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ABSTRACT

With the computing industry’s recent adoption of the Heterogeneous System Architecture (HSA)

standard, we have seen a rapid change in heterogeneous CPU-GPU processor designs. State-of-

the-art heterogeneous CPU-GPU processors tightly integrate multicore CPUs and multi-compute

unit GPUs together on a single die. This brings the MIMD processing capabilities of the CPU and

the SIMD processing capabilities of the GPU together into a single cohesive package with new

HSA features comprising better programmability, coherency between the CPU and GPU, shared

Last Level Cache (LLC), and shared virtual memory address spaces. These advancements can po-

tentially bring marked gains in heterogeneous processor performance and have piqued the interest

of researchers who wish to unlock these potential performance gains. Therefore, in this disserta-

tion I explore the heterogeneous CPU-GPU processor and application design space with the goal of

answering interesting research questions, such as, (1) what are the architectural design trade-offs in

heterogeneous CPU-GPU processors and (2) how do we best maximize heterogeneous CPU-GPU

application performance on a given system. To enable my exploration of the heterogeneous CPU-

GPU design space, I introduce a novel discrete event-driven simulation library called KnightSim

and a novel computer architectural simulator called M2S-CGM. M2S-CGM includes all of the sim-

ulation elements necessary to simulate coherent execution between a CPU and GPU with shared

LLC and shared virtual memory address spaces. I then utilize M2S-CGM for the conduct of three

architectural studies. First, I study the architectural effects of shared LLC and CPU-GPU coher-

ence on the overall performance of non-collaborative GPU-only applications. Second, I profile and

analyze a set of collaborative CPU-GPU applications to determine how to best optimize them for

maximum collaborative performance. Third, I study the impact of varying four key architectural

parameters on collaborative CPU-GPU performance by varying GPU compute unit coalesce size,

GPU to memory controller bandwidth, GPU frequency, and system wide switching fabric latency.
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CHAPTER 1: INTRODUCTION

With the computing industry’s recent adoption of the Heterogeneous System Architecture (HSA)

standard we have seen a rapid change in heterogeneous CPU-GPU processor design and imple-

mentation [1]. State-of-the-art heterogeneous processors tightly integrate multicore CPUs and

multi-compute unit GPUs together on a single die. This results in a single cohesive package that

brings together the MIMD processing capabilities of the CPU and the SIMD processing capabil-

ities of the GPU with new HSA features including coherency between the CPU and GPU, shared

Last Level Cache (LLC) [2, 3, 4], and shared virtual memory address spaces [5, 6]. In addition,

high-level programming languages, like OpenCL 2.0, have been updated to make use of these new

HSA features [7]. These advancements can potentially bring marked gains in heterogeneous pro-

cessor performance and have piqued the interest of researchers who wish to unlock these potential

performance gains. First with the advent of zero copy memory management between the CPU and

GPU [3, 8, 9], where memory objects are passed between the CPU and GPU by pointer reference

only, and now with the recent advent of collaborative CPU-GPU processing, where the CPU and

GPU jointly process work in a coherent and shared virtual memory environment.

Recent research has shown that the collaborative CPU-GPU execution approach can result in mea-

surable speedups over the preceding non-collaborative GPU-only approach [4, 10, 11, 12]. In the

non-collaborative GPU-only approach workloads are only executed on the GPU and the entirety of

the CPU is relegated to only performing the controlling functions of the GPU. However, the recent

research presented here has been conducted on fixed physical systems comprising a single point

of reference regarding architectural and application configuration with limited or no trade space

analyses on impacts to overall system performance. Therefore, in this dissertation I explore the

heterogeneous CPU-GPU processor and application design space with the goal of answering inter-

esting research questions, such as, (1) what are the architectural design trade-offs in heterogeneous

1



CPU-GPU processors and (2) how do we best maximize heterogeneous CPU-GPU application

performance on a given system.

To enable my exploration of the heterogeneous CPU-GPU processor and application design space,

I introduce a novel discrete event-driven simulation library called KnightSim, a novel computer

architectural simulator called M2S-CGM, and implement a set of heterogeneous CPU-GPU bench-

marks. KnightSim is a fast discrete event-driven simulation methodology that is intended for use in

the development of future computer architectural simulations. KnightSim extends an older proven

event driven simulation methodology known as "The Threads Package". The Threads Package

has previously been used in at least two publicly known computer architectural simulators [3, 13].

KnightSim implements events as independently executable x86 "KnightSim Contexts". By de-

sign, KnightSim Contexts encapsulate all of the functionality and interfaces associated with a sin-

gle target simulated system element in an individually executable package. This implementation

methodology enjoys several benefits from this approach. First, occupancy and contention, which

have been proven to be a critical determinant of system performance [14], are automatically mod-

eled by KnightSim Contexts. Other simulation methodologies, like those of Gem5 and Multi2Sim,

do not do this and require additional events, state flags, and levels of abstraction to achieve a realis-

tic occupancy and contention model. Second, executing a KnightSim Context only requires a long

jump, see Sec. 2.2.1. This mechanism is faster as compared to scheduling and running an event’s

call-back function because a KnightSim Context’s stack is not created and torn down each time

the context is executed. Finally, KnightSim Context execution can be performed in parallel be-

cause each KnightSim Context is independently executable in a multithreaded environment. These

properties make KnightSim a promising tool for use in the development of computer architectural

simulations.

M2S-CGM provides end-to-end simulation of the system elements required to simulate modern

and future non-coherent and coherent heterogeneous CPU-GPU processor architectural models.

2



M2S-CGM extends the multicore out-of-order x86 CPU model and multi-Compute Unit (CU)

Southern Islands GPU model found in Multi2Sim [15] and adds a novel highly detailed CPU-

GPU memory system model. M2S-CGM’s memory system model provides coherence protocols,

execution-driven discrete models of system wide occupancy and contention, CPU and GPU cache

structures, directories, virtual memory mechanisms, switching fabrics, a system agent, a memory

controller, and SDRAM. I provide a validation of M2S-CGM and establish that M2S-CGM pro-

vides good correlation to modern computing systems and that the information ascertained from its

use is reliable and can be used for trade-off decisions in proposed architectural implementations.

This provides researchers the ability to conduct a range of experiments with varying degrees of

configurability in the memory system for both the CPU and GPU. In addition, I implement a set

of benchmarks comprising both non-collaborative GPU-only and collaborative CPU-GPU imple-

mentations of Backpropagation, Block Matrix Multiply, Edge Detection, Nearest Neighbor, and

Write. Backpropagation and Nearest Neighbor are ported from the Rodinia benchmark suite [16]

and Block Matrix Multiply, Edge Detection, and Write are hand implemented. These benchmarks

are fully compatible with M2S-CGM, are representative of a range of scientific applications, are

well-suited for execution on the GPU, and have distinct collaborative CPU-GPU memory access

patterns.

I then utilize M2S-CGM for the conduct of three architectural studies. First, I study the ar-

chitectural affects of shared LLC and CPU-GPU coherence on the overall performance of non-

collaborative GPU-only applications. In this study I found that enabling coherence between the

CPU and GPU and sharing the LLC can lead to measurable performance gains over non-coherent

CPU-GPU executions. Additionally, the results of my first study make it apparent that new per-

formance gains are possible if applications make better usage of the CPU during GPU kernel

execution time. This motivated my decision to implement my own collaborative CPU-GPU bench-

marks to support the second and third study. In my second study I profile and analyze my set of
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collaborative CPU-GPU benchmarks and determine how to best optimize them for maximum col-

laborative performance. I establish collaborative performance profiles for each of my benchmarks

and use them to conduct a detailed performance analysis and report the results in this disserta-

tion. My collaborative CPU-GPU performance profiles show overall collaborative speedups while

varying CPU cores/threads from one to eight and CPU workload percentage from 20% to 80%.

The results identify each benchmark’s optimization points and show that my set of collaborative

CPU-GPU applications can achieve speedups as high as 2.23x over that of the non-collaborative

GPU-only versions. In addition, the results provide a few rules of thumb regarding how best to

reason about what an unprofiled collaborative CPU-GPU application’s optimized settings could be.

Finally, I utilize my set of benchmark’s again and study the impact of varying four key architec-

tural parameters on collaborative CPU-GPU performance. In the study I vary GPU compute unit

coalesce size, GPU to memory controller bandwidth, GPU frequency, and system wide switching

fabric latency. My results show that future looking architectural changes can lead to a theoretical

average speedup of 3.33x over the average speedups of our benchmark’s best case collaborative

CPU-GPU executions and reach a theoretical average speedup of 6.3x over that of our benchmark’s

non-collaborative GPU-only executions.

1.1 Research Contributions

This dissertation makes the following research contributions:

• I present a detailed discussion, with pseudocode, of the implementation of KnightSim and

Parallel KnightSim and present the results of a performance analysis of KnightSim, Paral-

lel KnightSim and three different event-driven simulation methodologies that are widely in

use today. KnightSim and Parallel KnightSim simplify computer architectural simulator pro-

grammability and introduce a new cycle level parallel processing capability that can speedup
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future architectural simulation.

• I present M2S-CGM and provide five benchmarks comprising both non-collaborative GPU-

only and collaborative CPU-GPU implementations. M2S-CGM and its benchmarks enable

execution-driven simulation-based research within the collaborative CPU-GPU design space

where previously not possible.

• I present the results of my first architectural study regarding the effects of shared LLC and

CPU-GPU coherence on the overall performance of non-collaborative GPU-only applica-

tions. This work provides new directions to researchers by establishing that the CPU and

GPU should be made coherent and share LLC and virtual address spaces. This eliminates

the need for expensive underlying mechanisms like memory copies between the CPU and

GPU and paves the way for higher levels of CPU-GPU parallelism.

• I present the results of my second architectural study regarding the analysis and optimization

of collaborative CPU-GPU applications and determine how to best optimize them for max-

imum collaborative performance. This work establishes a method for determining how to

best optimize collaborative CPU-GPU applications and motivates future research regarding

the development of profiling tools for heterogeneous CPU-GPU applications.

• I present the results of my third architectural study regarding the impacts of varying four

key architectural parameters on collaborative CPU-GPU performance. My results provide

new directions in heterogeneous CPU-GPU processor design and establish that computer

architectural researchers should focus on increasing GPU compute unit coalesce size, GPU

frequency, and lowering switching fabric latency in future heterogeneous CPU-GPU proces-

sors.

• To the best of my knowledge this dissertation presents the first in-depth simulation backed

study of the collaborative CPU-GPU trade space that includes optimizing operating points
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and analyzing the performance impact of key architectural parameters.

• Ready-made and fully working implementations of KnightSim, Parallel KnightSim, M2S-

CGM, and the benchmarks presented in this dissertation are made available as free software

and can be found on GitHub.

1.2 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides a background regarding discrete

event-driven simulation methodologies then introduces and discusses the implementation and mod-

eling methodologies of KnightSim and Parallel KnightSim. A detailed performance analysis is

performed comparing KnightSim and Parallel KnightSim to that of three other mainstream dis-

crete event-driven simulation methodologies. The work presented in chapter 2 extends my work

previously presented in [17, 18]. Chapter 3 provides a background in heterogeneous CPU-GPU

processors and applications and then introduces and discusses the implementation of M2S-CGM.

Significant discussion is provided regarding M2S-CGM’s x86 CPU, AMD Southern Islands GPU,

and memory system simulation models. M2S-CGM is validated by comparison of M2S-CGM to a

physical test system. The work presented in chapter 3 extends my work previously presented in [3].

Chapter 4 provides a background regarding the organizational use of the GPU in heterogeneous

CPU-GPU applications and presents the results of three architectural studies. The architectural

studies presented are based upon the culmination of all the work previously presented in this

dissertation. The work presented in chapter 4 extends my work previously presented in [3, 19].

Chapter 5 covers the related work to my own. And finally, Chapter 6 draws conclusions to this

dissertation and discusses new directions for future research.
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CHAPTER 2: DISCRETE EVENT-DRIVEN SIMULATION

METHODOLOGIES

This chapter discusses a novel context-based event-driven simulation methodology called Knight-

Sim, as presented in [17, 18], and includes a significant expansion in discussion. KnightSim ex-

tends an older event-driven simulation library called "The Threads Package" by (1) incorporating

corrections to functional issues that were introduced by the recent additions of stack protection,

pointer mangling, and source fortification in the Linux software stack, (2) incorporating optimiza-

tions to the event engine, and (3) introducing a novel parallel implementation. The chapter starts by

providing a sufficient background regarding event-driven simulation methodologies so that readers

can understand the subject matter of the chapter. Then, a thorough discussion of the implemen-

tation methodologies of both KnightSim and Parallel KnightSim is given with expanded discus-

sion regarding their usage in computer architectural functional and power modeling. The chapter

concludes with a performance analysis and draws comparisons of both KnightSim and Parallel

KnightSim to that of three other mainstream event-driven simulation methodologies in use today.

2.1 Background and Motivation

One of the most fundamental building blocks in any computer architectural simulation system is

its event engine. A computer architectural simulation system’s event engine provides the mecha-

nism with which the simulator will carry out its simulation tasks. Additionally, the event engine

introduces a temporal property in execution by allowing developers to specify a time when a given

simulation task should take place. In the context of computer architectural simulation systems, the

time when a simulation task begins is typically at the start of a desired simulated clock cycle.
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At the time of writing this dissertation, most event engines used in mainstream computer archi-

tectural simulation systems utilize an implementation technique where events are registered at

initialization and are provided a single callback function to execute. In essence, the event en-

gine’s scheduler will call the user provided function that is linked by the event when the number

of developer specified cycles transpires. The event engine’s scheduler maintains execution order

by performing a heapify on a global event queue, or another equivalent approach, as new events

are scheduled. When all events scheduled for a given cycle transpire, the cycle count is allowed

to increment forward in time. In this approach, creating realistic computer architectural models

of simulation elements requires the amalgamation of multiple events along with other primitives,

like state flags, for execution control. Developers must carefully endeavor to model the latency,

occupancy, and contention incurred by the modeled element.

A lesser known, but proven approach to event-driven simulation is an approach based on execution

contexts. In this approach contexts are similar to the traditional events described above, but are

more like micro kernels as they are individually executable on a given CPU core. In practical usage,

each context represents a simulation element and encompasses all of the simulation element’s

functionality and data. Whole systems are then modeled as collections of contexts functionally

working together. Context scheduling is explicitly handled between the contexts themselves with

the use of an advance and await mechanism, which is further explained in this chapter. Ultimately,

contexts are grouped logically, like the real hardware being modeled, and await advancement from

a neighboring context. During execution, contexts can pause and assess a latency. When the

context is paused no work will be performed by the context. This mechanism also results in

automatically modeling occupancy and contention amongst contexts. The intrinsic properties of

contexts providing a means to automatically model occupancy and contention makes the context-

based approach an ideal approach for use in computer architectural simulation systems and serves

as the motivation behind creating KnightSim and Parallel KnightSim.
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2.2 KnightSim Implementation Methodology

The makeup of a KnightSim Context is shown in Alg. 2.1. The context is defined by functions

that encapsulate all of the user’s desired functionality and interfaces associated with the simulated

element. During simulation execution, contexts await until they are notified that they should exe-

cute by an advance from one or more previously running contexts, but will not execute until they

are ready. Contexts currently in the run state may pause any number of simulation cycles or await

a future event to assess a latency. Simulation cycle time increases once all contexts have either

entered a pause or await state.

Algorithm 2.1 A KnightSim Context
1: procedure USER_FUNCTION(context∗ ctx)
2: long long i← 1;
3: \\Other local variables here
4: loop
5: await(my_eventcount, i++,ctx);
6: \\Do work a f ter being advanced
7: pause(1,ctx); . Charges a latency for work performed
8: \\Finish doing work
9: advance(neighboring_eventcount,ctx);

10: \\Clean up and return to await state
11: end loop
12: return
13: end procedure

The context’s assessed latency during the paused or await state provides the mechanism to auto-

matically model the occupancy of that context as no other work can be performed by the context

during that time. Contention is automatically modeled as contexts must compete for modeled

system resources. Individual contexts stall by pausing or awaiting as they wait for access to a par-

ticular resource. These additional stalls result in longer access latency for current and subsequent

invocations as contexts wait for modeled hardware resources to become available. In the following

subsections I provide discussion and present details regarding the implementation methodology of
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KnightSim.

Algorithm 2.2 KnightSim Globals
1: globals
2: if wordsize == 64 then
3: typedef long int _ jmp_bu f [8];
4: else if x86_64 then
5: typedef long long int _ jmp_bu f [8];
6: else
7: typedef int _ jmp_bu f [6];
8: end if
9:

10: typedef struct context{
11: _jmp_buf bu f ; . Buffer for CPU registers
12: unsigned long long count;
13: void (∗start)(struct context∗); . Context’s function at execution
14: char∗ stack; . Context’s unique stack
15: int stacksize;
16: struct context∗ next_ctx; . Context’s batch list pointer
17: } context;
18:
19: typedef struct eventcount{
20: struct context∗ next_ctx;
21: unsigned long long count;
22: } eventcount;
23: end globals

2.2.1 Events as KnightSim Contexts

KnightSim implements events as KnightSim Contexts, which are independently executed by the

CPU at runtime. A context is represented by a struct that defines the context itself, and one or

more eventcounts [20]. Pseudocode describing the implementation of contexts and eventcounts is

shown in Alg. 2.2.

The context structure comprises a jump buffer, count, function pointer, stack pointer, stack size, and

context pointer. The jump buffer is a primitive data type that is utilized by my hand implemented
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setjmp() and longjmp() assembly functions, see the Appendix. My implementations of setjmp()

and longjmp() correct functional issues introduced by the recent additions of stack protection,

pointer mangling, and source fortification in the Linux software stack. Usage of the standard Libc

setjmp() and longjmp() functions will render this methodology non-functional in modern Linux

distributions. Determination of the correct data type and size of the context’s jump buffer is shown

at the top of Alg. 2.2. The context’s count is used to synchronize the context with an eventcount’s

state. The context’s function pointer is assigned the address of the user’s provided entry function.

The stack pointer points to an allocated region of memory of user provided stack size. Each

context’s stack is unique, resides in user memory space, and contains that context’s execution data.

Contexts execute in a shared memory space and can operate on global C/C++ objects as well. The

context pointer is used to form a singly linked list that comprises a batch of contexts that are ready

to run at a given cycle. When a context enters the pause or await state the next context in the list is

executed until the list is empty.

Eventcounts are objects that provide a mechanism with which to determine if a context should

be placed in the run or await state. Eventcounts comprise a count that is used as an incrementer

and a pointer to a context that is awaiting an advance of the eventcount. The eventcount’s count

records the number of times the eventcount has been advanced. Contexts await the advance of

eventcounts and when the counts of both an eventcount and context are equal the awaiting context

runs. Typically, each context will have at least one unique eventcount assigned to it, but this is not

required.

Context batches are stored via a hash table and are formed as each context enters the pause state.

Contexts are added to the table by hashing the context’s designated future execution cycle with

the global hash table’s number of rows minus one. The global hash table’s number of rows is set

as a power of two and must be large enough to ensure that pausing contexts form batches of only

one future execution cycle. I find that a hash table size of 512 is more than sufficient to meet
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this requirement. This is an optimized approach that maintains a high level of performance and

does not require a modulus operation. Selecting the next context batch to run requires hashing the

current global cycle count with the global hash table’s number of rows minus one. A count of the

number of unique context batches referenced by the hash table is kept. Simulation ends when the

global hash table count is set to zero or the simulation’s execution reaches a desired end point.

Algorithm 2.3 Eventcount Initialization
1: procedure EVENTCOUNT_INIT(void)
2: eventcount∗ ec← NULL;
3: ec← (eventcount∗)malloc(sizeo f (eventcount));
4: ec−>count← 0;
5: ec−>next_ctx← NULL;
6: return ec;
7: end procedure

Algorithm 2.4 Context Initialization

1: procedure CTX_INIT((∗ f unc)(context∗), int size)
2: context∗ ctx← NULL;
3: ctx← (context∗)malloc(sizeo f (context));
4: ctx−>count← sim_cycle;
5: ctx−>stack← (char∗)malloc(size);
6: ctx−>stacksize← size; . Stack overflow check
7: ctx−>start← f unc; . User defined function
8: ctx−>bu f [ip]← context_start();
9: ctx−>bu f [sp]← stack_top_ptr;

10: ctx−>next_ctx← NULL;
11: ctx_hash_insert(ctx,ctx−>count&ROWS);
12: return
13: end procedure

2.2.2 Initialization

Prior to simulation execution each user created eventcount and context is initialized. Eventcount

initialization is straightforward and comprises the allocation of the eventcount with the use of
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malloc(), the initialization of the eventcount’s count to zero, and the initialization of the event-

count’s context pointer to NULL, as shown in Algo. 2.3. Context initialization is shown in Alg. 2.4

and comprises the allocation of the context itself with the use of malloc(), initialization of the con-

text’s count, allocation of the context’s stack with use of malloc(), assignment of the stack size,

assignment of the user’s provided entry function, manipulation of the instruction and stack point-

ers in the context’s jump buffer, initialization of the context’s context pointer to NULL, and finally

insertion of the context itself into the applicable context batch. The entry function embodies the

functionality of the element this context will simulate, as shown in Alg. 2.1. During initialization

the context’s count is assigned the global cycle count. Contexts may be created and destroyed at

any time, before and during simulation execution.

The context’s jump buffer is uninitialized after being created. Thus, I assign a starting instruction

pointer and stack pointer by hand to give the context our desired starting position and unique stack

memory. This manual configuration of the context’s jump buffer is what makes each context inde-

pendently executable. I ignore other CPU registers at initialization because they will be obtained

the first time setjmp() is called. Additionally, I push a pointer to the context onto the context’s

stack for retrieval later. This allows us to resolve information about the context after the context’s

initial jump.

The pseudocode shows an instruction pointer assignment as the head of a context_start() func-

tion. On initial execution, each context will first jump to the head of this function and then retrieve

the pointer to itself. The context’s start() function is then called and passed a pointer to the con-

text itself for future access. Program execution is now placed at the head of the user’s provided

entry function with resolution of the assigned context, see Alg. 2.1. Additionally, the pseudocode

shows a stack pointer assignment as the top of the allocated stack that is calculated as shown in
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Equ. 2.1 for both 32bit and 64bit Linux environments.

stack_top_ptr = stack_ptr+ stack_size− sizeo f (int) (2.1)

The assignment of the instruction and stack pointers to the context’s jump buffer is architecture

dependent and must be accounted for at time of compilation. The instruction pointer and stack

pointers are assigned to jump buffer positions five and four in the 32bit Linux x86 environment

and are assigned to jump buffer positions seven and six in the 64bit Linux x86 environment.

2.2.3 Scheduling

Pseudocode showing the mechanisms responsible for providing KnightSim Context scheduling is

shown in Alg. 2.5, Alg. 2.6, Alg. 2.7, and Alg. 2.8.

