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Abstract 
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Abstract 

How animals behave is fundamental to enhancing their lifetime fitness, so defining 
how animals move in space and time relates to many ecological questions, including 
resource selection, activity budgets and animal movement networks. Historically, 
animal behaviour and movement has been defined by direct observation, however 
recent advancements in biotelemetry have revolutionised how we now assess 
behaviour, particularly allowing animals to be monitored when they cannot be seen. 
Studies now pair ‘convectional’ radio telemetries with motion sensors to facilitate 
more detailed investigations of animal space-use. Motion sensitive tags (containing 
e.g., accelerometers and magnetometers) provide precise data on body movements
which characterise behaviour, and this has been exemplified in extensive studies
using accelerometery data, which has been linked to space-use defined by GPS.
Conversely, consideration of body rotation (particularly change in yaw) is virtually
absent within the biologging literature, even though various scales of yaw rotation
can reveal important patterns in behaviour and movement, with animal heading
being a fundamental component characterising space-use. This thesis explores
animal body angles, particularly about the yaw axis, for elucidating animal movement
ecology. I used five model species (a reptile, a mammal and three birds) to
demonstrate the value of assessing body rotation for investigating fine-scale
movement-specific behaviours. As part of this, I advanced the ‘dead-reckoning’
method, where fine-scale animal movement between temporally poorly resolved
GPS fixes can be deduced using heading vectors and speed. I addressed many issues
with this protocol, highlighting errors and potential solutions but was able to show
how this approach leads to insights into many difficult-to-study animal behaviours.
These ranged from elucidating how and where lions cross supposedly impermeable
man-made barriers to examining how penguins react to tidal currents and then
navigate their way to their nests far from the sea in colonies enclosed within thick
vegetation.
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Why is it important to study animal behaviour? 

 

Behavioural ecology embraces the theoretical and empirical considerations of how 

everything an animal does is purported to be adapted to the environment it inhabits. 

This field integrates concepts of internal state, behavioural plasticity, locomotion, 

energy expenditure and ecosystem functioning (Manning, Manning & Dawkins 1998; 

Nathan et al. 2008; Davies, Krebs & West 2012; Liedvogel et al. 2013). All species in 

the kingdom Animalia, whether they are sessile or motile, are considered to enhance 

their personal or inclusive fitness (their own life-time reproductive success or that of 

related individuals (cf. Dugatkin 2007; Anthes et al. 2010)), by being able to respond 

behaviourally, according to their physiological state and environmental circumstance 

(West & Gardner 2013). All behaviours relate to energy expenditure, however, and 

thus specific behaviours should only be selected for if resultant fitness improves 

(either directly or indirectly), relative to cost (van der Werf et al. 2009). Generally, a 

measure of a genotype's fitness involves the ability to survive, find mates and 

reproduce (Orr 2009) and it is the numerous selective pressures for developing 

adaptive survival and fitness mechanisms that have shaped the demographics of 

animals today (Pimentel 1961; Hutchinson 1991; van der Werf et al. 2009; Mori, 

Mazza & Lovari 2017; Silk et al. 2019). 

At the crux of the matter, all animals must acquire and ingest food to survive (or more 

specifically, to respire, which fuels physiological processes via energy conversion and 

release) (cf. Altman & Dittmer 1971), with the ultimate goal of transmitting genes to 

future generations (Dawkins 2016). In addition to food, the majority of animals also 

require a combination of sunlight, oxygen, water, shelter, space and essential 

minerals (cf. Schmidt-Nielsen & Randall 1997). Such resources are rarely ubiquitous 

within a single defined area, but rather their distribution changes in time and space 

across the globe (Grant 1993; Johnson et al. 2002; Peng, Maldonado-Chaparro & 

Farine 2019). It is not surprising therefore, that most animals have evolved the 

capacity to locomote (move throughout their environment) with a plethora of 

convergent evolution strategies in locomotory patterns across both terrestrial and 
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fluid media (e.g., Gleiss et al. 2011; Bale et al. 2015). Motility enables animals to 

express more definitive behavioural responses to sensory stimuli and to adjust the 

ways by which they actively exploit and interact with their ecosystem in line with 

their requirements (Morales et al. 2010; Gingras et al. 2011; Rendueles & Velicer 

2017; Biewener & Patek 2018). Examples include how animals encounter prey or 

escape predators (Brodie, Formanowicz & Brodie 1991; Richardson et al. 2018), move 

as a function of resource availability and habitat quality (Johnson et al. 2002; Mitchell 

& Powell 2004), find, attract/compete for and reproduce with conspecifics (Grammer 

et al. 2003; Reudink et al. 2009) and care for young (Trivers 1972). 

Taken together, much of animal behaviour has been defined via body and limb 

movement as observed directly and as a consequence, the terms, ‘movement’ and 

‘behaviour’ are often synonymously used, since movement of a whole organism 

elicits a behaviour response and a behavioural response (at least as measured ex 

vivo), requires movement to elicit (cf. Owen-Smith, Fryxell & Merrill 2010; Davies, 

Krebs & West 2012; Brown et al. 2013). Nikolaas Tinbergen was one of three pioneers 

of ethology (the discipline of animal behaviour - along with Konrad Lorenz and Karl 

von Frisch) and set out the ‘four problems’ concept, designed to facilitate a complete 

understanding of a given behavioural trait (Tinbergen 1963). These were; causation 

(how does it work?), ontogeny (how did it develop during the individual’s lifetime?), 

survival value (what is its purpose?) and evolution (how has it evolved over the 

species’ history?). Despite these names having been adapted with various authors 

over the years (cf. Dewsbury 1999), nearly six decades on, their general applicability 

remains relevant for directing the key considerations involved when assessing 

behaviour (cf. Bateson & Laland 2013) – and much boils down to energy. In essence, 

by measuring energy-specific movement behaviours in time and space, the ultimate- 

(why it exists) and proximate- (how it works) mechanisms and underlying causes can 

be elucidated to explain animal motivations, life history strategies and broader 

ecological concepts (Tinbergen 1963; Scott-Phillips, Dickins & West 2011). But why is 

it important to study this? 



  Introduction 

4 

 

The behavioural ecology of many animal systems has a direct importance to humans 

(Mathews 2010). To name just a few examples, pollinators (such as some bat, bird, 

butterfly, beetle and bee species) facilitate plant reproduction and this is vital for 

maintaining plant diversity – required in global agriculture (Ollerton 2017). Grazing 

herbivores are effective mediators of nutrient cycling (Harrison & Bardgett 2008) and 

their movements are critical for maintaining ecological succession - preserving 

grasslands worldwide (Ellison 1960; Luken 1990). Knowledge of animal life history 

traits were key in the domestication and selective breeding processes (Jensen 2006), 

enabling humans to exploit various species for food, labour, companionship,  

experimentation and secondary products (Swart 2004; Zeder 2012). Moreover, we 

have a better understanding and subsequent ability to control for the spread of 

zoonotic diseases (Fèvre et al. 2006; Sekar et al. 2011) - although we are currently 

not shining in this field (cf. Carlo et al. 2020) - we do at least now appreciate that 

predators are a valuable top-down regulator (Ostfeld & Holt 2004). 

Studying the demographics of animals is not just driven by the economic value it adds 

to human life. Animals have fascinated humans for centuries (cf. Shepard 1997). How 

many viewers have finished a wildlife documentary, such as an episode of Blue Planet 

or Planet Earth, with a greater appreciation of the natural world (cf. Hughes 2013; 

Nelson & Fijn 2013)? Arguably, applications of this discipline have never been more 

important as we proceed into a man-made sixth extinction event (Wake & 

Vredenburg 2008; Ceballos et al. 2015; Raven & Wagner 2021). The ability of animals 

to modify their behaviour to adapt to (and ultimately survive) environmental change, 

and the subsequent impact this has on other ecological interactions and biological 

communities is at the forefront of conservation study (Nagelkerken & Munday 2016). 

Conjointly, reasons such as the important roles that animals have in ecosystem 

functioning (and thus sustainability) and the intrinsic right for animals to coexist with 

humans are at the forefront of conservation support (Donaldson & Kymlicka 2011).  

Human-induced behavioural changes can be investigated at various ecological levels, 

to help inform governing agencies of the impact that certain practices are having 

(e.g., culling or exceeding fishing quotas) (Darling 2008; Riordan et al. 2011). 
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Behavioural research enables us to apply better practices to conserve endangered 

species (Sutherland 1998; Martin-Wintle et al. 2015), improve animal husbandry 

techniques (Vaarst et al. 2004; Meyer, Puppe & Langbein 2010) and plan for or 

mitigate against deleterious human-wildlife interactions (Woodroffe et al. 2005; 

Macdonald 2016; Wilson et al. 2019; Pătru-Stupariu et al. 2020). In essence, the 

specifics of animal movement, the ‘what’, ‘where’, ‘why’, ‘when’ and ‘how’ (cf. 

Nathan et al. 2008) underpins a species interaction with its environment and by 

studying this, we can develop a greater understanding of aspects pertaining to an 

animal’s evolutionary history, ecological role, behavioural plasticity and sensitivity to 

human-induced impacts (Sutherland 1998; Caro & Sherman 2013; Schweiger et al. 

2019). Such knowledge, whilst purposive as theory, can be pragmatically applied to 

help sustain ecosystems (Szaro, Sexton & Malone 1998; Schweiger et al. 2019) and 

enhance animal welfare and conservation practices (Swaisgood 2007; Greggor et al. 

2016; Papastavrou, Leaper & Lavigne 2017). 

 

How can we measure movement-specific behaviours? 

 

This is unquestionably the golden era of ethology: Simultaneous advancements in the 

miniaturisation of data storage and analytical methodologies have enabled animal 

behaviour to be quantified with unprecedented resolution (cf. Brown et al. 2013; 

Nowacek et al. 2016; Whitford & Klimley 2019b; Börger et al. 2020), and the resultant 

information is more freely accessible than ever before (cf. McNeely & Wolverton 

2008; Kranstauber et al. 2011; Newman et al. 2012). As previously alluded to, direct 

observation has been the foundation of measuring animal behaviour. The theory of 

evolution, first posited in Darwin’s ‘On the Origin of Species’ in 1859, heavily involved 

ad libitum behavioural observations of wild species to formulate the concept of 

natural selection (Darwin 1909; Swisher 1967). Today though, behavioural 

observations are typically standardised to a consistent sampling regime and 

documented within carefully designed ethograms to aid in objectively classifying 

focal species’ activity budgets (e.g., Powell et al. 2013), although, by definition, this 
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approach is restricted by visual ability and the continuity of measurement (Altmann 

1974; Hall & Roshier 2016). 

The level of detail that humans perceive about an animal’s behaviour depends on 

how close we are (cf. Brown et al. 2013). Highly mobile and naturally reclusive free-

ranging animals can be difficult to monitor closely (Hughey et al. 2018). The 

constraints of topography (e.g., dunes, cliffs, mountains, swamps, burrows, and 

dens), habitat heterogeneity (e.g., wooded land and areas of dense shrubbery), 

darkness and weather conditions can also impair visibility, whilst many wild animals 

operate in environments that preclude observation entirely (chiefly, within water and 

air) (Altmann 1974; Dawkins 2007; Cagnacci et al. 2010; Hall & Roshier 2016). Even 

when viable, human presence can bias behavioural responses (the ‘observer effect’, 

e.g., Crofoot et al. 2010), whilst sampling rate is completely contingent on the 

amount of time and effort devoted by the observer - typically a fraction of an animal’s 

daily behavioural budget (cf. Brown et al. 2013). Moreover, human perception is 

naturally subjective (for instance, when does a slow walk turn into a fast walk?) and 

thus there is an inevitable degree of misclassification (human error, Tuyttens et al. 

2014). Enhanced digital imaging techniques, as measured ex situ can expediate 

behavioural observations to some extent though (cf. Nelson & Fijn 2013). For 

instance, high-definition cameras with telephoto lenses that enable magnification of 

distant objects can extend the line-of-sight, whilst integrating motion- and/or 

infrared-light detection sensors (e.g., camera traps) can permit autonomous 

surveillance and provide key insights into the behavioural repertoires of nocturnal 

and cryptic species (Trolliet et al. 2014; Alexander et al. 2016). Video-tracking also 

archives empirical evidence for later reassessments (cf. Xue & Henderson 2006). 

It is the ever-evolving assortment of in situ biologging and telemetry however, that 

has ultimately shifted the paradigm of behavioural ecology (Bograd et al. 2010; 

Heylen & Nachtsheim 2018; Hughey et al. 2018). Biologging is the practise of using 

miniaturised animal-attached electronic tags to record data relating to an animal’s 

behavioural-specific movements, physiology and/or the surrounding environment 

(Bograd et al. 2010; Wilson et al. 2015; Wurtz et al. 2019). A diverse array of on-board 
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sensors has permitted numerous environmental measurements, including: light (e.g., 

Coelho, Fernandez-Carvalho & Santos 2015), temperature (e.g., Thorrold et al. 2014), 

sound (e.g., Baumgartner et al. 2008; Blumstein et al. 2011), pressure (e.g., 

Hochscheid 2014; Williams et al. 2015), conductivity (e.g., Lydersen et al. 2002) and 

oxygen concentration (e.g., Coffey & Holland 2015). Direct quantification of body 

trunk or limb movements can be obtained via accelerometers (e.g., Yoda et al. 2001; 

Brown et al. 2013), magnetometers (e.g., Williams et al. 2017) and gyroscopes (e.g., 

Noda et al. 2012), typically using an orthogonal tri-axial set up for three-dimensional 

measurement (cf. Wilson, Shepard & Liebsch 2008; Noda et al. 2014). Swim speed 

can be approximated via sensors that measure flow rate (cf. Wilson et al. 2007) or 

resistance (cf. Altynay et al. 2019). Aspects of internal state are typically measured 

with implantable devices such as heart rate monitors (e.g., Ditmer et al. 2015), 

electroencephalogram systems (EEG, e.g., Vyssotski et al. 2006), pH sensors (e.g., 

Papastamatiou, Meyer & Holland 2007) and stomach temperature loggers (e.g., 

Wilson et al. 1998), whilst various chemical and blood samplers have also been 

developed (cf. Whitford & Klimley 2019a). Passive integrated transponder (PIT) tags 

can be administered subcutaneously to enable life-long individual identification using 

radio frequency identification (RFID) readers (Bonter & Bridge 2011). Such tags have 

also been used to investigate conspecific proximity at sites frequented by the 

implanted individuals (Bandivadekar et al. 2018). An alternative proximity system is 

the use of (externally attached) ultra-high frequency (UHF) radio transmitters, which 

detect nearby devices within a Wireless Sensor Network (WSN, e.g., Handcock et al. 

2009).  

The conventional ‘older’ practice of locating an animal’s whereabouts, involves 

physically triangulating (cf. Saltz 1994) an emitted signal from animal-borne acoustic- 

(e.g., Zeh et al. 2015) or Very High Frequency- (VHF) (e.g., Guthrie et al. 2011; Kays et 

al. 2011) transmitters. This technique is also relevant for recovering logging devices 

that are designed to automatically release from the animal, either remotely (Buil et 

al. 2019), or via an on-board timed drop-off mechanism (Rafiq et al. 2019), enabling 

non-invasive data retrieval (Evans, Lea & Patterson 2013). ‘Newer’ satellite tracking 
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technologies such as Global Positioning Systems (GPSs) have permitted remote 

recording of locational data at higher precision, accuracy, and continuity than ever 

before (cf. Tomkiewicz et al. 2010). Lastly, animal-borne video cameras, whilst useful 

on their own, can also provide crucial ground-truthing to the inferences made from 

simultaneously logged environmental-, motion- and/or physiological sensor data (cf. 

Seminoff, Jones & Marshall 2006; Watanabe & Takahashi 2013). Ultimately, 

biologging and transmission telemetry have provided researchers with a means to 

investigate and integrate paradigms in species-specific behavioural ecology, with un-

paralleled definition and data acquisition duration, juxtaposed with direct 

observation (cf. Kooyman 2004; Wilson, Shepard & Liebsch 2008; Brown et al. 2013; 

Evans, Lea & Patterson 2013; Wilson et al. 2015; Hughey et al. 2018; Williams et al. 

2020).  

GPS technology is arguably the most popular method for determining estimates of 

free-ranging animal movement (across all media of travel) (Hebblewhite & Haydon 

2010; Latham et al. 2015; Patel et al. 2017). Part of this is because of the continuous 

improvements in the underlying tracking software, design, power consumption and 

battery size reductions, which has permitted longer-term and more continuous 

spatial monitoring of wild animals, independent of human disturbance (Clark et al. 

2006; Recio et al. 2011; Wilmers et al. 2015). In addition, data output from GPS (or 

indeed, other satellite tracking systems, such as ARGOS, e.g., Costa et al. 2010) is 

generally less computationally complex and time-consuming to process, compared 

to other biologging regimes (e.g., inertial sensors, cf. Berger, Dettki & Urbano 2014). 

Important facets of animal demography have been revealed with remote-tracking 

technologies, including (though not limited to) home ranges (e.g., Stark et al. 2017), 

patterns of resource selection (e.g., Owen-Smith & Goodall 2014) and associated 

activity budgets (e.g., Schlecht et al. 2004). Indeed, some recent studies now opt to 

record at frequencies ≥ 1 Hz and have used the resultant detailed space-use estimates 

to underpin their analysis of fine-scale behaviour (e.g., Bouten et al. 2013; Riaboff et 

al. 2020). Nevertheless, accuracy of measurement is limited according to the dual 

proficiency of satellite-receiver signal propagation and reception and thus estimates 
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of movement can be biased according to the behaviour of the focal species and the 

heterogeneity of environment (e.g., thick forests) with which it interacts (Frair et al. 

2010; Hofman et al. 2019). Furthermore, satellite signals cannot propagate 

meaningfully through water or underground, precluding assessment of space-use in 

such environments (Tomkiewicz et al. 2010). 

Multi-channel data loggers have proven to be particularly effective at maximising the 

possibilities for behavioural inference, independent of human disturbance and the 

vagaries of the environment, and accordingly their utility within behavioural studies 

has proliferated in recent years (cf. Brown et al. 2013; Wassmer et al. 2020 [and 

references therin]). As its name suggests, a multitude of sensors are integrated within 

a single motherboard, collecting and storing on-board various inertial, magnetic 

and/or environmental parameters simultaneously (Gleiss, Gruber & Wilson 2010; 

Noda et al. 2014). Concurrent advances in solid state technology and battery size 

reductions, have enabled such parameters to be recorded continuously, with high 

accuracy and precision (cf. Wilson, Shepard & Liebsch 2008), at sub-second frequency 

(cf. Bäckman et al. 2017), on animals with masses ranging across nearly four orders 

of size magnitude (e.g., López-Calleja & Bozinovic 2003; Zimmer et al. 2003). 

Certainly, multi-channel data logger measurements provide a means to study 

behaviour that would otherwise be left unresolved or less defined using remote 

tracking systems (or direct observation) alone (cf. Ropert-Coudert & Wilson 2005; 

Wilson et al. 2007; Brown et al. 2013; Walker et al. 2015).  

 

The relevance of magnetic and inertial measurements for elucidating behaviour 

 

The Magnetic and Inertial Measurement Unit (MIMU; though commonly umbrellaed 

under the general term ‘IMU’) is a branch of multi-channel loggers, designed to 

measure a body’s orientation, angular velocity and specific- (‘non-gravitational’) 

force. IMUs are typically composed of tri-axial magnetometers, gyroscopes and 

accelerometers, and this arrangement of sensors makes them extraordinarily 

powerful for resolving fine-scale 3-D movements (Fourati et al. 2011; Noda et al. 
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2014; Fan et al. 2017). For example, relative to tag placement, stylised patterns in the 

periodicity, amplitude and/or direction of raw values or select derivatives (cf. 

