104 research outputs found

    Geodesic distances in Liouville quantum gravity

    Get PDF
    In order to study the quantum geometry of random surfaces in Liouville gravity, we propose a definition of geodesic distance associated to a Gaussian free field on a regular lattice. This geodesic distance is used to numerically determine the Hausdorff dimension associated to shortest cycles of 2d quantum gravity on the torus coupled to conformal matter fields, showing agreement with a conjectured formula by Y. Watabiki. Finally, the numerical tools are put to test by quantitatively comparing the distribution of lengths of shortest cycles to the corresponding distribution in large random triangulations.Comment: 21 pages, 8 figure

    Generating optimized Fourier interpolation routines for density function theory using SPIRAL

    Get PDF
    © 2015 IEEE.Upsampling of a multi-dimensional data-set is an operation with wide application in image processing and quantum mechanical calculations using density functional theory. For small up sampling factors as seen in the quantum chemistry code ONETEP, a time-shift based implementation that shifts samples by a fraction of the original grid spacing to fill in the intermediate values using a frequency domain Fourier property can be a good choice. Readily available highly optimized multidimensional FFT implementations are leveraged at the expense of extra passes through the entire working set. In this paper we present an optimized variant of the time-shift based up sampling. Since ONETEP handles threading, we address the memory hierarchy and SIMD vectorization, and focus on problem dimensions relevant for ONETEP. We present a formalization of this operation within the SPIRAL framework and demonstrate auto-generated and auto-tuned interpolation libraries. We compare the performance of our generated code against the previous best implementations using highly optimized FFT libraries (FFTW and MKL). We demonstrate speed-ups in isolation averaging 3x and within ONETEP of up to 15%

    Type-II/III DCT/DST algorithms with reduced number of arithmetic operations

    Full text link
    We present algorithms for the discrete cosine transform (DCT) and discrete sine transform (DST), of types II and III, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~ 2N log_2 N to ~ (17/9) N log_2 N for a power-of-two transform size N. Furthermore, we show that a further N multiplications may be saved by a certain rescaling of the inputs or outputs, generalizing a well-known technique for N=8 by Arai et al. These results are derived by considering the DCT to be a special case of a DFT of length 4N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DCT-III, DST-II, and DST-III follow immediately from the improved count for the DCT-II.Comment: 9 page

    Fast calculation of thermodynamic and structural parameters of solutions using the 3DRISM model and the multi-grid method

    Full text link
    In the paper a new method to solve the tree-dimensional reference interaction site model (3DRISM) integral equations is proposed. The algorithm uses the multi-grid technique which allows to decrease the computational expanses. 3DRISM calculations for aqueous solutions of four compounds (argon, water, methane, methanol) on the different grids are performed in order to determine a dependence of the computational error on the parameters of the grid. It is shown that calculations on the grid with the step 0.05\Angstr and buffer 8\Angstr give the error of solvation free energy calculations less than 0.3 kcal/mol which is comparable to the accuracy of the experimental measurements. The performance of the algorithm is tested. It is shown that the proposed algorithm is in average more than 12 times faster than the standard Picard direct iteration method.Comment: the information in this preprint is not up to date. Since the first publication of the preprint (9 Nov 2011) the algorithm was modified which allowed to achieve better results. For the new algorithm see the JCTC paper: DOI: 10.1021/ct200815v, http://pubs.acs.org/doi/abs/10.1021/ct200815
    corecore