Algorithm 2.5 Context Scheduling: Advance
1: procedure ADVANCE(eventcount∗ ec, context∗ ctx)
2: ec−>count++;
3: if ec−>next_ctx and ec−>next_ctx−>count == ec−>count then
4: ec−>next_ctx−>next_ctx← ctx−>next_ctx;
5: ctx−>next_ctx← ec−>next_ctx;
6: ec−>next_ctx← NULL;
7: end if
8: return
9: end procedure

Placing KnightSim in the simulation state simply requires obtaining a pointer to the first context

in the initial context batch and performing a longjmp() to the context’s starting position. Sub-

sequently, each context resides in either an await, ready to run, or running state until the end of

simulation. In the single-threaded version of KnightSim only one context is ever in the running

state at a time. A transition between these states is accomplished with use of the advance(),
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await(), and pause() functions. A running context executes its assigned tasks and advances one

or more eventcounts as a product of its work by use of the advance() function. By advancing an

eventcount, the designated eventcount’s count is incremented and the eventcount’s context pointer

is checked. If the counts of both the context and eventcount are equal the context is removed from

the eventcount and inserted next into the current context batch as a context that should run this

cycle.

Algorithm 2.6 Context Scheduling: Await
1: procedure AWAIT(eventcount∗ ec, count value, context∗ ctx)
2: if ec−>count >= value then
3: return;
4: end if
5: ctx−>count← value;
6: ec−>next_ctx← ctx;
7: ctx← ctx−>next_ctx;
8: if !set jmp(ec−>next_ctx−>bu f ) then
9: if ctx then

10: long jmp(ctx−>bu f );
11: else
12: sim_cycle++;
13: long jmp(context_select());
14: end if
15: end if
16: return
17: end procedure

After a context completes its tasks, the context then transitions to the await state by use of the

await() function. The context will assign itself a count on which it will await, remove itself from

the current context batch, assign itself to the designated eventcount’s context pointer, and store

the current position in its jump buffer. Simulation execution can then jump to the next context

in the current context batch or, if this batch is finished, increment the global cycle count and

select the next batch. A running context may also assess a latency with the use of the pause()

function. Assessing a latency stops the current context from running until a future global cycle

count is reached, where the context will then automatically resume execution. The pausing context
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is removed from the current context batch and added to a context batch in the global hash table that

is awaiting the same future global cycle count. If the addition to the global hash table results in a

new context batch record the global hash table’s count is incremented. Lastly, I store the current

position in the pausing context’s jump buffer. Simulation execution can then jump to the next

context in the current context batch or, if this batch is finished, increment the global cycle count

and select the next context batch.

Algorithm 2.7 Context Scheduling: Pause
1: procedure PAUSE(count value, context∗ ctx)
2: value← value+sim_cycle;
3: context∗ ctx_ptr← ctx;
4: ctx← ctx−>next_ctx;
5: ctx_hash_insert(ctx_ptr,value&ROWS);
6: if !set jmp(ctx_ptr−>bu f ) then
7: if ctx then
8: long jmp(ctx−>bu f );
9: else

10: sim_cycle++;
11: long jmp(context_select());
12: end if
13: end if
14: return
15: end procedure

Algorithm 2.8 Context Scheduling: Context Select
1: procedure CONTEXT_SELECT(void)
2: context∗ ctx_ptr← NULL;
3: if table_count then
4: do
5: ctx_ptr← table[sim_cycle&ROWS];
6: while !ctx_ptr and sim_cycle++;
7: table[sim_cycle&ROWS]← NULL;
8: table_count–;
9: else

10: sim_end();
11: end if
12: return ctx_ptr−>bu f ;
13: end procedure
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The next context batch is selected with the context_select() function. I select the next context

batch by iterating through the global hash table until I obtain a valid pointer to a batch of contexts.

The global cycle count is incremented with each required iteration and reference of the hash table.

Each removal of a context batch from the hash table results in a decrement of the global hash

table’s count. As mentioned before, simulation ends when the global hash table’s count reaches

zero.

2.3 KnightSim Modeling Methodology

Using KnightSim to create computer architectural simulation models, like the one shown in Fig. 2.1,

is straightforward. The figure shows a functional architecture block diagram of a modern processor

comprising 18 CPU cores, a mesh switching fabric, and two memory controllers. To implement

this in KnightSim the developer would establish the appropriate number of contexts necessary to

model the desired system and assign each context the appropriate generic control function. The

control function encapsulates the tasks that each particular type of simulation element performs at

the developers desired level of granularity. For example, emulation elements, CPU pipeline stages,

caches, IO controllers, switches, memory controllers, DRAM, and etc. The computer architec-

tural model, in whole, is represented as the collection of these simulation elements cooperatively

working together, like the real hardware.
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Figure 2.1: An 18 Core CPU Computer Architectural Model

In this example each processor core, cache, switch, and memory controller could be modeled

as individual contexts that execute at the appropriate cycles. Alternatively, a more fine-grained

approach would be to model each processor core, cache, switch, and memory controller as a col-

lection of contexts that comprise the sub-elements of the modeled component. In all cases the

desired level of simulation granularity is left to the developer to decide. In the presented approach,

each modeled CPU core would fetch and then emulate a target instruction, then update the state of

its modeled pipeline stages and associated resources. CPU flow control is provided based on the

state of the CPU’s modeled pipeline resources and the memory system. Interaction with the first

and subsequent levels of the memory system is accomplished with an appropriate advancement

and memory system element load or store. This process continues throughout the memory system

and switching fabric. In a large computer architectural simulation model, long chains of contexts

represent the interdependence between discrete hardware elements. During long stalls contexts

18



await and simulation execution time advances to the appropriate simulation cycle.

In the following section I present and discuss a simulation model of the switching fabric shown

in Fig. 2.1. The example switching fabric model demonstrates advanced usage of KnightSim for

modeling of complex system elements and highlights the ease of use and power of KnightSim’s

modeling methodology. In addition to the example switching fabric shown here, researchers can

refer to CGM [3], where an entire memory system comprising configurable cache structures, cache

directories, translation lookaside buffers, page table walkers, switching fabrics, crossbars, a system

agent, memory controller, and other discrete system elements such as a GPU hub and IOMMU is

modeled using the techniques presented in this dissertation.

2.3.1 Switching Fabric Implementation Methodology

Alg. 2.9 and Alg. 2.10 provides pseudocode showing the implementation of the mesh switching

fabric illustrated in Fig. 2.1. The example demonstrates how to model a switch and crossbar with

a user-defined number of ports and virtual lanes. The switch pseudocode is written with the intent

of clearly showing KnightSim’s modeling methodology. More fine-grained and sophisticated im-

plementations are possible. The model consists of a single context and its main control function,

switch_ctrl(), where all derivative switch-related tasks are encapsulated.

Algorithm 2.9 Switch Control Globals
1: globals
2: #define CYCLE etime−>count»1
3: #define P_PAUSE(p_delay) pause((p_delay)«1)
4: #define ENT ER_SUB_CLOCK i f (!(etime−>count & 0x1)) pause(1);
5: #define EXIT _SUB_CLOCK i f (etime−>count & 0x1) pause(1);
6: int switch_pid = 0;
7: eventcount∗∗ sw_ec;
8: struct switch_t∗∗ sw;
9: end globals
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Variables pertinent to the individual switch model are located along the top of the main

switch_ctrl() function. Context variables are all initialized and stored within each individ-

ual contexts. Any number of switches can be created and chained together utilizing this single

switch_ctrl() function. Therefore, each switch is assigned a global my_pid for dereferencing

the correct switch structure and eventcount during execution. The await() function takes as an

argument a count to assign to the context as it waits. So, a context await variable is needed to

manage this interaction and is initialized with the value of one. This causes the switch to enter the

await state at the beginning of the switch’s main execution loop where it then awaits advancement

by one or more connected system elements, usually a connected I/O controller.

Arguably, one of the most powerful features of KnightSim is the ability to easily model interactions

in the sub-clock domain. In relation to computer architectural simulations, this provides an easy

way to model arbitration in the system. After advancement by one or more connected elements

the switch then enters the sub-clock domain. During which all elements seeking to advance the

switch have completed their advancement and have entered the await or pause state. The switch can

then perform arbitration and scheduling functions with complete knowledge of all its advancing

elements. In modeling the sub-clock domain, the global cycle count can be divided any number of

times with the use of macros intended to adjust the cycle time. As shown at the top of Alg. 2.9,

ENTER_SUB_CLOCK and EXIT_SUB_CLOCK adjust the cycle count such that two cycles represent

one cycle for the system at large. The sub-clock domain is then modeled on the odd cycle count

which is the half cycle to the system.

After returning to the regular clock domain with use of EXIT_SUB_CLOCK, the switch then charges

a latency for its work with the P_PAUSE macro. The switch will pause and then resume from this

point after the specified number of cycles passes. The charged latency provides the mechanism

to automatically model the occupancy of the switch. Upon resuming, the switch then records the

number of successfully formed links, moves data from the specified input ports to the specified

20



output ports, and advances the specified output port I/O controller. If a specified output port is full

the switch can not successfully form the link and will automatically retry each cycle until success.

The switch’s retry stalls form a part of the system wide contention model regarding these resources.

Algorithm 2.10 Switch Control
1: procedure SWITCH_CTRL(context∗ ctx)
2: int my_pid = switch_pid ++;
3: count step = 1; . Context await count
4: packet∗ net_packet = NULL;
5: loop
6: await(&sw_ec[my_pid], step, ctx);
7: calc_passive_power(&sw[my_pid],CYCLE);
8: ENT ER_SUB_CLOCK
9: xbar_link(&sw[my_pid]);

10: EXIT _SUB_CLOCK
11: P_PAUSE(&sw[my_pid]−>latency, ctx);
12: for i← 0 to sw[my_pid]−>num_ports−1 do
13: if xbar_link_success(&sw[my_pid], i) then
14: sw[my_pid]−>num_links++;
15: net_packet ← dequeue(&sw[my_pid], i);
16: enqueue(&sw[my_pid], i,net_packet);
17: advance(&sw_io_ec[xbar_out(&sw[my_pid], i, ctx)]);
18: end if
19: end for
20: step += sw[my_pid]−>num_links;
21: calc_active_power(&sw[my_pid],&sw[my_pid]−>num_links,CYCLE);
22: sw[my_pid]−>num_links = 0;
23: switch_update_state(&sw[my_pid]);
24: end loop
25: return; . Should never return
26: end procedure

Prior to returning to the top of the switch’s main execution loop the switch resets its state and

prepares for the arrival of new work. The switch’s step value must be incremented via the number

of links made. This accounts for the number of advancements and the work performed that cycle.

In the case that the switch fails to service a request, the main execution loop will continue to run

until all outstanding requests are serviced and the step variable’s value returns to one larger than
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the switch’s eventcount value.

2.3.2 Power Simulation Methodology

The methodology behind creating accurate power simulation models is also shown in the ex-

ample switch model. This is accomplished by calculating the individual element’s passive and

active power expenditures throughout execution. Each element has a finite number of possible

derivative states it can enter. In the modeled switch example, individual switch elements are ei-

ther in the run/ready state or are in the await state. Calculations determining the expenditure of

power during these two states would be performed with the equivalent calc_passive_power()

and calc_active_power() functions as shown.

The await state is straightforward and represents the period of time the element passively utilizes

or leaks power. After being advanced the switch wakes up and calculates the passive or leaked

power usage over the period of cycles the switch was awaiting. This is accomplished by utilizing

a variable value representing the passive power used by the element per cycle. Upon exiting sim-

ulation one final calculation must be made to reconcile the difference between the element’s last

await and the end of simulation.

During the run/ready state several derivative outcomes may occur that would influence the amount

of power utilized by the element. This necessitates a user-provided state-based power profile for the

modeled element. The power profile maps each possible outcome to an assigned value representing

the active power used in that state. The nature of the switch’s main execution loop makes it easy

to determine the possible states of the switch model during the run/ready state. In the example,

the number of links formed while in the run/ready state can be used to estimate the level of effort

performed by the switch.
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When added together the passive and active power usage determines the overall power expenditure

for the modeled element. The expenditure for each modeled element can be aggregated to deter-

mine the power expenditure for the entire system or portions of the system thereof. Impacts to

power from proposed architectural changes can then be accurately modeled and taken into account

by researchers.

2.4 Parallel KnightSim Implementation Methodology

I developed KnightSim with an eye towards ultimately parallelizing it. Therefore, parallelizing

KnightSim only requires a few changes which I highlight in this section. In general, the approach

to parallelizing KnightSim is summarized best as splitting a given cycle’s context batch into a

balanced group of smaller context batches and then executing the group of context batches over an

appropriate number of threads. This results in a discrete event-driven simulation methodology that

automatically parallelizes event execution at the cycle level.

Algorithm 2.11 Thread Context Select
1: procedure THREAD_CONTEXT_SELECT(int id)
2: if table_count then
3: context∗ ctx_ptr← table[sim_cycle&ROWS][id]; . Check for thread’s context batch
4: if ctx_ptr then
5: table[sim_cycle&ROWS][id]← NULL;
6: __sync_sub_and_ f etch(&table_count,1);
7: long jmp(ctx_ptr−>bu f ); . Jump to first context’s last position
8: else . Return to cycle barrier
9: long jmp(threads[pthread_sel f ()%NUMT HREADS].bu f );

10: end if
11: end if
12: return
13: end procedure

Parallel KnightSim utilizes a pool of POSIX threads of configurable size and a 2D global hash

table. The 2D global hash table’s rows each represent a future cycle and each thread is assigned a
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column. As shown in Algo. 2.11, at the start of each cycle each thread consults the appropriate row

and column of the 2D global hash table to determine if there is a context batch to run this cycle or

not. If a thread finds a context batch it removes the context batch from the 2D global hash table

and then independently executes each context in its assigned context batch one after the other until

the end of the context batch list is reached.

Threads maintain global cycle synchronization by use of a global cycle barrier, as shown in

Algo. 2.12. After each thread completes the execution of its assigned context batch each thread

will then return and enter the global cycle barrier. All returning threads but the last to arrive at

the global cycle barrier spin while waiting for the global cycle count to be incremented. The last

thread to arrive performs the global cycle count increment, which releases all threads and places

overall execution in the next cycle.

Algorithm 2.12 Thread Control
1: procedure THREAD_START(void∗ id)
2: volatile bool l f lag← f alse;
3: thread_set_a f f inity((long)id);
4: while(g f lag! = l f lag){}; . Wait for sim execution
5: set jmp(thread_bu f [pthread_sel f () mod SIZE]);
6: l f lag← !l f lag; . Invert the local status flag
7: if __sync_sub_and_ f etch(&threadnum,1) then
8: while(g f lag! = l f lag){}; . wait for the last thread to arrive
9: else

10: sim_cycle++;
11: threadnum← SIZE;
12: g f lag← l f lag; . Last thread resets the flags
13: end if
14: context_select((long)id); . Contexts select and run their respective batches
15: return
16: end procedure
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2.5 Parallel KnightSim Modeling Methodology

Using Parallel KnightSim for the creation of parallelized computer architectural models starts out

in the same manner as described in Sec. 2.3. Individual system simulation elements are modeled

as regular KnightSim contexts. The developer then specifies the number of threads he or she

wishes to utilize during simulation execution and assigns the contexts to individual threads. A

Parallel KnightSim execution with a single thread specified is an equivalent execution to the non-

parallelized version of KnightSim. However, Parallel KnightSim incurs additional overhead due

to the introduction of thread management that is not present in the non-parallelized version of

KnightSim. Therefore, it is recommended that the parallelized version of KnightSim not be used

for sequential (single-threaded) executions.

An optimized approach to parallelizing an 8 CPU core simulation model with accompanying

switching fabric and L1, L2, and L3 caches is shown in Fig. 2.2. In the figure, each box represents

a single computer architectural simulation element that can be simulated by a single KnightSim

context type as discussed in Sec. 2.3. The developer then divides up the contexts and assigns them

to a target thread as illustrated by "Thread 1" and "Thread 2". This is done by assigning a thread ID

to each context at initialization time thereby splitting the contexts into a context batch for thread

1 and a context batch for thread 2. This process can be done for any number of threads, however

performance gains are dependent on producing an optimized thread to context batch ratio.

KnightSim Contexts form chains as they advance neighboring context’s eventcounts and modify

shared data structures. In the scope of a single thread only one context is ever running at a time,

so, a thread’s execution of its context batch can be treated as sequential execution. This means that

thread safety is not of concern to a thread’s local context batch. However, contexts that share data

or eventcounts between two or more threads can run into classic multithreaded programming data

hazards. The following subsection discuss ways to workaround these issues.
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Figure 2.2: Parallel KnightSim Hazard Zones

2.5.1 Data Hazards

As discussed in Sec. 2.4, Parallel KnightSim automatically parallelizes event execution at the cycle

level. However, data race conditions can occur between contexts that share data and that are being

executed by two or more threads in a given cycle. Fig. 2.2 depicts where data races can occur

and labels them as hazard zones. In this example the two threads share and modify data (e.g.

eventcounts and input/output queues) related to the switches along the edge of each thread’s context

boundary as a result of one thread’s switch advancing another thread’s switch. Parallel KnightSim

automatically accounts for internal thread safety issues by appropriately handling the advance and

await of hazardous eventcounts. Developers are only required to specify at initialization time

whether or not a particular context and its eventcount(s) are hazardous. The developer then only

needs to be concerned about thread safety on the simulator side. For example, a modeled message

queue that is shared between two contexts executed by two different threads could pose a thread

safety issue.
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On the simulation side, data race conditions can be avoided by assigning contexts that share data to

the same context batch so that they are run by the same thread during execution. In places where a

natural division of the contexts is not possible, the inclusion of fine-grained thread-safe techniques,

such as mutexes and lock-free data structures, in only the hazard contexts will eliminate data race

conditions. Another simple approach to avoid data hazards is to have paired hazardous contexts

wait for execution on different sub-clocks. This approach guarantees that they do not execute at

the same time and thus will not interfere with each other. Ultimately, optimized parallel simulation

performance is gained by balancing the simulation model’s size and simulated architectural struc-

ture with a properly specified number of threads and context-to-thread assignment. Developers

should endeavor to reduce the number of serialization points in the architectural model, which will

lead to better parallel performance gains.

2.6 KnightSim and Parallel KnightSim Performance Results

For performance evaluations, direct performance comparisons between KnightSim, Parallel

KnightSim, and the discrete event-driven simulation engines found in Gem5 [21], Multi2Sim [15],

and M2S-CGM [3] are made. Comparisons are made to this selection of discrete event-driven

simulation engines because, at the time of authoring this dissertation, the simulators in which they

are used are relevant, widely recognized, and have been used in recent computer architectural

simulation related publications. For the purposes of these experiments, the discrete event-driven

simulation engines found in Gem5, Multi2Sim, and M2S-CGM are referred to as Gem5-Event,

Esim, and The Threads Package respectively. In the results, KnightSim and Parallel KnightSim

are referred to as KS and PKS_N respectively. For PKS, the "_N" denotes the number of specified

threads used in each PKS trial.
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2.6.1 Experimental Setup

All experiments are conducted on a test system comprising a 16 core Intel Xeon E5-2697A v4

processor running at 2.6 GHz - 3.6 GHz with ample system memory running at 2400 MHz. In

all test cases execution time is measured over the equivalent simulate() function. Measured

execution times do not include time spent in regions of code associated with setup, initialization,

or cleanup activities. Additionally, any non-essential code, like asserts, from each test application

has been removed.

Gem5-Event and Esim employ a similar implementation approach that establishes an event list

with associated callback functions upon initialization. During execution, events are scheduled to

run in either the current cycle or a future cycle using an equivalent schedule_event() function.

Scheduled events are placed in a data structure and removed for execution at a later simulation

cycle. Gem5-Event declares class objects as sim objects whose member functions can be declared

as events. Therefore, I implement an event in Gem5-Event as a single class member function that

is initially scheduled to run by the class’s constructor during initialization time. Esim declares

domain event handlers that are meant to handle a number of domain specific sub events. Thus, I

implement an event in Esim as a single domain level event that is registered and scheduled to run

at initialization time. For both Gem5-Event and Esim, each time an event is executed the event

schedules itself to run again in one cycle.

KnightSim, Parallel KnightSim, and The Threads Package implement events as contexts, however

the implementation of The Threads Package is completely different from that of KnightSim and

Parallel KnightSim and does not benefit from the extensions presented in this dissertation, see

Sec. 2.2 and Sec. 2.4. As discussed and shown in Sec. 2.2.3, scheduling a pause of one cycle

during context execution is functionally identical to scheduling an event to occur one cycle later, as

in Gem5-Event and Esim. For KnightSim, Parallel KnightSim, and The Threads Package an event
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is implemented as a single context that is registered and scheduled to run at initialization time.

Each time the context is run, the context schedules itself to run again after one cycle by pausing

one cycle. Before direct performance comparisons can be made developing an understanding of

the use of event engines in computer architectural simulators is needed.

2.6.2 Experiment 1: Determining Event Engine Usage

To support the performance analysis of KnightSim, a determination of how a typical computer

architectural simulator makes use of its event engine must be made. This is accomplished by

determining what a realistic range is in terms of (1) the average and maximum number of executed

events per simulated cycle and (2) the average and maximum number of physical cycles per event.

These two measurements give us a sense of the amount of pressure placed on the event engine

and how many physical cycles it takes to process an event on average. To measure these values,

a sampling of the Rodinia OpenMP benchmarks [22] has been run on M2S-CGM. Measurements

are taken over the benchmark’s parallel section while varying the size of the simulated system.

M2S-CGM provides a system wide model with a configurable number of CPU cores, L1, L2, and

L3 caches, switching network, system agent, memory controller, and SDRAM.

The findings are shown in Table 2.1 and are used to form the basis of the performance analysis.

As shown in the table a realistic range of expected events per simulated cycle is approximately 13,

or fewer, for small simulation models to approximately 980, or more, for large simulation models.

From the results, it is apparent that the predominance of computer architectural simulation models

used in relevant research would fall in the category of approximately 113 events, or fewer, per

simulated cycle. This is because most relevant research simulation models have had 16 or fewer

CPU cores.
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Table 2.1: Measure of Event Engine Usage

Sim Cores Avg Events Max Events
1 13 26
2 20 38
4 34 58
8 60 95

16 113 165
32 215 291
64 416 529

128 813 980

Physical Cycles Avg Cycles Max Cycles
2680 9945

From the results it is also established that a typical computer architectural simulator utilizing a

context-based event engine performs an average of 2680 physical cycles of work per event. How-

ever, it has also been observed that in some cases this can be considerably higher. The data gathered

regarding the average number of physical cycles of work per event can be utilized to determine if

the usage of Parallel KnightSim for the purposes of parallelizing computer architectural simula-

tions is viable or not. It is important to mention that the information set forth in Table 2.1 is in-

tended to give us some reasonable guidelines with which to design, conduct, and draw conclusions

to results for the performance analysis. Other simulators may exhibit slightly different results, but

it is not expected to be significantly different.

2.6.3 Experiment 2: Single-Threaded Performance Results

This experiment is designed to gauge the overall single threaded performance difference between

KnightSim, The Threads Package, Esim, and Gem5-Event. Overall speedup measurements are

taken for eight test cases. The test cases comprise the execution of 16, 32, 64, 128, 256, 512,

768, and 1024 events per cycle for one million cycles. The selected test cases provide a good

30



range in terms of varied simulated system size, as established in Sec. 2.6.2. The selected test

cases also facilitate performance analysis comparisons with Parallel KnightSim executions in the

following section. A verification that all test applications function correctly was performed by

observing the final value of a global variable that was incremented by each event during execution.