Eikelboom 2020) from one or more channels/sensor-type, has been demonstrated to 

effectively elucidate various step gait- (e.g., de Passillé et al. 2010), wing beat- (e.g., 

Van Walsum et al. 2020), flipper beat- (e.g., Battaile et al. 2015), tail beat- (e.g., 

Martín López et al. 2015) mandible- (Ropert-Coudert et al. 2004a) and head- (Wilson 

et al. 2020c) frequencies/patterns of movement.  

Specifically, each channel of a tri-axial accelerometer records acceleration due to 

gravity (1 g = 9.81 m/s - the ‘static’ component), with instantaneous changes in 

velocity in the sensor itself (the ‘dynamic’ component) due to animal movement 

superimposed on to these values (Gleiss, Wilson & Shepard 2011). Assuming an 

accelerometer is positioned near an animal’s Centre of Mass (CoM), body posture 

(typically expressed as Euler angles; pitch and roll) can be derived from the static 

component, since these values reflect the device’s inclination with respect to the 

Earth’s frame of reference (Bidder et al. 2015; Williams et al. 2015) (cf. Fig. 1). In 

contrast, the dynamic component reflects body movements arising from the spine 

(cf. Whitney et al. 2021), limbs (Yoda et al. 2001; Shepard et al. 2008a) and/or 

external force vectors (e.g., tidal/air currents, cf. Robert-Coudert & Wilson 2004). 

Nominally, the greater the extent of movement, the more energy is required for 

muscular contraction and the greater the inertial displacement of the attached 

sensor (with respect to an animal’s CoM) (Wilson et al. 2006; Gleiss, Wilson & 

Shepard 2011). Based on this premise, it not surprising that various acceleration-

based proxies for activity, traveling speed and activity-specific energy expenditure 

have been validated (Wilson et al. 2006; Halsey et al. 2008; Halsey, Shepard & Wilson 

2011; Bidder et al. 2012; Qasem et al. 2012; Wilson et al. 2020a).  

On the other hand, tri-axial magnetometers define the direction and intensity of the 

surrounding Earth’s magnetic field across all three spatial dimensions, from which  

angular rotations can be resolved (Wilson et al. 2006; Williams et al. 2017) with 1-2o 

accuracy range (Painter et al. 2016). Unaffected by acceleration, they can act as a 

compliment alongside accelerometers in helping define behaviour, not least because 
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simultaneous readings from both sensors permit the third dimension of body 

orientation to be resolved; yaw (or ‘heading’), via the tilt-compensated compass 

method (cf. Ozyagcilar 2012; Pedley 2012). Combining the above two sensor systems 

provide six degrees of freedom (DoF) forces to define movement in three-

dimensional space (cf. Fig. 1). The three degrees of dynamic change are, surge 

(‘forward and back’, or, ‘anterior-posterior’), sway (‘side to side’, or, ‘medio-lateral’) 

and heave (‘up and down’, or, ‘dorsal-ventral’) and the three degrees of attitude 

change are, pitch (rotation about the sway axis), roll (rotation about the surge axis) 

and yaw (rotation about the heave axis) (cf. Noda et al. 2012; Bidder et al. 2015).  

IMU gyroscopes comprise of an oscillating mass which, when subjected to a 

directional force, elicits a fictitious Coriolis effect and this ‘pattern of deflection’ is 

used to measure angular velocity, providing stability in rotation measurements 

between two coordinate frames - that of the gyroscope itself, relative to the IMU 

body within which it situated (Liu et al. 2009; Bergamini et al. 2014). Gyroscopes have 

appreciable benefits in that they accurately reconstruct gravity-based acceleration 

and attitude (Wen 2019), which is not always possible when using the accelerometer-

magnetometer method alone, particularly at times of high centripetal acceleration 

(Noda et al. 2012; Williams et al. 2015). However, gyroscopes are subject to drift over 

time (Fong, Ong & Nee 2008; Bergamini et al. 2014) and require high sampling rates 

(e.g., 100 Hz to 1 kHz, Noda et al. 2012) and coupled with relatively high power 

consumption (in part to power these rates) and the associated power to write data 

into the memory, means that overall current consumption is much higher when 

gyroscopes are used within animal-mounted IMUs (Katevas, Haddadi & Tokarchuk 

2016; Martín López et al. 2016). This explains why, within a biologging context, 

integrating accelerometers and magnetometers within multi-channel data loggers is 

typically the favoured combination, both over the accelerometer-gyroscope 

approach and, indeed, integration of all three IMU sensors (particularly concerning 

free-ranging, longer-term studies, cf. Johnson 2011; Gerencsér et al. 2013; Bidder et 

al. 2015; Chakravarty et al. 2019b). 
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Choice of sensor with respect to the animal in question and questions being asked 

 

Ultimately, the drive to develop and implement biologging and transmission 

telemetry was fuelled by our dual determination and physical limitation to observe 

and ultimately understand animal behaviour (Evans, Lea & Patterson 2013; Wilmers 

et al. 2015; Williams et al. 2020). This is the prime reason why the quantity and 

diversity of tag deployments (both past and present) have been biased towards the 

marine environment, because physical monitoring at sea is, at best, limited to 

‘snapshots’ such as infrequent porpoising events (cf. Hastie et al. 2004). Given the 

acknowledged importance of the 3 R’s in animal welfare (replace, reduce and refine, 

Rollin 2010), choice of sensors, sampling rate, and associated battery and 

accompanying housing have to be considered against the information gains for the 

questions being asked and the adverse effects on the animal in question (e.g., due to 

increased isometric stress and conspicuousness, cf. Hawkins 2004; Nuijten et al. 

2020; Williams et al. 2020; Holton et al. 2021). In line with Archimedes’ Principle, 

objects weigh less when submerged in water than in air (Mohazzab 2017) which has 

conveniently allowed primitive (larger/heavier) animal-borne technology to remain 

close to/within the 3-5 % remit of select aquatic species’ overall mass (cf. Goulet et 

al. 2019) - the conventional 'ethical rule of thumb’ used for many animal taxa (cf. 

Casper 2009). Indeed, device bulk is likely the primary reason why deployments have 

been historically less on species moving on land and in air (where in many cases, 

direct and/or (ex situ) digital observations are possible with greater capacity anyway). 

Nevertheless (and as mentioned), improvements in the size, weight, memory 

capacity, power consumption, design (and associated attachment methods) of 

electronic devices, partnered with the miniaturisation of batteries, have in recent 

years, expanded biologging and telemetry practices across all environments (e.g., 

Cooke et al. 2013; Hussey et al. 2015; Toledo 2015).  

Alongside this expansion though, and with respect to the 3 R’s, there has been an 

ever-growing assortment of studies demonstrating the detriment that encapsulated 

devices have on animals (even when tag weight is less than 3-5 % that of the animal’s 
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weight, cf. Vandenabeele et al. 2015; Kay et al. 2019; Dickinson et al. 2020; Wilson et 

al. 2020b). Tagged animals are now acknowledged as having to be subject to an 

increase in one or more of the following:  

• Inertia force (e.g., due to behaviour-induced start-stop momentum of 

biologging collars - Wilson et al. 2020b). 

•  Pressure and associated friction (cf. Krausman et al. 2004). 

• Aero-/hydrodynamic forces (within fluid media, e.g., buoyancy and drag - Kay 

et al. 2019).  

Such tag-induced force effects can have a negative impact on body condition (e.g., 

Hopkins & Milton 2016), kinematic capacity (and thus behaviour, e.g., Brooks, 

Bonyongo & Harris 2008; Broell, Burnell & Taggart 2016) and associated energy costs 

(e.g., Lefrançois, Odion & Claireaux 2001). The critical modulator of tag detriment is 

the accompanying power source, given that batteries are typically the largest and 

heaviest component (cf. Toledo 2015), which modulates housing design and extent 

of (potentially ‘weighty’) material required. Generally, there is a proportional 

relationship between device longevity (and sampling rate) and device weight (cf. 

Yoda, 2019). Lithium-ion batteries are the most efficient, having one of the highest 

energy densities (Kim et al. 2019) and are currently the most frequently used battery 

type within biologging studies (Markham 2008). However, with ‘next generation’ 

advancements in battery technologies (e.g., Hwang, Myung & Sun 2017; Gummow et 

al. 2018; Kwak et al. 2020) likely still some years away from commercialisation, it 

appears as though we have hit a ‘technological wall’. For now, primary power sources 

are typically the limiting factor dictating sensor choice, associated sampling 

resolution and recording duration, with respect to the animal under investigation (cf. 

Cooke et al. 2013; Holton et al. 2021).  
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The Daily Diary (DD) & the GiPSy 

 

Multi-channel data loggers (excl. gyroscopes), such as the Daily Diary (DD) unit (cf. 

Wilson, Shepard & Liebsch 2008), deployed on all study animals within this thesis (cf. 

Fig. 1), are typically much less power-hungry and much more efficient at writing large 

quantities of data to memory relative to other biologging systems, including animal-

borne video cameras (cf. Huck & Watson 2019) and remote tracking systems (cf. 

Sherub et al. 2017). For instance, DD logging units measure tri-axial acceleration, tri-

axial magnetometry and various environmental cues, including light, temperature 

and barometric pressure, and (under standard operating conditions) requires < 1.5 

mA to power its on-board sensor system with a default logging frequency ratio of 

(approx.) 40-13-4-4 Hz. On the other hand, the GiPSy-5 techno-smart GPS devices 

[see, https://www.technosmart.eu] (one of the GPS units used within in this thesis), 

is approx. 20 mA, when recording at 1 Hz. Unlike the GiPSy-5, the DD (magnetism and 

acceleration) can be set to record at frequencies as high as 160 Hz (although if only 

acceleration is required, it can be logged at 800 Hz).  

To come full circle, behavioural responses are fundamentally movement driven, and 

multi-channel data loggers, such as Daily Diary (DD) units, are powerful ‘low power 

cost’ tools which allow us to resolve (Wilson, Shepard & Liebsch 2008; Evans, Lea & 

Patterson 2013; Walker et al. 2015; Wilmers et al. 2015; Heylen & Nachtsheim 2018; 

Whitford & Klimley 2019a). Importantly though, simultaneous deployment with 

satellite transmission telemetry is required to superimpose elucidated movement-

specific behaviours accurately, in time and space, relative to the environment (e.g., 

Laplanche, Marques & Thomas 2015; Walker et al. 2015).  

about:blank
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Figure 1. Illustration of the Daily Diary (DD) coordinate system. For all study animals analysed in this thesis, DDs 

were set to record tri-axial acceleration with respect to gravity (1 g = 9.81 m/s-2: range 0-32 g) and tri-axial 

magnetometry (Gauss - G) at 40 Hz. Note here, each channel’s static (or gravitational) acceleration is referred to 

as ’G’ and magnetometry is referred to as ‘M’. In the case of this orientation, the x-axis represents the surge plane, 

the y-axis represents the sway plane, and the z-axis represents the heave plane of movement. A calibrated 

accelerometer measures +1 g when facing directly upwards, -1 g when facing directly downwards and 0 g when 

orientated parallel to the earth’s surface. Readings of the magnetometer x- and y-axis are at a maximum and 

minimum when pointed at magnetic North and South, respectively. Assuming the orientation of the encapsulated 

DD (positioned flat on a table) starts at North, readings of the y-axis will be at a maximum and minimum when 

the device is rotated 90o East and 90o West, respectively, with the z-axis remaining constant. Yaw can thus be 

obtained by measuring the two orthogonal components of the Mx,y magnetic vector, subsequent to correcting for 

device tilt (pitch and roll offsets). Note the latest variant of the DD (the ‘thumb nail’ - no batteries soldered to the 

board) is smaller than a 50 pence coin (18x14x5 mm), weighing 1.7 g (incl. microSD card). Dimensions of the DD 

models used within this thesis ranged between 27x26x10 mm and 26x17x5 mm (excl. batteries) and weighed 2-3 

g (incl. microSD card and excl. batteries and additional compatible sensor types, e.g., external depth sensors). 

Dimensions of the GiPSy-5 model used within this thesis were 23x12.5x5 mm and the unit weighed 1.5 g (excl. 

batteries). This figure is adapted from Chapter 4, supplementary information. Text S2: Fig. S1. 
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The purpose of this thesis 

 

My PhD concentrates on developing novel metrics and updating existing analytical 

approaches from multi-sensor data (DD’s and GPS) to facilitate greater insights into 

the behaviour-specific movements and activity-time budgets of select animals. 

Dynamic acceleration is only one dimension of movement (Costello & Jitpraphai 

2002; Mathie et al. 2002; Brown et al. 2013) and has been examined extensively (e.g., 

Halsey et al. 2008; Laich et al. 2008; Brown et al. 2013; DuBois et al. 2015; 

Chakravarty et al. 2019a; Ward et al. 2019; Williams et al. 2019; Wilson et al. 2020a 

[and refereces therin]), however another critical dimension of movement, and a 

fundamental aspect of animal behaviour, is body rotation, which can also be 

represented tri-axially (Williams et al. 2017). Unlike rotations about the pitch and roll 

axis, which can be resolved using accelerometers (cf. Marshall & Landman 2000; 

Shepard et al. 2008a; Zihajehzadeh et al. 2014), and have been discussed at some 

length (e.g., Whitney et al. 2010; Willener et al. 2015; Ciancio et al. 2016; Thompson 

et al. 2016), calculation of the yaw (hereafter termed ‘heading’) requires the tandem 

use of tri-axial accelerometers and tri-axial magnetometers (because accelerometers 

are insensitive to rotations about the gravity vector) and is generally overlooked as a 

behavioural identification parameter (Williams et al. 2017). Intrigued by the 

minimalist attention given to yaw in animal behaviour and its interaction with pitch 

and roll, in this thesis I set out to examine the application and relevance of body 

rotation within the framework of animal behaviour ecology. My overarching question 

was; What does animal rotation tell us about behaviour? Rather than being species-

specific, with the obvious constraints that come with it, my PhD considers a diverse 

group of animals operating across scales of size and movement, including, mammals 

(lions - Panthera leo), reptiles (turtles - Caretta caretta) and birds (penguins - 

Spheniscus magellanicus, cormorants - Leucocarbo atriceps, tropic birds - Phaethon 

rubricauda), hoping that cross-cutting elements might emerge, and therefore be of 

most value to the community. 
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This thesis is comprised of three main components.  

Firstly, I provide an overview of the value and use of angular velocity as an important 

element for assessing activity extent and exemplifying behaviours, particularly in 

scenarios where acceleration metrics have limited value, such as in slow-moving 

animal (cf. Wilson et al. 2020a). Secondly, I go on to look at how body rotation 

(focussing primarily on animal heading and acceleration-based metrics), can help us 

examine concepts relating to animal navigation. One powerful, yet sparingly utilised 

technique is ‘dead-reckoning’ (cf. Wilson & Wilson 1988; Elkaim et al. 2006; Wilson 

et al. 2007; Bidder et al. 2015), which integrates estimated vectors of travel (heading 

and speed), derived from sensor-borne estimates in 2-D or 3-D (pressure/pitch) space 

(Walker et al. 2015). This method can reveal fine-scale animal movement data in both 

space and time and has been shown to resolve movement so finely that even 

behaviour can be inferred (Bidder et al. 2015; Andrzejaczek et al. 2019). Extrapolated 

travel vectors nearly always comprise some degree of error, however, no matter how 

minuscule, and thus vector integration suffers from cumulative errors (Wensveen, 

Thomas & Miller 2015; Dewhirst et al. 2016).  

As such, to maintain the accuracy of reconstructed movement in time, relative to the 

environment, periodic ground-truthing by a secondary source (e.g., GPS) is required 

(Walker et al. 2015; Dewhirst et al. 2016). I provide a reappraisal of the dead-

reckoning process including improvements and extensions of the analytical 

procedure. In conjunction to this, and with respect to the third component of my 

thesis, I provide important insights into GPS performance (the most common method 

for attempting to determine an animal’s location) and suggest a novel protocol for 

filtering inaccurate fixes obtained (terrestrially) at high frequency, by combining both 

acceleration- and GPS-derived information. To this end, I suggest how to maximise 

the value of both multi-sensor- and GPS-borne assessments of movement within one 

dead-reckoning oriented framework. Throughout this thesis I demonstrate the value 

that these methodological advancements have in assessing the proximate and 

ultimate facets of animal behaviour. These components are detailed in the following 

chapters. 
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The layout of my data chapters 

 

Chapter 2 

There is a bias towards using acceleration metrics to elucidate animal behaviour 

within the biologging community (e.g., Shepard et al. 2008b; Wilson, Shepard & 

Liebsch 2008; Gleiss, Wilson & Shepard 2011; Halsey, Shepard & Wilson 2011; Brown 

et al. 2013; Graf et al. 2015; Miwa et al. 2015; Williams et al. 2015; Fehlmann et al. 

2017), with the potential of tri-axial magnetism as a tool to distil out behaviour only 

being highlighted very recently (e.g., Painter et al. 2016; Williams et al. 2017; 

Chakravarty et al. 2019b). Whilst rotational metrics from gyroscopes have been used 

to show variations in movement (e,g., Kawabe et al. 2003; Noda et al. 2014), 

equivalent measurements (specifically, angular velocity) obtained from 

magnetometers have not, to my knowledge, been used within behavioural studies. 

Heading is a key variable obtained from the tandem use of accelerometers and 

magnetometers (Ozyagcilar 2012), however few field investigations have looked into 

its worth for helping differentiate animal behaviour (beyond its application in the 

general dead-reckoning procedure, e.g., Bidder et al. 2015), even though movement 

about this rotational axis should be at least as important as rotations in the other two 

(commonly assessed) axes; pitch and roll.  

My first data chapter provides the mathematical and conceptual protocol for deriving 

rotation-based metrics with an overview of the value and use of angular velocity 

about the yaw axis (AVeY), as an important element for assessing activity extent and 

behaviours. I used free-ranging Loggerhead turtles as a model species for this work. 

Fundamentally, the concept of animal behaviour is broad (McFarland 1993; Manning 

& Dawkins 1998) and essentially refers to everything animals ‘do’, with this ranging 

from being immobile (resting/sleeping) to actions involving substantial body 

kinematics. ‘Levels’ of ‘activity’ emerge as a consequence of this. If such activity is 

predominately manifest in changes about the yaw axis, then the degree of activity 

extent can be assessed via indices of angular velocity. Specific behaviours that are 
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consistent in their magnitude and pattern of elicited body rotation may also be 

elucidated from estimates of the rate of change of yaw. Crucially however, even 

‘noisy’ variations in AVeY can indicate more notable differences between supposed 

behaviours which may not be picked up by acceleration estimates (cf. Williams et al. 

2017). This is an important concept which I promote within this chapter which then 

goes on to discuss the implications that the energy requirements of turns have (cf. 

Wilson et al. 2013). To my knowledge, this has not been properly assessed to date 

using sensor data and is likely to be an important concept for people studying animal 

behaviour. 

 

Chapter 3 

My second data chapter expands on the methodological protocols conceived from 

my first chapter and uses a new approach, integrating indices of angular rotation 

about the principal axes to deduce activity (integrating the magnitude of angular 

velocity of the pitch, roll and yaw rotations). This new metric, termed; ‘Absolute 

Angular Velocity’ (AAV), is used to assess the extent of resting behaviour in wild 

turtles. To my knowledge, assessing activity extent from angular velocities derived 

from the three axes of rotation has not been explored (with respect to the 

accelerometer-magnetometer approach). I advocate that the magnitude of rotations 

of animal bodies can inform biologists of animal activity, particularly in scenarios 

where standard acceleration metrics have limited value, such as in slow-moving 

animal groups.  

The Loggerhead turtle is an endangered species although, because they spend most 

of their lives underwater, their activity budgets are poorly understood, being mostly 

derived from speculation based on ‘dive profiles’ (a graphic representation of depth 

on the y-axis versus time on the x-axis; Minamikawa, Naito & Uchida 1997; 

Hochscheid et al. 1999; Houghton et al. 2002; Hochscheid 2014). The Type 1a (flat U-

shaped) dive is an easily identifiable and most commonly expressed dive type and is 

often labelled as the ‘resting’ dive on the seabed (e.g., Hays et al. 2002). My results 
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demonstrate that many ‘type 1a dives’ are episodic in nature, comprised of 

intermittent bouts of rest and activity, and show high inter-individual plasticity in 

depth utilisation, as well as in the frequency and intensity of activity. This implies 

that, far from simply resting and generating new eggs, as has been postulated for 

inter-nesting turtles (e.g., Houghton et al. 2002; Schofield et al. 2009), these animals 

probably actively forage.  

