41 research outputs found

    Development of MEMS - based IMU for position estimation: comparison of sensor fusion solutions

    Get PDF
    With the surge of inexpensive, widely accessible, and precise Micro-Electro Mechanical Systems (MEMS) in recent years, inertial systems tracking move ment have become ubiquitous nowadays. Contrary to Global Positioning Sys tem (GPS)-based positioning, Inertial Navigation System (INS) are intrinsically unaffected by signal jamming, blockage susceptibilities, and spoofing. Measure ments from inertial sensors are also acquired at elevated sampling rates and may be numerically integrated to estimate position and orientation knowledge. These measurements are precise on a small-time scale but gradually accumulate errors over extended periods. Combining multiple inertial sensors in a method known as sensor fusion makes it possible to produce a more consistent and dependable un derstanding of the system, decreasing accumulative errors. Several sensor fusion algorithms occur in literature aimed at estimating the Attitude and Heading Reference System (AHRS) of a rigid body with respect to a reference frame. This work describes the development and implementation of a low-cost, multi purpose INS for position and orientation estimation. Additionally, it presents an experimental comparison of a series of sensor fusion solutions and benchmarking their performance on estimating the position of a moving object. Results show a correlation between what sensors are trusted by the algorithm and how well it performed at estimating position. Mahony, SAAM and Tilt algorithms had best general position estimate performance.Com o recente surgimento de sistemas micro-eletromecânico amplamente acessíveis e precisos nos últimos anos, o rastreio de movimento através de sistemas de in erciais tornou-se omnipresente nos dias de hoje. Contrariamente à localização baseada no Sistema de Posicionamento Global (GPS), os Sistemas de Naveg ação Inercial (SNI) não são afetados intrinsecamente pela interferência de sinal, suscetibilidades de bloqueio e falsificação. As medições dos sensores inerciais também são adquiridas a elevadas taxas de amostragem e podem ser integradas numericamente para estimar os conhecimentos de posição e orientação. Estas medições são precisas numa escala de pequena dimensão, mas acumulam grad ualmente erros durante longos períodos. Combinar múltiplos sensores inerci ais num método conhecido como fusão de sensores permite produzir uma mais consistente e confiável compreensão do sistema, diminuindo erros acumulativos. Vários algoritmos de fusão de sensores ocorrem na literatura com o objetivo de estimar os Sistemas de Referência de Atitude e Rumo (SRAR) de um corpo rígido no que diz respeito a uma estrutura de referência. Este trabalho descreve o desenvolvimento e implementação de um sistema multiusos de baixo custo para estimativa de posição e orientação. Além disso, apresenta uma comparação experimental de uma série de soluções de fusão de sensores e compara o seu de sempenho na estimativa da posição de um objeto em movimento. Os resultados mostram uma correlação entre os sensores que são confiados pelo algoritmo e o quão bem ele desempenhou na posição estimada. Os algoritmos Mahony, SAAM e Tilt tiveram o melhor desempenho da estimativa da posição geral

    Circles within spirals, wheels within wheels; Body rotation facilitates critical insights into animal behavioural ecology

    Get PDF
    How animals behave is fundamental to enhancing their lifetime fitness, so defining how animals move in space and time relates to many ecological questions, including resource selection, activity budgets and animal movement networks. Historically, animal behaviour and movement has been defined by direct observation, however recent advancements in biotelemetry have revolutionised how we now assess behaviour, particularly allowing animals to be monitored when they cannot be seen. Studies now pair ‘convectional’ radio telemetries with motion sensors to facilitate more detailed investigations of animal space-use. Motion sensitive tags (containing e.g., accelerometers and magnetometers) provide precise data on body movements which characterise behaviour, and this has been exemplified in extensive studies using accelerometery data, which has been linked to space-use defined by GPS. Conversely, consideration of body rotation (particularly change in yaw) is virtually absent within the biologging literature, even though various scales of yaw rotation can reveal important patterns in behaviour and movement, with animal heading being a fundamental component characterising space-use. This thesis explores animal body angles, particularly about the yaw axis, for elucidating animal movement ecology. I used five model species (a reptile, a mammal and three birds) to demonstrate the value of assessing body rotation for investigating fine-scale movement-specific behaviours. As part of this, I advanced the ‘dead-reckoning’ method, where fine-scale animal movement between temporally poorly resolved GPS fixes can be deduced using heading vectors and speed. I addressed many issues with this protocol, highlighting errors and potential solutions but was able to show how this approach leads to insights into many difficult-to-study animal behaviours. These ranged from elucidating how and where lions cross supposedly impermeable man-made barriers to examining how penguins react to tidal currents and then navigate their way to their nests far from the sea in colonies enclosed within thick vegetation

    A Fast Calibration and Compensation Method for Magnetometers in Strap-Down Spinning Projectiles

    No full text
    Attitude measurement is an essential technology in projectile trajectory correction. Magnetometers have been used for projectile attitude measurement systems as they are small in size, lightweight, and low cost. However, magnetometers are seriously disturbed by the artillery magnetic field during launch. Moreover, the error parameters of the magnetometers, which are calibrated in advance, usually change after extended storage. The changed parameters have negative effects on attitude estimation of the projectile. To improve the accuracy of attitude estimation, the magnetometers should be calibrated again before launch or during flight. This paper presents a fast calibration method specific for a spinning projectile. At the launch site, the tri-axial magnetometer is calibrated, the parameters of magnetometer are quickly obtained by optimal ellipsoid fitting based on a least squares criterion. Then, the calibration parameters are used to compensate for magnetometer outputs during flight. The numerical simulation results show that the proposed calibration method can effectively determine zero bias, scale factors, and alignment angle errors. Finally, a semi-physical experimental system was designed to further verify the performance of the calibration method. The results show that pitch angle error reduces from 3.52° to 0.58° after calibration. The roll angle error is reduced from 2.59° to 0.65°. Simulations and experimental results indicate that the accuracy of magnetometer in strap-down spinning projectile has been greatly enhanced, and the attitude estimation errors are reduced after calibration

    Innovation: Key to the future

    Get PDF
    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Ames Research Center publications: A continuing bibliography, 1978

    Get PDF
    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Abstracts, Limited Scientific and Technical Aerospace Abstracts, and International Aerospace Abstracts in 1978. Citations are arranged by directorate, type of publication and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided

    NASA Tech Briefs, Winter 1978

    Get PDF
    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Cumulative index to NASA Tech Briefs, 1970-1975

    Get PDF
    Tech briefs of technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Abstracts and indexes of subject, personal author, originating center, and tech brief number for the 1970-1975 tech briefs are presented

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Aeronautical Engineering: A continuing bibliography, supplement 116

    Get PDF
    This bibliography lists 550 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1979
    corecore