In the formally measured experiment, the verification feature was commented out so that all events

perform no work. After several trials, It was determined that one million simulated cycles is more

than sufficient to reach a steady state for final performance measurements.

The experimental results for the single threaded executions are shown in Fig. 2.3. The results

for each test case are normalized to the execution results of The Threads Package. KnightSim

demonstrated strong overall performance with an average speedup of 3.51x, 11.95x, and 2.8x over

the execution results of The Threads Package, Esim, and Gem5-Event respectively. However,

more importantly KnightSim showed an average speedup of 4x over both The Threads Package

and Gem5-Event in the range of 16 to 128 events per cycle. This range represents a preponderance

of the use cases for event engines in computer architectural simulation based research.

The results for KnightSim show that the extensions to The Threads Package have provided a signif-

icant boost in the methodology’s overall performance and that the methodology also outperforms

those of Gem5-Event and Esim. Gem5-Event proved to scale very well with larger simulated sys-

tem sizes, but did not outperform KnightSim over the selected test case range. Esim provided a

consistent performance baseline, but did not exceed the performance of KnightSim, Gem5-Event,

and The Threads Package. An inspection of Esim’s source code revealed that Esim performs a

calloc() with the scheduling of each event and a free() at the end of each event’s execution. This

is the leading cause of the performance disparity between Esim and the other event engines.
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Figure 2.3: Single Threaded Performance Results

2.6.4 Experiment 3: Multithreaded Performance Results

The next experiment is designed to gauge the overall multithreaded performance difference be-

tween KnightSim and Parallel KnightSim. Before continuing on it should be noted that none of

the previously presented event engines possess a parallel processing capability, therefore this ex-

periment draws comparisons to KnightSim as the established performance baseline.

Drawing on the experiences gained by implementing Parallel KnightSim and conducting initial

trials, it is apparent that the two most critical factors impacting overall parallel performance in

computer architectural simulations are (1) the number of events executed per cycle and (2) the

amount of work each event performs when executing. These two factors inversely affect the nega-

tive impacts to parallel performance imposed by the global cycle barrier and other pthread related

overhead. Parallel speedups are achievable once the combined effects of these two factors amortize

the cost of the serial section.
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Figure 2.4: Multithreaded Performance Results Without Work

Experimental results regarding the impact of the number of events per cycle on overall parallel

performance are shown in Fig. 2.4. For this experiment the configuration described in Sec. 2.6.3

is maintained, however the workload is now parallelized using Parallel KnightSim. When events

perform no work the cost of the global cycle barrier and other pthread related overhead is apparent

in the results. It is observed that Parallel KnightSim does not out perform KnightSim for small

computer architectural models executing fewer than 512 events per cycle. However, increasing the

number of events per cycle begins to amortize the cost of the serial section when executing ap-

proximately 256 events per simulated cycle in parallel. At approximately 512 events per simulated

cycle, and higher, parallelization results in measurable speedups. These results show promise for

parallelizing large computer architectural models with Parallel KnightSim because PKS can scale

with computer architectural simulation size. However, it is unreasonable to base performance re-

sults solely on an experiment where each event performs no work. In the following experiment we

provide each event with a simulated work load and rerun the experiments.
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Figure 2.5: Multithreaded Performance Results With Work

The appropriate amount of work to simulate is determined by scaling the average workload each

event must perform during execution until the cost of Parallel KnightSim’s serial section is amor-

tized. This is achieved when the overall performance of both KnightSim and single threaded

Parallel KnightSim are equal. The results of our trials showed that, on average, events must work

for approximately 1700 physical cycles to amortize the cost of the serial section in Parallel Knight-

Sim. This is in conjunction with the number of events being executed per cycle. Fig. 2.5 shows the

impact of the two factors combined. Again, the configuration described in Sec. 2.6.3 is maintained,

however a workload of approximately 1700 cycles is to the events. Results for Gem5-Event, KS,

and PKS are shown with all results normalized to those of Gem5-Event. For brevity I do not show

results for Esim and The Threads Package because they do not outperform the results of Gem5-

Event. The results show that for each test case the cost of the serial section in PKS is amortized as

both KS and PKS_1 have the same overall performance. KS and PKS_1 outperform Gem5-Event

with an average speed up of 1.16x, however it is apparent that as event workload scales up the ben-
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efits of fast single-threaded event execution declines. This is due to the limited scalability found in

all single-threaded event engines and strongly motivates parallelization with PKS.

Parallelizing the workload with PKS resulted in average speedups of 2.15x, 3.79x, 6.65x, and

10.44x over Gem5-Event and 1.89x, 3.33x, 5.84x, and 9.24x over KS for PKS_2, PKS_4, PKS_8,

and PKS_16 respectively. Considering that PKS does not need to execute an unrealistically high

number of events per cycle to gain parallel performance and that the imposed 1700 physical cycle

threshold is lower than the number of physical cycles measured in Table 2.1, it is evident that uti-

lizing PKS to parallelize small to large computer architectural simulations is viable and can result

in measurable speedups over the established performance of other discrete event-driven simulation

methodologies.

2.7 Summary and Conclusions

In the first half of this chapter I introduce KnightSim and discuss the benefits of KnightSim’s event

implementation approach regarding how KnightSim Contexts automatically model simulated oc-

cupancy and contention. I then provide detail regarding KnightSim’s implementation methodology

and discuss critical items pertaining to how KnightSim is used and how events are instantiated as

KnightSim contexts. Then, I discuss the implementation methodology of Parallel KnightSim. In

the second half of this chapter I reported the results of a detailed performance analysis of discrete

event-driven simulation engines in computer architectural simulators and the results of a direct

comparison between KnightSim, Parallel KnightSim, and the discrete event-driven simulation en-

gines found in Gem5, Esim, and M2S-CGM. My study provides insight into the average number

of events executed per simulated cycle and average number of physical cycles it takes to process

an event in a typical computer architectural simulator. I establish that small simulation models

execute approximately 13 events per simulated cycle, or fewer, and that large simulation models
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execute approximately 980 events per cycle, or more. My overall performance results showed that

on average KnightSim achieves speedups of 2.8x to 11.9x over the other discrete event-driven sim-

ulation engines presented in this paper. The results also show that, on average, Parallel KnightSim

can achieve speedups over KnightSim of 1.78x, 3.30x, 5.84x, and 9.16x in 2, 4, 8, and 16 threaded

executions respectively. Based on the performance results presented here and on the additional

benefits of KnightSim’s context-based approach I believe that KnightSim is a promising tool for

use in the development of future computer architectural simulations. The next chapter highlights

a new CPU-GPU heterogeneous architectural simulator called M2S-CGM. KnightSim was perva-

sively used in the creation of M2S-CGM and forms the basis of all of M2S-CGM’s timing models.
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CHAPTER 3: HETEROGENEOUS CPU-GPU SYSTEM SIMULATION

This chapter discusses the implementation and modeling methodologies of M2S-CGM, as first

presented in [3], with a significant expansion of discussion of the implementation methodology of

M2S-CGM. M2S-CGM is a novel computer architectural simulator that provides end-to-end sim-

ulation of the system elements required to simulate non-coherent and coherent CPU-GPU hetero-

geneous workloads. M2S-CGM extends the CPU and GPU models of a previously established

architectural simulator called Multi2Sim [15] and completely replaces Multi2Sim’s existing mem-

ory system with a new custom memory system called CGM. CGM is built utilizing the KnightSim

modeling methodology, as presented in chapter 2, and comprises coherence protocols, configurable

CPU and GPU cache structures, directories, virtual memory mechanisms, switching fabrics, a sys-

tem agent, a memory controller, and DRAMSim2 [23].

The chapter starts with providing a detailed background regarding the current state-of-the-art in

GPGPU programming and heterogeneous CPU-GPU hardware configurations. Next, discussion of

M2S-CGM’s implementation methodology, software architectural makeup, and current simulation

capabilities is provided. Finally, the chapter concludes with a validation study of M2S-CGM.

The validation study utilizes a select group of the Rodinia OpenMP and OpenCL benchmark’s

and makes comparisons between the execution results of M2S-CGM and that of a physical test

system [22, 24, 25]. The baseline results documented in the validation of M2S-CGM are then used

to support the architectural experiments presented in Chapter 4.
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3.1 Background and Motivation

The start of the GPGPU era, circa 2005, served as a tipping point in the mainstream use of GPUs as

co-processing elements to the CPU—the crux of a CPU-GPU heterogeneous system [26]. Hence-

forth the GPGPU programming model started to gain momentum in its evolution regarding both its

general processing performance and programmability. These advancements in the programming

model then resulted in the rise of its popularity in its use for processing scientific workloads with

problems that are heavily parallelizable. In comparison to CPU bound multithreaded applications,

GPGPU applications are designed to offload extremely parallelizable code segments onto the GPU

where the GPU’s Single Instruction Multiple Data (SIMD) architecture can provide significant

speedup over a CPU’s Multiple Instruction Multiple Data (MIMD) or Single Instruction Multiple

Thread (SIMT) equivalent implementations [27, 28].

(a) CPU MIMD depiction (b) GPU SIMD depiction

Figure 3.1: CPU and GPU Architectural Differences

Fig. 3.1 depicts the architectural and processing differences between the CPU and GPU that are

directly attributed to the differences in speedup between workloads suited for each processor type.

In the CPU each core is designed to run "thicker" threads where higher levels of performance

are attributed to higher instructions processed per clock. Conversely, each GPU compute unit is

designed to run "thinner" fibers (micro threads) where only one instruction is processed per clock.

In the GPU higher levels of performance are attributed to higher levels of data parallelism. In both
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the CPU and GPU implementations, each thread/fiber works on different data elements. The CPU

is also capable of processing SIMD instructions, the same way the GPU does, through the support

of the SSE instruction set [29]. However, when comparing the two diagrams and taking a data set’s

size into consideration, it is immediately apparent that a CPU would require additional iterations

to process a data set during execution as compared to the GPU.

At the time of writing this dissertation there are currently two mainstream approaches to CPU-GPU

system architecture: (1) a traditional approach where one or more GPUs are located on discrete

graphics cards connected through one of several peripheral component interconnect configurations

(i.e. PCIe [30]) and (2) a more recent approach where the GPU is colocated with the CPU on-die

as an integrated graphics chip and is connected to the rest of the system via the on-die switching

fabric [31, 32]. Despite the differences between these two architectural approaches, the GPGPU

programming model has remained the same with the GPU treated as a separate system element

that operates independently and in its own memory address space.

Figure 3.2: Simulated Heterogeneous System Node Architectural Block Diagram

In the GPGPU programming model the user must endeavor to partition the execution of the appli-
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cation between the CPU and GPU such that the overall application provides higher performance to

the equivalent multithreaded version. The performance of the GPGPU version of the application,

as compared to a multithreaded equivalent, can then be subjective and depends on several system

variables, such as, number of CPU cores, number of GPU compute units, memory system latency,

contention, data bandwidth, and the number of interactions between the CPU and GPU. As a rule

of thumb, research [3] shows that fewer interactions between the CPU and GPU and larger data

parallel problem sizes for the GPU will yield higher levels of speedup over applications with more

interactions between the CPU and GPU and smaller or lower data parallel problem sizes. For this

reason it remains that some GPGPU implementations do not perform better than their multithread

equivalents, which continues to compel further research in this area [33].

However, with the inclusion of the GPU on-die with the CPU new heterogeneous hardware and

software design spaces can be explored and new levels of parallel system performance are theo-

retically achievable. This serves as the motivation for producing M2S-CGM. M2S-CGM provides

the foundational infrastructure required to study system architectural interactions between two

processing elements with two different instruction set architectures and very different processing

capabilities. M2S-CGM allows for exploration of changes supporting performance improvements

for heterogeneous workload executions and the study of the trade-offs those design choices impose.

M2S-CGM allows us to experiment with both the GPGPU programming model and its supporting

hardware design spaces allowing for higher levels of hardware and software co-design. The fol-

lowing section discusses the implementation methodology of M2S-CGM and provides a detailed

overview of its software architectural makeup and construction.
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3.2 M2S-CGM Implementation Methodology

Fig. 3.2 shows a full example configuration of the M2S-CGM simulator. In the example configura-

tion, M2S-CGM is configured to simulate a realistic processor with integrated graphics and other

ancillary System On Chip (SOC) components. The makeup of the simulated processor includes

an x86 system emulator (not shown), multicore x86 CPU timing model, a Southern Islands system

emulator (not shown), multi-compute unit Southern Islands GPU timing model, a detailed multi-

level cache memory system, virtual memory mechanisms (not shown), switching fabric, system

agent, memory controller, and SDRAM. The figure depicts a system architecture that is config-

ured similarly to the Intel Haswell Core i7 Devil’s Canyon architecture [34, 35]. The figure shows

a configuration where the L2 caches, L3 caches, GPU, and system agent are colocated and con-

nected together by a switching fabric with a ring bus topology. More complex configurations are

possible, however this particular configuration provides a model of a real world chip architecture

regarding commodity off-the-shelf processors.

3.2.1 x86 System Emulation

M2S-CGM extends the x86 System Emulator found in Multi2Sim—the most critical and complex

component of the simulator. The extensions performed comprise:

• The addition of new simulated x86 system calls.

• New x86 CPU instructions enabling the successful execution of new OpenCL and OpenMP

benchmarks on the CPU.

• New system call related statistics.

• CPU thread management changes.
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• The instruction level emulation of specific system calls of interest that are performed by the

operating system during OpenCL executions.

Figure 3.3: Simulated CPU Implementation Approach

Fig. 3.3 shows a summary of how the x86 system emulator works in conjunction with the x86 CPU

Timing Model. In the figure, all of the components to the left of the fetch stage comprise the x86

system emulator. At initialization time, the x86 system emulator first sets up and configures the x86

runtime environment. This comprises the establishment of a memory image, stack, CPU register

file, execution context (thread), and the assignment of the stack and instruction pointers for the

entry context. During execution, the x86 system emulator opens and reads the instructions within

the application binary file. The application binary is compiled into an Executable and Linkable

Format file. The x86 system emulator is responsible for updating the instruction pointer position

after successful execution of each instruction.
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The process of executing instructions comprises the disassembly and emulation of the instruction

itself. Emulation results in the appropriate updates to the simulated CPU register file and memory

image. Before the x86 system emulator moves on to emulate the next instruction the emulator

creates an appropriate set of pseudo instructions that represent the micro operations that will pass

through the CPU pipeline and places them in the Fetch stage input buffer. The Fetch stage is the

first stage of the CPU pipeline timing model.

When executing a multithreaded application the x86 system emulator creates the additional

threads specified by the application binary, assigns them to a simulated core, and then begins

executing instructions for each thread during each cycle. Despite simulating a multithreaded ap-

plication, execution in the simulator is sequential, which makes keeping the simulated memory

image from becoming corrupted easy. Lastly, the rate at which the x86 system emulator reads and

executes instructions is determined by the state of the fetch stage provided by the x86 CPU tim-

ing model. This means that if a given CPU core is unable to fetch for any reason the x86 system

emulator does not run that cycle.

During system calls the simulator traps to the x86 system emulator where it acts as the the operating

system and performs the actions subject to the system call prior to returning to the application. The

added instruction level emulation of system calls provides a means to incorporate OpenCL system

related overhead into the x86 CPU timing model. In the native version of Multi2Sim there is

no timing model for any of the simulator’s emulated system calls, which makes the full study

of CPU-GPU system interactions not possible. Examples comprise the system calls performed

during OpenCL executions related to memory management and memory movement back and forth

between the CPU and GPU.
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3.2.2 x86 CPU Timing Model

M2S-CGM extends the x86 CPU timing model found in Multi2Sim. The extensions performed

comprise:

• The addition of operating system related system call trap time.

• Memory access related functional corrections in the dispatch, issue, write-back, and commit

pipeline stages.

• New CPU related statistics.

• Support for CPU and GPU cache flushes.

• CPU virtual memory mechanisms.

• Integration with the CGM memory system, see Sec. 3.2.5.

As shown in Fig. 3.3, all of the components to the right of the x86 system emulator form the

x86 CPU timing model. The x86 CPU timing model comprises a generalized out-of-order 6 stage

pipeline. The x86 CPU timing model can be configured as a hyper-threaded single or multicore

CPU with configurable pipeline. Pipeline configuration allows for the specification of the max-

imum number of instructions to attempt to process each cycle and other performance settings

specific to each pipeline stage. As mentioned in Sec. 3.2.1, the x86 system emulator will assign

execution contexts to their applicable cores in the simulator. Then, the micro ops generated by the

x86 system emulator for each context are passed to the fetch stage, which is the beginning of the

x86 CPU pipeline timing model. Each stage runs once per CPU cycle and attempts to processes

as many micro ops as possible up to the pipeline’s configured maximum number of instructions.

As the micro ops pass through the pipeline they are processed in an out-of-order manor, but are

reordered prior to commit and write-back with use of the reorder buffer.
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For memory system related statistics the state of the reorder buffer is used to determine if the CPU

is busy running or stalled on a read or write request to the memory system. This is accomplished by

checking if the reorder buffer is full and determining if a read or write is at the head of the buffer.

However, despite the state of the reorder buffer, the x86 CPU timing model will continue to fetch

until the fetch input queue is saturated, at that point the CPU core is fully stalled. The native CPU

timing model in Multi2Sim removes memory system stores from the CPU reorder buffer before

issuing the store to the memory system. In the M2S-CGM CPU model a store is first issued to the

memory system in the issue stage with the hopes of bringing the memory system block to the CPU

L1 cache early. Regardless, the store is only written into the L1 data cache, committed, written-

back, and removed from the reorder buffer after the completion of all dependant and previously

issued micro ops complete.

As mentioned in Sec. 3.2.1, the native x86 CPU Timing Model in Multi2Sim does not support tim-

ing for system calls. This means that system calls performed during the execution of an application

in Multi2Sim will be charged zero cycles for the system call itself. This modeling approach is suf-

ficient for applications that do not rely heavily on the performance of system calls. However, this

approach severely limits the study of CPU-GPU related system interactions because the system

interactions themselves are performed through a series of system calls. The system call related

modifications to the CPU timing model provide a mechanism to ensure that all uops occurring

before a system call are committed and written-back, a system call trap time is assessed, and then

if required the micro ops related to the instruction level emulation of the system call pass through

the appropriate CPU pipeline. After completion of the system call, execution is then resumed at

the next instruction address pointed to by the application’s next instruction pointer.

The CPU timing model interfaces with CGM at the fetch and issue CPU pipeline stages and is de-

pendent on CGM’s modeled memory system latency for correct execution timing. Before entering

the memory system, virtual addresses are looked up in the translation lookaside buffer and on a
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hit are translated from virtual to physical prior to accessing the respective L1 instruction or data

cache. On a miss, execution then results in the eviction of the oldest entry in the translation looka-

side buffer, a subsequent walk of the page table, a latency charged for the action, and finally an

access of the respective L1 instruction or data cache. From there memory system accesses are exe-

cution driven and latency varies based on the memory system’s configuration and the system wide

contention and occupancy state. Access latency within the memory system, saturation of memory

system elements, or lack of free miss status handling registers may result in any combination of an

empty fetch queue, full reorder buffer, and full issue buffer which effectively results in measurable

memory system stalls in the CPU.

3.2.3 Southern Islands GPU System Emulation

In addition to the previously mentioned x86 extensions, M2S-CGM also makes extensions to the

Southern Islands GPU emulator found in Multi2Sim. The extensions comprise:

• New Southern Islands GPU instructions enabling the successful execution of new OpenCL

benchmarks on the GPU.

• GPU virtual and physical address mechanism additions.

The implementation of the Southern Islands GPU system emulator is similar to that of the x86 sys-

tem emulator, as discussed in Sec. 3.2.1. Fig. 3.4 shows a summary of how the Southern Islands

GPU system emulator works in conjunction with the Southern Islands GPU timing model. In the

figure all of the components to the left of the GPU fetch stage comprise the Southern Islands GPU

system emulator. Unlike the x86 system emulator, the Southern Islands GPU system emulator

does not automatically start with the execution of an application on M2S-CGM. Instead, the guest
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application executing on M2S-CGM must first configure the GPU’s kernel and data prior to execu-

tion on the GPU, see Chapter 4. This is accomplished with the use of an OpenCL runtime and the

appropriate GPU driver simulation. Once the guest application has completed the configuration

of the GPU’s kernel and its input data, the Southern Islands GPU system emulator is directed to

start execution with the first instruction of the GPU kernel by a system call. At the beginning of

the execution the Southern Islands GPU system emulator makes modifications to its designated

memory image and sets up the GPU register file.

Figure 3.4: Simulated GPU Implementation Approach

Similarly to the x86 system emulator, the Southern Islands GPU system emulator opens a GPU ker-

nel, compiled into an Executable and Linkable Format file, and begins to execute instructions. The

process of executing GPU instructions comprises the disassembly and emulation of one instruction

per cycle. Additionally, the emulator only executes one context (stream in GPGPU terms) on the

GPU at a time. Each instruction emulation results in the appropriate updates to the simulated GPU
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register file and the GPU’s designated memory image. Then, the emulator creates and passes a

pseudo instruction to the appropriate GPU Compute Unit fetch input buffer and updates the in-

struction pointer. Like the CPU, the Fetch stage is the point of entry to the GPU compute unit

pipeline model. At the end of execution the GPU’s designated memory image contains the data

output from the execution of the GPU kernel and the CPU is notified that the GPU has completed

its tasks by a GPU driver interaction.

Several new GPU instructions were added to the emulator to expand the range of benchmarks

the Southern Islands GPU system emulator can execute. The Southern Islands instruction set

architecture is specific to the Radeon HD 7000 series GPUs and is partially publicly known through

a published instruction set architecture reference guide [36]. The new GPU virtual and physical

address mechanism additions bring both the CPU and GPU into the same virtual memory system

at large. When the GPU executes in a non-coherent mode the GPU is assigned its own unique

physical memory pages and when executing in a coherent mode the GPU shares the same physical

memory pages with the CPU.

3.2.4 Southern Islands GPU Timing Model

In addition to the previously mentioned x86 extensions, M2S-CGM also extends the Southern

Islands GPU model found in Multi2Sim. The extensions performed comprise:

• Memory access related functional corrections to the GPU issue stage and vector unit pipeline.

• Vector memory access coalescing.

• New GPU related statistics.

• GPU virtual memory mechanisms and Input–Output Memory Management Unit
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(IOMMU).

• Timing models for scalar caches and local data stores.

• A GPU hub for multiplexing memory request.

• Integration with the CGM memory system, see Sec. 3.2.5.

As shown in Fig. 3.4, all of the components to the right of the Southern Islands GPU system

emulator form the Southern Islands GPU timing model which models an application specific in-

order GPU multistage pipeline. The Southern Islands GPU timing model can be configured as

a single context multi-compute unit GPU with each compute unit comprising a front end, SIMD

lanes, a scalar unit, a branch unit, a vector memory unit, and a Local Data Share (LDS) unit. The

pipeline itself is configurable, however the pipeline only supports a single instruction execution

each cycle.