 

Chapter 4 

Accurate estimation of animal movement at fine temporal scales has proved a 

persistent challenge that is not resolved using conventional GPS because GPS 

performance is not perfect (although it is often implicitly assumed to be) (Cagnacci et 

al. 2010; Latham et al. 2015). In fact, locational accuracy can easily vary by a few 

metres or more depending upon the propagation of signal quality and/or receiver 

reception capability (Frair et al. 2010; Forin-Wiart et al. 2015). Such constraints can 

result in surprisingly variable assessments of deduced animal movement if GPS data 

are used alone (cf. Ryan et al. 2004; Poulin, Clermont & Berteaux 2021) and a host of 

studies have documented this error for low resolution datasets and offered methods 

to screen GPS anomalies (e.g., Apps & Kinley 2000; Lewis et al. 2007; Bjørneraas et 

al. 2010; Ironside et al. 2017). For high frequency datasets however, the extent to 

which species-specific movements can be misinterpreted because of additive GPS 

error, is far less explored, as are appropriate screening solutions. In this data chapter, 

I report how the use of motion sensor systems in tandem with GPS, can provide us 

with an important independent comparator for assessing the genuine incidence and 

extent of traveling movement. In particular, I present a Movement Verified Filtering 

(MVF) protocol to identify travelling behaviour and filter high-res GPS data - removing 

appreciable positional noise (which I term ‘jitter’). I demonstrate how its 

implementation provides substantially improved (and different) fine-scale 

movement and activity patterns than are apparent when using GPS data alone. I 

provide the conceptual and practical methodology for implementing this method, 

using the lion as a model species and emphasise its utility (and acknowledged 
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limitations) for different terrestrial species and within other movement analysis 

techniques - principally the dead-reckoning procedure. Results reveal the importance 

that MVF has for avoiding inaccurate movement estimates and I thus call into 

question the accuracy of findings from previous high-frequency GPS studies. As a 

product of this, I document some important parameters of lion movement, including 

daily movement trends and the top estimated speed obtained across a two-week 

period of free-ranging behaviour. 

 

Chapter 5 

The cumulative drift in dead-reckoning protocols requires periodic ground-truthing 

(Verified Positions (VPs)) if the data are to be placed in an environmentally correct 

context (such as in Google Earth) (Dewhirst et al. 2016). Importantly, with suitable 

correction, dead-reckoning is the only current method for resolving such fine-scale, 

continuous and accurate, free-ranging 2- or 3-D space use, which far out-weighs the 

definition of space-use interpolation derived from alternative methods (e.g., Mitani 

et al. 2004; Bidder et al. 2015; Laplanche, Marques & Thomas 2015; Dewhirst et al. 

2016; Andrzejaczek et al. 2019). Despite this, relatively few biologging studies have 

adopted this approach. I argue that this is due to the apparent complexity of the 

analytical processes involved which has led to studies utilising dead-reckoning to rely 

upon complex bespoke specialist software applications (e.g., Walker et al. 2015). In 

this data chapter, I present step-by-step instructions for implementing Verified 

Position Correction (VPC) dead-reckoning in R using the tilt-compensated compass 

method. R is a powerful open-source programming language, often used with 

statistics and mapping/visualisation of large data and is now commonly taught 

amongst university settings with a large range of supporting help sites, books and 

package repositories (58 of which have been specifically developed to deal with 

tracking data, Joo et al. 2020). I regarded this as an excellent opportunity to provide 

researchers with a comprehensive, easy-to-use process which would allow them to 

dead-reckon their animal movements. I outline improvements to the procedure and 

highlight important considerations to improve dead-reckoning accuracy. In line with 
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this, I developed a user-friendly VPC dead-reckoning R function; Gundog.Tracks, to 

reconstruct animal movement paths across terrestrial, aquatic, and aerial systems. 

This chapter involved the African lion, the Magellanic penguin, and the imperial 

cormorant to demonstrate the points being made. 

 

Chapter 6 

With suitable VPC, dead reckoning can by-pass the inaccuracies associated with VP 

performance (e.g., ‘jitter’) and sampling rate (e.g., due to constraints of power 

consumption or attenuation of signal), when reconstructing fine-scale movement 

paths. How often should one undertake VP correction though? Essentially there is a 

complex trade‐off between dead-reckoning accuracy and VP rate (itself, primarily 

modulated via power consumption) and important considerations include: 

(i) The scales and mode(s) of movement elicited by the study animal 

(ii) The quality of motion sensor-derived data and VP acquisition 

(iii) Initial user-defined track scaling (principally speed allocation - pre-VP 

correction)  

(iv) Initial screening and filtering of VP inaccuracy 

In this data chapter, I delve more deeply into how measurement error can arise using 

the dead-reckoning method and how to maximise its accuracy, including ensuring 

appropriate behavioural identification, speed allocation, VP error screening and 

correction rate. To demonstrate points being made, I used four model species 

(walkers, swimmers and fliers) as case-studies; the African lion, the Magellanic 

penguin, the imperial cormorant and the red-tailed tropic bird. Simulations were 

performed to examine the extent of dead-reckoning error, relative to VPs (obtained 

from GPS) as a function of VP correction rate and the effect of this on estimates of 

distance moved. I also showed how dead-reckoning can highlight specific behaviours 

and the intricacies of space-use within ‘energy landscapes’ (Shepard et al. 2013). 
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My results showed that the extent of obtainable dead-reckoning accuracy is primarily 

modulated by the lifestyle of the animal in question, with animals traveling in air and 

water being subjected to greater drift from true location per given VP correction rate. 

In line with the above, I argue that the required level of accuracy is dependent on the 

scale of movement being addressed (e.g., investigating ‘general areas’ of resource 

allocation over multiple days vs defining exact step lengths and turn extents over a 

matter of minutes). More generally, I highlight the current advantages, limitations 

and advancements with the dead-reckoning technique put forward, integrating 

considerations outlined in Chapter 4 and 5. 

 

Chapter 7 

How do central place foragers navigate between their foraging sites and central 

places in visual cluttered environments? Magellanic penguins nesting far from the 

sea at a highly vegetated colony in San Lorenzo, Argentina made for an interesting 

examination of this, particularly since they cannot fly and have a low profile that is 

generally lower than the surrounding shrubbery. The current consensus of how 

penguins navigate on land is divided, with some studies suggesting the use of a time-

compensated sun compass (e.g., Emlen & Penney 1966) and others suggesting the 

use of environmental cues (e.g., Nesterova et al. 2010). I reconstructed the 

movement paths of these birds navigating between their nests and the sea at San 

Lorenzo, using the dead-reckoning protocols described in Chapter 5 and 6. This was 

conducted with a view to assessing how these birds may be navigating on land in 

habitats varying in vegetation density, The effort- (e.g., time and energy) and 

mechanisms of navigation (e.g., sight) involved are far less studied than ‘at sea’ 

trajectories and this made for an excellent opportunity to demonstrate the value of 

assessing rotation- and acceleration-based metrics in tandem to delineate movement 

with high detail. Specifically, I derived individual steps and pauses in travelling 

movement from acceleration measures. Additionally, from the computed dead-

reckoned tracks, I derived metrics of step lengths, travel speed, turn extent, track 

tortuosity and horizontal displacement between outgoing and incoming tracks. 
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Results showed that outgoing birds essentially took a straight line to the sea edge, 

following their own well-used Track of Familiarity (ToF). On the other hand, incoming 

trajectories, which generally started at beach landing points displaced from the ToF, 

were rarely straight-line courses. Instead, it appeared that penguins actively 

corrected for such displacements by travelling at more acute angles with respect to 

the shoreline in favour of their ToF, and/or where possible, choosing routes that 

coincide with lower shrubbery extent. The reported trends support the notion that 

penguins use vision-based navigation during on-land navigation. 

 

Chapter 8 

One pivotal point about use of magnetometers and derivation of animal heading 

angles is that it allows researchers to determine the direction of travel of animals 

travelling in fluid media exposed to environmental currents. Movement within fluid 

media (water or air) may subject animals to external current vectors and this alters 

their vector of travel which, if left uncorrected, can have negative energetic and 

navigational consequences (Chapman et al. 2011). Few studies have investigated how 

birds deal with tidal currents, even though a strong selective pressure is presumed to 

have evolved to provide adaptive strategies to deal with drift. In order to examine 

such phenomena, studies should ideally use a species that travels within an 

environment that has a defined current profile in time and space and have individuals 

for which the destination is precisely known. Magellanic penguins breeding at 

Peninsula Valdes, Argentina, fulfil these criteria well because they are central place 

foragers (Orians & Pearson 1979) and range extensive distances (10s of km) at sea 

exploiting areas where the current streams are precisely known before returning to 

their nest. I assessed how penguins navigated back to their colony using dead-

reckoning protocols (outlined in Chapter 5) and the well-defined (in time and space), 

currents of the region (Tonini & Palma 2017). I hypothesised that return trajectories 

would be highly directed, and based on navigation mechanisms that mitigated drift: 

Inability to correct for drift would incur time delays and additional energetic costs, 

thus diminishing the overall rate of food acquisition for their dependent chick(s) 
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(Ropert-Coudert et al. 2004b). Results indicated that penguins operating within high 

current regimes are able to perceive and react to currents. Specifically, penguins 

spent a disproportionate amount of the time moving perpendicular, or at lesser 

angles, to the current. I noted that due to the oscillating nature of tidally based cross-

currents, penguins would be subject to changing, opposing current conditions for the 

majority of their return trajectories (at each point along their reconstructed 

movement paths) if they were to travel directly ‘home’ or choose a heading that 

when incorporating current flow, enabled this. Instead, penguins travelled at angle 

to their home-bound route, to capitalise on current conditions; a phenomenon 

known as ‘flow assisted movement’ (Chapman et al. 2011). This enabled them to 

travel faster, which I conjectured would help them with opportunistic foraging during 

the return leg. As a consequence, the return journey time and distance increased – 

characterised by S-shaped paths as the birds were subjected to ebb and flood 

changes in cross-current intensity and direction, which I investigated further within 

an energetic context, using variant Cost of Transport (CoT) formulae. 

 

Chapter 9 

Using new perspectives gained throughout my thesis, I summarise the wider 

significance of how I perceive that body rotation assessed at different temporal scales 

can reveal important movement strategies. Specifically, I use the penguin and 

cormorant as example species to demonstrate how the investment of time and 

heading in energies and space-use provide insights into their foraging strategy. Lastly, 

I go on to speculate the value of the analytical procedures developed throughout my 

PhD - primarily focussing on animal heading, angular velocity, and dead-reckoning - 

for exploring different biological phenomena pertaining to fitness. 
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Abstract 

The use of animal-attached data loggers to quantify animal movement has increased 

in popularity and application in recent years. High-resolution tri-axial acceleration 

and magnetometry measurements have been fundamental in elucidating fine-scale 

animal movements, providing information on posture, traveling speed, energy 

expenditure and associated behavioural patterns. Heading is a key variable obtained 

from the tandem use of magnetometers and accelerometers, although few field 

investigations have explored fine-scale changes in heading to elucidate differences in 

animal activity (beyond the notable exceptions of dead-reckoning). This paper 

provides an overview of the value and use of animal heading and a prime derivative, 

angular velocity about the yaw axis, as an important element for assessing activity 

extent with potential to allude to behaviours, using ‘free-ranging’ Loggerhead turtles 

(Caretta caretta) as a model species. I also demonstrate the value of yaw rotation for 

assessing activity extent, which varies over the time scales considered and show that 

various scales of body rotation, particularly rate of change of yaw, can help resolve 

differences between fine-scale behaviour-specific movements. For example, 

oscillating yaw movements about a central point of the body’s arc implies bouts of 

foraging while unusual circling behaviour, indicative of conspecific interactions, could 

be identified from complete revolutions of the longitudinal axis. I believe this 

approach should help identification of behaviours and ‘space-state’ approaches to 

enhance our interpretation of behaviour-based movements, particularly in scenarios 

where acceleration metrics have limited value, such as for slow-moving animals. 
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Background 

 

Animals can enhance their fitness by responding behaviourally according to their 

physiological state and environmental circumstance (Nathan et al. 2008; Shepard et 

al. 2013; Wilmers et al. 2015). At its inception, animal behaviour was defined by 

direct observation of body posture and limb movement (Patterson et al. 2008; Brown 

et al. 2013). More recently, however, researchers have realised that animal-attached 

tags can help define behaviour using tri-axial acceleration data, which resolves both 

animal posture and the dynamism of movement (Yoda et al. 2001; Shepard et al. 

2008; Zimmer et al. 2011; Wilson et al. 2015). Indeed, animal-attached 

accelerometers are now widespread and common for both short-term and long-term 

continuous monitoring of the behaviour of wild animals (Brown et al. 2013; Wilmers 

et al. 2015). Methods used to identify animal behaviours in sensor data include 

random forests (e.g., Fehlmann et al. 2017), neural networks (Samarasinghe 2016) 

and support vector machines (e.g., Martiskainen et al. 2009) and generally tease out 

accelerometer-derived data streams using both raw accelerometer data and 

derivatives, such as VeDBA (e.g., Patterson et al. 2019; Benoit et al. 2020), to find 

some combination of values that characterise specific behaviours. 

Not all behaviours can be accurately resolved from accelerometers though (Williams 

et al. 2017) because slow-moving animals, such as some reptiles (Wyneken 1997; 

Walker & Westneat 2000), may produce negligible changes in the recorded dynamic 

acceleration (for definition see Wilson et al. (2020a)). Similar issues arise during bouts 

of gliding behaviour, as exhibited by many marine and aerial species that can 

maintain relatively constant velocity for long periods of time (Eckert 2002; Williams 

et al. 2015). In addition, external forces acting on the animal, such as current vectors 

in air or water, can decrease the signal-to-noise ratio of measured acceleration, 

confounding the interpretation of data (cf. Ropert-Coudert & Wilson 2004; Halsey, 

Shepard & Wilson 2011). Animal posture derived from acceleration also becomes 

problematic when animals are subject to high centripetal acceleration (e.g. when a 

bird banks sharply (Clark 2009; Williams et al. 2015)) or when substrate beneath the 
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study animal varies in declination (Wilson et al. 2018). Finally, a critical limitation of 

accelerometers, is that they cannot resolve rotation about the yaw axis (typically 

referred to as; ‘heading’) even though movement in this axis is at least as important 

(or more) as rotations in the other two axes; pitch and roll (Noda et al. 2012; Kano et 

al. 2018). 

Both Williams et al. (2017) and Chakravarty et al. (2019) have suggested that tri-axial 

magnetometers could be used as behavioural identification sensors in manner 

analogous to tri-axial accelerometers. Certainly, magnetometers have appreciable 

advantages over accelerometers because they are unaffected by both gravitational 

and dynamic components of acceleration (Noda et al. 2014; Martín López et al. 2016) 

and, unlike gyroscopes, are not subject to drift over larger time intervals (Fong, Ong 

& Nee 2008), also requiring less electric current and can be usefully sampled at lower 

frequencies (Caruso 2000). I note though, that gyroscopes have been used in a suite 

of biologging studies to determine angular velocity (e.g., Noda et al. 2012; Gerencsér 

et al. 2013; Noda et al. 2013; Noda et al. 2014). Tri-axial magnetometers react to 

variations in magnetic field orientation and intensity in all three spatial dimensions 

(Wilson et al. 2007; Martín López et al. 2016). Orientation about the yaw axis of an 

animal-attached tag is accessed by consideration of the animal’s pitch and roll (from 

accelerometers) in relation to the output of the tri-axial magnetic field sensors and is 

described in detail by Bidder et al. (2015). This approach normally allows the animal 

heading to be defined to within about 1–2° (Wilson, Shepard & Liebsch 2008; Painter 

et al. 2016).  

Importantly, derivation of heading, and associated metrics (see later), should provide 

additional important measurements to define activity and with which behaviours 

may be identified using techniques such as machine learning (Wang et al. 2015) and 

time-based decision-trees (Rutkowski, Jaworski & Duda 2020) as well as being 

important in dead-reckoning studies (Laplanche, Marques & Thomas 2015; Walker et 

al. 2015). Crucially, magnetometers reveal patterns in movement at various scales of 

rotation along the yaw axis that are not always evident in acceleration data (Martín 

López et al. 2015; Williams et al. 2015; Martín López et al. 2016; Williams et al. 2017), 
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which should prove particularly informative for behaviours that produce no definitive 

acceleration-based pattern and for animals that generate negligible dynamic 

acceleration signal.  

This paper examines the value and use of animal heading and a prime derivative, 

angular velocity about the yaw axis (hereafter termed ‘AVeY’), as an element for 

quantifying activity and ultimately aspiring to help differentiate animal behaviour 

using the Loggerhead turtle (Caretta caretta) as a model species. Firstly, I propose 

several metrics derived from AVeY and discuss how various temporal scales over 

which AVeY (and derivatives) is calculated, in some cases, can be a sensitive indicator 

of to some types of movement beyond those which acceleration alone can detail. 

Secondly, I outline the wider implications of using such AVeY metrics to aid in 

examining fine-scale behaviours. Lastly, I assess the relationship between AVeY and 

the commonly used DBA-based proxy for energy expenditure; vectorial dynamic body 

acceleration (VeDBA) (cf. Miwa et al. 2015) to see how the two metrics scale. The 

general aims of this research are to examine the potential importance in AVeY for 

enhancing our understanding of animal movement and to provide a framework for 

deriving and utilising indices of AVeY for researchers investigating proximate and 

ultimate aspects of animal behaviour using the technology outlined above. 

 

Materials and methods 

 

Subjects, study area and tagging 

 

The attachment of data loggers was carried out between July-August 2014 on five 

mature female loggerhead turtles, intercepted and tagged immediately post egg-

laying on the Southern beaches of Boa Vista, Cape Verde Islands (15°58'22" N, 

22°47'56" W). Daily diary (DD) logging units (Wilson, Shepard & Liebsch 2008) were 

used in this study. Acceleration measurements were logged as acceleration with 

respect to gravity (1 g = 9.81 m/s) from each of the three orthogonally mounted 

sensor axes (measuring within the range of ±16 g). Orthogonal magnetometry 
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measurements were recorded in Gauss (G) (magnetic intensity recorded within the 

range of ± 0.88 G at 0.73 mG/LSB resolution). Both accelerometery and 

magnetometry data were logged at 40 Hz. The DD’s also recorded temperature (oC) 

and pressure (mbar). Data were stored on a 2 GB removable microSD card. The DDs 

were enclosed in an oval-cylinder water-tight nylon casing and powered with one A-

cell battery. Tags were attached onto the second dorsal scute of the turtle carapace, 

using a two-component epoxy resin glue, to ensure tag housings (and thus sensors) 

were placed as close as possible to the horizontal. Tags were positioned so that the 

x, y and z axes of both the accelerometer and magnetometer sensors were aligned to 

the anterior‐posterior (surge), medio‐lateral (sway) and dorsal‐ventral (heave) axes of 

the animal, respectively. Tags were retrieved after a single inter‐nesting interval 

(approximately 2 weeks after initial deployment). 

Derivation of VeDBA 

 

Vectorial dynamic body acceleration (VeDBA) is a single integrated measure of the 

vector sum of dynamic acceleration from the three spatial dimensions during a given 

inertial frame (Qasem et al. 2012). To calculate VeDBA, a 2-second running mean was 

applied to each of the acceleration axes to approximate the static acceleration 

(Shepard et al. 2008; McClune et al. 2014). The static acceleration from each axis was 

subtracted from the raw acceleration values from each axis to derive the dynamic 

acceleration (Gleiss, Wilson & Shepard 2011; Shepard et al. 2013). VeDBA was 

determined by taking the vectorial sum of the dynamic acceleration using:  

VeDBA = √(𝑥2  + 𝑦2  +  𝑧2)                                                                                  (1) 

 

where x, y & z are the derived dynamic acceleration values from each axis. 

