommodated, and the EC models are inherently modular. A reliable method to compute thermal resistors connecting different regions was developed. It appropriately averages several estimates of a thermal resistance where each estimate is obtained using data obtained under different boundary or heating conditions. The concept of fictitious heat sources was used to increase the number of simulation datasets. The method was shown to yield models that are independent of the BCs for complicated 2-D thermal systems such as a 2D cavity. A reliable method to compute thermal resistors connecting different regions was developed. In general, the number of regions required for getting an accurate reduced-order model depends on the complexity of the system to be modeled. We have extended the reduced-order modeling procedure to include a view-factor based thermal radiation heat transfer model by including voltage controlled current sources in the equivalent circuit

    Heat Transfer

    Get PDF
    Over the past few decades there has been a prolific increase in research and development in area of heat transfer, heat exchangers and their associated technologies. This book is a collection of current research in the above mentioned areas and describes modelling, numerical methods, simulation and information technology with modern ideas and methods to analyse and enhance heat transfer for single and multiphase systems. The topics considered include various basic concepts of heat transfer, the fundamental modes of heat transfer (namely conduction, convection and radiation), thermophysical properties, computational methodologies, control, stabilization and optimization problems, condensation, boiling and freezing, with many real-world problems and important modern applications. The book is divided in four sections : "Inverse, Stabilization and Optimization Problems", "Numerical Methods and Calculations", "Heat Transfer in Mini/Micro Systems", "Energy Transfer and Solid Materials", and each section discusses various issues, methods and applications in accordance with the subjects. The combination of fundamental approach with many important practical applications of current interest will make this book of interest to researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modelling, inverse problems, implementation of recently developed numerical methods in this multidisciplinary field as well as to experimental and theoretical researchers in the field of heat and mass transfer

    Inversion technique for quantitative infrared thermography evaluation of delamination defects in multilayered structures

    Get PDF
    Inverse analysis is a promising tool for quantitative evaluation offering informative model-based prediction and providing accurate reconstruction results without pre-inspections for characterization criteria. For traditional defect inverse reconstruction, a large number of parameters are required to reconstruct a complex defect, and the corresponding forward modelling simulation is very time-consuming. Such issues result in ill-posed and complex inverse reconstruction results, which further reduces its practical applicability. In this paper, we propose and experimentally validate an inversion technique for the reconstruction of complexly-shaped delamination defects in a multilayered metallic structure using signals derived from infrared thermography (IRT) testing. First, we employ a novel defect parameterization strategy based on Fourier series fitting to represent the profile of a complicated delamination defect with relatively few coefficients. Secondly, the multi-medium element modelling method is applied to enhance a FEM fast forward simulator, in order to solve the mismatching mesh issue for mesh updating during inversion. Thirdly, a deterministic inverse algorithm based on a penalty conjugate gradient algorithm is employed to realize a robust and efficient inverse analysis. By reconstructing delamination profiles with both numerically-simulated IRT signals and those obtained through laser IRT experiments, the validity, efficiency and robustness of the proposed inversion method are demonstrated for delamination defects in a double-layered plate. Based on this strategy, not only is the feasibility of the proposed method in Infrared thermography NDT validated, but the practical applicability of inversion reconstruction analysis is significantly improved

    Optimization strategies for complex engineering applications

    Full text link

    Proceedings of the Eighth Annual Thermal and Fluids Analysis Workshop: Spacecraft Analysis and Design

    Get PDF
    This document contains papers presented at the Eighth Annual Thermal and Fluids Analysis Workshop (TFAWS) on Spacecraft Analysis and Design hosted by the NASA/Johnson Space Center (JSC) on September 8-11, 1997, and held at the University of Houston - Clear Lake (UHCL) in the Bayou Building. The Workshop was sponsored by NASA/JSC. Seminars were hosted and technical papers were provided in fluid and thermal dynamics. Seminars were given in GASP, SINDA, SINAPS Plus, TSS, and PHOENICS. Seventeen papers were presented

    Modeling and Simulation of a Tungsten Chemical Vapor Deposition Reactor

    Get PDF
    Chemical vapor deposition (CVD) processes are widely used in semiconductor device fabrication to deposit thin films of electronic materials. Physically based CVD modeling and simulation methods have been adopted for reactor design and process optimization applications to satisfy the increasingly strigent processing requirements. In this research, an ULVAC ERA-1000 selective tungsten chemical vapor deposition system located at the University of Maryland was studied where a temperature difference as large as 120 oC between the system wafer temperature reading and the thermocoupled instrumented wafer measurement was found during the manual processing mode. The goal of this research was to develop a simplified, but accurate, three-dimensional transport model that is capable of describing the observed reactor behavior.A hybrid approach combining experimental and simulation studies was used for model development. Several sets of experiments were conducted to investigate the effects of process parameters on wafer temperature. A three-dimensional gas flow and temperature model was developed and used to compute the energy transferred across the gas/wafer interface. System dependent heat transfer parameters were formulated as a nonlinear parameter estimation problem and identified using experimental measurements. Good agreement was found between the steady-state wafer temperature predictions and experimental data at various gas compositions, and the wafer temperature dynamics were successfully predicted using a temperature model considering the energy exchanges between the thermocouple, wafer, and showerhead

    Research and Technology, 1994

    Get PDF
    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1994. It comprises approximately 200 short articles submitted by the staff members of the technical directorates. The report is organized into six major sections: Aeronautics, Aerospace Technology, Space Flight Systems, Engineering and Computational Support, Lewis Research Academy, and Technology Transfer. A table of contents and author index have been developed to assist the reader in finding articles of special interest. This report is not intended to be a comprehensive summary of all research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff members and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible
    corecore