As mentioned in Sec. 3.2.3, the Southern Islands GPU system emulator creates and assigns a single

GPU execution context to the Southern Islands GPU timing model. The context work-groups are

then spread across the number of available compute units during execution. Kernel micro ops

generated by the Southern Islands GPU system emulator are fetched by the compute unit front end

and are then issued to their respective processing unit; either a scalar unit, a branch unit, a vector

memory unit, or the SIMD unit. Memory accesses, depending on the type, take a route through

the scalar, branch, and vector memory units, shown as "Memory Units" in the figure. Processing

related instructions take a route to the SIMD unit, shown as "SIMD Units" in the figure. During

execution memory accesses performed in either the scalar, branch, or vector memory units result

in a local data share, scalar cache, or vector cache access. Vector cache accesses are the only cache

accesses that leave the GPU core for the external memory system.
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Functional corrections to the issue stage and vector unit pipeline in the native Multi2Sim GPU

timing model include vector memory unit access coalescing and proper stall of the GPU’s compute

units on memory system resource saturation. In the M2S-CGM Southern Islands GPU timing

model, vector memory accesses are coalesced into single block requests at the GPU L1 cache

level. Once the GPU L1 cache coalescer is full or the miss status handling register is full the vector

memory unit fills and then stalls. Once stalled the issue stage can no longer place memory requests

in the vector memory unit’s pipeline, which results in a GPU compute unit stall on memory access

request.

Additionally, the native Southern Islands GPU timing model found in Multi2Sim lacks the simu-

lated computer architectural components required to resolve virtual to physical address translations

when communicating externally with the main memory system. The native Southern Islands GPU

timing model assumes that all data addresses are virtual and are resident within a generic model

of the GPU’s internal memory. In effect this means that the GPU and CPU memory systems are

incompatible and must be modeled as two disparate entities. This approach lends itself to studies

of the internal mechanisms of the GPU, but severely limits its use in the study of the interactions

between the CPU, GPU, and memory system at large. The modifications related to the Southern

Islands GPU timing model’s virtual memory mechanisms take these issues into account and pro-

vide timing for the computer architectural components involved with memory address translation.

In conjunction with the modifications to the Southern Islands GPU system emulator, this creates a

full system change that allows for a modeled shared memory system between the CPU and GPU;

like the real hardware. A future addition of a direct memory access engine model would further

enhance the fidelity of the CPU-GPU system model on whole.

The GPU timing model interfaces with CGM at the local data share, scalar cache, and vector

cache entry points. There CGM provides latency for these internal memory elements and external

memory system accesses. In addition to the caches and crossbar, the GPU memory system model

50



includes a hub and IOMMU (see Fig. 3.2). The hub multiplexes memory system accesses between

the GPU’s L2 cache banks and the switching fabric. The IOMMU performs address translations

for the GPU and can alternately perform both forward and reverse address translations if utilizing

virtual addressing within the GPU’s caches. Additionally, memory system accesses destined for

the external memory system include a configurable virtual or physical address schema. For ex-

perimentation purposes it is assumed that GPU virtual to physical address translation can occur

at either the interface between each compute unit and the first level of cache or within the GPU’s

IOMMU. In a real system, a GPU TLB miss would result in a required intervention by the CPU to

assist in the address translation. An efficient design of the GPU’s hardware that enables the GPU

to share a virtual address space with the CPU is still an open research question.

3.2.5 Memory System Timing Models

M2S-CGM’s memory system timing model is provided by a stand alone memory system simulator

called CPU-GPU Memory, or CGM for short. CGM is a new and custom memory system model

designed to support the research performed and presented in this dissertation. As described in

Sec. 3.2.2 and Sec. 3.2.4, CGM completely replaces Multi2Sim’s disparate CPU and GPU mem-

ory system models with a fully cohesive CPU and GPU memory system model. This results in

one comprehensive computer architectural system model that brings together the CPU, GPU, and

memory system.

A depiction of the memory system simulation elements provided by CGM is shown in Fig. 3.2.

CGM provides timing models of configurable CPU and GPU cache structures, input-output con-

trollers, switching fabrics, crossbars, a system agent, a memory controller, SDRAM, and other dis-

crete system elements such as the GPU’s scalar cache, local data share cache, and hub. In addition,

CGM also includes timing models for virtual memory mechanisms, such as memory management
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units, translation lookaside buffers, page table walkers, and includes a directory based CPU MESI

coherence protocol and a GPU MESI coherence protocol.

All of the memory system timing model elements within the scope of CGM are implemented as

KnightSim contexts using the KnightSim modeling methodology as discussed in Sec. 2.3. This

means that each memory system timing model element is advanced when given work to perform.

Advanced elements wake up and try to process their assigned work until success. Once complete,

the next element is given work to perform and it is in turn advanced by the previous element.

On each advance, memory system simulation elements assess a latency for the performance of

their work by pausing until that latency has expired. The assessed latency provides the modeled

occupancy of that element. Contention is modeled as resources begin to fill or saturate creating

element stalls and longer access latency.

The start of a memory system access begins at the interface between CGM and the CPU or GPU.

Once the CPU or GPU completes an address translation a load or store will then be issued to the

memory system. In execution, the CPU or GPU first checks the status of the L1 cache top request

Rx queue. If there is space for a request, the CPU or GPU will then proceed to insert the memory

request into the queue and advance the appropriate L1 cache. If the top request Rx queue is full the

CPU or GPU will try again each cycle until success. Once enqueued, the memory request will wait

in the top request Rx queue until retrieved for processing by the L1 cache. The number of cycles

the memory system request must wait is determined by the current state of the memory system at

large. The L1 cache has been advanced by the CPU or GPU and will wake up each cycle in an

attempt to process the memory request. Once processed by the L1 cache, the result will either be a

hit or a miss depending on the state of the memory block in the cache. Hits are returned to the CPU

core or GPU compute unit immediately. However, a miss will result in the lower level memory

system’s MESI coherence protocol coming into play, see Sec. 3.2.6. The following subsections

summarize the implementation methodology of each memory system timing model and provides
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expanded discussion regarding their specific tasks.

3.2.5.1 Cache Timing Model

Fig. 3.5 shows the basic elements that all CPU and GPU cache structures comprise within CGM.

The basic architectural components of the cache are summarized as:

• A cache level control function (i.e. L1, L2, L3, scalar, local data share, and vector cache

control).

• Top and bottom request, reply, and coherence receive (Rx) and transmit (Tx) queues.

• A Miss Status Handling Register (MSHR) and associated coalescer.

• A directory based cache table.

• Write-back, retry, and join queues.

• Input-output controllers for request, replies, and coherence messages leaving the cache.

All cache structures comprise a configurable cache size, memory block size, MSHR size, coa-

lescer size, set associativity, and latency. Additionally, all cache structures support a write-back

schema, a least recently used cache replacement policy, and a directory based MESI cache coher-

ence protocol. All caches are implemented with an inclusive caching schema and are connected

via a modeled system bus or by a modeled switching fabric, see Sec. 3.2.5.2. Furthermore, each

cache level operates at the same frequency as its respective CPU or GPU and shares a common

cache control function that is implemented as a single cache type KnightSim context.
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When a cache controller is advanced the cache controller will first invoke its scheduler. The sched-

uler maintains a record of the current state of the various sub elements within the cache and de-

termines what action the cache controller will take in a given cycle. The cache’s state record

comprises the current sizes of the MSHR, coalescer, and the state of various queues within the

cache during execution. The scheduler gives first priority to new CPU or GPU memory requests

and second priority is given to lower level memory system replies and other coherence related

traffic.

Figure 3.5: Cache Architecture

The scheduler is responsible for performing request flow control in the cache. If the cache’s sched-

uler finds that either the MSHR, coalescer, write-back queue, retry queue, or bottom request Tx

queue are saturated the cache is unable to process any new requests and must stall that cycle. The
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cache will continue to stall until a previously processed memory request is returned and can com-

plete. Once a previous memory request completes resources within the cache itself become free

which then allows the cache to process a new memory request. In addition, the scheduler is also

responsible for determining if new memory requests are to be coalesced with outstanding memory

requests. Coalescing is required if the subject memory block is in the transient sate, there is an

associativity conflict, or if there is a directory conflict. The scheduler will retry coalesced memory

requests when the appropriate memory block is brought to the cache and resources in the cache

table become free.

When processing a memory request, the cache controller will first probe the address for tag, index,

and offset. Fig. 3.6 shows an example two way set associative cache table with write-back. The

cache controller will simultaneously look for the memory block in both the cache table and in the

write-back queue. Memory blocks are never in the write-back queue and cache table at the same

time. After the address probe the cache controller will locate the appropriate set in the cache table

and then compare the tags of each available way from the cache table to determine if the block is

in the cache or not. The cache controller will also compare the tags of all entries in write-back to

determine if the memory block is in write-back or not.

The cache’s write-back queue significantly complicates things. Memory blocks that are present

in the write-back queue are always valid and are either in a modified or exclusive state. Memory

blocks in the exclusive state remain exclusive to the core until invalidated or flushed by the cache

controller at an opportune time. When processing a memory request, it is possible for the cache

controller to find that a memory block is uncached in the cache table, but still valid, dirty, and

sitting in the write-back queue. CGM implements an optimized approach where all caches will

attempt to write the memory block back into the cache table and process the memory request as a

hit. If the cache controller is unsuccessful in finding a victim due to an associativity or directory

conflict the write-back is immediately flushed from the cache and the memory request is coalesced
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or NACKED back to the requester as appropriate.

The cache controller processes a miss by first freeing a cache line by evicting the least recently

used non-transient cache line. Then after eviction, storing the requested memory block’s tag in the

free cache line, setting the free line to the transient state, and sending a memory request down to the

next level in the memory system. When transmitting requests, replies, or coherence messages to

another memory system component the cache controller constructs the appropriate request, reply,

or coherence message and places the message in the top or bottom input-output controller’s outgo-

ing message queue. Sec. 3.2.6 discusses the implementation of the CPU and GPU MESI coherence

protocols and provides additional detail regarding the types of messages transmitted between the

various memory system components. Then, the cache’s built in input-output controllers are re-

sponsible for all transmittal actions on behalf of the cache and will transmit the message along

the appropriate virtual lane based on the message type. Message transactions between caches are

bidirectional and are asynchronous.
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Figure 3.6: Architecture of a Two Way Set Associative Cache With Write-Back
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3.2.5.2 Switch Timing Model

CGM connects major memory system components through a modeled on-die switching fabric.

The on-die switching fabric is modeled by chaining together multiple individual switch models.

Fig. 3.7 shows the architecture of a single switch model. The basic architectural components of

the switch are summarized as:

• A switch control function.

• North, East, South, and West ports comprising virtual lanes for request, reply, and coherence

Rx and Tx messages.

• An internal crossbar.

• A routing table.

An example KnightSim switch control function was previously discussed in detail in Sec. 2.3. The

switch model comprises a configurable number of switches, configurable request, reply, and coher-

ence Rx and Tx lane queue sizes, and a configurable latency. After specifying the desired number

of switches the switching fabric automatically generates itself as a ring bus topology and utilizes

a shortest path routing schema for the routing of message packets. Additionally, the switch model

supports a round-robin schema when selecting a starting port during each execution. Currently the

switch model’s available ports include North, East, South, and West ports, however work has been

done to make the switch model "N" ported. The same round-robin schema is used when selecting

a starting request, reply, or coherence Rx lane at the beginning of each execution.

The round-robin schema increments the starting port and lane position at the end of each switch

controller execution. Incrementing the starting position provides a mechanism for deadlock pre-

vention in the switch model. The switch’s crossbar model is shown in Fig. 3.8. The crossbar links
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all possible inputs to all possible outputs. Despite having physical queues for request, reply, and

coherence messages, the crossbar only has one set of wires per port and will only route one virtual

lane type at a time. In CGM it is considered an error if a message packet being routed has the same

destination and source.

Figure 3.7: Switch Architecture

In comparison to the complexity of the cache control function the switch control function is rela-

tively straight forward. A switch can be advanced by a connected memory system component (i.e.

cache, switch, system agent, or GPU hub) by up to the number of ports modeled by the switch in a

given cycle. After advancement the switch will start with the current lane and port provided by the

round-robin schema. The switch will go through all ports looking for the presence of a message

packet. If the switch controller finds a packet the switch will consult the destination and attempt

to link the input port and lane to the correct output port and lane. The switch controller will link
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the pair if the output port and lane queue have not previously been linked during the current exe-

cution and there is room for the message packet in the appropriate output port’s lane queue. The

switch controller will be unsuccessful at forming a link if the appropriate output port lane queue

is full which results in stalls and contention along that virtual lane. The switch controller repeats

this process for all ports during an execution epoch. After the switch controller goes through all

available ports the message packets are then transferred via the crossbar to their respective output

queues with their successfully linked routes. The switch model’s step variable is then incremented

by the number of successfully formed links.

Figure 3.8: Switch Crossbar Architecture

Similar to the cache model, the switch model’s built in input-output controllers are responsible

for all transmittal actions on behalf of the switch and will transmit message packets along the

appropriate virtual lanes to the next memory system component. The switch model’s input-output
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controllers also follow a round-robin schema for selection of the virtual lane which provides a

mechanism to prevent deadlock in the system. Message packet transactions between each switch

and all other memory system components are bidirectional and are asynchronous.

The switching fabric operates at a frequency that is independent of the CPU and GPU. In CGM

there are currently three timing domains which comprise the CPU, GPU, and system frequency

domains. The switching fabric sits in the system frequency domain and operates at a frequency

that is specified as a ratio of the CPU’s frequency. This is performed with use of a KnightSim macro

that adjusts the number of cycles that a pause() will invoke. For example, if the CPU is operating

at 4 GHz and the switching fabric is operating at 2 GHz the macro will adjust the pause() by a

factor of two, which results in the switching fabric running at half the frequency. Bandwidth within

the switching fabric is modeled by the input-output controllers. The input-output controllers divide

the simulated message packet size in bytes by a variable flit size to determine transfer time latency.

The latency is inclusive of the data register fill time.

Figure 3.9: GPU HUB Architecture
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3.2.5.3 GPU Hub Timing Model

CGM connects the Southern Island GPU model to the on-die switching fabric with the use of a

GPU hub. Fig. 3.9 provides an architectural representation of the GPU Hub. The GPU’s hub

interfaces the GPU with the reset of the memory system by multiplexing memory requests, replies,

and coherence messages between the GPU’s internal memory hierarchy and the external memory

system. The implementation of the GPU hub timing model is straightforward and comprises a

hub control function, configurable request, reply, and coherence Rx and Tx lane queue sizes, and

a configurable latency. Similar to the switch timing model, the hub controller uses a round-robin

schema for selection of a starting input queue. The hub controller then polls each queue until

a message packet is found. The hub controller then explicitly moves the message packet to the

correct output port and lane. The hub controller schedules the transfer of one message packet per

execution. Message packets bound for lower level memory are directed to the network right away.

Message packets bound for higher level GPU memory must be routed to the appropriate L2 cache

bank. The hub resides in the GPU frequency domain with bidirectional and asynchronous message

packet transactions.

3.2.5.4 System Agent, Memory Controller, and SDRAM Timing Models

Fig. 3.10 shows the architecture of the system agent, memory controller, and SDRAM. Modern

chip designs have moved the architectural components of the northbridge on-die with the CPU.

These holistically designed CPUs are called System On Chip (SOCs) and include a system agent

that comprises the interfaces provided by the system’s northbridge [37]. These interfaces include

the display interface, Direct Media Interface (DMI), PCI Express (PCIe), and memory controller.

CGM implements a system agent, but does not implement the display, DMI, and PCIe interfaces

because the components these interfaces would integrate are out of the scope of the research at
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hand. However, these interfaces can be added to the system agent timing model with ease if future

research work necessitates.

Figure 3.10: System Agent, Memory Controller, and SDRAM Architecture

The system agent timing model comprises a system agent control function, configurable top and

bottom Rx and Tx queues, and a configurable latency. The memory controller can be considered

a part of the system agent, but is independently modeled in CGM. The memory controller timing

model comprises a memory controller control function and configurable top Rx and Tx queues.

The SDRAM timing model is provided by DRAMSim2 [23]. DRAMSim2 provides detailed tim-

ing models for several state-of-the-art SDRAM and DDR memory modules. The memory con-

troller timing model integrates with DRAMSim2 with use of DRAMSim2’s built in Application

Programming Interface (API). Main memory is simulated as a multi-channel system with memory
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striped over multiple memory modules. Message packet transactions between the system agent,

memory controller, and SDRAM are bidirectional and are asynchronous.

When advanced by the attached switch node input-output controller, the system agent controller

will poll its input request queue for a message packet. After finding the message packet the system

agent controller will then route the packet to the memory controller. The system agent’s input-

output controller will place the memory packet in the memory controller’s outstanding memory

request queue and advance the memory controller. Once advanced the memory controller will then

perform the appropriate load or store to SDRAM. DRAMSim2 provides functions for loading and

storing to the simulated SDRAM modules. Additionally DRAMSim2 models contention and oc-

cupancy within the SDRAM modules and includes several selectable scheduling schemas. When

a load or store is complete, DRAMSim2 will initiate a memory controller call back function noti-

fying the memory controller that the load or store has completed. Stores to SDRAM are complete

at that point, however loads require a reply message with data from the memory controller back to

the requesting system cache.

3.2.6 Memory System Coherence Protocols

CGM currently implements a detailed directory based cache coherence protocol for both the CPU

and GPU. Directory based cache coherence protocols for homogeneous chip multiprocessors have

been around for a long time and take many forms, as described in [38, 39, 40, 41, 42, 43]. How-

ever, CGM introduces a directory based cache coherence approach for heterogeneous CPU-GPU

systems. The schema comprises a detailed directory based MESI coherence protocol throughout

the CPU’s and GPU’s memory hierarchy. The GPU’s MESI protocol is implemented differently in

comparison to the CPU’s MESI protocol, however it is designed to connect and work seamlessly

with the CPU’s MESI protocol and effectively binds the two disparate memory hierarchies. This
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design provides a straightforward and optimized coherence protocol for the CPU and GPU when

operating individually, but also supports coherent interoperation of the CPU and GPU on shared

memory objects in a collaborative processing environment.

The CPU and GPU MESI coherence protocols both operate using a directory located in the lowest

level of cache in the system [44]. As shown in 3.2, the lowest level of cache for the CPU is the L3

cache bank and the lowest level of cache for the GPU is the GPU L2 cache bank. When configured

to operate individually in a non-coherent mode the CPU L3 cache bank and the GPU L2 cache bank

both arbitrate access to memory blocks between processors in their respective memory hierarchies.

In the non-coherent mode, loads and stores go directly to main memory from the CPU L3 cache

bank and similarly go directly to main memory from the GPU L2 cache bank over the switching

fabric. When configured to operate in a coherent mode, memory requests are routed from the

GPU L2 cache bank to the CPU L3 cache bank. The CPU L3 cache bank then arbitrates memory

accesses between both the CPU and GPU in whole and will maintain a coherent memory system

between the two processor types.

In modern x86 CPUs the L1 instruction, L1 data, and L2 cache banks are private to each core and

in modern GPUs the L1 instruction and L1 data caches are private to each compute unit. However,

the CPU L3 and GPU L2 cache banks are shared among all processing units within their respective

memory hierarchies. In CGM the CPU and GPU L2 cache banks are implemented as "smart

caches" and perform several important memory coherence related functions on behalf of their

respective processors. These task comprise macro core memory block evictions and optimized L2

cache level coherence mechanisms, such as request forwarding and joins.
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Table 3.1: CPU L1 Instruction Cache MESI Coherence Protocol State Table

CPU L1 Instruction Cache
State Fetch

M N/A
E N/A
S Hit
I Miss ->GetS

As described in 3.2.5.1, each cache comprises a cache control function that is implemented as a

KnightSim context with a specific set of coherence protocol functions. After a cache has been

advanced the cache controller then checks the message packet type. Valid message types comprise

request, reply, and coherence message types. Once the cache controller decodes the message type

the corresponding coherence protocol action is taken. Coherence protocol actions are implemented

as call-back functions that are assigned to each cache structure at initialization time. The following

subsections provide expanded detail regarding the implementation of the CPU and GPU MESI

coherence protocols in CGM and how they work in an integrated operational environment. The

following protocol sate tables assume that generalized cache scheduling functionality, like stalling

and coalescing, has previously occurred as described in 3.2.5.1.

3.2.6.1 CPU L1 Instruction and Data Cache MESI Protocol State Tables

Table 3.1 shows the protocol state table for the CPU L1 instruction cache. The CPU L1 instruction

cache is only required to support a shared or invalid state for cached memory blocks and does not

utilize a write-back queue. This simplified design was chosen because the CPU L1 instruction

cache is only required to cache read only memory blocks from the .text memory segment of the

application. Additionally, CPU L1 instruction cache accesses are denoted as fetches instead of

loads. This allows the rest of the memory system to easily determine if a memory request is for
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read only memory or not. As shown in the table, the instruction cache controller will process a

fetch to a memory block that is cached and in the shared state as a hit. A fetch to a memory block

that is uncached or that is in the invalid state will be processed as a miss resulting in a fetch (GetS)

request being sent down to the next level cache in the memory system.

Table 3.2 shows the protocol state table for the CPU L1 data cache. In comparison the data cache

protocol state table is more complex than the instruction cache protocol state table. The data cache

supports all states of the MESI coherence protocol and additionally supports in cache merges of

write-back data stored in a write-back queue, see generalized cache functionality in Sec. 3.2.5.1.

As shown in the table, the CPU L1 data cache controller will process a load or store to a memory

block that is cached and in the modified or exclusive states as a hit. Memory blocks that are in the

exclusive state are set modified as a result of a successful store requests. Additionally, the CPU

L1 data cache controller will process a load request to a memory block that is cached and in the

shared state as a hit.

Table 3.2: CPU L1 Data Cache MESI Coherence Protocol State Table

CPU L1 Data Cache
State Substate Load Store

M M Hit Hit
E E Hit Hit ->M

S S Hit Miss ->Upgrade
S_Pending_Upgrade Upgrade_Miss ->Coalesce Upgrade_Miss ->Coalesce

I
I Miss ->Get Miss ->GetX
I_WB_Writable Hit ->E/M Hit ->M
I_WB_Non_Writable Miss ->Coalesce Miss ->Coalesce

In a special case, the data cache controller will process a store request to a memory block that is

cached and in the shared state as an upgrade miss. This is considered a miss because memory

blocks in the shared sate cannot be written to because they are shared across one or more processor

cores. Therefore, the data cache controller must then set the shared memory block pending and

67



send an upgrade request to the last level cache (directory) in the memory system. Memory blocks

that are waiting on an upgrade to complete are considered transient. A successful upgrade request

will result in the memory block’s eviction by all other holding cores and then the subsequent

upgrade of the requesting core’s transient memory block to the exclusive state.

The data cache controller will process a load or store to a memory block that is uncached, not in

write-back, or that is in the invalid state as a miss resulting in a load (Get) or store (GetX) request

being sent down to the next level cache in the memory system. If the cache controller finds that the

requested memory block is in write-back the cache controller will process the request according to

the state of the cache table set.