Derivation of angular velocity   

 

The static component of acceleration (due to gravity, which amounts to 1 g) is used 

in the computation of rotation about the three axes and is typically achieved by 
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passing a moving average of a given window size w (2 seconds used in this study) 

through a given sample (𝑺𝒊) of each orthogonal channel’s acceleration via; 

𝑺𝒊 =
1

𝑤
 ∑ 𝑆𝑗

𝑖+ 
𝑤

2

𝑗=𝑖− 
𝑤

2

                                    (2) 

 

Pitch and roll are computed via; 

𝑃𝑖𝑡𝑐ℎ (β) = (𝑎𝑡𝑎𝑛2(𝑆𝑥 , √𝑆𝑦   • 𝑆𝑦 + 𝑆𝑧   • 𝑆𝑧)  •  
180

𝜋
                                                          (3)                                                         

Roll (Y) = (𝑎𝑡𝑎𝑛2(𝑆𝑦, √𝑆𝑥  • 𝑆𝑥 + 𝑆𝑧   • 𝑆𝑧)  •  
180

𝜋
                                                              (4) 

where Sx,y,z refer to the static components of acceleration from the x, y and z channels 

of the accelerometer, respectively (Bidder et al. 2015). 

For review of all stages and mathematical components involved in the derivation of 

compass heading (H) (yaw), see Bidder et al. (2015) and Walker et al. (2015). In brief 

however, the magnetometer is typically calibrated by rotating the tag so that all 

orientations of roll, pitch and yaw are covered (Williams et al. 2017). In the absence 

of distortions to the local magnetic field, the normalised data from each axis (of this 

calibration period), forms a sphere when plotted on a tri-axial magnetic field intensity 

scatter-plot (the ‘m-sphere’; Williams et al. 2017). This process essentially provides a 

reference frame of the vectorial sum of magnetometry data across all three spatial-

dimensions and enables subsequent compensation for ‘hard’ and ‘soft iron’ errors.  

Soft iron deposits distort the magnetic field around the device, causing the sphere to 

take on an ovoid/ellipsoid form (Gebre-Egziabher et al. 2006; Ozyagcilar 2012). Hard 

iron deposits introduce a constant bias, shifting the position of the magnetic field and 

thus position of the sphere away from its true origin (Gebre-Egziabher et al. 2006; 

Ozyagcilar 2012).  

An ellipsoid-fitting algorithm and correction factor are used to correct such 

distortions and re-form uniform spherical fields about the true origin (Renaudin, Afzal 

& Lachapelle 2010). Angular rotations about the pitch and roll axes, derived from the 
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static component of acceleration are subsequently used in the tilt correction 

procedure on each orthogonal magnetometer channel. Compass data is first 

normalised and then each orthogonal channel is rotated according to the pitch and 

roll. This ensures magnetometer outputs are compensated, according to the 

inclination and declination angles caused by postural offsets, with outputs corrected 

to give a horizontal co-ordinate frame (Pedley 2012; Bidder et al. 2015). Finally, 

compass heading (H) with respect to magnetic North, is achieved via: 

H = 𝑚𝑜𝑑 (360 + (𝑎𝑡𝑎𝑛2(−𝑚𝑦, 𝑚𝑥  )  •  
180

𝜋
 ) , 360)                                        (5)                                                                                           

where 𝑚𝑥𝑦 refer to the normalised, ellipse fitted and co-ordinate frame-adjusted x 

and y channels of the magnetometer, respectively (Bidder et al. 2015) and 𝑚𝑜𝑑 refers 

to the modulo operator. The heading output uses a scale of 0o to 360o, with Magnetic 

North equating to a heading of 0o or 360o, South to 180o and thus East and West to 

90o and 270o, respectively. 

 

Data analysis 

 

All data analysis was performed in the custom designed software; Daily Diary Multi 

Trace (DDMT, http://www.wildbytetechnologies.com), R (open source statistical 

programming software, http://www.R-project.org), Origin pro 2016 (OriginLab 

Corporation, http://www.originlab.com) and Microsoft Excel 2016. Only flat U-

shaped dives (type 1a) greater than or equal to 3 meters in depth (cf. Houghton et al. 

2002) were used in the analysis to illustrate points being made. 

DDMT enables 2-D visualisations of infra-second variation per sensor axis output 

(visualised as waveforms over time) and includes built-in features for; quantifying and 

exporting channel subsets, calculating channel differentials and derivatives (including 

VeDBA), altering channel smoothing windows, producing multi-dimensional plots 

and an interface for searching for behaviours and bookmarking them using a Boolean 

time-based approach (Wilson et al. 2018). DDMT also provides the platform to 

http://www.wildbytetechnologies.com/
http://www.r-project.org/
http://www.originlab.com/
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correct for iron distortions and tilt offsets from calibration data, before computing 

compass heading. All three indices of derived body rotation (pitch, roll and yaw) were 

pre-smoothed using a rolling window of 2 seconds to reduce small deviations due to 

noise (i.e., small deviations manifest by the flipper beat cycle). Pitch and roll values 

ranged from -90o to +90o. The arithmetic mean of the yaw axis is problematic due to 

the periodic nature of circular data (range from 0o to 360o; both of which define the 

exact same point on the circumference of the unit circle - magnetic North, cf. Pewsey, 

Neuhäuser & Ruxton 2013). Therefore, a circular mean was used; units were 

converted from degrees to cartesian coordinates, before calculating the arithmetic 

mean of the individual angles from sample trigonometric moments and finally, 

restoring resultant units back to degrees via; 

 �̅�𝑝 = 𝑎𝑡𝑎𝑛2(
1

𝑛
 ∑ sin (H𝑗

𝑛
𝑗=𝑖 •  

𝜋

180
 ) ,

1

𝑛
 ∑ cos (H𝑗

𝑛
𝑗=𝑖 •  

𝜋

180
 ))                                       (6)                                      

 H̅ =  𝑚𝑜𝑑 (360 + (�̅�𝑝  •  
180

𝜋
 ) , 360)                                                                                            (7) 

Each dataset was subsequently sub-sampled to 1 Hz (selected values at i = 40) to 

make the data more manageable and because turtles are generally slow-moving 

anyway (as manifest by extremely low VeDBA values, typically lower than 0.08 g). 

Differentials were then calculated from the smoothed values of each axis, using a 

stepping range of 1 second (o/s) and termed; ‘AVeP’, ‘AVeR’ and ‘AVeY’ (Angular 

Velocity about the Pitch, Roll and Yaw axis, respectively). AVeY was also calculated 

over two larger temporal scales; 5 seconds (AVeY (o/5s)) and 10 seconds (AVeY 

(o/10s)).  

 

Since compass heading is circular, with no true zero and any designation of low or 

high values being arbitrary, a logical expression was implemented on the derivative 

AVeY to ensure rate of change never exceeded 180 o/s, whereby 360 was added to 

AVeY values less than -180 and 360 was subtracted from AVeY values greater than 

180. This makes biological sense as long as the time interval over which the angular 

velocity is calculated is restricted because it is far more likely that an animal that 

caused the compass heading to change from 10o to 350o, turned 20o anticlockwise, 
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rather than 330o clockwise. Careful consideration of the animal in question must be 

made when choosing the sampling period of AVeY, to avoid inaccurate rates of 

change. Ideally, this should be less than the time it takes the animal to rotate through 

half a revolution. 

The maximum angle that could be yielded from any given axis per second was 

therefore 180o. A metric termed ‘absolute angular velocity’ (AAV) was derived from 

the integration of each of the rotational axes’ absolute instantaneous angular velocity 

measurement; 

AAV = √(𝐴𝑉𝑒𝑃2  +  𝐴𝑉𝑒𝑅2  +  𝐴𝑉𝑒𝑌2)                                                                                        (8) 

Conditional running cumulative sum functions in R were implemented on AVeY (o/s) 

to document each time a turn (or multitude of turns) in either direction, 

totalled/surpassed 20o, 45o, 90o and 180o with respect to a particular starting 

orientation, resetting each time the condition (angle of specified yaw rotation to 

exceed) was met. The degree of yaw rotation in either direction with respect to the 

starting orientation and the specified turn angle with which it was equated, was 

expressed as a percentage coverage over time (0 to ± 100 %; ‘+’ representing 

clockwise, ‘-‘ representing anticlockwise). A final new metric, termed ‘cumulative 

heading’ (CuHe), also implemented on AVeY (o/s), assessed the percentage coverage 

(0 to 100 %) about the yaw axis from the culmination of angular rotations in both 

directions, resetting each time the animal had (at least once), rotated through all 

360o. R code for computing these metrics is available at 

https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R. 

A Linear mixed model (LMM) was performed utilising the ‘lmer’ function in R, from 

the ‘lme4’ package (Bates et al. 2015); to determine the relationship between mean 

values of AVeY (o/s) and VeDBA per dive. Turtle ID was included as a random factor 

in the model (Kuznetsova, Brockhoff & Christensen 2017). Three outliers were 

removed from the model following diagnostic plots of residuals. A Random slope 

model (including random intercepts) was also constructed to examine whether there 
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was a significant difference between the slope coefficients, as given from the 

interaction of AVeY by turtle ID. The model simplification method was employed 

using likelihood ratio tests, with AIC values also assessed. The interclass correlation 

(ICC) was computed for the best performing model. Spearman rank correlation 

coefficients (rs) were derived to determine the association of ranks between various 

metrics of body rotation (detailed in Table 1) and VeDBA. 

 

 

 

Results  

 

There were strong positive significant correlations between the three differentials of 

body rotation, with higher angular velocities of body orientation being apparent 

across all three axes of rotation (pitch, roll and yaw) (Fig. 1). Of the three rotational 

axes though, AVeY had the strongest correlation with AAV, signifying that yaw was 

the predominant axis of rotation during activity (for this study species at least).  

 

Table 1. Description of the metrics derived from accelerometer and magnetometer outputs. 
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Model simplification and AIC values detailed the model incorporating both random 

slopes and random intercepts best improved goodness of fit; AVeY significantly 

affected VeDBA (LMM: χ2(1) = 15.82, p < 0.01), with every 1 unit increase in AVeY 

increasing VeDBA by approximately 0.029 g (est. = 0.0029 ± 0.00027 (se), t = 4.92, 95 

% CI[0.0022, 0.0035], p < 0.001) (Fig. 2A). Incorporating random effects greatly 

improved the variance explained (marginal R2 = 0.33; conditional R2 = 0.84). In 

addition, the ICC was high at 0.79, indicating a high account of correlation among 

observations within groups. Typically, mean values of VeDBA were higher (and 

encompassed greater range) during faster turn rates (Fig. 2B). 

 

Figure 2. Association between the various metrics of body rotation (outlined in table 1) and VeDBA, with strength 
of correlation coefficients (spearman rank) and significance level detailed (*** = 0.01 significance level). Each data 
point represents the mean value per flat U-dive (bottom phase duration). 
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Generally, greater values of AVeY corresponded in a linear fashion with the number 

of (specified) turn angles. This was particularly evident for 45o turns (Fig. 3A). 

However, the relationship became weaker as the extent of the turn increased (Fig. 

3B), indicating that as the angle of a turn increased the chances of the animal turning 

back also increased.  

 

 

Figure 2. Association between yaw rotation and VeDBA, each data point represents the mean value per flat U-dive 
(bottom phase duration). Relationship between AVeY (o/s) and VeDBA with implemented linear regressions and 
95 % confidence intervals (grey shading around each regression) (A). Data points and regression lines coloured 
according to turtle ID. Contour plot showing the kernel density level of VeDBA as a function of the time it took to 
complete 90o turns, with ‘loess smooth’ line (blue dashed) fitted (inset shows the raw x-y data) (B). 

Figure 3. Correlation between values of AVeY (o/s) and the corresponding number of 45o turns (A) and 180o turns 
(B) per minute. Each data point represents the mean value per flat U-dive (bottom phase duration). 
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I recognised that the bottom phase of turtle dives showed appreciable variability in 

recorded parameters, but that they could be broadly divided into apparently ‘active’ 

and ‘inactive’ (or ‘quiescent’) according to changes in yaw (cf. Supplementary 

Information (SI): Fig. S1). Both types involved little or no change in depth but in the 

quiescent dives, there were no definitive changes in either the acceleration or 

geomagnetism traces throughout the duration of the bottom phase, with yaw and 

VeDBA values also showing marked consistency (Fig. 4A1). In such cases, CuHe 

remained static, showing that no ‘new’ orientation was adopted following the initial 

descent (with only three 20o turn angles being surpassed during this period for the 

example in Fig. 4A1). Frequency distributions were also similar between the three 

scales of AVeY, indicating changes in directionality were monotonous over time (Fig. 

4B1). 

Conversely, ‘active’ dives showed greater fluctuations in the geomagnetism traces 

and associated values of yaw, even though the depth, acceleration and VeDBA values 

showed similar patterns to apparently quiescent bottom phases of dives (cf. Fig. 4A2). 

Full rotations about the yaw axis as depicted by CuHe, were completed at a relatively 

consistent rate, as detailed by the percentage coverage of 90o and 180o turns and 

were nearly exclusively carried out in the clockwise direction, depicting a type of 

‘circling’ behaviour (cf. SI: Fig. S2).  

There was greater variation between the frequency distributions of the various rates 

of AVeY (Fig. 4B2), all of which portrayed a greater spread and skewness compared to 

the quiescent dives (Fig. 4B1), signifying a greater variability of turn rates, primarily 

carried out in one direction. 
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Figure 4. Two flat U-dives similar in duration and differing in activity extent. Stacked line graphs detailing differences 
between acceleration- and magnetism-based metrics plotted against dive duration. From top to bottom; depth 
profile, dynamic acceleration and derived VeDBA, magnetism and derived yaw, percentage coverage of various turn 
extents and CuHe (A). Frequency distribution of AVeY of both dives, calculated at three temporal scales (B). 
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Calculating AVeY over different intervals and ‘post-smoothing’ at various window 

lengths highlighted behaviour-specific patterns in signal minima and maxima of AVeY, 

such as clear alternating fluctuations in heading, even when there seemed no clear 

pattern observed from acceleration data (e.g., Fig. 5A1). In the example shown in Fig. 

5A1, changes in heading resulted in 45o turns in both directions, yet 180o turns were 

never achieved, indicating an activity-specific behaviour with an overall directionality 

(Fig. 5A2).  

 

Conversely, patterns apparent in the acceleration data could be further investigated 

with respect to AVeY to enhance information of the behaviour-specific movement 

taking place. For example, Fig. 5B Shows relatively consistent deviations recorded 

from the surge axis (Acc. X), manifest as in spikes of pitch, a pattern which coincided 

with acute anti-clockwise turns although changes in orientation did not necessarily 

correspond with clear changes to dynamic acceleration estimates (Fig. 5C). 

Figure 5. Various examples of activity-specific patterns as resolved by examination of body rotations at various 
temporal scales and smoothing windows. Stacked line graphs showing the variation in acceleration, AVeY (o/5s) 
(smoothing window; 3 seconds) and percentage coverage of 45o and 180o turns over an eight-minute period (A1). 
Polar theta chart detailing the changes in heading (from A1) over time (A2). Stacked line graphs showing the variation 
in acceleration, AVeP and AVeY (o/s) (smoothing window; 5 seconds) over a three-minute period (B). Changes in 
VeDBA and AVeY (o/s) (smoothing window; 3 seconds) during a segment of acute turning behaviour (C). 
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In the turtle data, the different yaw-based metrics were often complementary, 

showing clear patterns in activity. For example, AVeY (and VeDBA) could show similar 

changes over a 24-hour period (Fig. 6A) even though higher turn rates did not 

necessarily correspond with turn extent (Fig. 6B), indicating that different processes 

were at work over the sample period. 

 

 

Accumulating (absolute) values of angular rotation across duration of 100 random U-

dives demonstrated the variability both within and between dives (Fig. 7). Such a 

spread of accumulated distributions was less pronounced for acceleration indices. 

Moreover, the frequency distribution of cumulated AAV gradients was less obviously 

monomodal than the equivalent VeDBA gradients. CuHe was another diverse yaw-

based metric, reflecting the degree and intensity of directionality involved in 

movement. Behaviours that were manifest by restricted, or no change in direction, 

resulted in a lower accumulation of unique angles attained around the body’s 

circumference, which was reflected in the small step ranges of CuHe and fewer resets 

to zero (when 100 % of angles have been covered at least once). Conversely, other, 

Figure 6. Time series plot of mean values of VeDBA and AVeY (o/s) (± se) per hour over 
a 24-hour period (A) and the corresponding number of 45o, 90o, 180o turns and 
complete rotations about the yaw axis (CuHe) (B).    
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ostensibly more active behaviours with little overall directionality (i.e., searching) 

resulted in frequent revolutions. Here, a distinct tri-modal distribution of CuHe 

frequencies (from same 100 random U-dives mentioned above) was apparent, 

inferring a distinction between activity/behaviour types (SI: Fig. S3). 

 

Figure 7. Cumulative frequency of VeDBA (g) (A) and AAV (o/s) (B) across the duration of 100 random U-dives 
(bottom phase), including their precursor measurements; raw absolute values of acceleration (including both 
dynamic and static components) from the x- (surge), y- (sway) and z- (heave) channels (A) and absolute values of 
AVeR, AVeP and AVeY (B). Frequency histogram distribution inlets given for cumulative VeDBA and AAV gradients 
per dive. Note the much larger spread and variability of patterns when cornering indices of angular rotation. 
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Discussion 

 

Angular velocity as a metric for animal movement 

Movement of the body trunk, nearly always involves some degree of angular rotation 

(cf. Martín López et al. 2016), which is perhaps why rotational indices were suggested 

as a potential activity index two decades ago (cf. Hochscheid & Wilson 1999). I was 

able to show a link between activity extent (as manifest by VeDBA) and angular 

velocity about all three dimensions of rotation, indicating that movement, in this 

example animal at least, was rarely confined to a specific axis (Fig. 1). However, the 

rate of change of yaw was much higher than the equivalent in pitch and roll (Fig. 7). 

This is not surprising, not least because full rotation about the pitch and roll axes 

necessitates body inversion whereas in yaw it does not. In addition, turning about the 

yaw axis is an important component of behaviour for most animals, particularly 

during navigation, escape, search, foraging and hunting strategies (Ballerini et al. 

2008; Wilson et al. 2013b). For ostensibly technical reasons however, yaw metrics 

seem to have been largely overlooked in animal activity and behaviour studies 

(excepting studies using gyroscopes, e.g., Kawabata et al. (2014)).  

The extent to which yaw angle changes compared to pitch or roll (metrics for angular 

turn extent are about 4 times higher for yaw than pitch or roll in these turtles – cf. 

Fig. 1) indicates that yaw likely has greater scope and range than pitch or roll as a 

behaviour identifier (and at the very least, should complement them). This will be 

particularly the case as the extent of any angular turns decreases so that recorded 

changes impinge on the resolution capacity of the sensors, as may particularly be the 

case in very slow-moving animals. For these reasons, I have primarily focused on the 

yaw dimension of rotation to demonstrate its utility for assessing both general-scale 

differences in activity extent and fine-scale behaviour-specific movements. Care 

should be taken to determine that this is the case for the study species though, since 

animals engage in a variety of rotational movement about their principle axes (cf. 

Tinbergen 1963). Indeed, a more sophisticated approach could consider pitch-, roll- 

and yaw-specific rotations together as signatures of particular behaviours (cf. Fig. 5B).  
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In a similar manner, consideration of multiple metrics for angular changes in yaw over 

time are complimentary. For example, periods of high AVeY do not necessarily 

correspond with high turn extent (cf. Fig. 3), but indicate rapid, but non-extensive, 

changes in heading. This can be symptomatic of a particular behaviour such as 

searching by an animal following environmental cues (cf. Basil & Atema 1994). 

