17,567 research outputs found

    When Should I Use Network Emulation?

    Get PDF
    The design and development of a complex system requires an adequate methodology and efficient instrumental support in order to early detect and correct anomalies in the functional and non-functional properties of the tested protocols. Among the various tools used to provide experimental support for such developments, network emulation relies on real-time production of impairments on real traffic according to a communication model, either realistically or not. This paper aims at simply presenting to newcomers in network emulation (students, engineers, ...) basic principles and practices illustrated with a few commonly used tools. The motivation behind is to fill a gap in terms of introductory and pragmatic papers in this domain. The study particularly considers centralized approaches, allowing cheap and easy implementation in the context of research labs or industrial developments. In addition, an architectural model for emulation systems is proposed, defining three complementary levels, namely hardware, impairment and model levels. With the help of this architectural framework, various existing tools are situated and described. Various approaches for modeling the emulation actions are studied, such as impairment-based scenarios and virtual architectures, real-time discrete simulation and trace-based systems. Those modeling approaches are described and compared in terms of services and we study their ability to respond to various designer needs to assess when emulation is needed

    When should I use network emulation ?

    Get PDF
    The design and development of a complex system requires an adequate methodology and efficient instrumental support in order to early detect and correct anomalies in the functional and non-functional properties of the tested protocols. Among the various tools used to provide experimental support for such developments, network emulation relies on real-time production of impairments on real traffic according to a communication model, either realistically or not. This paper aims at simply presenting to newcomers in network emulation (students, engineers, ...) basic principles and practices illustrated with a few commonly used tools. The motivation behind is to fill a gap in terms of introductory and pragmatic papers in this domain. The study particularly considers centralized approaches, allowing cheap and easy implementation in the context of research labs or industrial developments. In addition, an architectural model for emulation systems is proposed, defining three complementary levels, namely hardware, impairment and model levels. With the help of this architectural framework, various existing tools are situated and described. Various approaches for modeling the emulation actions are studied, such as impairment-based scenarios and virtual architectures, real-time discrete simulation and trace-based systems. Those modeling approaches are described and compared in terms of services and we study their ability to respond to various designer needs to assess when emulation is needed

    Simulation, Analysis, and Optimization of Heterogeneous CPU-GPU Systems

    Get PDF
    With the computing industry\u27s recent adoption of the Heterogeneous System Architecture (HSA) standard, we have seen a rapid change in heterogeneous CPU-GPU processor designs. State-of-the-art heterogeneous CPU-GPU processors tightly integrate multicore CPUs and multi-compute unit GPUs together on a single die. This brings the MIMD processing capabilities of the CPU and the SIMD processing capabilities of the GPU together into a single cohesive package with new HSA features comprising better programmability, coherency between the CPU and GPU, shared Last Level Cache (LLC), and shared virtual memory address spaces. These advancements can potentially bring marked gains in heterogeneous processor performance and have piqued the interest of researchers who wish to unlock these potential performance gains. Therefore, in this dissertation I explore the heterogeneous CPU-GPU processor and application design space with the goal of answering interesting research questions, such as, (1) what are the architectural design trade-offs in heterogeneous CPU-GPU processors and (2) how do we best maximize heterogeneous CPU-GPU application performance on a given system. To enable my exploration of the heterogeneous CPU-GPU design space, I introduce a novel discrete event-driven simulation library called KnightSim and a novel computer architectural simulator called M2S-CGM. M2S-CGM includes all of the simulation elements necessary to simulate coherent execution between a CPU and GPU with shared LLC and shared virtual memory address spaces. I then utilize M2S-CGM for the conduct of three architectural studies. First, I study the architectural effects of shared LLC and CPU-GPU coherence on the overall performance of non-collaborative GPU-only applications. Second, I profile and analyze a set of collaborative CPU-GPU applications to determine how to best optimize them for maximum collaborative performance. Third, I study the impact of varying four key architectural parameters on collaborative CPU-GPU performance by varying GPU compute unit coalesce size, GPU to memory controller bandwidth, GPU frequency, and system wide switching fabric latency

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Test-Driven, Model-Based Systems Engineering.

    Get PDF

    Gaps and requirements for applying automatic architectural design to building renovation

    Get PDF
    The renovation of existing buildings provides an opportunity to change the layout to meet the needs of facilities and accomplish sustainability in the built environment at high utilisation rates and low cost. However, building renovation design is complex, and completing architectural design schemes manually needs more efficiency and overall robustness. With the use of computational optimisation, automatic architectural design (AAD) can efficiently assist in building renovation through decision-making based on performance evaluation. This paper comprehensively analyses AAD's current research status and provides a state-of-the-art overview of applying AAD technology to building renovation. Besides, gaps and requirements of using AAD for building renovation are explored from quantitative and qualitative aspects, providing ideas for future research. The research shows that there is still much work to be done to apply AAD to building renovation, including quickly obtaining input data, expanding optimisation topics, selecting design methods, and improving workflow and efficiency

    RITSim: distributed systemC simulation

    Get PDF
    Parallel or distributed simulation is becoming more than a novel way to speedup design evaluation; it is becoming necessary for simulating modern processors in a reasonable timeframe. As architectural features become faster, smaller, and more complex, designers are interested in obtaining detailed and accurate performance and power estimations. Uniprocessor simulators may not be able to meet such demands. The RITSim project uses SystemC to model a processor microarchitecture and memory subsystem in great detail. SystemC is a C++ library built on a discrete-event simulation kernel. Many projects have successfully implemented parallel discrete-event simulation (PDES) frameworks to distribute simulation among several hosts. The field promises significant simulation speedup, possibly leading to faster turnaround time in design space exploration and commercial production. However, parallel implementation of such simulators is not an easy task. It requires modification of the simulation kernel for effective partitioning and synchronization. This thesis explores PDES techniques and presents a distributed version of the SystemC simulation environment. With minimal user interaction, SystemC models can executed on a cluster of workstations using a message-passing library such as the Message Passing Interface (MPI). The implementation is designed for transparency; distribution and synchronization happen with little intervention by the model author. Modification of SystemC is fashioned to promote maintainability with future releases. Furthermore, only freely available libraries are used for maximum flexibility and portability

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication
    corecore