3.2.6.2 CPU L2 Cache MESI Protocol State Table

Table 3.3 shows the protocol state table for the CPU L2 cache. The CPU L2 caches are imple-

mented as smart caches that perform several macro level coherence functions on the behalf of the

CPU core it supports. Like the CPU L1 cache, the CPU L2 cache supports all states of the MESI

protocol and additionally supports in cache merges of write-back data stored in the write-back

queue. The CPU L2 cache handles core level block evictions on behalf of the last level cache

(directory). All memory requests arriving at the CPU L2 cache are unique because the CPU L1

instruction and data caches perform block level coalescing at the L1 level. This intrinsic property

of the memory hierarchy helps to simplify the CPU L2 protocol state table somewhat.
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Table 3.3: CPU L2 Cache MESI Coherence Protocol State Table

CPU L2 Cache
State Substate Fetch Load Upgrade Store

M M N/A Hit ->PutX N/A Hit ->PutX
E E N/A Hit ->PutClnX N/A Hit ->M ->PutX
S S Hit ->PutS Hit ->PutS Miss ->Upgrade_Fwd Miss ->Upgrade

I

I Miss ->GetS Miss ->Get Miss ->GetX Miss ->GetX
I_WB_Flush_Conflict N/A Miss ->Get_Nack N/A Miss ->GetX_Nack
I_WB_Writable N/A Hit ->E/M ->PutClnX/PutX N/A Hit ->M ->PutX
I_WB_Non_Writable N/A Miss ->Coalesce N/A Miss ->Coalesce
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The CPU L2 cache controller will process a fetch request to a memory block that is cached and

in the shared state as a hit resulting in a reply (PutS) back to the requester. Likewise, the cache

controller will processes a fetch request to a memory block that is uncached or invalid as a miss

resulting in a fetch request (GetS) being sent down to the next level cache in the memory system.

The CPU L2 cache controller will process a load or store to a memory block that is cached and in

the modified or exclusive state as a hit. The cache controller will also process a load request to a

memory block that is cached and in the shared state as a hit. After processing a hit the L2 cache

controller will build the appropriate reply message (PutS, PutClnX, or PutX) and send back to the

requesting L1 cache.

The CPU L2 cache controller will forward an upgrade request to the last level of cache (directory)

if the memory block is cached in the shared state. In a special case it is possible for the CPU L1

data cache to drop the memory block and for the the L2 cache controller to receive a store to a

memory block in the shared state. If this occurs the L2 cache controller processes the request as an

upgrade in the same manor as the L1 data cache, but will reply with a PutX to the L1 data cache

when the memory block is upgraded.

An eviction of a memory block in the L2 cache automatically results in a flush of the memory

block at the L1 cache level. If the memory block is shared, the L2 cache does not wait for the

L1 cache to acknowledge the flush and will continue to process requests, however if the memory

block is exclusive or modified the L2 cache must wait for an acknowledgement from the L1 cache.

An L2 eviction of a block in the exclusive or modified state can lead to two special cases at the L2

cache level that can occur while waiting for the eviction to complete. First, the L2 cache controller

will process a new load or store to a memory block that is pending a data cache flush as a flush

conflict and issue the appropriate NACK (Get/GetX NACK) going back to the requester. Second,

the L2 cache controller will go ahead and process an upgrade request of a memory block that is

pending a data cache flush as a miss resulting in a store request (GetX) being sent down to the next
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level cache in the memory system.

The L2 cache controller will process a load or store to a memory block that is uncached, not

in write-back, or that is in the invalid state as a miss resulting in a load (Get) or store (GetX)

request being sent down to the next level cache in the memory system. If the cache controller

finds that the requested memory block is in write-back the cache controller will process the request

according to the state of the the cache table set. The L2 cache performs several other coherence

related functions regarding coherence joins on the behalf of the last level of cache (directory). The

additional coherence functions of the CPU L2 cache are covered in the following section.

3.2.6.3 CPU L3 Cache MESI Protocol State Table

Tables 3.4 and 3.5 show the various protocol states for the CPU L3 cache. As shown in 3.2, the CPU

L3 cache is the lowest level cache in the system and therefore is responsible for arbitrating memory

requests between the CPU cores when set in the non-coherent processing mode and between the

CPU and GPU when set in the coherent processing mode. The L3 cache performs arbitration by

utilizing a directory with each cache line, as shown in Fig. 3.6.

The L3 cache supports all states of the MESI coherence protocol and additionally supports in cache

merges of write-back data stored in the write-back queue. When processing requests as a hit, the

L3 cache will set a bit in the directory that indicates which cores hold the subject memory block.

This creates several new MESI sub states, which are discussed here. The CPU L3 cache also

uses an additional bit in the directory to indicate a pending state for multi-part coherence related

interactions. Also, the CPU L3 cache services all processors and can receive multiple requests for

the same memory block from different processors which requires some additional sophistication

in the cache’s coalescing mechanisms.
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Table 3.4: CPU L3 Cache MESI Coherence Protocol State Table: Fetches and Loads

L3 Cache Loads
State Substate Fetch Load

M

M N/A Hit ->Set_Core_Holder ->PutX
M_Owned N/A Hit ->Set_Core_Holder ->PutX
M_Pending_Owned N/A Hit ->PutX
M_Pending N/A Miss ->Get_Nack
M_Held N/A Hit ->Set_Pending ->GetFwd

E

E N/A Hit ->Set_Core_Holder ->PutClnX
E_Owned N/A Hit ->Set_Core_Holder ->PutClnX
E_Pending_Owned N/A Hit ->PutClnX
E_Pending N/A Miss ->Get_Nack
E_Held N/A Hit ->Set Pending ->GetFwd

S S Hit ->Set_Core_Holder ->PutS Hit ->Set_Core_Holder ->PutS

I

I Miss ->SDRAM_Load Miss ->SDRAM_Load
I_WB_Flush_Conflict N/A Miss ->Get_Nack
I_WB_Non_Writable N/A Miss ->Coalesce
I_WB_Writable N/A Hit ->Set_Core_Holder ->E/M ->PutClnX/PutX
I_WB_Dir_Conflict N/A Miss ->WB_Flush ->Get_Nack
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Table 3.5: CPU L3 Cache MESI Coherence Protocol State Table: Upgrades and Stores

L3 Cache Stores
State Substate Upgrade Store

M

M N/A Hit ->Set_Core_Holder ->PutX
M_Owned N/A Hit ->Set_Core_Holder ->PutX
M_Pending_Owned N/A Hit ->PutX
M_Pending Miss ->Upgrade_Nack Miss ->GetX_Nack
M_Held Hit ->Set_Pending ->GetXFwd Hit ->Set_Pending ->GetXFwd

E

E N/A Hit ->Set_Core_Holder ->PutX
E_Owned N/A Hit ->Set_Core_Holder ->PutX
E_Pending_Owned N/A Hit ->PutX
E_Pending Miss ->Upgrade_Nack Miss ->GetX _Nack
E_Held Hit ->Set_Pending ->GetXFwd Hit ->Set_Pending ->GetXFwd

S S
Hit ->M ->Set_Core_Holder ->Upgrade_Ack
(Requester) ->Inval_N (Holders)

Hit ->M ->Set_Core_Holder ->PutX_N
(Requester) ->Inval_N (Holders)

I

I Miss ->Upgrade_Nack Miss ->SDRAM_Load
I_WB_Flush_Conflict N/A Miss ->GetX_Nack
I_WB_Non_Writable N/A Miss ->Coalesce
I_WB_Writable N/A Hit ->Set_Core_Holder ->M ->PutX
I_WB_Dir_Conflict N/A Miss ->WB_flush ->GetX_Nack
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The CPU L3 cache controller will process a fetch request to a memory block that is cached and in

the shared state as a hit. Likewise, the cache controller will also process a fetch request to a memory

block that is uncached or in the invalid state as a miss resulting in a SDRAM load request being

sent to the memory controller. The cache controller will process a load or store to a memory block

that is cached and in the modified or exclusive state as a hit. The cache controller will also process

a load request to a memory block that is cached and in the shared state as a hit. After processing

the hit the cache controller will update the cache line directory with information showing which

processor holds the memory block, build the appropriate reply message (PutS, PutClnX, or PutX),

and send the reply message to the requesting processor.

The inclusion of the requirement to arbitrate between processors introduces four new exclusive

and modified substates. The CPU L3 cache controller will process a load or store to a memory

block that is owned by the requesting processor as a regular hit and will reply with the appropri-

ate message (PutClnX or PutX). This occurs when the owning processor drops the memory block

and subsequently requests the memory block again from the directory. When the cache controller

processes a load, upgrade, or store and finds that the memory block is cached, in the exclusive or

modified state, and is held by a processor other than the requesting processor the cache controller

sets the coherence pending bit in the directory and then sends a Get/GetX_Fwd message to the

holding processor. On a Get_Fwd the holding processor’s L2 cache will downgrade the holding

processor’s memory block to shared and forward the memory block in the shared state to the re-

questing processor, see Fig. 3.11a. On a GetX_Fwd the holding processor’s L2 cache will evict the

processor’s memory block and forward the memory block in the modified state to the requesting

processor. In both cases the holding processor’s L2 cache also simultaneously sends an acknowl-

edgement to the CPU L3 cache. In the case of a Get_Fwd that downgrades a modified memory

block in a processor the acknowledgement will contain dirty data as a sharing write-back. After

receiving either acknowledgement the L3 cache clears the coherence pending bit in the directory
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and changes the states of the memory block in its cache table appropriately (shared or modified).

(a) Successful Get/GetX_Fwd (b) Successful PutX_N

(c) Successful Join

Figure 3.11: Common Network-Based Coherence Protocol Cases

The cache controller will process a subsequent load, upgrade, or store to a memory block in the

coherence pending state as a NACK back to the requesting processor. In a special case, it is possible

for the CPU L3 cache controller to send a Get/GetX_Fwd message to a holding processor that has

simultaneously sent a request to the CPU L3 cache for the subject memory block, see Fig 3.11c.

This occurs when the holding processor previously drops the memory block. In this case, the CPU

L3 cache receives a memory request from the owning processor for a memory block that is pending
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a coherence action (Get/GetX_Fwd). The CPU L3 cache controller will processes the request as a

hit and send an appropriate reply message (PutClnX or PutX) back to the owning processor. Once

received, the owning processor will exhaust all outstanding requests for the memory block and

then join the outstanding Get/GetX_Fwd request from the L3 cache.

A similar mechanism to the Get/GetX_Fwd is used when the CPU L3 cache controller processes

an upgrade or store to a memory block that is in the shared state. When processing an upgrade, the

L3 cache controller will immediately upgrade the memory block to modified, send invalidation re-

quests to all holding processors other than the requesting processor, update the cache line directory

with the requesting processor as the single holding processor, and send an upgrade acknowledge-

ment to the requesting processor. When processing a store, the cache controller will immediately

upgrade the memory block to modified, send invalidation requests to all holding processors other

than the requesting processor, update the cache line directory with the requesting processor as the

single holding processor, and send a PutX_N reply to the requesting processor. In the case of an

upgrade the coherence interaction ends when the CPU L3 cache sends the upgrade acknowledge-

ment to the requesting processor. In the case of store, the coherence interaction does not end until

both the CPU L3 cache and requesting processor L2 cache receive invalidation acknowledgements

from all previously holding processors other than the requesting processor, see Fig. 3.11b. The

requesting processor’s L2 cache will join the coherence interaction by storing the memory block

in the cache table in the modified state after receiving all expected invalidation acknowledgements.

In all forward-based protocol cases, if the holding processor no longer holds the requested memory

block a NACK will be sent to the L3 cache. The L3 cache will then update the directory and send

the block to the requester to complete the memory request.

The CPU L3 cache controller will process a load or store to a memory block that is uncached, not in

write-back, or that is in the invalid state as a miss resulting in a SDRAM load request being sent to

the memory controller. At the CPU L3 level upgrade requests are NACKED back to the requester if
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the memory block has been evicted prior to the arrival of the upgrade. If the cache controller finds

that the requested memory block is in write-back the cache controller will update the directory and

process the request according to the state of the the cache table set. If a Write-back is flushed by

the L3 cache controller it is flushed as a SDRAM Store. If a write-back is waiting on a core flush

from the holding processor the L3 cache controller will processes a request as a NACK back to the

requesting processor.

3.2.6.4 GPU L1 Vector and L2 Cache MESI Protocol State Tables

Tables 3.6 and 3.7 show the protocol state tables for the GPU L1 vector cache and GPU L2 cache.

The initial design choice to use a MESI coherence protocol for the GPU was made because it

provides a lightweight and optimized coherence protocol for the GPU in the non-coherent mode of

operation, but also bridges the gap between the CPU and GPU by intrinsically interconnecting with

the CPU’s MESI coherence protocol [45, 46]. In comparison to the CPU, the GPU’s data parallel

architecture operates as a "stream" processor [47, 48]. In general the GPU runs thousands of fibers

in lockstep which results in the GPU attempting to simultaneously pull in large numbers of memory

blocks and modify them only to subsequently drop them to then pull in more memory blocks. For

performance, this necessitates very high levels of bandwidth in both bringing the memory blocks

to the GPU’s processors and flushing the memory blocks out of the GPU’s processors [49, 50, 51,

52, 53, 54]. The MESI coherence protocol lends itself to this operating environment by simplifying

cache design and helps to optimized the GPU’s data parallel memory access patterns [55].

The GPU L1 vector cache implementation is straightforward and supports all states of the MESI

protocol and in cache merges of write-back data stored in the write-back queue. The vector cache

controller will process a load to a cached memory block that is in the modified, exclusive, or shared

state as a hit. The vector cache controller will process a store to a cached memory block that is
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in the modified or exclusive state as a hit. A memory block in the exclusive state will be set to

modified on a hit. The cache controller will process a load or store to memory blocks that are

uncached, not in write-back, or that are in the invalid state as a miss resulting in a load (Get) or

store (GetX) request being sent down to the next level cache in the memory system. Similarly,

the cache controller will also process a store to a cached memory block that is in the shared state

as a miss and will send a memory request (GetX) down to the next level cache in the memory

system. If the vector cache controller finds that the requested memory block is in write-back the

cache controller will update the directory and process the request according to the state of the

the cache table set resulting in either a hit or a coalesce of the memory request. GPU L1 scalar

cache requests are always processed as a hit by the cache model. This occurs because the data

cached by the scalar cache is read only and prepositioned in the cache table prior to running a GPU

kernel [56]. Therefore a flat timing is provided for GPU scalar cache accesses.

Table 3.6: GPU L1 Vector Cache MESI Coherence Protocol State Table

GPU Vector Data Cache
State Substate Load Store

M M Hit Hit
E E Hit Hit ->M
S S Hit Miss ->Invalidate ->GetX

I
I Miss ->Get Miss ->GetX
I_WB_Writable Hit ->E/M Hit ->M
I_WB_Non_Writable Miss ->Coalesce Miss ->Coalesce

The GPU L2 cache is required to include additional functionality that makes it more of a hybrid of

both the CPU L2 and L3 caches. The GPU L2 cache is directory based because it must arbitrate

memory block accesses between GPU compute units and additionally requires the same imple-

mentation of the CPU L3 cache’s coalescing mechanisms in the cache controller. The GPU L2

cache supports all states of the MESI protocol and in cache merges of write-back data stored in

the write-back queue. When processing requests, the GPU L2 cache will set a bit in the directory

78



that indicates which GPU compute unit holds the subject memory block. This requires the GPU

L2 cache to handle the same modified and exclusive substates as the CPU L3 cache. Furthermore,

the GPU L2 cache must help in the completion of coherence related interactions when working

collaboratively with the CPU similarly to the operation of the CPU L2 cache.

The GPU L2 cache controller will process a load or store to a memory block that is cached and

in the modified, exclusive or shared state in the same manner as the GPU L1 cache controller.

Similarly to the CPU L3 cache, the GPU L2 cache controller will update the cache line directory

with the holding compute unit, build the appropriate reply message (PutS, PutClnX, or PutX), and

send to the requesting compute unit. The cache controller will flush a memory block out of a

holding compute unit and then send it to the requesting compute unit as a PutClnX or PutX if the

cache controller finds that a load or store request is to a memory block that is cached and held in

another compute unit. If the cache controller finds that a load or store request to a memory block

that is cached and currently held by the requesting compute unit the cache controller will process

as a PutS, PutClnX, or PutX. In a special case, it is possible for the GPU L2 cache controller to

processes a core flush to a holding compute unit that has simultaneously sent a request to the GPU

L2 cache for the same memory block. In this case the GPU L2 cache receives a request from the

owning compute unit for a memory block that is pending the flush. The GPU L2 cache controller

then processes the request as a hit, builds the appropriate reply message (PutClnX or PutX), and

sends the request back to the owning compute unit. Once received, the owning compute unit will

exhaust all outstanding requests for the memory block and then flush the memory block down to

the GPU L2 cache. Similarly to the CPU L3 caches, the GPU L2 cache will downgrade blocks at

the GPU L1 and L2 level from exclusive or modified to shared when receiving a Get request from

an L1 cache. If the memory block is dirty when downgraded the GPU L2 will mark a bit in the

cache line signifying that it is dirty in core.
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Table 3.7: GPU L2 Cache MESI Coherence Protocol State Table

GPU L2 Cache
State Substate Load Store

M

M Hit ->Set_Core_Holder ->PutX Hit ->Set_Core_Holder ->PutX
M_Owned Hit ->PutX Hit ->PutX
M_Pending_Owned Hit ->PutX Hit ->PutX
M_Pending Miss ->Get_Nack Miss ->GetX_Nack
M_Held Miss ->Core_Flush ->Putx Miss ->Core_Flush ->Putx

E

E Hit ->Set_Core_Holder ->PutClnX Hit ->Set_Core_Holder ->PutX
E_Owned Hit ->PutClnX Hit ->PutX
E_Pending_Owned Hit ->PutClnX Hit ->PutX
E_Pending Miss ->Get_Nack Miss ->GetX_Nack
E_Held Miss ->Core_Flush ->PutClnX Miss ->Core_Flush ->PutX

S

S_Clean Hit ->Set_Core_Holder ->PutS
Miss ->Invalidate ->L3_GetX Or
SDRAM_Load

S_Dirty_In_Node Hit ->Set_Core_Holder ->PutS
Hit ->M ->Set_Core_Holder ->PutX
(Requester) ->Inval (Holders)

S_Pending_Owned Miss ->Get_Nack Miss ->GetX_Nack
S_Pending Miss ->Get_Nack Miss ->GetX_Nack

I

I Miss ->L3_Get Or SDRAM_Load Miss ->L3_GetX Or SDRAM_Load
I_WB_Flush_Conflict Miss ->Get_Nack Miss ->GetX_Nack
I_WB_Non_Writable Miss ->Coalesce Miss ->Coalesce
I_WB_Writable Hit ->Set_Core_Holder ->PutClnX Hit ->Set_Core_Holder ->PutClnX
I_WB_Dir_Conflict Miss ->WB_flush ->Get_Nack Miss ->WB_flush ->GetX_Nack
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The CPU L2 cache controller will process a load or store to a memory block that is uncached, not

in write-back, or that is in the invalid state as a miss. If the LLC is not shared memory requests

will be routed directly to the memory controller and if the LLC is shared memory request will be

routed to the CPU L3 caches. If the cache controller finds that the requested memory block is

in write-back the cache controller will update the directory and process the request according to

the state of the the cache table set. If a Write-back is flushed by the L2 cache controller and the

LLC is not shared the write-back will be flushed as a SDRAM Store and if the LLC is shared the

write-back will be flushed to the CPU L3 cache. The L2 cache controller will processes a request

as a NACK back to the requesting compute unit if a write-back is waiting on a core flush by the

holding compute unit.

(a) CPU Address Translation Process (b) GPU Address Translation Process

Figure 3.12: CPU and GPU Virtual Memory Mechanisms
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3.2.7 Virtual Memory System

M2S-CGM extends the virtual memory system found in Multi2Sim by incorporating new func-

tionality supporting a CPU-GPU shared memory address space and a GPU specific forward and

reverse address translation capability. Additionally, CGM adds timing models for CPU and GPU

Translations Lookaside Buffers (TLBs) and page table walkers. Fig. 3.12 shows the architectural

makeup of the virtual memory mechanisms employed by both the CPU and GPU and how they

interact with their respective processors and the rest of the memory system. Prior to issuing a

memory system request each CPU core first consults its Memory Management Unit (MMU) in an

effort to make a virtual to physical address translation. The MMU is implemented as a KnightSim

context similarly to how a cache is implemented in the memory system. As shown in Fig. 3.13,

on advancement the MMU controller probes the virtual address for tag, index, and Physical Page

Number (PPN) offset and then consults the TLB cache table. If the MMU controller finds a match-

ing tag in the respective set the entry state and PPN is read out and joined with the PPN offset to

form the fully translated physical address. The physical address is then subsequently used by the

CPU to issue a memory system request. If the MMU controller finds that the address translation is

uncached it is a TLB miss and charges a latency as it raises an exception for the CPU to start the

Page Table Walk (PTW).

The PTW is typically performed by the operating system and may or may not be hardware accel-

erated with use of a PTW cache [57]. Modern operating systems use a four tiered page table and

when performing the PTW will make four distinct memory system accesses to resolve the memory

page. CGM implements the PTW as a KnightSim context and assumes that the PTW is done in

software by the operating system, meaning no hardware based cache for acceleration of the PTW.

In an abbreviated simulation approach, after advancement the PTW makes a direct translation of

the address in simulation and checks to see if a simulated memory page has been created to support
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the translation. If a simulated memory page supporting the address translation does not exist the

PTW charges a configurable latency as a hard page fault and if a simulated memory page does

exist the PTW charges a configurable latency as a soft page fault. After the address translation

completes the PTW caches the translation in the appropriate CPU TLB cache table and returns

operation to the guest application for a retry of the address translation.

CGM implements a design approach in support of GPU address translation that is similar to the

approach discussed in [58]. In the GPU, TLB caching and page table walking are performed

identically to the CPU as discussed above. However, the architectural approach is slightly different.

After each GPU vector memory unit coalesces its vector memory accesses the memory access unit

then attempts to make a virtual to physical address translation using its private TLB. If successful

the physically addressed memory access is passed to the vector cache for servicing. If the address

translation is unsuccessful it is a TLB miss that incurs a latency. The GPU’s memory access unit

then consults with the system’s Input-Output Memory Management Unit (IOMMU) for an address

translation. The IOMMU performs the PTW and incurs a significant latency, as compared to the

CPU. If the IOMMU’s PTW finds that the simulated memory page does not exist a latency for a

hard page fault is charged and if it finds that the page does exist a latency for a soft page fault is

charged. The IOMMU also provides a reverse translation service on behalf of the GPU so that

the GPU’s caches can be virtually addressed. This provides a benefit in that the caches act to

filter memory system accesses until the L2 cache level which results in the TLBs and IOMMU

experiencing fewer translation requests from the GPU [59, 60].
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Figure 3.13: Architecture of a Two Way Set Associative TLB Cache
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3.3 M2S-CGM Benchmarks

To support the experiments presented in this dissertation I implemented two different sets of bench-

marks which I describe in further detail over the following two subsections.

3.3.1 Benchmark Set 1: OpenMP and Non-Collaborative GPU-Only OpenCL Benchmarks

For my first set of benchmarks I extend the Rodinia OpenMP and OpenCL Backprop (BP), Lower

Upper Decomposition (LUD), Kmeans, Hotspot, Needleman Wunsch (NW), and Breadth First

Search (BFS) benchmarks. Detailed information regarding this set of benchmarks and their re-

lated performance metrics can be found in [22, 61, 62, 63]. I chose this set of benchmarks because

they provide a good spectrum of processor intercommunication aggressiveness for OpenMP execu-

tions and a good spectrum of inter CPU-GPU communication through GPU kernel invocations and

memory copies for OpenCL executions. My extensions include making modifications to the non-

collaborative GPU-only OpenCL benchmarks so that the benchmarks (1) utilize the M2S-CGM

OpenCL runtime and (2) can be set to pass memory objects between the CPU and GPU by pointer.