Indeed, these turtles often exhibited activities consisting of high AVeY, signifying 

quick transitions between small turn extents, with such oscillating yaw movements 

accompanied by a high degree of directionality likely resulting from benthic surveying 

(Fig. 5A1). By contrast, great turn extents in a particular directional plane shows 

circling behaviour (cf. Fig. 4A2, SI: Fig. S2), important for a suite of situations (Narazaki 

et al. 2021) ranging from birds soaring on thermals (Williams et al. 2018) to turtle 

courtship (Schofield et al. 2007). Importantly though, the lack of any rotation about 

the yaw axis can equally be used (in conjunction with other sensor outputs) to define 

resting behaviour more appropriately than can be done using accelerometers alone 

(Fig. 4). This is especially the case in slow-moving species where yaw metrics are of 

particular value for much longer-term investigations (Fig. 6). Thus, aggregation of 

mean epochs of, for example, hourly AVeY estimates in relation to the accumulation 

of the number of various turn extents, can highlight minimal, but important, activity 

and provide detailed changes of activity over days. Such a broad approach is 

particularly relevant for reptiles (cf. Shine 2005) and many invertebrates (cf. McLeese 

1973) where body orientation changes can occur over much longer time periods than 

is normal for mammals or birds and for which acceleration data serve well to define 

activity. 

 

Tri-axial magnetometers have two main drawbacks though: Firstly, being a vector 

field sensor, only two rotational degrees of freedom are measured at any one time 

and so angular rotation cannot be resolved should one sensor axis align with respect 

to the Earth’s magnetic inclination lines (cf. Johnson & Tyack 2003; Martín López et 

al. 2016). Secondly, the derivation procedure of pitch and roll (required in the 

computation of heading) breaks down during bouts of fast, erratic behaviour (e.g., 
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during rapid cornering; (e.g., during rapid cornering; cf. McNarry et al. 2017), because 

it can be difficult to sperate the static from the dynamic component of acceleration 

at such times, which can cause subsequent inaccuracies of all three rotational axe’s 

derivatives (Noda et al. 2012). Choice of study animal, tag attachment method, 

animal location on Earth and the period over which any differential is calculated, are 

key parameters to consider when assessing the likelihood and extent of such 

limitations 

 

Relationship between AVeY and VeDBA 

 

VeDBA been used extensively as an acceleration-based proxy for activity-specific 

energy expenditure (e.g., Stothart et al. 2016; Jeanniard-du-Dot et al. 2017; Wilson 

et al. 2020a). This is based on the theoretical understanding that movement of most 

vertebrates is the main factor in modulating energy expenditure (Gleiss, Wilson & 

Shepard 2011; Qasem et al. 2012). The more vigorous the movement, the more 

energy is expended in muscular contraction, with any change in measured body 

acceleration being proportional to the muscular forces that displaced the animal’s 

body (and therefore the attached sensor - according to Newton’s first law, Miwa et 

al. 2015). Consequently, the integrated measure of dynamic acceleration from each 

of the three spatial dimensions has been proposed to reflect the mechanical 

equivalent to energy expenditure involved in movement. I documented a clear 

relationship between VeDBA and AVeY across each turtle (Fig. 2A) and this is 

presumably because turning comprises an appreciable fraction of overall movement 

costs (McNarry et al. 2017; Wilson et al. 2020b). Specifically, a body that moves in a 

circular motion (of radius r) at constant speed (v) is always being accelerated at right 

angles to the direction of motion (towards the centre of the circle of magnitude v2
 
/ 

r). Given that Force = mass x acceleration (F = m * (v2 / r) and it is typically the animal 

that supplies the force through muscular contraction (Halsey et al. 2011), more acute 

and higher frequency turns are associated with greater energy expenditure (Wilson 

et al. 2013a; Wilson et al. 2013b; McNarry et al. 2017; Wilson et al. 2020b; Fig. 2A, 

Fig. 2B). Taken together then, assessing the frequency and extent of turns can be 
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helpful for understanding aspects of animal energy expenditure and the motivations 

behind behaviour (however identified), since the degree and associated cost of 

angular rotation is modulated by movement decisions (Vásquez, Ebensperger & 

Bozinovic 2002). It is worth noting however, that turn costs increase non-linearly with 

speed and thus it is far more efficient to turn while stationary/slow-moving, in order 

to minimise the perpendicular forces and duration of a turn (cf. McNarry et al. 2017; 

Wilson et al. 2020b). This may partially explain the spread of VeDBA values during 

acute turns (Fig. 2B), and why AVeY does not necessarily scale nicely with VeDBA over 

time (Fig. 4B2, Fig. 5C, Fig. 6A).  

 

Advantages of AVeY over acceleration estimates 

 

Acceleration measured by animal-attached tags is susceptible to the specific site of 

tag placement, so that data from tags that are deployed on, for example, animal 

carapaces that vary in morphology (including some reptiles, crustaceans and 

gastropod species), are particularly likely to incur this problem, making DBA-type 

metrics difficult to compare between individuals (cf. Wilson et al. 2020a). The 

problem is also likely to be manifest to some extent even when animals are 

morphologically similar, simply because the researchers do not place the tags 

identically on all individuals. Yaw metrics such as those proposed here (AVeY and 

angular extent) do not suffer from this problem because they are corrected in their 

derivation (see methods). In fact, the difference in susceptibility to tag orientation 

between accelerometer- and magnetometer-derived metrics appears within these 

turtle datasets, which showed markedly different VeDBA versus AVeY relationships 

for the different individuals (Fig. 2A). Note though, that the derivation of pitch and 

roll becomes problematic when they approach +/- 90o, when x, y and z values can 

become inversed. As such, large offsets in position would be problematic, since it 

restricts the range for accurate measurements of pitch and roll to be made 

(consequently affecting the accuracy of yaw). This assumption, therefore, breaks 

down for animals that change orientations frequently at angles greater than 
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perpendicular from their longitudinal and lateral axes of ‘normal’ posture. However, 

this is less problematic for slow-moving animals (such as the turtle). 

The broad use of DBA metrics as a measure of movement and energy use for many 

vertebrates to date indicates their utility. However, for turtles, the narrower 

operational range of VeDBA increases the contribution of relative error from 

discrepancies in tag placement, which, in turn, can make separation of energy-

specific behaviours between individuals more challenging. This was the case in these 

datasets, with an extremely low range of VeDBA estimates and notable offsets 

between turtles (Fig. 2A). Furthermore, various scales of AVeY reported here 

revealed repetitive patterns in rotational movement that were not evident in 

acceleration data during short-term behavioural bouts (Fig. 4A2, Fig. 5A1). I suggest 

that, in its simplest form, fine temporal responses of orientation may indicate a 

change in ‘state’, presumably from an underlying sensory input or physiological 

demand and this may not always be reflected from the culmination of dynamic 

movement as manifest by accelerometers (Fig. 5c). Crucially, since angular velocity 

about the three axes of rotation is not affected by discrepancies of tag placements 

(though see above), it provides a standardised comparator of movement between 

individuals.  

Changes in the recorded acceleration, may not always result from movement arising 

from the limbs. These may, for example, arise from external forces acting on the 

animal, such as current vectors in the water (Ropert-Coudert & Wilson 2004) which 

will tend to translate the body rather than rotate it. I suggest that AVeY and AAV 

should be used as a measure for activity that is complimentary to DBA, being 

particularly valuable when DBA-type metrics are weak and when behaviours can be 

exemplified according to the scale (or lack of) and pattern of angular rotation exerted. 

Lastly, whilst this study does not provide specific ground-truthing of the exact ‘type’ 

of behaviour involved, clear patterns emerge using this approach that would 

otherwise be left unresolved if only acceleration estimates were considered (Fig. 7). 

The advantages of animal-attached logging systems include to pry more deeply into 

the movement ecology of animals independent of direct observation, especially 
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when observer monitoring is difficult, such is the case with free-ranging turtles. 

However, inference without ground-truthing does not determine the finding 

irrelevant (Collins et al. 2015). Previous studies have made subjective behavioural 

assignments using prior knowledge and an objective intuition of what acceleration-

based measures infer (cf. Laich et al. 2008; Collins et al. 2015; Williams et al. 2015). 

With regards to turtles, underwater behaviour has mostly been inferred from 

speculation based on ‘dive profiles’ (2-D representation of depth versus time). The 

fact that trends of movement can be resolved more finely using indices of angular 

velocity, especially during slow scales of movement (pertinent in this study), only aids 

in objectively quantifying behavioural differences. I suggest that variation of heading 

in a specified time frame is intrinsically linked to the functional behaviour motivation 

exhibited. Estimates that are consistent in the magnitude and pattern of change 

reveal a behaviour that is consistent in its vector of imparted motion (or rotation) (cf. 

Fig. 5, SI: Fig. S3). Crucially however, even ‘noisy’ variations in AVeY may indicate 

more notable differences between activity-specific behaviours that acceleration 

estimates do not (Fig. 7). 

Conclusion 

 

This work assessed the value of animal heading (body orientation) and associated 

metrics for quantifying animal activity and for helping define behaviours. My results 

show that incorporating the frequency and extent of yaw axis rotations at various 

temporal scales aids in resolving patterns of movement beyond that which 

acceleration-based metrics alone can detail. I suggest that yaw-based metrics should 

help identify animal behaviour and as indices of general activity over both short- and 

long-term periods, especially (within an energetic context) for slow-moving animals. 

It would be useful to have AVeY and AAV metrics compared to oxygen consumption 

to check their validity as a potential proxy of energy expenditure. Further work should 

assess the value of AVeY on a suite of terrestrial, aquatic and volant animals, varying 

in activity extent and behaviour. Judicious choice of sampling intervals and smoothing 

windows will be important considerations in this.  
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Abstract 

 

Understanding the behavioural ecology of endangered taxa can inform conservation 

strategies. The activity budgets of the loggerhead turtle Caretta caretta are still poorly 

understood because many tracking methods show only horizontal displacement and 

ignore dives and associated behaviours. However, time‐depth recorders have enabled 

researchers to identify flat, U‐shaped dives (or type 1a dives) and these are 

conventionally labelled as resting dives on the seabed because they involve no 

vertical displacement of the animal during the bottom phase. Video‐ and 

acceleration‐based studies have demonstrated this is not always true. Focusing on 

sea turtles nesting on the Cabo Verde archipelago, I describe a new metric derived 

from magnetometer data, absolute angular velocity, that integrates indices of angular 

rotation in the horizontal plane to infer activity. Using this metric, I evaluated the 

variation in putative resting behaviours during the bottom phase of type 1a dives for 

5 individuals over 13 to 17 d at sea during a single inter‐nesting interval (over 75 turtle 

d in total). I defined absolute resting within the bottom phase of type 1a dives as 

periods with no discernible acceleration or angular movement. Whilst absolute 

resting constituted a significant proportion of each turtle’s time budget for this 1a 

dive type, turtles allocated 16−38 % of their bottom time to activity, with many dives 

being episodic, comprised of intermittent bouts of rest and rotational activity. This 

implies that previously considered resting (and/or vigilance) behaviours are complex 

and need to be accounted for in energy budgets, particularly since energy budgets 

may impact conservation strategies. 
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Background 

 

Sea turtles spend almost all of their lives at sea, which creates logistic difficulties in 

collecting data that may be relevant to their conservation (Gilman, Moth-Poulsen & 

Bianchi 2007; Hochscheid 2014; Wallace, Zolkewitz & James 2015; Butt, Whiting & 

Dethmers 2016; Mingozzi et al. 2016). This is particularly true with respect to 

behaviours associated with space-use and energy expenditure (López-Sepulcre 2007; 

Greggor et al. 2016). However, animal-attached logging devices have provided 

researchers with a powerful tool to record patterns of behaviour, even when turtles 

are underwater. A tag commonly used for this is the time depth recorder (TDR, Hays, 

Marshall & Seminoff 2007; Hart et al. 2010; Wilson et al. 2017; Dodge et al. 2018), 

which provides information on depth use over time, from which dive profiles can be 

reconstructed (Eckert et al. 1986; Hays et al. 2002b; Rice & Balazs 2008). These dive 

profiles have been broadly classified into five or six distinguishable types through 

their marked repetition and consistent patterns (Minamikawa, Naito & Uchida 1997; 

Hochscheid et al. 1999; Hays et al. 2000; Houghton et al. 2002; Hochscheid 2014; 

Wilson et al. 2017).  

Different dive types are hypothesised to reflect changes in behavioural motivation 

and associated activity levels (Hochscheid 2014). For example, ‘type 1a’ dives, flat U-

shaped dives, are very common among sea turtles (Hochscheid et al. 2007; Cheng 

2009), and are typically associated with resting (Hays et al. 2000; Seminoff, Jones & 

Marshall 2006; Hays 2008; Cheng 2009; Okuyama et al. 2012). These dives are more 

prevalent between nesting events, at times when turtles are reported to be 

minimizing energy expenditure so as to allocate resources to developing eggs. 

Indeed, classification of these dives as resting behaviour is important, particularly 

because of their potential role in saving energy for turtles, which are considered to 

be primarily ‘capital’ breeders (Jönsson 1997; Bonnet, Bradshaw & Shine 1998; Plot 

et al. 2013). But evidence that type 1a dive types in inter-nesting female turtles are 

genuinely just resting dives is equivocal: Hochscheid et al. (1999) suggested that 

turtles might forage during the dive, and Myers and Hays (2006) explicitly noted beak 
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movements in inter-nesting leatherback turtles (Dermochelys coriacea) during 

various dives that also implied foraging in nesting areas. There is thus a need for 

further information on the activities of female turtles during the inter-nesting phase 

to determine the extent to which type 1a dives might be associated with foraging in 

nesting areas. Such information may be important for conservation initiatives, which 

may have to consider protecting the space used by inter-nesting females rather than 

considering it energetically barren. 

TDRs, however, lack the resolution to detect specific behaviours beyond changes in 

depth and therefore the ability to determine the extent to which turtles may be 

foraging is limited using this approach. Seminoff, Jones and Marshall (2006) 

addressed this issue using video recorders integrated with TDR technology (VTDRs) 

mounted onto the carapaces of (non-nesting) green turtles (Chelonia mydas). From 

their observations, they concluded that a suite of behaviours can be expressed within 

a single dive profile, noting that time-depth plots for determining underwater 

behaviours should therefore be treated with caution. Type 1a dives, for instance, 

consisted of both continuous and episodic resting behaviour. Furthermore, 

horizontal movements and stationary- and active benthic feeding were prevalent 

during the bottom phase of this dive type. Although illuminating, animal-attached 

video recording systems are power and memory hungry and so can only operate 

continuously for a few hours during daylight (Park et al. 2019).  

Another approach to elucidate turtle behaviour is the deployment of high frequency 

tri-axial accelerometers which can be used over extended period (e.g., Narazaki et al. 

2009; Hussey et al. 2015; Wilmers et al. 2015). Accelerometers have been used to 

link dive profiles with underwater activities in the context of buoyancy regulation, 

depth utilisation and the dynamism of movement (Hays, Marshall & Seminoff 2007; 

Fossette et al. 2010; Parlin et al. 2018). However, turtles can spend large portions of 

their behavioural time budget gliding at relatively constant velocity (Wyneken 1997; 

Walker & Westneat 2000; Martin 2003), especially during the bottom phase of type 

1a dives, which produces little or no change in the acceleration, making 

interpretation of behaviours problematic (Eckert 2002; Wilson et al. 2020a).  
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The lack of dynamism in some turtle activities can be addressed, in part, by examining 

various scales of angular body rotations over time, which can reveal patterns of 

movement (Noda et al. 2012) beyond those imparted by the dynamism in body 

acceleration (cf. Chapter 2). This concept was introduced by Hochscheid and Wilson 

(1999), who quantified activity patterns via a compass system using a miniature, 

fluid-filled ship’s compass with two magnetic field (Hall) sensors on the sphere’s 

equator. These sensors are particularly sensitive to changes in individuals’ horizontal 

orientation (changes in animal yaw) and Hochscheid et al. (1999) demonstrated how 

this approach could be used to produce an activity index for two free-living green 

turtles. Although their system did not allow for precise calculation of angular 

velocities or defined angular extents, it is, to my knowledge, the only study that 

quantifies the behavioural time budget of common type 1a dives over whole inter-

nesting intervals. 

Here, I assess the extent to which angular rotation can quantify the activity of five 

wild loggerhead turtles Caretta caretta engaged in type 1a dives between nesting 

events. Specifically, tags were deployed which recorded tri-axial acceleration and tri- 

axial magnetic field intensity, both of which can be recorded over periods of many 

days (cf. Brown et al. 2013). These allowed us to estimate the angular velocity of all 

three axes of rotation (pitch, roll and yaw), and combine them into an overall 

absolute angular velocity (AAV) proxy to infer activity. I also used three captive 

loggerhead turtles to ground-truth the wild turtle data. Beyond indicating that turtles 

might be feeding, angular velocity is relevant to nesting turtles because body rotation 

is energetically expensive (Wilson et al. 2020a; Wilson et al. 2020b), with the power 

costs projected to rise with increasing angular extent and velocity (cf. Wilson et al. 

2013a; Wilson et al. 2013b). Precise quantification of the extent of activities should 

therefore help us understand power and energy management in turtles during this 

critical phase of their lives. 



 Activity during U-shaped dives 

77 

 

Materials and methods 

 

Subjects, study area and tagging 

Five mature female loggerhead turtles were equipped with Daily diary (DD) logging 

units (Wilson, Shepard & Liebsch 2008) enclosed in a square silicone casing and 

attached, using an epoxy resin, by placing them flat against the shell, usually between 

the first and second scute. Tri-axial acceleration (range, ±16 g) and tri-axial magnetic 

field intensity (recorded in Gauss (G) at 0.73 mG/LSB (Milligauss/least significant bit, 

cf. Tuck 2010) resolution, range; ± 0.88 G) data were recorded at 40 Hz, while 

pressure was recorded at 4 Hz to provide depth information. Devices were deployed 

only on nesting turtles after egg deposition, to minimise disruption and stress. All 

devices were deployed on a single beach in the south of Boa Vista island, Cabo Verde 

(Cameron et al. 2019), over a period of 8 nights starting on 22 July 2014. Turtles also 

received a passive integrated transponder to identify them in case they were seen 

again without the DD units. All tags were retrieved when the turtles returned after a 

single inter-nesting interval, either on the beach of deployment or on adjacent 

beaches.  

Three female adult captive turtles housed at the Arca del Mar rehabilitation centre 

in Oceanografic in Valencia were also fitted with DD loggers intermittently between 

June and August 2018. Data was recorded at 20 Hz. Turtles undergoing rehabilitation 

were housed in separate circular tanks, 6 m in diameter, with a water depth of 0.95 

m. These turtles were observed at intervals (between 10 and 60 min) and results 

obtained were used solely to ground-truth an absolute angular velocity metric (see 

later) by ascertaining that high values of absolute angular velocity corresponded to 

periods when turtles exhibited high turning rates. 

Custom-designed software; Daily Diary Multi Trace (DDMT, 

http://www.wildbytetechnologies.com), was used to visualise DD data, create the 

appropriate channel smoothing windows, extract differentials and implement 

Boolean-type, time-based behavioural expressions linked to the dive depths at which 

http://www.wildbytetechnologies.com/
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type 1a dives occurred. R (version 3.51, https://www.r-project.org) and Origin pro 

2016 (OriginLab Corporation, https://www.originlab.com) were used for further 

statistical and graphical analysis. Google earth (https://earth.google.com) was used 

to perform polygon transects to approximate the seabed elevation profile as a 

function of distance from the coastline of the nesting beach.  

Derivation of angular velocity  

All stages involved in the derivation of pitch, roll and compass heading (using tri-axial 

accelerometers and magnetometers) are detailed in Ozyagcilar (2012); Pedley (2012); 

Pedley (2013); and Chaper 2. 

All three indices of derived body rotation (pitch, roll and yaw) were pre-smoothed 

using a rolling window of two seconds to eliminate small deviations due to noise 

stemming from the flipper beat cycle. A circular mean was used for yaw (Pewsey, 

Neuhäuser & Ruxton 2013). Each complete set of data taken from an individual 

turtles was subsequently subsampled to 1 Hz to facilitate computation.  