3.3.2 Benchmark Set 2: Collaborative CPU-GPU OpenCL Benchmarks

For my second set of benchmarks I implement a set of collaborative CPU-GPU benchmarks that

are relevant and well-suited for execution on a GPU. The chosen set of benchmarks includes Back-

propagation, Block Matrix Multiply, Edge Detection, Nearest Neighbor, and Write. Block Matrix

Multiply, Edge Detection, and Write are hand implemented for my experiments and Backpropa-

gation and Nearest Neighbor are ported from the Rodinia benchmark suite [16]. Each benchmark

comprises a non-collaborative GPU-only and collaborative CPU-GPU OpenCL implementation

and utilizes the M2S-CGM OpenCL runtime. The non-collaborative GPU-only OpenCL version
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is used as the point of reference for performance comparisons to the collaborative CPU-GPU

OpenCL implementation. My collaborative CPU-GPU OpenCL benchmarks take in arguments

that specify the number of CPU threads to use and a CPU workload percentage in addition to other

normal benchmark-specific arguments. The following subsections give a brief background for

each benchmark and provide detail regarding each benchmark’s collaborative CPU-GPU memory

system access behavior.

3.3.2.1 Backpropagation

Backpropagation is an algorithm relevant to machine learning applications and is used to train

neural networks in two phases. In the first phase, a forward propagation is made which results

in an input-driven neuron activation calculation for each neuron in the neural network. In the

second phase, a reverse propagation of the resultant error is used to adjust neuron activation weights

throughout the neural network. During execution the majority of compute time occurs in the second

phase and is where I focus my experimental measurements. The collaborative OpenCL NDRange

is divided between the CPU and GPU based on the size of the specified neural network layer, a

specified CPU workload percentage, and a specified chunk size. During second phase execution

the CPU and GPU both read from arrays containing calculated errors and neuron weights. Then

a resultant new weight is stored in the neuron weights array for each neuron. Memory system

interactions include the proliferation of cache lines in the shared state between the CPU and GPU

on the read of the calculated error and neuron weight arrays. Finally, stores to the calculated

weight array lead to a significant number of core evictions and results in a moderately high level

of coherence interactions between the CPU and GPU.
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3.3.2.2 Block Matrix Multiply

Block Matrix Multiply is an algorithm relevant to linear math and has wide ranging usage in

many scientific fields. Block Matrix Multiply has a single calculation phase and kernel where the

blocked dot product of two input matrices is calculated and then stored in a solution matrix. The

collaborative OpenCL NDRange is divided horizontally between the CPU and GPU based on the

number of rows in the input matrices, a specified CPU workload percentage, and a specified chunk

size. During execution the CPU and GPU both read from two input matrix arrays, calculate a dot

product, and store the result in an output matrix array. Memory system interactions include the

proliferation of cache lines in the shared state when the CPU and GPU read from the two input

matrix arrays and proliferation of cache lines in the modified state when storing the result. The

vast majority of CPU and GPU interactions include the downgrade of cache lines to the shared

state on the initial read of the two input matrix arrays and in a few edge cases arbitration of cache

lines between the CPU and GPU when storing the result to the output matrix array.

3.3.2.3 Edge Detection

Edge Detection is an algorithm relevant to image processing and computer vision and is often used

as an intermediate step in the process of extracting data from an image. Edge Detection has a single

calculation phase and kernel where a filter is convolved with an input image that results in isolating

the input image’s edges. The collaborative OpenCL NDRange is divided horizontally between the

CPU and GPU based on the number of rows in the input image array and a specified CPU workload

percentage. During execution the CPU and GPU both read from a small array containing the filter’s

data and an input array containing the input image data. After each pixel has been convolved, the

CPU and GPU store the value in the original input image array. Memory system interactions

include a short-lived proliferation of cache lines in the shared state when reading from the filter

87



array and little to no CPU/GPU interactions when reading and storing to the original input image

array. In a few edge cases block arbitration between the CPU and GPU occurs when reading and

storing to the original input image array.

3.3.2.4 K-Nearest Neighbor

K-Nearest Neighbor is an algorithm relevant to pattern recognition, machine learning, and data

mining. K-Nearest Neighbor has a single calculation phase and kernel where K-nearest neighbors

are located within an input data set based on a specified position. The collaborative OpenCL

NDRange is divided between the CPU and GPU based on the number of records in the input data

set, a specified CPU workload percentage, and a specified chunk size. During execution the CPU

and GPU both read position data from different locations in a record array, calculate the record’s

distance to an input position, and store the resultant distance in a record array. This benchmark is

a highly data parallel benchmark with no CPU-GPU interactions over the execution of the kernel.

3.3.2.5 Write

The Write benchmark is an algorithm designed with utility in mind. Write comprises a single

storage phase and kernel where all elements of an array are assigned a value. Write is intended to

be a brutal benchmark in terms of creating high contention and latency in the system and has utility

in finding memory system bottlenecks. The collaborative OpenCL NDRange is divided between

the CPU and GPU based on the array size and a specified CPU workload percentage. During

execution the CPU and GPU both store a value to each element in the array. This is a highly data

parallel benchmark, but exhibits a huge demand for bandwidth and low latency. In one edge case

block arbitration between the CPU and GPU occurs when the CPU stores near the end of its array

segment.
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3.4 M2S-CGM Validation Results

As mentioned in Chapter 1, previous work has introduced and established the CPU and GPU

models of Multi2Sim [64, 65]. This only leaves the validation of M2S-CGM with its detailed

memory system model. The validation experiment is designed to demonstrate the parallelism and

correctness of the memory system’s timing models, CPU and GPU MESI coherence protocols, and

system call timing models. Therefore, the validation of M2S-CGM, is performed by comparison

between the results of benchmarks executed on M2S-CGM and the results of benchmarks executed

on a physical test system. The following subsections discuss the experimental setup and results.

3.4.1 Experimental Setup

The test system comprises an Intel Core i7-4790K Devil’s Canyon Quad-Core CPU and AMD

Radeon HD 7990 64 compute unit GPU. M2S-CGM is configured similarly as shown in Fig. 3.2

and is configured to match the test system’s hardware profile. M2S-CGM and test system fre-

quencies for the CPU, GPU, and memory system are 4 GHz, 1 GHz, and 2 GHz respectively. For

M2S-CGM, the system-wide cache block size is 64B and I assume an 8 byte header on all memory

system messages. CPU L1, L2, and L3 cache sizes are configured as 32KB, 256KB, and 2 MB

respectively with L3 caches operating in a striped configuration. GPU vector and L2 cache sizes

are configured as 16KB and 64KB respectively. Main memory is configured as 4GB of SDRAM

operating in a dual channel memory configuration.

The benchmarks chosen for use in the validation comprise the Rodinia OpenMP and OpenCL

Backprop (BP), Lower Upper Decomposition (LUD), Kmeans, Hotspot, Needleman Wunsch (NW),

and Breadth First Search (BFS) benchmarks as discussed in Sec. 3.3.1. This set of benchmarks was

chosen because they provide a good spectrum of processor intercommunication aggressiveness for
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OpenMP executions and a good spectrum of inter CPU-GPU communication through GPU kernel

invocations and memory copies for OpenCL executions. For all benchmarks measurements are

taken across the benchmark’s parallel section. For OpenCL benchmarks, the parallel section is

defined as the beginning of the first OpenCL-related memory buffer creation and the ending of

the parallel section to be the completion of the final memory copy to the host device. Benchmark

problem sizes are selected based on the maximum obtainable speedup measured in the simulated

system and range from medium to large.

3.4.2 Experiment 1: CPU OpenMP Parallel Performance Results

In validating M2S-CGM, a comparison of measured speedup on the test system to measured

speedup on M2S-CGM for the Rodinia OpenMP benchmarks is shown in Fig. 3.14. Additionally,

a comparison of heterogeneous-workload percentage breakdown for the Rodinia OpenCL bench-

marks is shown in Fig. 3.15. Comparisons of absolute total cycles between the target test system

and simulator are not made because the simulated CPU and GPU are generalized and represent a

wide range of possible processor configurations. Instead, by correctly modeling and observing sys-

tem behavioral results conclusions on the influence of system level design changes can be drawn

and applied to more than just a single processor’s architecture.

Fig. 3.14 shows the measured speedup for 2 and 4 threads for the Rodinia OpenMP benchmarks

on the test system and on M2S-CGM. The results show good correlation between the test system

and M2S-CGM and highlight expected performance differences. For the OpenMP benchmarks,

simulated execution had an average difference of 10.4% for the two threaded runs and 22% for

the four threaded runs. These differences are expected and show correct simulation behavior as

compared to a physical system that is running many other system processes in addition to the

benchmarks themselves. These results also highlight the inherent parallelism and correctness of
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the memory system’s CPU and GPU MESI coherence protocols.

Figure 3.14: Rodinia OpenMP Benchmark Results

3.4.3 Experiment 2: CPU-GPU OpenCL Parallel Performance Results

Results for OpenCL benchmarks are shown in Fig. 3.15. Heterogeneous workload execution time

is measured and broken down into GPU kernel time, CPU time, and OpenCL related system call

time. In the results CPU time and OpenCL related system call time are combined and denoted

as "CPU+SC". Again, the results show close correlation between the test system and M2S-CGM

and highlight the delicate simulation of the interplay between the CPU and GPU over the parallel

section. For the OpenCL benchmarks, simulated execution time breakdown between the CPU and

GPU is within 6.4% on average. We also note that the Rodinia OpenCL benchmarks themselves

do not make use of the CPU for processing during the execution of the benchmark. Instead, the

CPU only performs setup and management of problem data and GPU execution through a series
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of OpenCL calls and ultimately OS system calls. During GPU invocation the CPU goes dormant

until the GPU completes and signals the CPU to wake up.

Figure 3.15: Rodinia OpenCL Benchmark Results

Based on the results shown here, and by successful comparison of M2S-CGM’s simulated results

to the test system, it is established that M2S-CGM provides a valid and realistic multicore and

heterogeneous system model and can therefore serve as a strong platform for future heterogeneous

system research.

3.5 Summary and Conclusions

In this chapter I introduced M2S-CGM, a detailed architectural simulator that models the inter-

actions between CPUs and GPUs operating in heterogeneous compute environments. I presented

the motivation and need for M2S-CGM and provide in-depth details about its software architec-

tural makeup and provided a validation of M2S-CGM’s multithreaded and heterogeneous system
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simulation capabilities via the comparison of executions of select Rodinia OpenMP and OpenCL

Benchmarks on a test system and the simulator. My validation results show that M2S-CGM pro-

vides an accurate simulation model of a modern multicore and heterogeneous system with differ-

ences ranging from 10.4% and 22% for two and four threaded OpenMP runs and 6.4% for OpenCL

runs. The results show that M2S-CGM provides good correlation to modern computing systems

and that information ascertained from experimentation is reliable and can be used for trade-off

decisions in proposed architectural implementations.
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CHAPTER 4: HETEROGENEOUS CPU-GPU SYSTEM

ARCHITECTURAL EXPERIMENTS

This chapter presents the results of three heterogeneous CPU-GPU processor and application ar-

chitectural studies, as first presented in [3, 19], and adds a significant expansion of discussion

related to the heterogeneous CPU-GPU programming model. These studies aim to explore the

heterogeneous CPU-GPU processor and application design space with the goal of answering inter-

esting research questions, such as, (1) what are the architectural design trade-offs in heterogeneous

CPU-GPU processors and (2) how do we best maximize heterogeneous CPU-GPU application

performance on a given system. The experiments presented in this chapter are entirely conducted

with the use of the M2S-CGM computer architectural simulation system and its compatible bench-

marks.

This chapter starts with providing a detailed background regarding the current state-of-the-art in the

heterogeneous CPU-GPU programming model. Then, I present the results of three architectural

studies. The first set of experiments studies the impacts of added coherency between the CPU

and GPU with and without shared LLC. The second set of experiments studies how to determine

what the maximum optimization point is in collaborative CPU-GPU applications. The third set of

experiments studies the performance impacts of four key architectural changes in heterogeneous

CPU-GPU processors. Important observations and take-a-ways from each set of experiments are

provided which helps to inform researchers on ways to best optimize collaborative CPU-GPU

executions and provides new directions for future research regarding heterogeneous CPU-GPU

processor design.
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Figure 4.1: Non-Coherent CPU-GPU Execution Sequence

4.1 Background and Motivation

As mentioned in 3.1, the heterogeneous CPU-GPU programming model first debuted circa 2005

and provided a way to utilize discrete graphics card shaders as general purpose devices in an effort

to speed up massively parallelizable computations [48]. At the time, heterogeneous CPU-GPU

programming was touted as difficult to do, but still continued to draw interest from academia

and industry. Since then many improvements have been made towards the generalization of GPU

hardware and the overall simplification of the heterogeneous CPU-GPU program model. These

improvements have helped to make heterogeneous CPU-GPU programming a mainstream pro-
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gramming model. However, despite these recent usability improvements the general approach to

executing a heterogeneous CPU-GPU program has remained the same. In the heterogeneous CPU-

GPU programming model developers must treat the CPU and GPU as separate devices and must

endeavor to partition the execution of the application between available CPU threads and GPU

kernels so that the application exhibits an overall gain in performance over the equivalent multi-

threaded only version. Figure 4.1 highlights how the CPU and GPU interoperate by showing a

summarized execution sequence of a typical heterogeneous CPU-GPU application with a single

kernel execution on a GPU.

Following the figure from-top-to-bottom. When utilizing either a discrete graphics cards or GPU

integrated on-die with the CPU, the application that is running on the CPU must first configure and

setup the GPU’s execution code and copy all data elements to the GPU prior to the execution of

the selected GPU kernel. Then the application must explicitly invoke the GPU’s execution of the

kernel when programmatically ready to do so. Subsequently, at the end of GPU kernel execution

the application running on the CPU must recopy the resultant data back from the GPU’s memory

hierarchy and address space to the CPU’s memory hierarchy and address space so that the CPU can

make use of the computed result. This execution schema is accomplished via a series of system

calls that invoke several OS, GPU driver, and in some cases direct memory access interactions. This

approach is required because the GPU is treated as a physically disparate I/O device, unequal to the

CPU, with a different instruction set architecture, memory system structure, and virtual memory

address space. It is important to note that the generalized heterogeneous CPU-GPU programming

model does not preclude developers from using both the CPU and GPU simultaneously, however,

in practice this is not performed much due to the complexities of fine gain workload and data

partitioning and the overhead cost of copying data back and forth between the CPU and GPU.
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(a) Successful CPU Get/GetX_Fwd (b) Unsuccessful CPU Get/GetX_Fwd

(c) Successful GPU Get/GetX_Fwd (d) Unsuccessful GPU Get/GetX_Fwd

Figure 4.2: Coherent Memory Block Movement Between CPU and GPU

When studying the presented heterogeneous CPU-GPU program execution sequence it is appar-

ent that there are several areas where further research could potentially unlock new performance

improvements in the heterogeneous CPU-GPU programming model. These areas comprise re-

searching architectural support leading to the reduction of required CPU-GPU system interac-

tions, reduction or elimination of required memory copies, and shared (collaborative) processing

of workloads between the CPU and GPU. This insight, forms the basis of the motivation for the

research and experimentation presented in this chapter which aims to achieve better performance

in heterogeneous CPU-GPU processor and application designs. In studying the heterogeneous

CPU-GPU processor and application design trade space more cohesive systems that make better
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use of all processing components can be achieved. The results of which would be beneficial in

the development of scientific applications by providing higher levels of parallel performance that

previously would be unobtainable.

4.2 Coherent Heterogeneous CPU-GPU System Implementation Methodology

This section builds upon the discussion of the M2S-CGM implementation methodology provided

in Sec. 3.2 by presenting additional detail regarding how M2S-CGM simulates coherent interoper-

ation between the CPU and GPU. Simulating coherent interoperation between the CPU and GPU

concerns the entire software stack and the underlying hardware itself. The software stack com-

prises the simulated operating system, GPU driver, OpenCL runtime, and OpenCL application

(i.e. the benchmark). At the software level the heterogeneous CPU-GPU programming model

must be changed to take advantage of the shared virtual address space between the CPU and GPU.

This requires changes to the simulated interoperation between the CPU and GPU. First, operating

system and GPU driver memory management is changed for the GPU. When the CPU and GPU

are made coherent data is no longer copied to and from the GPU’s memory address space. There-

fore, the operating system and GPU driver are configured to pass memory between the CPU and

GPU by pointer. Second, heterogeneous CPU-GPU applications and the OpenCL runtime must be

configured to support the operating system and GPU driver changes. The OpenCL runtime is up-

dated to reflect the changes in the programming model and the application is configured to use the

modified OpenCL runtime. However, the CPU is still required to perform all memory allocations

and initialization prior to GPU kernel executions. The GPU is then passed pointers to memory in

the CPU’s address space as a part of device setup.
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Figure 4.3: Coherent Non-Collaborative Without Shared LLC CPU-GPU Execution Sequence

There are several key hardware changes required to enable the coherent CPU-GPU environment.

First, memory system coherency between the CPU and GPU is accomplished by extending the

memory system’s coherence directories to support servicing the GPU as an "Nth" core. This com-

prises the inclusion of an additional bit in the directory that represents the GPU and the required

directory controller functionality to handle memory request and other coherence related messages

to and from the GPU at the directory. Additionally, the CPU and GPU L2 caches are extended to

support coherence protocol forwarding request (3-way hops) from the the L3 caches (directory) to

a requesting CPU or GPU L2 cache and to support coherence related joins as needed. As discussed

in Sec. 3.2, despite having different MESI coherence protocol implementations, the CPU and GPU

intrinsically interface well because they both support all MESI cache line states.
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Figure 4.4: Coherent Non-Collaborative With Shared LLC CPU-GPU Execution Sequence

M2S-CGM implements a fine grained approach to integrating the MESI coherence protocols of

the CPU and GPU and uses the memory block forwarding schema as the coherence mechanism

between the CPU and GPU. Fig. 4.2 shows the process of memory block movement between the

CPU and GPU. In essence the entire GPU is treated as a single additional CPU core. This design

choice was made taking into account the streaming nature of the GPU. To move a memory block the

CPU or GPU first initiates a Get/GetX request to the appropriate L3 cache bank. When consulting

the appropriate cache line directory if the L3 cache determines that the memory block is held by a

different CPU core or the GPU on whole it will then forward the request to the appropriate CPU

or GPU L2 cache. Once received by the L2 cache the holding CPU core or GPU compute unit is

either flushed or downgraded as required. Once complete, the L2 cache simultaneously forwards

the memory block to the requesting CPU or GPU L2 cache and replies to the L3 cache with an

acknowledgement. The forwarded request is unsuccessful if the CPU or GPU L2 cache finds that
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the block is no longer in the CPU or GPU. This can occur if the CPU core or GPU has dropped

the memory block and results in a NACK sent to the L3 cache. The L3 cache then must update the

cache line directory and complete the coherence interaction with a Put/PutX back to the requesting

CPU core or GPU.

Figure 4.5: Collaborative CPU-GPU Processing Execution Sequence

The functional hardware mechanisms necessary to support virtual memory are already built into

the GPU’s memory system. This includes GPU specific TLBs, an IOMMU, a PTW, and optionally

forward and reverse memory address translation functionality that is incorporated into the GPU

hub. I assume that GPU address translation occurs within the IOMMU on a GPU compute unit

TLB miss and then by the CPU on an IOMMU PTW miss, as presented in [58]. M2S-CGM’s

simulated page tables record multiple memory address spaces and page types (i.e. .text, .data, and

.gpu) to support separate and combined CPU and GPU virtual address spaces. When sharing an

address space the CPU and GPU both resolve pointer address translations to the same physical

page in memory which results in the desired equivalent virtual to physical address translations.
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The implementation details discussed in this section result in allowing M2S-CGM to support the

following four CPU-GPU system wide configurations:

• A traditional GPGPU configuration with the CPU and GPU operating in disparate virtual

address spaces and disparate memory systems.

• A modified traditional GPGPU configuration with the CPU and GPU operating in disparate

virtual address spaces, but with shared lower level caches.

• A half CPU-GPU heterogeneous configuration with the CPU and GPU operating in a shared

virtual address space, but disparate memory system.

• A full CPU-GPU heterogeneous configuration with the CPU and GPU operating in both a

shared virtual address space and with shared lower level caches.

The traditional and modified GPGPU configurations serve as the heterogeneous execution baseline

and model a modern non-coherent heterogeneous CPU-GPU processor. Note that the first configu-

ration implements the CPU-GPU execution sequence previously shown in Fig. 4.1 and was used in

the validation of M2S-CGM, see Sec. 3.4. As discussed in Sec. 4.1, in the traditional and modified

traditional configurations the GPU is treated as a disparate device from the CPU and must work

in its own address space. This requires the CPU to copy memory back and forth to and from the

GPU prior to and after kernel executions through a series of OS systemcalls and GPU driver exe-

cutions. Additionally, the OS must manage the state of the memory system, and ensure that CPU

and GPU caches are fully flushed to main memory prior to a memory system read at the beginning

and end of GPU kernel executions. In the modified GPGPU configuration the memory system is

set to share the L3 caches between the CPU and GPU which effectively gives the GPU a larger

and faster third cache level, however, the CPU and GPU use different physical addresses when

accessing data which still requires cache flushes.
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In the half and full coherent configurations the CPU and GPU coherently operate in a shared

memory space and access the same physically addressed data. The CPU-GPU execution sequence

implemented in the half configuration is shown in Fig. 4.3. In this implementation CPU and GPU

memory requests join at the memory controller which means that the data must be completely

flushed to main memory before either processor accesses the other’s data. This is shown in the

figure as a required CPU-GPU interaction occurring before the CPU can make use of the GPU’s

computed data. The CPU-GPU execution sequence implemented in the full configuration is shown

in Fig. 4.4. In the full configuration sharing the LLC results in cache flushes being no longer

compulsory because the directory arbitrates accesses and forwards memory block requests between

the CPU and GPU as required. Therefore, in a non-collaborative execution the CPU can simply

issue memory requests without needing to issue a GPU cache flush. Fig. 4.5 depicts the same

CPU-GPU execution sequence, however in terms of a collaborative CPU-GPU execution. This is

shown in the figure as the CPU an GPU simultaneously executing a kernel. In this approach the

CPU and GPU can take advantage of the coherency, shared LLC, and shared address space and

speed up overall application execution over executing the workload on the GPU only.

The rest of this chapter presents the results of three sets of experiments conducted with the goal

of determining what the architectural design trade-offs in heterogeneous CPU-GPU processors

supporting CPU-GPU coherency, shared LLC, and shared virtual memory address spaces are and

how to best maximize heterogeneous CPU-GPU application performance in these types of systems.

4.3 Study 1: Architectural Affects of Shared LLC and CPU-GPU Coherence On

Non-Collaborative GPU-Only Execution Performance

This section presents experiments and results regarding an architectural study with the goal of

reducing interoperation overhead in non-collaborative GPU-only applications. The experimental
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results presented in this section show the impacts of the removal of the requirement for CPU-GPU

memory copies and shows the impacts of sharing the LLC between the CPU and GPU in coherent

heterogeneous CPU-GPU systems.

4.3.1 Experimental Setup

For the conduct of the experiments presented in this section, I maintain the computer architectural

system wide configuration parameters, Rodinia OpenCL Benchmarks, and OpenCL parallel sec-

tion definition as outlined in Sec. 3.4.1. I then execute each benchmark and vary M2S-CGM’s

CPU-GPU coherency and shared LLC architectural configuration parameters.

4.3.2 Experimental Results

Experimental results for the selected Rodinia OpenCL Benchmark executions on each system con-

figuration are shown in Fig. 4.6. In the figure, "NC" and "C" stand for noncoherent and coherent

and "MC" and "L3" stand for memory controller and L3 cache. "MC" and "L3" represent the GPU

memory request destination when entering the memory system from the GPU.

For each OpenCL benchmark all results are normalized to the benchmark’s NC-MC configuration

results. The results show execution breakdowns for CPU Busy, CPU Stall, GPU Busy, GPU Stall,

and System Time in percentage of cycles. CPU and GPU busy time is the time the CPU and GPU

performed work over the parallel section. CPU and GPU stall time is the time the CPU and GPU

were stalled while waiting on outstanding memory system requests. System time is the time spent

trapped to the OS while performing an OpenCL related system call or memory system related

CPU interrupt, such as a cache flush. The results show that the modeled half coherent CPU-GPU

heterogeneous system achieves speedups of 3.27x, 1.06x, 0.94x, 6.51x, 1.21x, and 1.19x and that
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the fully coherent CPU-GPU heterogeneous system achieves speedups of 3.67x, 1.06x, 0.95x,

8.83x, 1.23x, and 1.40x for Backprop, LUD, Kmeans, Hotspot, Needleman, and BFS respectively.

Figure 4.6: Coherent Non-Collaborative Experimental Results

The measured system time comprises all of the overhead associated with executing workloads

in the CPU-GPU heterogeneous environment and includes all of the intercommunication required

between the CPU and GPU. From comparison of the results between noncoherent and coherent ex-

ecutions, it is apparent that the extent to which speedup is achievable is dependent on the amount of

overhead incurred by the application. Thus applications that require significant CPU intervention,

like Backprop and Hotspot, see significant improvements and others, like LUD, Needleman, and

BFS see slight improvement. However, all benchmarks with the exception of Kmeans did show

improvement in speedup. Kmeans is an exception because the parallel section in Kmeans contains

a significant amount of CPU setup between kernel executions which effectively defeats the purpose

of parallelizing the benchmark over the GPU. This is evident in the nearly negligible GPU busy

time for Kmeans.

CPU and GPU busy and stall time show the benchmark’s utilization of the CPU and GPU together.

105



The native Rodinia OpenCL benchmark’s are non-collaborative benchmarks and allocate no work

to the CPU during GPU Kernel execution. This means that the current Rodinia OpenCL Bench-

marks do not fully exploit the complete level of parallelism available between the CPU and GPU.

As shown in the results, the Rodinia OpenCL benchmarks effectively delegate all processing to

the GPU while the CPU remains idle and is relegated to only performing coordinating and setup

functions between GPU kernel executions. In an ideal system the CPU would effectively share

50% of the execution time with the GPU. Performance gains in these measurements rely on bet-

ter utilization of the CPU and GPU. This topic will be explored in greater extent in the next set

of experiments. Despite this, CPU and GPU busy time remains consistent between configuration

experiments which is expected and correct.

In the noncoherent configuration the results show that sharing the L3 caches between the CPU and

GPU is ineffective and actually slightly hurts overall performance. This is due to the streaming

nature of the GPU and low temporal reuse of memory system blocks. Thus, forwarding memory

access requests to the L3 caches resulted in a predominance of L3 cache misses, which are then

subsequently sent to the memory controller. The results suggest that in a noncoherent configuration

it is better to directly forward the memory request to the memory controller and bypass the latency

of the L3 cache access. However, in the heterogeneous configuration shared L3 caches can provide

a measurable performance boost. This is due to the coherence protocol, where GPU cache flushes

are no longer required on account of the supported LLC directory request forwarding between the

CPU and GPU.

4.4 Study 2: Optimizing Collaborative CPU-GPU Execution Performance

This section presents experiments and results regarding an architectural study with the goal of

profiling and analyzing collaborative CPU-GPU benchmarks. The analysis helps to determine how
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best to optimize collaborative CPU-GPU applications for maximum collaborative performance.

The results identify how to achieve each benchmark’s maximum optimization point and provides a

few rules of thumb regarding how best to reason about what an unprofiled collaborative CPU-GPU

application’s optimized settings should be.

4.4.1 Experimental Setup

To support the conduct of this set of experiments I configure M2S-CGM for the simulation of

the modern heterogeneous CPU-GPU processor architecture shown in Fig. 3.2. The architectural

model comprises a multicore out-of-order general purpose x86 CPU, a multi-compute unit in-order

AMD Southern Islands GPU, a set of LLCs, switching fabric, system agent, multi-channel memory

controller, and DRAM. In addition, the architectural model supports coherency, shared LLC, and

shared virtual memory address spaces between the CPU and GPU. A detailed list of pertinent

system configuration settings is provided in Table 4.1. I believe that this simulated architectural

model and its detailed configuration is a reasonable estimate of current modern heterogeneous

CPU-GPU processor designs and allows me to make future looking system configuration changes.

In the architectural model each CPU core connects to the memory system via a set of private L1

instruction, L1 data, and L2 caches. The GPU includes private local data share, scalar, and vector

caches for each compute unit and one L2 cache for every four compute units. The GPU’s L2 caches

are set in a striped configuration and are shared among all of the GPU’s vector caches. Each com-

pute unit’s vector cache connects to each of the GPU’s L2 caches by a shared crossbar. The GPU’s

L2 caches connect to the memory system through a GPU hub/IOMMU. The GPU hub/IOMMU

connects the GPU to the external memory system and multiplexes memory system messages going

in-and-out of the GPU L2 caches. The CPU, GPU, LLC, system agent, and memory controller

are connected together by a switching fabric configured in a ring topology. The LLCs are set in a
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striped configuration and are shared among the CPU and GPU with directory and request forward-

ing (three way hop) block arbitration between the CPU and GPU. Both the CPU and GPU continue

to utilize their MESI coherence protocols. The GPU is positioned close to the system agent and

memory controller so that significant changes in bandwidth between the GPU and memory con-

troller can be made without directly impacting the rest of the switching fabric and the CPU. In this

design approach it is not unreasonable for the on-die GPU to enjoy much higher bandwidth than

in previous generations of heterogeneous CPU-GPU processors [32].

I utilize the set of benchmarks presented in Sec. 3.3.2 and take performance measurements across

the benchmark’s parallel section. For both the non-collaborative GPU-only and collaborative CPU-

GPU versions of each benchmark I define the start of the parallel section to be immediately before

the first call to clSetKernelArg() and the end of the parallel section to be immediately following

the join after clFinish(). I select benchmark problem sizes based on the maximum obtainable

speedup in my simulated system where problem sizes range from medium to large. Additionally, I

verified that the non-collaborative GPU-only and collaborative CPU-GPU implementations of each

benchmark are equivalent to each other by setting the collaborative CPU-GPU benchmark’s CPU

workload percentage to zero, executing both versions, and observing that both versions have the

same execution time. For the experiment I execute each benchmark and vary CPU cores/threads

from one to eight and CPU workload percentage from 20% to 80%.
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Table 4.1: Initial System Configuration

CPU
Core 8 cores, 4GHz, 4 inst/cyc, out-of-order,

64 entry ROB
L1 I/D Cache 2-way, 32KB, private, 1 cyc latency,

MSHR 16, coalescer 64, 32GB/s
L2 Cache 4-way, 256KB, private, 2 cyc latency,

MSHR 16, coalescer 64, 32GB/s
L3 16-way, 2MB, shared, striped, 4 cyc la-

tency, MSHR 16, coalescer 64, 32GB/s
GPU

Core 8 CUs, 1GHz, 16-wide SIMD, 64
wavefronts, round robin scheduling

L1 Cache 4-way, 16KB, private, 1 cyc latency,
MSHR 16, coalescer 32, 32GB/s

L2 Cache 16-way, 64KB, private, striped, 3
cyc latency, MSHR 16, coalescer 64,
32GB/s

Hub 1 cyc latency, 32GB/s I/O
Uncore

Switches 2GHz, 4-port, round robin scheduling,
ring topology, 32GB/s

SA 2GHz, 2 cyc latency, 32GB/s I/O
MC 2GHz, 2 cyc latency, 32GB/s I/O
DRAM 4GB, 8 channels, striped

Global
64B line sizes, 8B headers, LRU replacement policy

4.4.2 Experimental Results

The results for my collaborative CPU-GPU executions are shown in Figs. 4.7, 4.8, 4.9, 4.10,

and 4.11. For this first set of experiments I configure M2S-CGM as discussed in Sec. 4.4.1 and ex-

ecute both the non-collaborative GPU-only and collaborative CPU-GPU implementations of each

of my benchmarks. The non-collaborative GPU-only results are shown as "GPU" on each of the

graphs and are used as the point of comparison for the collaborative GPU-GPU executions. I ex-
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ecute the collaborative CPU-GPU benchmarks while varying the number of CPU cores/threads

from one to eight and varying CPU workload percentage from 20% to 80%. All results shown are

normalized to those of the appropriate non-collaborative GPU-only benchmark execution results.

Smaller is better in the graphs. The graphs provide a performance profile for each benchmark by

showing overall measured execution time for each benchmark’s configuration and showing how

much of the overall time the CPU and GPU were executing. CPU and GPU time are shown as

two separate overlaid line graphs. A difference between measured CPU time and GPU time tells

us that the benchmark’s execution was unbalanced and gives us the CPU or GPU idle time. This

means that either the CPU or GPU finished executing early and then sat idle waiting for the other

processor to complete its work. The benchmark’s execution is therefore balanced when CPU time

and GPU time intersect on the graph.

Figure 4.7: Backprop Collaborative Execution Profile
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Figure 4.8: Block Matrix Multiply Collaborative Execution Profile

Figure 4.9: Edge Detection Collaborative Execution Profile
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Figure 4.10: Nearest Neighbor Collaborative Execution Profile

Figure 4.11: Write Collaborative Execution Profile
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Figure 4.12: Best Case Overall Speedups

First some global observations on collaborative CPU-GPU execution behaviour. The graphs demon-

strate that overall collaborative performance, for any of the benchmarks, trends towards becoming

increasingly unbalanced as the CPU’s workload percentage increases from 20% - 80%. This holds

true no matter what number of CPU cores/threads are utilized. I also observe that, with the ex-

ception of Write, there exists multiple benchmark configurations resulting in balanced executions.

However, a balanced collaborative CPU-GPU execution does not alone mean it is the optimal con-

figuration leading to maximum performance. For example, as shown in the graph for Nearest

Neighbor balanced configurations exists in the 20%, 30%, 40%, 50%, and 60% configurations,

however, only one configuration, 60%, provides maximum execution performance. All together

this means that the combination of using too little or too much CPU workload percentage and using

too few or too many CPU cores/threads lead to performance degradation. This makes predicting

an unprofiled collaborative CPU-GPU application’s optimal configuration a nontrivial task.

For this set of benchmarks specifically, the graphs suggest that (1) giving the CPU more than 60%

of the workload percentage will consistently lead to unbalanced collaborative executions and re-
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sult in overall degradation in maximum performance, (2) with the exception of Write, giving the

CPU less than 40% of the workload will lead to potential performance loss despite the existence

of balanced configurations in lower CPU workload percentage ranges, and (3) again with the ex-

ception of Write, the sweet spot appears to be giving the CPU 40%-60% of the workload and

allocating 6-8 CPU cores to process the workload in parallel. This configuration range leads to

the highest in performance gains in our heterogeneous CPU-GPU architectural model. It is impor-

tant to point out that in most cases performance does increase even in unoptimized collaborative

execution and means that even unoptimized collaborative executions are still better than the equiv-

alent non-collaborative GPU-only execution. In the following set of experiments I will show how

architectural changes can change these observations.

Table 4.2: Optimal Collaborative Benchmark Configurations

Benchmark CPU Cores CPU Share
Backprop 8 60%

BMM 8 50%
Edge Detection 8 50%

Nearest Neighbor 8 60%
Write 6 20%

Fig. 4.12 summarizes all of the results as the selection of the best case overall speedups under

each benchmark configuration. Overall, Backpropagation, Block Matrix Multiply, Edge Detec-

tion, Nearest Neighbor, and Write exhibit average speedups over the non-collaborative GPU-only

execution of 1.52x, 1.36x, 1.47x, 1.69x, and 0.86x respectively. However, I can observe from the

graph that each benchmark exhibits a single point of maximum performance that is significantly

better than the average. Table 4.2 summarizes the configuration settings that result in my maxi-

mum performance measurements. For each benchmark I measured maximum performance gains

over the non-collaborative GPU-only execution of 2.23x, 1.74x, 2.0x, 2.2x, and 1.24x for Back-

propagation, Block Matrix Multiply, Edge Detection, Nearest Neighbor, and Write respectively.
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The first and second set of experiments demonstrates M2S-CGM’s capability and flexibility to suc-

cessfully simulate various non-collaborative GPU-only and collaborative CPU-GPU executions.

Additionally, the benchmarks presented in this dissertation have successfully allowed me to ex-

plore the trade space regarding optimizing collaborative CPU-GPU execution. The results shown

here are promising and show that if collaborative CPU-GPU applications are appropriately config-

ured, it is evident that collaborative CPU-GPU executions can outperform their non-collaborative

counterparts by as much as 2.23x. In the following set of experiments I present a study on how

varying key architectural parameters affect the CPU and GPU during collaborative executions and

observe the resultant impacts to collaborative CPU-GPU performance.

4.5 Study 3: Future Architectural Impacts to Collaborative CPU-GPU Execution

This section presents experiments and results regarding an architectural study with the goal of

determining the impact of varying four key architectural parameters on collaborative CPU-GPU

performance by varying GPU compute unit coalesce size, GPU to memory controller bandwidth,

GPU frequency, and system wide switching fabric latency. The analysis shows what types of archi-

tectural changes are critical to heterogeneous CPU-GPU processor performance and provides new

directions for future research regarding heterogeneous CPU-GPU processor design and profiling

tools meant to aid in predicting optimal collaborative CPU-GPU configurations.

4.5.1 Experimental Setup

For the conduct of the experiments presented in this section I maintain the computer architectural

system wide configuration parameters, benchmarks, and OpenCL parallel section definition as out-

lined in Sec. 4.4.1. I then vary the M2S-CGM architectural model’s GPU compute unit coalescer
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size from 32 to 96, vary GPU to memory controller bandwidth from 32GB/s to 76GB/s and then to

288GB/s, vary GPU frequency from 1GHz to 4GHz, and vary latency within the switching fabric.

4.5.2 Experimental Results

The results for my future architectural impacts study are shown in Figs. 4.13, 4.14, 4.15, and 4.16.

The graphs are set up in the same manner as discussed in Sec. 4.4.2. However, all results shown

here are now normalized to each benchmark’s best case execution and not to that of the non-

collaborative GPU-only execution.

Figure 4.13: Increasing GPU Bandwidth and Frequency
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Figure 4.14: Increasing GPU Bandwidth, Frequency, and Coalesce Size

Figure 4.15: Decreasing Switching Fabric Latency
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Figure 4.16: Decreasing Switching Fabric Latency and Increasing Coalesce Size

I decided to vary GPU compute unit coalescer size because it has been shown to be a significant

determinant in overall GPU performance [66]. I varied GPU compute unit coalescer size by 16,

32, 64, 96, and 128 over a set of test executions and found that the performance benefits of GPU

compute unit coalescing peak at approximately 96 for my benchmarks. I modify GPU to memory

controller bandwidth, which comprises flit size increases throughout the GPU memory hierarchy

all the way down through the memory controller. Increasing the GPU to memory controller band-

width results in a significant reduction of contention in the I/O controllers of the GPU memory

system, GPU/system agent switch node, system agent, and memory controller. I vary GPU fre-

quency to understand how an increase in GPU frequency places pressure on the lower levels of

the memory system. As GPU frequency climbs, memory request frequency coming from the GPU

also increases which leads to higher contention between the CPU and GPU within the switching

fabric and LLCs. Finally, I vary the latency of the switching fabric so that I can observe the role

the switching fabric plays in overall system-wide latency and occupancy.

I start the study by varying GPU frequency from 1GHz to 4GHz and varying GPU to memory
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controller bandwidth from 32GB/s to 76GB/s and then from 76GB/s to 288GB/s. The results are

shown in Fig. 4.13. M2S-CGM’s maximum simulated packet size is 72B, therefore GPU maximum

internal bandwidth is 72GB/s at 1GHz and is 288GB/s at 4GHz. The results show that with a

1GHz GPU changing GPU to memory controller bandwidth from 32GB/s to 72GB/s has a small

effect on overall collaborative CPU-GPU performance. I measure the average increase in CPU and

GPU performance as 1.11x and 1.04x respectively with overall performance limited by the GPU.

The results suggest that switching fabric occupancy and latency is more critical to performance

in collaborative CPU-GPU executions than simply GPU to memory controller bandwidth alone.

The leading cause is that in the collaborative CPU-GPU environment both CPU and GPU memory

system requests enter the switching fabric, make their way to the LLCs, and then eventually back

to the requesting CPU or GPU L2. The contention and latency incurred over these transactions is a

significant driving factor determining collaborative CPU-GPU performance. The measured small

increase in CPU and GPU performance is mainly due to the lowered contention and latency within

the GPU/system agent switch node, system agent, and memory controller.

When changing the GPU from 1GHz to 4GHz (Fig. 4.13 right side) and changing GPU to memory

controller bandwidth from 72GB/s to 288GB/s I immediately observe a significant jump in GPU

average speedup to 1.92x and a decrease in average CPU speedup to 1.06x with overall perfor-

mance now limited by the CPU. I found that one reason for the GPU’s jump in performance is that

the GPU’s internal stall time decreases when increasing GPU frequency. However, I also observe

that the increase in GPU frequency leads to a significant increase in switching fabric occupancy and

contention. For example, in Nearest Neighbor the average CPU switching fabric node occupancy

changes from 21% to 51%, nearly a 2.4x increase in occupancy. Additionally the GPU/system

agent switch node has an extremely high 76% occupancy, even with the increased bandwidth of

288GB/s. The results suggest that the higher occupancy and contention in the switching fabric

leads to longer memory system access latency and that the CPU’s performance is very sensitive to
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the additional switching fabric contention caused by the GPU. It is important to note that I now also

observe significant differences between CPU and GPU execution time which means the execution

has become unbalanced and that the settings leading to the optimal number of complementing CPU

cores/threads and CPU workload percentage has shifted elsewhere.

Fig. 4.14 shows the effects of increasing GPU compute unit coalescer size from 32 to 96 in con-

junction with changing the GPU from 1GHz to 4GHz and changing GPU to memory controller

bandwidth to 72GB/s and 288GB/s. At a 1GHz GPU I observe average CPU and GPU speedups of

1.58x and 1.32x respectively with overall performance limited by the GPU. Interestingly, changing

GPU coalescer size has a significant impact to CPU performance as well. I found that increasing

GPU compute unit coalescer size leads to a significant reduction in the number of GPU memory

system accesses which results in an average CPU switch node occupancy drop from 46% to 19%

and GPU/system agent switch node occupancy drop from 62% to 19%. These results tell us that

the GPU’s coalescer must be adequately sized in heterogeneous CPU-GPU processors. At a 4GHz

GPU frequency (Fig. 4.14 right side) the CPU remains impacted by the higher switching fabric

occupancy and latency and only achieves an average speedup of 1.01x. However, the change in

coalescer size results in an average speedup of 2.14x for the GPU with overall performance still

limited by the CPU. These results also suggest that contention within the switching fabric is a

major determinant of overall collaborative CPU-GPU performance.

The previous results suggested that contention and latency within the switching fabric are a sig-

nificant factor in collaborative CPU-GPU performance. So, for the next study I directly evaluate

the effect of changing switching fabric latency on overall performance. Again, I vary GPU fre-

quency from 1GHz to 4GHz, but return the GPU to memory controller bandwidth to 32GB/s and

set switching fabric latency to a negligible level. The results are shown in Fig. 4.15. With the

GPU at 1GHz the lowered latency in the switching fabric resulted in an expected jump in CPU

performance with a measured average speedup of 1.50x. However, overall performance is limited
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by the GPU, with a measured average speedup of 1.07x. The GPU’s lack of performance gain

reconciles with my previous findings where I observe higher GPU internal stall time at lower GPU

frequencies. With a 4GHz GPU (Fig. 4.15 right side) CPU performance remains approximately the

same, however I observe a large jump in GPU performance with a measured average speedup of

2.66x and overall performance limited by the CPU. These results suggest that the switching fabric

latency is more critical to the GPU than bandwidth internal to the GPU. Additionally increasing

GPU frequency lowers the GPU’s internal stall time and allows the GPU to make better use of

system wide bandwidth.

Fig. 4.16 shows the effects of increasing GPU compute unit coalescer size from 32 to 96 in con-

junction with changes to switching fabric latency. With a 1GHz GPU I observe that changing the

coalescer size provides the same results for the GPU previously discussed above, with the excep-

tion of Block Matrix Multiply which underperformed due to the lowered bandwidth internal to

the GPU. I also observe that the CPU exhibits only minor performance differences across all the

benchmarks in Figs. 4.15 and 4.16. This means that my switching fabric changes have reduced the

contention between the CPU and GPU to a nearly negligible point which is why there is no change

to CPU performance when changing GPU coalescer size. With a 4GHz GPU (Fig. 4.16 right side) I

observe another big jump in average GPU performance with a measured average speedup of 3.33x

due to the combination of the physical reduction in GPU memory system accesses and the lowered

switching fabric latency. However, overall performance remains limited by the CPU.

The third set of experiments successfully shows that GPU compute unit coalescing, GPU fre-

quency, and switching fabric occupancy and latency are major determinants in overall collabora-

tive CPU-GPU performance. The results show that collaborative CPU-GPU performance growth

is possible in future heterogeneous CPU-GPU processors. In addition, further efforts can be made

to re-balance the collaborative CPU-GPU executions shown in this section. The results show

that future collaborative CPU-GPU executions could reach a theoretical average speedup of 3.33x
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over the average speedups of my benchmark’s best case collaborative CPU-GPU executions and

therefore a theoretical average speedup of 6.3x over that of my benchmark’s non-collaborative

GPU-only executions.

4.6 Experimental Observations

Drawing on the experiences gained during the implementation of M2S-CGM, its benchmarks, and

the conduct of the experiments presented in this dissertation I have gleamed several important

insights related to the nature of heterogeneous CPU-GPU processor designs and applications.

• The CPU and GPU absolutely should be capable of sharing a single virtual address space

and other system resources, like, the LLC. The results showed that by sharing a single vir-

tual address space and other system resources underlying mechanisms like memory copies

between the CPU and GPU are no longer required and higher levels of parallelism can be

obtained through traditional synchronization and coherency mechanisms.