AAV was derived using data from both the accelerometers and magnetometers 

(Chapter 2). AAV is calculated from the integration of each rotational axis’ 

instantaneous angular velocity measurement and given by 

AAV = √(𝐴𝑉𝑒𝑃2  +  𝐴𝑉𝑒𝑅2  +  𝐴𝑉𝑒𝑌2)                                                                             (1) 

where the differentials AVeP, AVeR and AVeY (angular velocity about the pitch, roll 

and yaw axis, respectively) were calculated in °/s using a stepping range of 1 s (Chapter 

2). A logical expression was implemented on the derivative AVeY to ensure rate of 

change never exceeded 180°/s (cf. Wilson, Shepard & Liebsch 2008) to determine 

whether the rotation was clockwise or anti-clockwise.  

The vectorial dynamic body acceleration (VeDBA) was also calculated following the 

protocols outlined by Qasem et al. (2012). To calculate VeDBA, the dynamic 

acceleration of each axis was derived by subtracting the smoothed (static) 

https://www.r-project.org/
https://www.originlab.com/
https://earth.google.com/


 Activity during U-shaped dives 

79 

 

acceleration from the raw data before taking the vectorial sum of the dynamic 

accelerations. 

 

Depiction of type 1a dives and activity 

The DD also records pressure (mbar), which was used to determine diving depth in m 

(see equations in Wilson et al. 1992). Baseline offsets of recorded pressure were 

accounted for and a further 10 cm buffer depth offset was implemented, less than or 

equal to the corrected depth at the surface (essentially 10 cm less than or equal to 0 

m depth), before depth was computed. Only dives with (at least part of) a bottom 

phase greater than or equal to 3 m, (termed ‘deep dives’; Fig. 1) were considered for 

analysis (Fig. 1) were categorised by dive type, because relative variation in depth at 

shallower depths was higher due to the effect of waves (cf. Houghton et al. 2002).  

Type 1a dives were identified based on three criteria: 

(1) The general shape of the dive profile consisted of steep descent and ascent 

phases with a flat bottom between (cf. Fig. 2); 

(2) the pressure differential (calculated over 10 s; pressure pre-smoothed by 2 s) 

exceeded a defined threshold of ± 0.03 mbar during periods of descent and 

ascent (~0.03 m/s differential depth [vertical speed], as previously determined 

and proposed by Hays et al. (2000)), and;  

(3) over the duration of the bottom phase, change in depth did not exceed 1 m 

from the base line. 

Only the bottom phase of type 1a dives were assessed. Video recordings of captive 

turtles were taken to ground-truth whether AAV was an accurate reflection of activity 

extent observed directly. To stimulate appreciable activity, turtles were provided 

with a food source (jellyfish). Despite relatively restricted movements due to tank 

confinement, clear differences were noted between actively swimming, 

manoeuvring along the bottom and complete rest periods. Activity resulted in 

periods of AAV exceeding 5°/s, while only continuous bouts of rest coincided with 
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constant values of AAV below 3°/s (the limit of resolution of the system). The 

contrasting pattern was apparent during visual inspection of the sensor data from 

free-ranging turtles (cf. Fig. 2). 

 

 

The topographic conditions associated with wild turtles resting were taken into 

consideration. Turtles do not always rest on a hard substrate; they have also been 

reported to rest on fauna (corals), flora (algae) and in the open with no apparent 

holdfasts. Thus, they are subject to motion from current vectors (Okuyama et al. 

2010). To account for this additional degree of possible sensor noise a slightly higher 

threshold of 5°/s was implemented for AAV, below which the animals were 

considered to be at absolute rest. However, even during periods of low activity, e.g., 

stationary foraging or slow rates of movement, intermittent values above the 

threshold were apparent. To account for those effects, two time-based criteria were 

implemented, both of which had to be met for a resting bout to be marked as such: 

(1) AAV had to remain below 5o/s for a minimum of 30 s 

(2) During a rolling window of 30 s, the extent of a turn could not exceed 45o.  

Figure 1. Decision tree showing how deep dives were characterised. 
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Periods not marked as resting were active. Finally, depending on the proportion of 

bottom phase attributed to periods of marked rest, type 1a dives were subclassified 

as being predominantly resting (resting ≥ 80 %), episodic-resting (resting between 20 

and 80 %) or active (resting ≤ 20 %). This subclassification is referred to hereafter as 

dive status. 

 

 

Statistical analyses 

 

A Linear mixed model (LMM) was performed using the lmer function in R, from the 

lme4 package (Bates et al. 2015), to determine the extent to which dive duration 

correlated with AAV and dive depth (mean values per type 1a dive pooled into one 

grand mean value for each turtle). Turtle ID was set as a random factor. Diagnostic 

plots of the residuals revealed a departure from linearity and homoscedasticity. As 

such, box-cox transformation analysis from the MASS package was used to assess the 

appropriate exponent ( = l) with which to transform data; the natural log of the 

independent variables (AAV and depth) was used. The model simplification method 

(backward selection) was employed using likelihood ratio tests with an ANOVA 

Figure 2. An example of a continuous bout of diving behaviour (approx. 5.5 hours) from a wild loggerhead turtle. 
Bottom phase of type 1a dive denoted with cyan blocks (top). Rest periods are inferred by continuous bouts of 
relatively unchanging body rotation (red: pitch, green: roll, black: yaw [heading]). Note, heading is plotted in a 
different panel to pitch and roll because its range of measurement range is higher. Absolute angular velocity (AAV) 
periods during bouts of active swimming and remains consistently low during rest periods. The threshold of 5o/s for 
AAV is denoted with a back dotted line. 
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function. Due to the apparent non-linear relationship between untransformed 

variables, a generalised additive mixed effects model (GAM; mgcv package, using thin 

plate regression splines (k = 7) and a smoothing function) was also constructed for 

comparison. To infer the metabolic costs associated with dives and angular velocity, I 

used the approximation that zero AAV corresponded to resting metabolic rate (RMR). 

Under the condition that zero AAV approximately corresponds to RMR, dives with 

zero angular velocity throughout the bottom phase were approximately 40 min in 

duration (see Fig. 6A). Based on this approximation, I constructed the putative curve 

of metabolic costs associated with AAV (expressed as a multiple of RMR) by dividing 

40 min by the dive duration predicted based on AAV (using the predict.gam function 

in R). 

 

Results 

 

Overall, I analysed a total of 75 turtle d, with individuals spending between 13 and 17 

d at sea (mean (± SD) 15 ± 1.6 d). Weather conditions during the study (as reported 

every 3 h by a nearby station in Curral Velho) varied appreciably, such as wind (9−39 

km/h, typically coming from the northeast), rain (0−1.4 mm/3 h), humidity (77−92 %) 

and pressure (1012−1018 mb), though temperature remained relatively constant 

(23−25°C). 

There were large inter-individual differences in the proportion of time spent at 

different depths (Fig. 3A). Type 1a dives were frequent and represented between 40 

and 61 % of the total number of deep dives (> 3 m, Fig. 3A,B), despite the total 

number of deep dives differing substantially among turtles (Table 1). Depths during 

type 1a dives were generally quite shallow, with only one turtle exceeding a depth of 

11 m (Fig. 3C, Table 1, see supplementary information (SI) for approximate 

bathymetry estimates around the nesting site). The duration of this dive type varied 

considerably for each turtle (Table 1).  

I noted large variations in the mean VeDBA estimates (mean value per type 1a dive 

pooled into one grand mean value for each turtle) between turtles, ranging from 
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0.037 to 0.096 g, with a coefficient of variation (CV) of 36.95 %. Equivalent AAV 

offsets appeared much lower, ranging from 2.851 to 3.902 °/s, with a CV of 13.05 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In terms of angular velocity, higher rates of activity were indicated by higher 

estimates of AVeR, AVeP and AVeY and typically included appreciable components 

from all three rotation axes (Fig. 4). However, the rate change along the yaw axis was 

substantially greater than the other two, approximately 2.5 times higher than the 

equivalent in pitch and roll (Fig. 4). I also noted, in a tri-axial plot of the extent of the 

three rotation metrics, how different individual turtles tended to occupy different 

sections of the envelope (Fig. 4). 

 

Figure 3. (A) Time-budget of depth use by five female loggerhead turtles while out at sea [blue: deep dive, green: 

shallow dive, cyan: sub-surface swimming, yellow: surface]. (B) Percentage of deep dives defined as type 1a [blue:  

type 1a, green: other]. (C) Relative density of depths obtained during type 1a dive bottom phase, coloured 

according to turtle ID. 

Table 1. Number of type 1a dives (vs. total number of deep dives in parentheses) and mean (± SD) number 

per day, maximum depth and duration of this dive type for each tracked turtle.  

 

(PDF) Activity of loggerhead turtles during the U-shaped dive: new insights using angular velocity metrics. 

Available from: 

https://www.researchgate.net/publication/350129406_Activity_of_loggerhead_turtles_during_the_U-

shaped_dive_new_insights_using_angular_velocity_metrics [accessed Jun 16 2021]. 
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The majority of time spent at the bottom was associated with resting, with individual 

values ranging from 62 to 84 % (Fig. 5A). However, resting behaviour was rarely 

continuous over the duration of a single dive, with the bulk of dives incorporating 

intermittent bouts of rest and activity (Fig. 5C). Subclassification of dives into 

predominantly resting, active or episodic demonstrated this, with a high proportion 

of the dives (mean (± SD) 50 ± 22.5 %) showing patterns of activity lasting over 20 % 

of the dive duration (Fig. 5B). There were also notable inter-individual differences in 

the proportion of time allocated to each dive status (Fig. 5B). The relative distribution 

of raw pitch, roll and yaw values differed between aggregated periods of rest and 

activity, with the latter generally showing greater variability (SI: Fig. S2). There were, 

however, considerable offset differences between turtles in the unimodal peaks of 

density estimates for roll and pitch values (SI: Fig. S2). 

 

Figure 4. Relationship between the absolute values of angular velocity on all three axes (see Eq. 

1). Each data point represents the mean value per dive. 3-D colour map surface (coloured by 

AVeY) using a thin plated spline (smoothing of 1), constructed from a 3-D gridding matrix. 

Projection of data points coloured according to turtle ID.  
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There was a significant negative relationship between (log-transformed) AAV and 

bottom phase dive duration (LMM: 
2

(1) = 1147, p < 0.01) (Fig. 6): for every 1 % 

increase in AAV, dive duration decreased by 0.25 minutes (estimate (± SE) = −24.86 ± 

0.58, t = −43.20, p < 0.001), suggesting that rotational activity resulted in shorter 

dives. Similarly, there was a significant negative relationship between (log-

transformed) AVeY and bottom phase dive duration (LMM: 
2

(1) = 1102, p < 0.01; 

estimate (± SE) = −17.49 ± 0.42, t = −42.01, p < 0.001) although the strength of the 

relationship was lower: AIC values were higher, and coefficient of determination (R2 

values) were lower than for AAV (AIC = 9576 and 9530 respectively; R2 = 0.63 and 

0.66, respectively).  

Figure 5. Breakdown of 
individual activity-budgets 
for each turtle. (A) Total 
bottom phase duration 
depicted as resting (black) 
and active (red). (B) 
Proportion of dives sub-
classified as predominately: 
rest (black), episodic-rest 
(blue) and active(red). (C) 
Illustration of how absolute 
angular velocity (AAV) 
differed both within and 
between type 1a dives, 
showing mean AAV per 0.1 
increment of bottom phase 
(0 to 1), for 25 randomly 
selected dives per turtle. 
Lines coloured according to 
turtle ID.  
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The significance of the AAV model was echoed by data fitted with a GAM model. 

Predicted multiples of RMR appeared to increase in a linear fashion relative to AAV (Fig. 

7). Depth was not correlated with dive duration (estimate [± SE] = 1.28 ± 1.43, t = 0.90, 

p = 0.37) and the interactive effect between depth and dive duration was also non-

significant (estimate [± SE] = −2.24 ± 2.30, t = −0.97, p = 0.33). See SI: Table S1 for all 

model parameters. 

Figure 7. Estimated metabolic costs (expressed as a multiple of resting 
metabolic rate [RMR]) associated with variation in absolute angular 
velocity (AAV). Estimated dive duration derived from GAM model (cf. 
Fig. 6A), divided by 40 min per 2-step increase in AAV (o/s).  

 

Figure 6. (A) Relationship between absolute angular velocity (AAV) and dive duration; each data point represents 
the mean AAV value per dive. Contour plot showing the kernel density level of aggreged points and fitted with a 
line of best fit obtained from GAM smoothing (grey shading around line represents 95 % confidence level interval). 
(B) Clustered polygon plot; points coloured according to the activity level of the dive (rest: red, episodic-rest: green 
and active: blue) and fitted with two 1-dimensional marginal rugs displaying individual case distributions. 
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Discussion 

 

AAV and its ability to infer activity in turtles 

 

Comparison between acceleration- and angular velocity-derived metrics 

 

Measures of acceleration are useful for quantifying animal activity (Brown et al. 2013; 

Wilmers et al. 2015). Indeed, dynamic body acceleration seems a reliable proxy for 

movement costs (Wilson et al. 2006; Qasem et al. 2012; Wilson et al. 2020a). 

However, for slow-moving animals, acceleration can be negligible for extended 

periods (cf. Williams et al. 2017; Chapter 2), making dynamic acceleration a poor 

metric for activity (Wilson et al. 2020a). Despite this, and the extremely low VeDBA 

estimates in these turtles generally, mean values of VeDBA did increase over the 

three categories of resting, episodic-resting and active dives for each turtle (SI: Fig. 

S3). However, the large offsets in VeDBA estimates between turtles, presumed to be 

due to differing tag placements on the animals (Wilson et al. 2020a), makes inter-

individual comparisons problematic. In contrast, and critically, angular rotation across 

all three axes is not affected by site of placement of the tag on the carapace (within 

limits; see SI: Text S1), so that angular velocity is a more standardised metric than 

dynamic body acceleration for inter-individual comparisons (Wilson et al. 2020a). A 

further advantage of AAV as a general activity metric is that it considers all three 

rotation axes equally, providing a relative magnitude of rotation per s that offers 

information about any sort of rotation. 

AAV values are, however, not always due to rotations instigated by the animal (cf. 

Halsey et al. 2011). In the marine environment, for example, waves at the sea surface, 

as well as variations in underwater current vectors, probably apply rotational forces 

to animals. Similarly, passive descents of the water column, such as ‘drift dives’ by 

northern elephant seals Mirounga angustirostris, can result in body rotations (Mitani 

et al. 2010) and a similar process may operate in species that have passive ascents. 

However, although such things need to be borne in mind when considering AAV 

metrics, the effects are likely to be small compared to animal-instigated body 

rotations. 
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Potential for AAV metrics to elucidate turtle behaviour 

 

Overall, the AAV metric resulting from combining the angular rotation about all three 

axes seems to be a sensitive proxy for depicting changes between active and inactive 

states in species that have low dynamism in their movement. Beyond this, I expect 

the contribution of the angular velocity from each rotational axis to vary (Fig. 4) 

according to behaviour-specific movements. For example, axis-linked angular velocity 

should vary between turtles changing heading while travelling (or not) along the 

seabed vs. animals travelling up and down the water column and this may have 

accounted, in part, for the variation in the position of individual turtles in the AVeY/ 

AVeP/AVeR envelope (Fig. 4). In future work, detailed studies of behaviour using 

video systems (e.g., Seminoff, Jones & Marshall 2006; Jeantet et al. 2018; Jeantet et 

al. 2020) combined with DD-type tags, could code observed behaviours in terms of 

axis-specific angular rotations. The findings could then be used to differentiate 

behaviours for individuals not equipped with video systems over much longer periods 

and at night. 

However, even using AAV as a summary metric for general turtle activity seems to 

have appreciable value, not least due to the fine temporal scales over which angular 

rotation can be calculated. In this study, increased rotational activity is probably 

related, to some degree, to foraging. However, based on my findings, I suggest that 

the utility of AAV could be expanded to investigate turtle activity levels across 

different dive types (see, for example, those detailed by Hochscheid (2014)). This 

metric may prove particularly useful for slow-moving animals in general because 

small variations in AAV can provide the resolution required to distinguish activity 

from inactivity, itself an important biomarker for understanding energy expenditure 

and even health (cf. Arkwright et al. 2020).  
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Behaviour during dives 

 

Depth use 

 

Sea turtles show complex diving patterns, each characteristic dive pattern associated 

with specific behaviours. Type 1a dives are generally considered important for 

facilitating bouts of benthic rest, most particularly in nesting females that have to 

manage energy reserves in order to maximise egg development (e.g., Wallace et al. 

2005; Walcott, Eckert & Horrocks 2012). 

Bathymetry estimates at Boa Vista beach showed that bottom depth can be < 8 m at 

distances greater than 3 km from the nesting beach (SI: Fig. S1). Given the relatively 

low percentage of time that turtles dived deeper than 3 m, the shallow depths 

obtained during type 1a dives and the relatively high occurrence of this dive type 

throughout the inter-nesting interval (Fig. 3B, Table 1), it is highly probable that the 

turtles spent the bulk of their time close to the coast, or at least within shallow areas 

out at sea. This is similar to the results of previous studies, which have documented 

turtles often preferring to be near topographic features in shallow water. These 

features provide important microsites for cover, reducing susceptibility to predation 

(Heithaus, Frid & Dill 2002) and decreasing energetic costs by minimising current 

vectors which could otherwise disrupt motionless rest (Seminoff, Jones & Marshall 

2006). My results also seem to mirror those found for loggerhead turtles in Greece, 

where nesting females spend the most time in shallow waters that are likely to be 

warmer, to enhance incubation (Schofield et al. 2009).  

Activity extent of type 1a dives 

 

Given the focus on shallow depths in this study (Table 1) (and only one dive type 

assessed), it is not surprising that I did not find a relationship between dive duration 

and depth, which has been repeatedly confirmed by multiple authors (e.g., 

Minamikawa, Naito & Uchida 1997; Hochscheid et al. 1999; Hays et al. 2000; 

Minamikawa et al. 2000; Hays, Metcalfe & Walne 2004). However, the consistency of 

dive depth shown by the turtles does make a case for them loading similar amounts 
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of oxygen for their type 1a dives (Minamikawa et al. 2000). This helps minimise depth 

as a confounding effect in the data set. Specifically, assuming that turtles diving to a 

set depth do indeed submerge with comparable amounts of oxygen, when they are 

more active underwater, it should deplete oxygen stores faster, resulting in shorter 

dives. Indeed, this reasoning is why it has been suggested that dive duration can 

sometimes be used to infer metabolic rate (Hays et al. 2000; Enstipp et al. 2011). In 

the current study I found that dive duration decreased with increasing rotational 

movement (mean AAV) over the bottom phase of type 1a dives (Fig. 6A). This agrees 

with past studies showing that energetic cost is related to activity and indicates that 

greater amounts of movement are indeed associated with higher power use (Enstipp 

et al. 2011; Halsey et al. 2011; Fahlman et al. 2013; Wilson et al. 2013b; Zamparo et 

al. 2019). What my study adds that is new to this framework is the idea that rotational 

movement, rather than just linear acceleration as exemplified by DBA metrics 

(Enstipp et al. 2011; Halsey et al. 2011), appears to be a major modulator of oxygen 

consumption. As projected, it seems higher power use associated with rotation 

depletes oxygen stores at a faster rate, causing dives to be correspondingly curtailed. 

I estimated that turtles could increase their metabolic rate by up to eight times RMR 

during the bottom phase of type 1a dives in times of their most extreme AAV activity 

(Fig. 7). 

This predicted increase in RMR presumably has general energetic consequences at a 

time when females are considered to be under strong selection pressure to be 

judicious with their reserves during initial egg gestation. Displaying appreciable 

activity would seem to conflict with the argument that energy conservation should 

be a prime modulator of fitness for female sea turtles (Hays et al. 2002a; Hopkins-

Murphy, Owens & Murphy 2003; Schofield et al. 2006). Such an increase in energy 

expenditure could be justified, however, if it were to result in a net gain of energy via 

local feeding around the nesting sites. Based on this, I suggest that, although turtles 

may rotate for a number of reasons, such as to react to predators (Heithaus, Frid & 

Dill 2002) or conspecifics (Schofield et al. 2007), the AAV metrics from this study 

predominantly indicate local supplementary foraging of those nesting turtles. This 
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inference is supported to some extent (1) by results obtained via animal-borne video 

cameras and movement-based sensors deployed elsewhere (e.g., Hochscheid & 

Wilson 1999; Schofield et al. 2006; Seminoff, Jones & Marshall 2006; Houghton et al. 

2008; Fossette et al. 2010), and (2) indirectly by known change in stable isotope 

values over the nesting season in this population (Cameron et al. 2019). Certainly, 

captive Loggerheads rotate their bodies appreciably during feeding (Wilson et al. 

2020c) as they deal with their prey which for wild animals consists primarily of 

crustaceans, gastropods and echinoids (Bjorndal 2003), and the peaks I observed in 

AAV (Fig. 5C) may be due to this. These predominantly benthic food items would 

require turtles to maintain a constant depth, a critical criterion for type 1a dives. All 

this ties in with Hochscheid et al.’s (1999) study, where they noted appreciable 

angular body movement in two inter-nesting green turtles off Cyprus, from which 

they deduced that 34 % of the time budget of these animals was spent foraging. A 

notable point made in the Hochscheid et al. (1999) study was that the inter-nesting 

area frequented by their animals was extensively covered by sea grass, the primary 

food of green turtles (Hays et al. 2002b; Lemons et al. 2011; Heithaus et al. 2014), so 

there was ample opportunity to feed.  

Although, my results coupled with those of Hochscheid et al. (1999) only amount to 

data from 7 animals (of two different species), they do suggest that female turtles 

may forage between nesting events. If true, this has implications for area 

management. For example, it may indicate that protection of resources, e.g., by 

minimizing exploitation around the nesting site, is important to allow females to 

maintain body condition at this critical time. 
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Conclusion 

 

Here, I show that a metric resulting from combining the angular rotation about all 

three axes (AAV) seems to be a sensitive proxy for depicting changes between active 

and inactive states. I also note the benefit of using derivatives of rotation (rate of 

change) to overcome the limitations associated with discrepancies of tag placement 

between individuals. I show that, although resting behaviour contributed a significant 

portion of the loggerhead turtle behaviour-time budget, supporting the notion that 

energy saving is a major driver during the inter-nesting period, these five tagged 

animals showed appreciable activity which, after consideration of other studies, I 

suggest is due largely to foraging. Given that all seven species of turtle are considered 

to be capital breeders, this requires urgent examination in order to understand the 

energetic constraints on these animals that are renowned for their long migrations 

between feeding and breeding sites. 
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Abstract 

 

The combined use of Global Positioning System (GPS) technology and motion sensors 

within the discipline of movement ecology has increased over recent years. This is 

particularly the case for instrumented wildlife, with many studies now opting to 

record parameters at high (infra-second) sampling frequency. However, the detail 

with which GPS loggers can elucidate fine-scale movement depends on the precision 

and accuracy of fixes, with accuracy (specifically, location error and fix success rate) 

being affected by signal reception. I hypothesised that animal behaviour was the 

main factor affecting fix inaccuracy (particularly for collar-mounted tags sampling at 

high frequency). In conjunction to this, inherent GPS positional noise (‘jitter’), would 

be most apparent during GPS fixes for non-moving locations, thereby producing 

disproportionate error during rest periods. A Movement Verified Filtering (MVF) 

protocol was constructed to compare GPS-derived speed data to dynamic body 

acceleration (DBA). This was collected by a simultaneously deployed tri-axial 

accelerometer, to provide a computationally quick method for identifying genuine 

travelling movement. This method was tested on 11 free-ranging lions (Panthera leo) 

within the Kgalagadi Transfrontier park in the Kalahari Desert, fitted with collar-

mounted GPS units and tri-axial motion sensors (Daily Diary; DD) recording at 1 and 

40 Hz, respectively. The findings support the hypothesis and show that distance 

moved estimates were, on average, overestimated by > 80 % prior to GPS screening. 

I present the conceptual and mathematical protocols for screening fix inaccuracy 

within high resolution GPS datasets. I demonstrate the importance that MVF has for 

avoiding inaccurate and biased estimates of movement and caution the accuracy of 

findings from previous studies that employed minimal GPS pre-processing. 

Throughout, I address the applicability of comparing fine-scale indices of GPS- and 

motion sensor-borne data in tandem to qualify animal behaviour. 
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Background 

 

A popular method to determine terrestrial animal movement uses Global Positioning 

Systems (GPS), which enables long-term continuous spatial monitoring of wild 

animals without disturbing them (for reviews see: Nathan et al. 2008; Cagnacci et al. 

2010; Latham et al. 2015; Hofman et al. 2019; Dore et al. 2020). This approach has 

led to broad applications, including examination of home ranges (Pfeiffer & Meyburg 

2015; Christiansen et al. 2016), migratory routes (Galanti et al. 2000; García‐Ripollés, 

López‐López & Urios 2010; Yamaç & Bilgin 2012), habitat use (Skarin et al. 2008; 

Nielson et al. 2009), resource allocation (Rumble et al. 2001; McDuie et al. 2019), 

activity budgets (Ungar et al. 2005; Owen‐Smith & Goodall 2014; Cristescu, 

Stenhouse & Boyce 2015) as well as social interactions (Hacker, Horback & Miller 

2015). Since their inception, animal-borne GPS’s have reduced considerably in mass 

and size, whilst data storage capacity, battery longevity and affordability have 

improved (Recio et al. 2013; Liu et al. 2017; Dore et al. 2020). Consequently, scientists 

can now track animals as small as ca. 20 g songbirds (Seiurus aurocapilla) (Hallworth 

& Marra 2015) at frequencies as high as 10 Hz (e.g., Gibb et al. 2017), providing so 

much detail of animal movement that even animal behaviour can often be inferred 

(Blecha & Alldredge 2015; de Weerd et al. 2015; Wang et al. 2015). Such inference is, 

however, limited by fix precision, regardless of fix accuracy, which can be particularly 

ambiguous when the distance travelled of the focal species is less than the spatial 

resolution of the GPS fixes (Ryan et al. 2004). Species-specific resampling strategies 

and correction factors can go some way to redressing this (cf. Ryan et al. 2004; 

Humphries, Weimerskirch & Sims 2013; Edelhoff, Signer & Balkenhol 2016). 

Many factors affect GPS performance including habitat type and heterogeneity 

(Janeau et al. 2004; Swanepoel, Dalerum & Van Hoven 2010; Smith et al. 2018; 

Cochrane, Brown & Moen 2019), topography of the terrain (Cain et al. 2005; Ironside 

et al. 2017), view of the sky availability (Adams et al. 2013), weather conditions 

(Swanepoel, Dalerum & Van Hoven 2010), submersion in water (Quaglietta et al. 

2012; Justicia, Rosell & Mayer 2018), time of day (Heard, Ciarniello & Seip 2008), 

vegetation cover/type (Cain et al. 2005; Hansen & Riggs 2008), GPS orientation 
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(D'eon & Delparte 2005), fix acquisition rate (Forin-Wiart et al. 2015; McGavin et al. 

2018), in addition to the number of available satellites and their orbiting geometry 

with respect to one another (Lewis et al. 2007; Vance et al. 2017). All these elements 

affect the propagation of signal quality and/or receiver reception capability and thus 

increase triangulation error (see Hofman et al. (2019) for review), with the latter two 

factors often assessed via the dilution of precision (DOP) values (Dussault et al. 2001; 

Vance et al. 2017).  

Species-specific movements can be misinterpreted because GPS error often 

exaggerates the extent of movement, with error associated with distance measures 

being additive over time, and particularly germane at higher sampling frequencies 

(given that higher rates of error are incorporated per unit time, Ganskopp & Johnson 

2007; McGavin et al. 2018). Indeed, although a number of authors have attempted 

to resolve the accuracy of GPS performance by quantifying the fix success rate and 

location error over various scenarios (cf. Bjørneraas et al. 2010; Frair et al. 2010), the 

critical modulator of GPS performance is animal behaviour (cf. D'eon & Delparte 

2005; Jiang et al. 2008; Mattisson et al. 2010; Brown et al. 2012; Jung & Kuba 2015). 

For example, Heard, Ciarniello and Seip (2008) demonstrated that fix success rate for 

GPSs on grizzly bears (Ursus arctos) followed a bimodal circadian pattern, which was 

paralleled to the activity time-budgets of the bear, with higher forest density cover 

and variability in collar orientation being attributed to declines in fix rate. Similarly, 

after collaring both Eurasian lynx (Lynx lynx) and wolverine (Gulo gulo) in similar 

habitat, Mattisson et al. (2010) suggested that high discrepancy in fix rate between 

the two species could be explained by differences in their behavioural repertoire. In 

essence, the specifics of animal movement, the ‘what’, ‘where’, ‘why’, ‘when’ and 

‘how’ (cf. Nathan et al. 2008), underpins the species interaction with its environment 

and consequently the dual proficiency of signal propagation and reception between 

satellites and receiver. Resting is the most common behaviour for most terrestrial 

animals (particularly carnivores) and critically affects fix accuracy, because resting is 

typically associated with a change of body position (e.g., resting on the collar) and/or 

coverage within/near ‘signal obstructing’ environmental features (e.g., sleeping 
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under trees or in caves/ burrows), thus decreasing the available sky for the GPS 

receiver (Cain et al. 2005; Vance et al. 2017; Smith et al. 2018; Cochrane, Brown & 

Moen 2019). This issue is compounded for collar-mounted GPS devices, because 

behaviours variously affect the position of the GPS antenna even though many collars 

are designed to be bottom-weighted to minimise this problem (Cain et al. 2005; Jiang 

et al. 2008; Belant 2009). 

Despite the well-documented issues of locational error and numerous mitigation 

strategies being proposed (Frair et al. 2004; Visscher 2006; Patel et al. 2017; Joo et 

al. 2020), there has been no ‘gold standard’ solution to identify inaccurate fixes. For 

example, Lewis et al. (2007) emphasised using DOP values, removing fixes with values 

> 5 and only keeping positions where ≥ 3 satellites were registered to eliminate 

potentially large location errors. This recommendation was based on the premise 

that a wider geometry of satellite spacing, results in lower recorded DOP values and 

this along with a higher number of registered satellites, is associated with minimising 

triangulation error. The relationship between spatial precision and increasing DOP 

values, whilst generally accepted, is noisy however, and this approach can reduce 

datasets considerably, whilst still leaving notably anomalous fixes intact (Buerkert & 

Schlecht 2009; Ironside et al. 2017). Juxtaposed to this, Bjørneraas et al. (2010) 

developed a method that focused on the movement characteristics of the focal 

species to identify large locational errors with minimal data reduction. This included 

screening for unrealistic distances travelled, speeds and turn angles between 

successive locations. However, this can become complicated and arbitrary at high 

sampling frequencies and is computationally intensive for large data sets.  

To my knowledge, a specific solution for screening inaccurate locations from high 

resolution GPS data (e.g., ≥ 1 Hz) has not yet been proposed. The difficulty is that, 

whilst shorter fix intervals are typically associated with higher fix accuracy (Jiang et 

al. 2008; Forin-Wiart et al. 2015; McGregor et al. 2016), locational error is, within the 

wider context of daily movement, relatively small and so harder to identify 

accurately. Disentangling this error is particularly relevant because GPS units with 
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high fix rates used on animals are deployed with fine-scale analysis of movement 

trends in mind (cf. Ryan et al. 2004).  

I note that since GPS ‘jitter’ (a term I use to define fixes inaccurately fluctuating 

around a central location) is disproportionately high during stationary periods when 

GPS signal is most compromised (Ganskopp & Johnson 2007; Forin-Wiart et al. 2015; 

Justicia, Rosell & Mayer 2018), the viability of deriving accurate movement from high 

resolution GPS trajectories depends on the ability to determine when an animal is 

moving or not in a manner that is independent of the GPS-derived movement. Studies 

have already used acceleration to activate GPS units only during movement, both as 

a means to increase battery longevity and avoid the fix inaccuracy prevalent during 

periods of inactivity (Brown et al. 2012; Wilson et al. 2013). Properly coupled GPS-

acceleration systems are uncommon however, whilst a moving animal (as discerned 

from the accelerometer), does not necessarily correspond with a working GPS (e.g., 

due to signal obstruction, and because cold start ‘blind’ satellite searches are 

associated with lower fix success rates (Forin-Wiart et al. 2015)). For highly resolved 

animal tracks, I advocate the importance of recording fixes continuously, in part to 

mitigate performance issues associated with cold starts between fix interval (Ryan et 

al. 2004; Forin-Wiart et al. 2015; Moriarty & Epps 2015) and also because fine-scale 

GPS estimates can be compared alongside acceleration data to aid in differentiating 

between non-travelling movements from travelling movements (cf. Watanabe et al. 

2005). Beyond this, identifying ‘hotspots’ of GPS jitter may be useful for discerning 

GPS performance (cf. Fig. 6) according to habitat type and/or behaviour. As part of 

this, I propose a new method for screening raw, high-resolution GPS data by 

accounting for the amount of activity using accelerometers and equating their 

outputs with an estimate of speed to evaluate the likelihood of movement per unit 

time. This is based on the observation that dynamic body acceleration (DBA - for 

definition see Wilson et al. (2020)) increases approximately linearly with speed in 

terrestrial animals (Bidder et al. 2012; Bidder et al. 2015; Dewhirst et al. 2016). Thus, 

any GPS-derived speed should co-vary with DBA.  
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Here, I propose a decision tree-based framework in which user-defined thresholds of 

i) GPS speed, ii) DBA and iii) time, are implemented to screen GPS fixes and remove 

those that do not equate to genuine travelling movement. I also suggest an initial 

method for screening extreme anomalous fixes using distance estimates between the 

raw GPS track and the median filtered equivalent. I illustrate this using data from 

collar-fitted free-ranging lions (Panthera leo) within the Kgalagadi Transfrontier Park 

in the Kalahari Desert. The aims of this study are to provide both the conceptual and 

methodological protocol for screening high resolution GPS data using a Movement 

Verified Filtering (MVF) protocol and to discuss the broader applicability this method 

has for discerning animal movement. I provide a step-by step R script for 

implementing this MVF method and an example lion dataset (containing DD and GPS 

data files) on GitHub [available at, https://github.com/Richard6195/Dead-reckoning-

animal-movements-in-R] to allow others to trial the MVF method. 

 

Materials and methods 

 

The procedure relates to 14 days of data derived from 11 wild lions (5 males and 6 

females) in the Kgalagadi Transfrontier Park, South Africa, during February-March 

2019. Lions were equipped with a LiteTrack GPS collar (Lotek Wireless Inc. 

https://www.lotek.com), to which a Gypsy_5 Techno-smart GPS unit (Technosmart 

s.r.l. https://www.technosmart.eu) set to record at 1 Hz and a ‘Daily Diary’ (DD) 

[containing inter alia tri-axial accelerometers and tri-axial magnetometers] (cf. 

Wilson, Shepard & Liebsch 2008) recording at 40 Hz, were attached. The GPS units 

were encased in a thick 3-D printed Acrylonitrile butadiene styrene (ABS) plastic oval 

housing and DDs were enclosed in a water-tight aluminium housing (cf. 

supplementary information (SI): Text S1. Fig. S1). 

There were two collar sizes; small collars weighed 1.24 kg and large collars weighed 

1.33 kg (attached with all devices), which constituted < 2 % and < 1 % of the body 

mass of the lightest equipped female and male animals, respectively. Data were 

retrieved from the collars approximately two weeks after the tag deployment. 

https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R
https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R


 Filtering high-resolution GPS tracks 

106 

 

Intermittent behavioural observations of each pride took place at dawn and dusk, 

and occasionally during the day and night, for approximately 2-3 hours. During these 

periods, ethograms of the collared individual’s various activities were recorded to 

document movement for comparison with the acceleration and GPS speed estimates 

to verify the accuracy of the MVF thresholds (Table 1). These observations were also 

performed to check for any potential negative side effects of the collars - none were 

apparent. See SI: Text S1 for more information on the study site, capture protocol 

and devices used. All analyses were performed in Daily Diary Multi Trace (DDMT, 

http://www.wildbytetechnologies.com), R (version 3.51, http://www.R-project.org) 

and OriginPro 2019 (http://www.originlab.com). 

The Movement Verified Filtering (MVF) method 

 

The MVF protocol (illustrated in Fig. 1) primarily involves deriving DBA from tri-axial 

accelerometery data, computing speed from GPS data, and evaluating how both scale 

with each other during traveling movement. Specifically, the step-by-step method 

(used for lions) involves: 

1) Derivation of DBA  

Vectorial dynamic body acceleration (VeDBA, Qasem et al. 2012) was the DBA metric 

used for activity (Wilson et al. 2020) and as a proxy for speed (Bidder et al. 2012). 

VeDBA is the vectorial sum of the dynamic body acceleration in a tri-axial acceleration 

signal (cf. SI: Text S2). A rolling mean was applied to raw VeDBA values (a 2 s centre-

aligned window was used for lions) to ensure that both acceleration and deceleration 

components of an animal’s stride cycle were incorporated together within any 

particular time period (Wilson et al. 2020). 

2) Derivation of GPS speed  

The trigonometric Haversine formula (Chopde & Nichat 2013; Harja & Sarno 2018) 

was used to calculate the shortest distance between fixes of an appropriate stepping 

range (cf. SI: Text S2). I define a stepping range as the interval between each retained 

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.originlab.com/
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fix - a 5-fix stepping range was used for lions (distance computed between every 5th 

fix). Each successive distance estimate was divided by its time period (between 

retained fixes) to convert to GPS speed (m/s). A rolling mean was applied to GPS 

speed, (5 s centre-aligned rolling mean used for lions) for greater interpolation 

purposes with respect to acceleration estimates (cf. discussion and SI: Text S2, 

detailing the importance of a suitable stepping/post-smoothing range). Missing fixes 

were not included in the computation of GPS speed.  

3) Time synchronising GPS speed and DBA data 

Both VeDBA and GPS speed data were time-synchronised and sub-sampled to 1 Hz to 

make the data more manageable for analysis and because differentiating between 

fine-scale behaviours was not a prime objective of this study. Missing locational data 

were expressed as ‘NA’. 

4) Using GPS-derived distance to identify extreme outliers – Distance threshold (Z)  

 

Missing locational data were replaced by linearly interpolating between fixes (RF). To 

identify extreme outliers, a median rolling filter was applied to both the longitude 

and latitude coordinates of the RF (MeFF). The Haversine method was then used to 

calculate the distance (units in metres) between the two sets of coordinates (RF vs 

MeFF) per unit time. Locational data (RF) above the Z threshold were deemed outliers 

(and thus failed the first step of the MVF protocol). By applying a rolling median using 

a suitable window length, large distance estimates reflecting either a single or 

multiple ‘batched’ outlier(s) could be distinguished from fixes deemed ‘accurate’ but 

highly separated in space due to large gaps in locational data. The window length size 

and Z threshold should be chosen according to the animal in question due to the 

scales of movement undertaken by different species (median filter window length of 

60 s and a lenient threshold of 100 m used for lions). The window length should be 

large enough so that the calculated median is not affected by a potential batch of 

consecutive anomalies at any one time. When plotted against time, the distance 

between RF vs MeFF shows relatively consistent variation about a given range 
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(dependent on the window size set), though large obvious spikes indicate outliers, 

and the extent of this disparity can give an indication of the Z threshold to set.  

5) Movement thresholds (X & Y) 

The second stage for screening the GPS data were the thresholds of VeDBA (XVeDBA) 

and GPS speed (YGPS) that infer moving behaviour. I set the protocol for fixes to fail 

the MVF protocol when;  

(i) VeDBA < X & GPS speed > Y (likely resultant from locational error) 

(ii) VeDBA > X & GPS speed < Y (likely resultant from a stationary behaviour) 

where X and Y were given defined thresholds.  