• Sharing the LLC between the CPU and GPU can result in a measurable boost in performance

when the CPU and GPU coherently operate, however introducing coherency between the

CPU and GPU is more critical.

• GPU address translation mechanisms need to be researched more. The current IOMMU ap-

proach incurs significant overhead as the system must trap back to the CPU to solve address

translation issues. The GPU should be capable of resolving address translation issues on its

own.

• In collaborative CPU-GPU applications using too little or too much CPU workload percent-

age and/or using too few or too many CPU cores/threads can lead to overall performance

degradation.
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• In collaborative CPU-GPU applications it is possible to have multiple configurations lead-

ing to balanced executions, however only one configuration will result in maximum perfor-

mance.

• Optimal collaborative CPU-GPU application settings are non-portable between collabora-

tive applications and heterogeneous CPU-GPU processor architectures.

• Developers should focus on increasing GPU compute unit coalesce size, GPU frequency,

and lowering switching fabric latency in future heterogeneous CPU-GPU processors.

• New research regarding the development of collaborative CPU-GPU system profiling tools

needs to be conducted. These new profiling tools can help to better predict an application’s

optimal configuration settings for a specific heterogeneous CPU-GPU processor architecture

and can help developers and hypervisors attain maximum performance.

4.7 Summary and Conclusions

In this chapter I have presented an in-depth simulation backed architectural study of the trade space

regarding the impacts of added coherency between the CPU and GPU with and without shared

LLC, the optimization of the number of complementing CPU cores/threads and CPU workload

percentage in collaborative CPU-GPU applications, and the impacts of key architectural features

on collaborative CPU-GPU performance.

In the first study my benchmark executions show that added coherency between the CPU and GPU

can provide significant performance gains. Results show that our modeled half coherent CPU-GPU

heterogeneous system achieves speedups of 3.27x, 1.06x, 0.94x, 6.51x, 1.21x, and 1.15x and my

fully coherent CPU-GPU heterogeneous system achieves speedups of 3.67x, 1.06x, 0.95x, 8.83x,

1.23x, and 1.16x for Backprop, LUD, Kmeans, Hotspot, Needleman, and BFS respectively over the
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noncoherent equivalent. In the second study my benchmark execution results show that collabora-

tive CPU-GPU benchmarks can achieve speedups as high as 2.23x over that of non-collaborative

GPU-only benchmarks. The results also show that using too little or too much CPU workload

percentage and/or using too few or too many CPU cores/threads can lead to performance degra-

dation. Therefore, developers should endeavor to find the optimal configuration points for their

collaborative CPU-GPU applications. Choosing the right optimal configuration point can result

in significantly higher performance over arbitrarily complementing the GPU with a number of

CPU cores/threads and CPU workload percentage. In the third study my benchmark execution

results show how varying four key architectural parameters impacts collaborative CPU-GPU per-

formance. I found that GPU compute unit coalesce size, GPU frequency, and switching fabric

contention and latency are major determinants of overall collaborative CPU-GPU performance.

The results show that future potential architectural changes to heterogeneous CPU-GPU proces-

sors can result in theoretical average speedups of 6.3x over non-collaborative GPU-only executions

on today’s processors. Developers should focus on improving these key architectural elements in

future heterogeneous CPU-GPU processor designs.
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CHAPTER 5: RELATED WORK

This chapter presents related work to the subject matter of this dissertation. Related work to my

own can be broken down into the research areas of sequential and parallel discrete event-driven

simulation methodologies, computer architectural simulation systems, heterogeneous CPU-GPU

benchmarks, and heterogeneous CPU-GPU architectural studies which I present over the following

sections.

5.1 Related Work in Sequential Discrete Event-Driven Simulation Methodologies

There is a long and diverse history of related work concerning discrete event-driven simulation

covering a broad spectrum of methodologies and techniques. Information regarding many of these

methods and techniques can be found over the course of a few comprehensive and relevant sur-

veys [67, 68, 69]. In general, related work to my own falls into the category of discrete event-driven

simulation methodologies intended for use in the development of computer architectural simula-

tions. Thus for brevity and relevance, I limit the presentation of related work to the methodologies

used in current mainstream computer architectural simulation systems.

The implementation methodology from which KnightSim, as presented in chapter 2, inherits its

base functionality from is called The Threads Package and has been used in at least the FlashLite

and M2S-CGM computer architectural simulation systems [13, 3]. However despite its prior usage,

implementation details regarding The Threads Package itself have previously been little discussed.

My implementation of KnightSim preserves the interfaces of The Threads Package making them

functionally equivalent to each other. However, KnightSim incorporates a completely redesigned

and optimized implementation that results in (1) fixes to functional issues that otherwise render
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the methodology non-functional in modern Linux distributions, (2) a significant performance en-

hancement, and (3) a novel parallelized implementation that is further still capable of higher levels

of performance.

Examples of directly related work regarding other sequential discrete event-driven simulation

methodologies used in current mainstream computer architectural simulation systems can be found

in GEM5 [21], Multi2Sim [15], Ruby [70], and their derivative computer architectural simulation

systems, such as Gem5-GPU [71] and FusionSim [72]. Each of these computer architectural sim-

ulation systems employ a discrete event-driven simulation tool that utilizes a similar technique.

In each, the discrete event-driven simulation engine works by scheduling and executing a prede-

termined event and callback function at a specified cycle. In essence, the discrete event-driven

simulation engine’s scheduler will call the function passed to it when the number of cycles pro-

vided by the developer transpires. Ruby employs a slightly different technique. In Ruby messages

are enqueued in buffers linking modeled system elements together. The buffers impose variable

latency and bandwidth on inserted events. Simulation execution proceeds by invoking a callback

function for the next scheduled event in a given event buffer.

In comparison to the modeling methodologies incorporated in the other computer architectural

simulation systems presented here, KnightSim utilizes a different approach to event execution by

implementing events as independently executable x86 "KnightSim Contexts". As presented in

Sec. 2.2.1, KnightSim Contexts encapsulate all of the functionality and interfaces associated with

a single simulated system element in an executable package. KnightSim Contexts are treated as

simulation objects that are scheduled for execution by an advance and await mechanism. In this

approach occupancy and contention are then automatically modeled by KnightSim Contexts. In

the other approaches discussed here, researchers must endeavor to carefully model the latency,

occupancy, and contention incurred by the modeled resource. Since these simulation features are

not an inherent part of the mechanism, such modeling must be implemented manually with a
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collection of events, flags, and appropriate execution timings.

5.2 Related Work in Parallel Discrete Event-Driven Simulation Methodologies

Other parallel discrete event-driven simulation techniques have previously been researched. [73]

presents a distributed simulation approach where each process in the physical system is simulated

by a separate logical process. [74] presents the Wisconsin Wind Tunnel, a technique that runs

a parallel shared-memory program on a parallel computer and uses execution driven, distributed,

discrete-event simulation to evaluate the performance of cache coherent, shared-memory comput-

ers. Distributed discrete event simulation techniques presented in [75] and [76] utilize a concept

called lookahead, which is a prediction on a processor’s future behavior based on an analysis of the

processor’s simulation state. [77] presents Hornet, a cycle-level multicore simulator that utilizes

timing approximations to provide support for a variety of memory hierarchies, interconnect routing

and virtual channel buffer allocation algorithms, and accurate power and thermal modeling. [78]

presents zSim, a simulator that utilizes an instruction-driven timing model that leverages dynamic

binary translation to speed up the sequential simulation by performing the majority of the work in

a core’s timing model during program instrumentation.

In comparison to each of these, Parallel KnightSim parallelizes event execution by dividing Knight-

Sim Contexts into multiple context batches for execution in parallel over a user specified number of

threads each simulated cycle, see Sec. 2.5. From the developer’s perspective, the developer groups

contexts with specific threads and during execution the workload is automatically parallelized.
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5.3 Related Work in Computer Architectural Simulation Systems and Heterogeneous

CPU-GPU benchmarks

There is a significant amount of related work concerning computer architectural simulation method-

ologies and heterogeneous CPU-GPU benchmarks dating all the way back to the beginning of the

GPGPU era, circa 2005. However, older work is quickly becoming less relevant due to the recent

rapid advance of heterogeneous processor design. So, for brevity and relevance I present related

work that focuses on the recent advent of computer architectural simulation systems supporting

CPU-GPU execution in cache coherent environments utilizing shared virtual memory features and

the heterogeneous CPU-GPU benchmarks that make use of these new heterogeneous CPU-GPU

architectural features.

Related work in heterogeneous CPU-GPU benchmark applications can be found in the Rodinia-

SVM, Hetero-Mark, and Chai benchmark suites [4, 7, 11, 12, 79]. The Rodinia-SVM bench-

mark suite ports each of the previously established, and widely used, Rodinia OpenCL 1.2 version

non-collaborative benchmarks [16] to new OpenCL 2.0 collaborative implementations. Both the

Hetero-Mark and Chai benchmark suites provide a set of collaborative benchmarks focused on

expressing various CPU-GPU collaborative patterns. The Rodinia-SVM benchmark suite was pro-

filed on a physical Intel Skylake system and both the Hetero-Mark and Chai benchmark suites were

profiled on a physical AMD A10 APU system.

Related work in heterogeneous computer architectural Simulation systems can be found in Multi2-

Sim, Gem5-GPU, and an Intel CPU-iGPU simulator [80, 15, 81]. Multi2Sim is an execution-driven

computer architectural simulator that was recently extended to support the HSA/HSAIL runtime

and is capable of running the Hetero-Mark benchmarks. Gem5-GPU is an execution-driven com-

puter architectural simulation system that was also recently extended to support the OpenCL 2.0

runtime environment [82]. The Intel CPU-iGPU simulator is a trace-based computer architectural
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simulation system that is capable of running CPU and GPU traces taken from physical system

executions. Each of the simulators presented here provide configurable CPU, GPU, and memory

system simulation components to varying levels of fidelity and support shared LLC and shared vir-

tual memory between the CPU and GPU. Multi2Sim supports ISA level simulation for both recent

NVIDIA and AMD GPUs, Gem5-GPU predominantly supports ISA level simulation of NVIDIA

GPUs, and the Intel CPU-iGPU simulator supports Intel HD GPU configurations.

In comparison to the related work presented here, I have chosen to implement my own computer

architectural simulation system called M2S-CGM [3] and five of my own benchmarks comprising

non-collaborative GPU-only and collaborative CPU-GPU implementations. M2S-CGM is similar

to the other computer architectural simulators presented here, however in comparison it has a more

detailed system wide occupancy and contention model and provides modeled system elements

that have not been presented in the related work, such as, a GPU hub/IOMMU and system agent.

For my set of benchmarks I port the Rodinia OpenCL Backpropagation and Nearest Neighbor

benchmarks and create three additional benchmarks of my own. My benchmark set is designed

to specifically support the nature of my experiments, utilizes new heterogeneous CPU-GPU ar-

chitectural features, and expresses different memory system access patterns between the CPU and

GPU. M2S-CGM and my benchmarks enable execution-driven simulation-based research within

the collaborative CPU-GPU design space where previously not possible.

5.4 Related Work in Heterogeneous CPU-GPU Architectural Studies

Related work in heterogeneous CPU-GPU architectural studies is diverse and covers many aspects

over the breadth of both the software stack and hardware layer. Recent software-based approaches

include techniques that manage system coherence such as hypervisor layers and modified program-

ming models [1, 83, 84]. Higher level software-based approaches that utilize the current under-
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lying hardware and software may provide a boost in speedup and efficacy of programming, how-

ever significant system changes proposed require a more robust software and hardware co-design

where the programming model and underlying hardware are both changed to evoke a substantive

improvement in processing performance.

Examples of recent work related to software-based approaches include the Heterogeneous System

Architecture Intermediate Language (HSAIL) [1], OpenACC [83], and OpenCL [25]. HSAIL

provides an intermediate layer that abstracts separate ISAs into a single instruction type. A HSAIL

virtual machine manages the execution of the application and automatically constructs executa-

bles for the target ISAs and executes them on the target hardware in a cohesive environment.

OpenCL and OpenACC are similar where highly parallelizable regions of the application are di-

rectly placed on the GPU for execution. Both examples build upon HSAIL and provide higher

levels of programmability and reduces the need for developers to manually manage system re-

sources. However, despite the higher levels of flexibility, efficiency, and programmability offered

by HSAIL, OpenACC, and OpenCL the architecture of the underlying hardware remains critical

to overall application performance. Effective exploitation of the system’s hardware in a hetero-

geneous manner requires that the underlying computational architecture better supports a shared

processing environment. This touches many system-level design areas including elements such as

the memory system, OS, compiler, runtime, drivers, and to an extent the co-processor itself. In my

heterogeneous CPU-GPU system simulation experiments I configure the simulated software stack

so that both the CPU and GPU operate in a single coherent shared virtual memory environment.

Examples of recent work related to hardware-based approaches includes a timestamp-based proto-

col called Temporal Coherence [85]. Here the authors propose a low overhead coherence mecha-

nism for memory systems internal to the GPU that utilizes a timestamp to determine if a cache line

is dirty between CPU compute units. A directory-based region coherence protocol called Hetero-

geneous System Coherence [8]. The authors introduce a set of region buffers to the CPU and GPU
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L2 caches. In this context the region buffer acts as a course-grain filter for memory system mes-

sage traffic. Thus, if the CPU or GPU controls a region of memory it then does not need to consult

with other processing elements before preforming reads or writes to main memory. A bus based

CPU-GPU integration is proposed in [45, 46]. The authors propose an approach that coherently

integrates the CPU and GPU by bus and shows that coherence integration at the hardware level

can result in significant performance gains over software-based CPU-GPU coherence. Studies of

the effects of LLC sharing during collaborative execution have been made in [86, 87, 88]. The

authors utilize simulation or physical systems and execute a set of benchmarks with and without

a shared LLC. However, these studies do not propose an integration with the directory in each

LLC. An analysis regarding the effects of interference between the CPU and GPU at the LLC is

reported in [81]. The authors utilize the Intel CPU-iGPU simulator and a single micro benchmark

to study CPU-GPU contention within the LLC while varying CPU and GPU workload parameters

and sizes. A study of CPU-GPU collaborative patterns is performed in [10]. The authors utilize

the Chai Canny Edge Detection and Random Sample Consensus benchmarks and study the effects

of varying collaborative data and task partitioning on an AMD A10 APU. An analysis of OpenCL

memory management methods was performed in [9]. The authors port a set of the Rodinia OpenCL

benchmarks to make use of OpenCL 2.0’s shared virtual memory features and compare the per-

formance of the sharedalloc memory management feature to the older OpenCL 1.2 managed

memory management feature on an AMD A10 APU.

In comparison to the work presented here I performed three architectural studies with the goal of

studying the collaborative CPU-GPU processor and application trade space. In my work I study

(1) the architectural effects of shared LLC and CPU-GPU coherence on the overall performance

of non-collaborative GPU-only applications, (2) the optimization of the number of complementing

CPU cores/threads and CPU workload percentage in collaborative CPU-GPU applications, and

(3) the impact of future looking architectural changes to GPU compute unit coalescer size, GPU to
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memory controller bandwidth, GPU frequency, and switching fabric latency on collaborative CPU-

GPU performance. My work provides a deep understanding of collaborative CPU-GPU application

performance and architectural interaction characteristics that could not be attained without simula-

tion. I believe that the research presented in this dissertation helps to inform researchers on ways to

best optimize collaborative CPU-GPU executions and provides new directions for future research

regarding heterogeneous CPU-GPU processor design and profiling tools meant to aid in predict-

ing optimal collaborative CPU-GPU configurations. To the best of My knowledge I believe that

my work provides the first in-depth simulation backed study of the collaborative CPU-GPU trade

space including optimizing operating points and analyzing architectural parameter impacts.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

In this dissertation I explore the heterogeneous CPU-GPU processor and application design space

and answer several open research questions. I study and present several architectural design trade-

offs in heterogeneous CPU-GPU processors and have discovered ways to go about maximizing

heterogeneous CPU-GPU processor and application performance. Over the course of chapters 2

and 3 I implement two novel and related computer architectural simulation tools, called Knight-

Sim and M2S-CGM. KnightSim advances the state-of-the-art in discrete event-driven simulation

methodologies and computer architectural modeling by (1) introducing a sequential event-driven

simulation capability that is faster than other equivalent sequential event-driven simulation method-

ologies in use today and (2) introduces a novel parallel event-driven simulation methodology that

is capable of scaling with computer architectural simulation system size. These advancements

impact the computer architectural simulation research community by providing increases to com-

puter architectural simulation speed and therefore simulated problem sizes. M2S-CGM advances

the state-of-the-art in computer architectural simulation systems by introducing the capability to

simulate heterogeneous CPU-GPU processors with coherency between the CPU and GPU, shared

LLC, and shared virtual memory address spaces. This advancement impacts the computer archi-

tectural simulation research community by enabling execution-driven simulation-based research

within the collaborative CPU-GPU design space where previously not possible and subsequently

enables the architectural studies presented in this dissertation.

In chapter 4 I present the results of three heterogeneous CPU-GPU architectural studies. In the first

study my benchmark executions show that added coherency between the CPU and GPU can pro-

vide significant performance gains over equivalent non-coherent implementations. In the second

study my benchmark execution results show that, indeed, collaborative CPU-GPU benchmarks can

achieve speedups over that of non-collaborative GPU-only benchmarks and provides approaches
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to achieve maximum performance in collaborative CPU-GPU applications. In the third study my

benchmark execution results show how varying four key architectural parameters impacts collab-

orative CPU-GPU performance. These three studies together help to advance the state-of-the-art

in heterogeneous CPU-GPU processor design and application performance. To the best of my

knowledge I have presented the first simulation backed architectural study of the heterogeneous

CPU-GPU design space and have showed how heterogeneous CPU-GPU application performance

changes with simulated system architecture. This advancement impacts the computer architec-

tural simulation research community by helping to inform researchers on ways to best optimize

collaborative CPU-GPU executions and by providing new directions for future research regarding

heterogeneous CPU-GPU tools and processor design.

Ready-made and fully working implementations of KnightSim, Parallel KnightSim, M2S-CGM,

and the benchmarks presented in this dissertation are made available as free software and can

be found on GitHub. By making all software freely and readily available researchers can easily

download my work for use in supporting future research efforts.

6.1 Future Work

In this section I summarize my thoughts on possible future work which is intended to build upon

the work I have presented in this dissertation.

• Utilize Parallel KnightSim and implement parallel CPU, GPU, and memory system com-

puter architectural models. This will result in new performance impacts in computer ar-

chitectural modeling and could provide measurable performance gains in moderate to large

computer architectural models. Future work should focus on determining what the maximum

attainable parallel performance is and how to achieve it.
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• Explore new uses for KnightSim and Parallel KnightSim. For example, I believe that Parallel

KnightSim could be of use in machine learning applications and could be used to implement

large neural networks and provide speedups in training. Parallel KnightSim could provide a

means to automatically parallelize propagation in neural networks.

• Extend M2S-CGM to include newly emergent heterogeneous CPU-GPU architectural fea-

tures such as the Heterogeneous System Architecture Intermediate Language (HSAIL), sys-

tem wide synchronization mechanisms, and to support simulation of the AMD ROCm plat-

form. These extensions will enable further research into the heterogeneous CPU-GPU de-

sign space and will keep M2S-CGM’s modeling and simulation capabilities current with

industry-driven changes in heterogeneous CPU-GPU processors.

• Extend the CGM memory system model and create a standalone portable library with an

intuitive API that provides a means to easily integrate CGM with other architectural models.

Also provide easier means to configure memory system element models, like, cache hierar-

chies and switching fabric topologies. With this new tool researchers could easily connect

their architectural models to CGM and make use of its extensive memory system simulation

capabilities.

• Utilize M2S-CGM and the benchmarks presented in this dissertation to conduct new re-

search regarding the creation of profiling tools intended to help developers and new hyper-

visors better predict a given heterogeneous CPU-GPU application’s optimized parameters

and to perform new architectural studies aimed at optimizing switching fabric latency in

heterogeneous CPU-GPU processors.
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APPENDIX : SETJMP AND LONGJMP ASSEMBLY ROUTINES
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The following algorithms are for the 32bit Setjmp and Longjmp assembly routines:

Algorithm Appx.1 Setjmp i386
1: procedure SETJMP(jmp_buf bu f )
2: .section .text
3: .globl set jmp
4: .type set jmp, @ f unction
5: set jmp :
6: xor %eax,%eax
7: mov 0x4(%esp),%edx . Store callee registers
8: mov %ebx,(%edx)
9: mov %esi,0x4(%edx)

10: mov %edi,0x8(%edx)
11: lea 0x4(%esp),%ecx . Get stack pointer
12: mov %ecx,0x10(%edx) . Sore stack pointer
13: mov (%esp),%ecx . Get inst pointer
14: mov %ecx,0x14(%edx) . Store inst pointer
15: mov %ebp,0xc(%edx)
16: mov %eax,0x18(%edx)
17: ret
18: end procedure

Algorithm Appx.2 Longjmp i386
1: procedure LONGJMP(jmp_buf bu f , int val)
2: .section .text
3: .globl long jmp
4: .type long jmp, @ f unction
5: long jmp :
6: mov 0x4(%esp),%eax . Restore callee registers
7: mov 0x14(%eax),%edx . Restore inst pointer
8: mov 0x10(%eax),%ecx . Restore stack pointer
9: mov (%eax),%ebx

10: mov 0x4(%eax),%esi
11: mov 0x8(%eax),%edi
12: mov 0xc(%eax),%ebp
13: mov 0x8(%esp),%eax . Set return val
14: mov %ecx,%esp
15: jmp ∗%edx
16: end procedure
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The following algorithms are for the 64bit Setjmp and Longjmp assembly routines:

Algorithm Appx.3 Setjmp x86_64
1: procedure SETJMP(jmp_buf bu f )
2: .section .text
3: .globl set jmp
4: .type set jmp, @ f unction
5: set jmp :
6: mov %rbx,(%rdi) . Store callee registers
7: mov %rbp,%rax
8: mov %rax,0x8(%rdi)
9: mov %r12,0x10(%rdi)

10: mov %r13,0x18(%rdi)
11: mov %r14,0x20(%rdi)
12: mov %r15,0x28(%rdi)
13: lea 0x8(%rsp),%rdx . Get stack pointer
14: mov %rdx,0x30(%rdi) . Sore stack pointer
15: mov (%rsp),%rax . Get inst pointer
16: mov %rax,0x38(%rdi) . Store inst pointer
17: mov %rax,%rax
18: ret
19: end procedure

Algorithm Appx.4 Longjmp x86_64
1: procedure LONGJMP(jmp_buf bu f , int val)
2: .section .text
3: .globl long jmp
4: .type long jmp, @ f unction
5: long jmp :
6: mov 0x8(%rdi),%r9 . Restore callee registers
7: mov 0x10(%rdi),%r12
8: mov 0x18(%rdi),%r13
9: mov 0x20(%rdi),%r14

10: mov 0x28(%rdi),%r15
11: mov 0x30(%rdi),%r8 . Restore stack pointer
12: mov 0x38(%rdi),%rdx . Restore inst pointer
13: mov (%rdi),%rbx
14: mov %esi,%eax . Set return val
15: mov %r8,%rsp
16: mov %r9,%rbp
17: jmpq ∗%rdx
18: end procedure
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