For the lions, after initial inspection of data with respect to ground-truthed 

behavioural observations, the threshold X was determined as 0.11 g and the 

threshold Y was determined as 0.35 m/s (see below). These thresholds were lenient, 

incorporating even slow movement and accounting for discrepancies of the relative 

magnitude of acceleration estimates between individuals (cf. Williams et al. 2017; 

Wilson et al. 2020).  

 

6) Time threshold (T) 

 

The final stage of validating movement was to implement a minimum time threshold 

(T), over which uninterrupted movement had to occur before it was classified as such. 

This was implemented to discern travelling movement (where the animal location 

changed) from non-travelling movement (e.g., when the animal rolled over) for 

periods when both XVeDBA and YGPS thresholds were met. MVF values were assigned a 

value of one, for every GPS fix that was time-matched to periods where the above 

thresholds (XVeDBA and YGPS) were met for a minimum duration of T (5 s was used for 

lions in the current study). MVF periods encoded as 1, occurring ≤ 2 s from one 

another were merged. A MVF value of zero represented either missing locational 
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data, extreme outliers (identified by Z threshold) or periods when the data indicated 

the animal was non-moving.  

 

Data analyses 

 

Various movement-derived metrics were compared between periods when animals 

were deemed to be moving (‘travelling’ movement) (MVF = 1) and periods when they 

were deemed to be non-moving ('non-travelling’/stationary movement; MVF = 0). 

Such metrics include estimates of pitch, roll, heading, distance travelled, speed and 

tortuosity estimates (see SI: Text S4 for procedures and references therein). Here, 

unless otherwise stated, data ascribed as non-moving do not include data when GPS 

positions were missing or were extreme outliers (the latter, determined by the Z 

threshold as described above). Results presented as percentages are given as ‘x’ with 

variance as one standard deviation (SD) and range in the format; [�̅� ± 1 SD (rangemin 

- rangemax)]. 

Figure 1. Schematic diagram of the movement verified filtering (MVF) procedure. GPS fixes with 

a MVF value of 1 are considered to be more accurate given the data indicates travelling. Note 

values used at each stage (including the stepping range and post-smoothing windows in the prior 

derivations of GPS speed and VeDBA) are user-defined and must be adapted for the study species. 
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Results 

 

Across 25 hours of behavioural observations, the MVF method using the thresholds 

outlined above registered an average accuracy of 97 % (Table. 1; data correctly 

assigned as moving). This protocol was determined to have a high true negative rate 

(> 99 %) and low false positive rate (< 1 %), indicating that data that surpassed the 

MVF protocol indeed showed that the animal was moving with a high degree of 

certainty. True positive rate was slightly lower (c. 95 %) and was perceived to have 

been primarily modulated according to the variability in fix latency, which 

(irrespective of stepping/post-smoothing range) can result in a time delay, 

uncoupling estimates of GPS speed from the instantaneous and definitive expression 

of DBA estimates. It thus occasionally results in the beginning or end of periods that 

animals were moving being misclassified as ‘non-moving’ (MVF = 0).  

Table 1. Contingency table documenting the mean accuracy and misclassification rate of the MVF method from 

~ 25 hours of behavioural observations (ethograms) between eight individuals. 
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Fix success rate for the GPS varied between 89 % and 97 % across different animals. 

There was no indication of systematic drop-out (variability of fix success rate) being 

modulated according to time over the 14-day monitoring periods (SI: Text S3: Table 

S1 & Fig. S1). Generally, GPS-derived speed correlated well with VeDBA (�̅� r2 = 0.74 ± 

0.04 (0.67 – 0.81), SI: Text S2: Fig. S4), especially during periods that were defined by 

the MVF protocol as ‘movement’ (Fig. 3A & C, SI: Text S2: Fig. S1:3). Discrepancies 

between GPS-speed and VeDBA were associated with location error (Fig. 2, SI: Text 

S2: Fig. S3), with the MVF approach highlighting that the position of the collar 

depended on the animal’s behaviour (Fig. 4, SI: Text S3: Table S2) and that this was a 

prime modulator of GPS performance (cf. Fig. 2, Fig. 3B, SI: Text S2: Fig. S3).  

Figure 2. DD- and GPS-derived data showing intermittent periods of moving (MVF = 1: red) and stationary 

behaviours (MVF = 0: blue) [lower panel]. Note how many of the periods determined as non-moving high 

estimates of GPS speed (green = unsmoothed) due to large locational errors and this was often followed by 

sharp peaks in VeDBA, coinciding with a postural change (non-travelling behaviour). Note also how closely GPS 

speed estimates follow the VeDBA trace during periods of predominantly moving and the consistency of pitch 

and roll values (with intermittent bouts of stationary behaviour associated with a change in collar angle. The 

GPS fixes (upper panel) are coloured according to MVF values and exemplify high vertical straight-line distance 

between track coordinates due to GPS jitter.  
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On average, 13.3 % ± 3.3 (8.3 - 19.5) of data acquisition passed the MVF protocol (SI: 

Text S3: Table S2). The majority of data deemed to be non-moving, was due to both 

XVeDBA and YGPS thresholds not being met; 70.4 % ± 3.6 (65 – 77). However, an 

appreciable proportion of non-moving data was due to the YGPS threshold being met, 

but not the XVeDBA being met; 12.4 % ± 3.0 (9 – 18) or both YGPS and XVeDBA thresholds 

being met, but not for the duration of Ttime; 12.5 % ± 2.9 (8 – 18). Data where XVeDBA 

was met, but not YGPS, comprised 4.85 % ± 1.3 (3 - 7) (SI: 3: Fig. S2). The additive 

nature of errors associated with GPS jitter was significant and exemplified within 

cumulative distances moved (between fixes) (Fig. 5, SI: Text S3: Table S2) and 

apparent even at the broadest scales of movement (SI: Text S2: Fig. S5). It was clear 

that GPS jitter was much more prominent when lions were resting and unless these 

data were filtered, use of these raw unfiltered GPS data resulted in biased and 

erroneous speed, distance and tortuosity of movement estimates (SI: Text S3: Table 

S2). Following the MVF method, there appeared to be a greater correlation between 

DD- and GPS-derived heading estimates (SI: Text S4: Fig. S1). 

Figure 3. Example of the movement-based thresholds. (A) A period of predominately continuous movement 

(coloured rug at the top of plot denotes MVF values (1 = moving: red, 0 =non-moving: blue). The peaks of both 

VeDBA and GPS velocity are due to bouts of running, interspaced by either non-moving or walking bouts. (B) 

Relationship between VeDBA and GPS speed during a rest period, whereby the individual carried out a 

transitionary roll while lying prone (at approx. the 2-minute mark, as discerned by the pitch and roll angles), 

after which, GPS jitter became more apparent (as demonstrated by the higher variance in GPS speed 

estimates). (C) GPS speed ~ VeDBA relationship for a given lion with linear regression (y= a + bx and zoomed 

in the inset). Data from (C) are taken only from marked moving periods following the MVF method. Each data 

point represents the mean value per moving period, taken from ca. two weeks of data acquisition.  
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Figure 4. Indices of collar postural offsets per lion, assessed via density estimates of absolute values of; (A) 
pitch and (B) roll. Plots are facetted row-wise according to 5 scenarios as described to the left of each plot 
row. The distributions become tighter and more ‘bell-shaped’ at higher levels of activity. 

Lion ID 

(A) (B) 
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Discussion 

 

Evaluation of the MVF protocol 

 

This work demonstrates the value of using both DBA and GPS data to discern moving 

behaviours from stationary behaviours with a computationally quick protocol which 

effectively filters inaccurate fixes from high frequency GPS data (e.g., ≥ 1 Hz, though 

possibly lower - cf. SI: Text S2: Fig. S1 & S2). The central premise is that when the 

magnitude of GPS speed and VeDBA both indicate movement (via pre-set thresholds, 

using ground-truthed data), then movement is indeed likely (Table. 1, Fig. 2, Fig. 3A, 

SI: Text S2: Fig S1 & S3). This highlights the problem of GPS jitter when VeDBA does 

not correspond to movement even though the GPS indicates otherwise. Conversely, 

(relatively energetic) non-travelling behaviours are flagged up when the magnitude 

of VeDBA infers movement while data of GPS speed does not.  

Results reaffirm the importance of screening GPS inaccuracies within high frequency 

independently collected datasets of animal movements, due to the additive nature 

Figure 5. Mean summed distance moved (m) per hour per individual (cf. SI: Text S4 for full description of methods). 

Individual’s hourly mean values are linearly connected across time (lines coloured according to gender; female: 

red, male: blue). Plots are fitted with a line of best fit according to gender, using a ‘gam smoothing’ (grey shading 

around line represents the 95 % confidence level interval). This procedure was applied independently for non-

moving (MVF = 0: A) and moving (MVF = 1: B). Note the disparity in distance estimates, with non-moving bouts 

demonstrating high values during sunlight hours (approximately between 7 am to 7 pm [grey bars]). 
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of GPS jitter - most prevalent during rest periods (Fig. 2, SI: Text S3: Table S2 & Fig. 

S3). This was particularly relevant in the current study because of the high proportion 

of data allocated to non-moving behaviours (SI: Text S3: Table S2) (reflecting the 

energy-conservation strategy that Kalahari lions adopt, cf. Hill et al. 2004). Indices of 

collar/postural offsets (evaluated using absolute values of pitch and roll) showed high 

variability during times when GPS units did not acquire fixes (Fig. 4), even when fix 

success rate could not be attributed to battery longevity (SI: Text S3: Table S1, Fig. 

S1). Animal behaviour (including habitat selection) thus seems to be a primary factor 

affecting fix success rate and quality. Clear mono-modal peaks in the indices of 

posture were only witnessed when all thresholds of the MVF approach were met (Fig. 

4). Whilst there were slight differences in the tightness of these distributions 

between lions (presumably due to discrepancies between collar fit), this does suggest 

that the optimum collar-body position for acquiring satellite signals occurred during 

travelling movement. In contrast, distributions were much more varied during times 

of non-moving, again highlighting the interplay between animal behaviour, collar 

orientation and GPS performance.  

My results highlight how, in the absence of appropriate filtering, inappropriate 

conclusions about a species’ movement can be made. Here, there were stark 

contrasts of tortuosity, speed and most notably, distance travelled estimates 

between sets of data that both passed and failed the MVF method (SI: Text S3: Table 

S2). This method may therefore have particular value for distinguishing true small-

scale area-restricted search (ARS) behaviour (Weimerskirch et al. 2007) by removing 

spurious turn angles caused by jitter (DeCesare, Squires & Kolbe 2005; Hurford 2009) 

(cf. SI: Text S4: Fig. S1). Here, cumulative distance from non-moving data was 80 % 

higher than their actual moving periods for some lions and this highly inflated index 

of movement was exemplified when measured as hourly averages (Fig. 5), apparently 

showing that lions travelled greater distances during the hottest parts of the day, 

something that is extremely unlikely (cf. Packer et al. 2011). Furthermore, the MVF 

protocol reduced the apparent maximum speed of any lion from >150 to 48 km/h. 

This critical issue highlights the drawbacks of assessing GPS data sampled at high 
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frequency (despite necessary post-resampling strategies (SI.2)), which intensifies 

erroneous location estimates (cf. Fig. 2, SI: Text S2: Fig. S3), even at macro-scales of 

movement (SI: Text S2: Fig. S5).  

 

Utility of the MVF protocol according to species-specific and environmental 

circumstance 

 

The Haversine method for determination of animal speed and location using GPS 

positional fixes can estimate distances travelled with high precision, however for 

datasets containing many points collected at high frequencies, distance estimates are 

unreliable at small stepping ranges due to the interplay between location error and 

the precision of longitude and latitude coordinates that produce additive errors (Ryan 

et al. 2004; Laube & Purves 2011). Most commercial GPS units record fixes to five 

decimal places, with the fifth digit of the decimal place giving approximately 1.1 m 

resolution. Further, the computation time for a device to record a GPS fix can vary, 

reducing the synchronisation of time between both GPS and the accelerometer 

logger. Given that many terrestrial animals maintain relatively low travel speeds for 

extended periods (cf. Perry et al. 1988), I note that appropriate choice of stepping 

range and smoothing window are critical for deducing reasonable step length 

estimates per unit time (SI: Text S2: Fig. S1 & S2), with this being dependent upon the 

(species-specific) scales of movement being assessed (cf. Bidder, Qasem & Wilson 

2012; Bidder et al. 2012). 

Essentially, there is a trade-off between incorporating higher rates of error and 

increasing the lag of change relative to the properly time-synchronised acceleration 

data. This means that accurate fine-scale estimates of GPS-derived speed are not 

possible and so the relationship with body movement measurements such as VeDBA 

will never be succinct given the disparity of resolution from both measures. In 

addition, inter- and intra-specific variations of acceleration estimates can arise due 

to discrepancies of: morphology (Bidder et al. 2012), locomotion mechanisms (e.g., 

change in gait to facilitate higher speeds (Halsey et al. 2008)), extrinsic factors (e.g., 
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moving over a deformable substrate / changeable grade (Kerdok et al. 2002; Bidder, 

Qasem & Wilson 2012)), tag placement (Wilson et al. 2020) and collar roll (Silvy, Lopez 

& Peterson 2005; Shepard et al. 2008), thereby altering the relationship between 

VeDBA and mechanical power (and thus speed) (Gleiss, Wilson & Shepard 2011; 

Bidder, Qasem & Wilson 2012).  

Alongside GPS resampling, MVF user-defined thresholds are expected to change 

according to the study species and scales of movement in question. For example, DBA 

estimates (specifically ODBA - Wilson et al. 2020) of African elephants (Loxodonta 

africana) typically ranged between 0.15 and 0.3 g during periods of walking (Soltis et 

al. 2016) and this is comparable to that reported from Eurasian beavers (Castor fiber) 

(0.265 ± 0.029 - Graf et al. 2015), though notably, both species have different leg 

lengths and move with very different gaits which gives very different DBA-dependent 

speed estimates, as demonstrated by Bidder et al. (2012) for multiple species.  

It is notable here that I have focussed on terrestrial movement, and this is primarily 

because the relationship between DBA and speed can break down substantially for 

many aquatic and aerial species. This occurs because, for example, birds can glide at 

a variety of grounds speeds (depending on e.g., wind vectors and glide angle) without 

changing DBA, and air compression with depth affects the buoyancy of many marine 

animals, which complicates the DBA~speed relationship depending on swim angle 

(Wilson et al. 1992; Williams et al. 2015; Chapter 5). Furthermore, GPS is restricted 

to (potentially infrequent) resurfacing events for diving animals and so scaling DBA 

with GPS-derived speed is problematic for extended periods of time during 

underwater movements. Taken together, whilst I do not rule out extensions of the 

MVF method for use in such environments, I advocate that in its current form, it is 

most suitable for evaluating movements on land. 
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Importantly, the validity of this method is dependent on the interaction between a 

focal species’ behaviour and where it inhabits - the critical limitation being the 

assumption that fixes are accurate during periods of moving. This is demonstrably 

not always the case (cf. Fig. 6), even in this study area, the Kgalagadi Transfrontier 

Park, which is open, with relatively sparse vegetation. Since vegetation type and 

density are key modulators of GPS accuracy (Lewis et al. 2007; Hansen & Riggs 2008; 

Heard, Ciarniello & Seip 2008; Frair et al. 2010; Adams et al. 2013), the viability of my 

method needs to be tested within other (e.g., more vegetated) environments.  

Nevertheless, for the study species in question, I have highlighted the effectiveness 

of this method and, in line with the above considerations, have demonstrated that a 

general correlation does exist between the magnitudes of both DBA and GPS speed 

during movement periods (Fig. 3, SI: Text S2: Fig. S1:S3). As such, I suggest that this 

approach could be used further to discern reliable events of high performance (e.g., 

hunt chases) and implemented within the dead-reckoning framework (cf. Bidder et 

al. 2015; Walker et al. 2015), both as a corollary to the DBA-speed relationship 

(required for the speed coefficient, Bidder et al. 2015) and the GPS screening protocol 

Figure 6. Schematic diagram of the factors related to animal behaviour that can 

change the quality of GPS fixes. 
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prior to the correction process of dead-reckoned tracks (Dewhirst et al. 2016). At the 

very least, I demonstrate the utility for GPS speed to be included as a useful 

parameter for identifying behaviours and may be of value to more complex 

approaches (e.g., machine learning (cf. Bidder et al. 2014; Samarasinghe 2016; 

Fehlmann et al. 2017; Goodall et al. 2019), the lowest common denominator (LoCoD) 

method, (cf. Wilson et al. 2018), and space-state models, (cf. Fleming et al. 2020; 

Jonsen et al. 2020)) for precluding certain behaviours from movement and screening 

for location error. Indeed, applying this method as a validator of movement extent 

within behaviour-based studies over finely resolved space and time, may facilitate 

the powers of inference, such as when considering animal responses to human 

barriers (cf. Jacobson et al. 2016). Lastly, I theorise that high fix frequency will help 

elucidate fix inaccuracy within areas of high canopy cover, possibly via extensions to 

this method such as including upper threshold limits and comparing variation in GPS 

speed juxtaposed to DBA estimates and GPS- and DD-derived heading estimates (cf. 

SI: Text S4).  

 

Conclusion 

 

Here I reaffirm the importance of initial GPS screening so to avoid inaccurate 

movement estimates. Animal behaviour seems to be a major modulator of GPS 

performance, and this is particularly germane in collared species due to the 

interaction between behaviour and collar orientation. The proposed Movement 

Verified Filtering method provides a basis for high-resolution GPS-screening, which is 

user-friendly, computationally quick and focuses on identifying behaviour to filter 

GPS data. Movement-defined thresholds can be modelled according to the focal 

species in question, whilst further differences between motion sensor and GPS 

derivatives can be incorporated into this MVF foundation to resolve fix inaccuracy 

during movement. Movement-based outputs comparing MVF values from lion data, 

exemplified the degree of inaccuracy associated with GPS jitter and the importance 

of removing such additive error prior to assessing fine-scale trends of movement, 
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particularly step length. My results show that consideration of data from both GPS 

units and motion sensors greatly helps validate true movement patterns and 

reaffirms the caution required when interpreting fine-scale GPS sampling such as 

during ARS analysis. Further work could assess the value of MVF for other species 

with different activities and habitat selections, particularly those that move within 

highly vegetated areas. The consequences of the errors introduced by GPS 

inaccuracies are broad, ranging from erroneous inferences of behaviour, movement, 

speed and energy budgets. The approach proposed here avoids these errors and 

enables accurate assessments of these traits. 
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García‐Ripollés, C., López‐López, P. & Urios, V. (2010) First description of migration and 
wintering of adult Egyptian Vultures Neophron percnopterus tracked by GPS 
satellite telemetry. Bird Study, 57, 261-265. 

Gibb, R., Shoji, A., Fayet, A.L., Perrins, C.M., Guilford, T. & Freeman, R. (2017) Remotely 
sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird. 
Journal of The Royal Society Interface, 14, 20170262. 

Gleiss, A.C., Wilson, R.P. & Shepard, E.L.C. (2011) Making overall dynamic body acceleration 
work: on the theory of acceleration as a proxy for energy expenditure. Methods in 
Ecology and Evolution, 2, 23-33. 

Goodall, V.L., Ferreira, S.M., Funston, P.J. & Maruping-Mzileni, N. (2019) Uncovering hidden 
states in African lion movement data using hidden Markov models. Wildlife 
Research, 46, 296-303. 

Graf, P.M., Wilson, R.P., Qasem, L., Hackländer, K. & Rosell, F. (2015) The Use of 
Acceleration to Code for Animal Behaviours; A Case Study in Free-Ranging Eurasian 
Beavers Castor fiber. PLOS ONE, 10, e0136751. 

Hacker, C.E., Horback, K.M. & Miller, L.J. (2015) GPS technology as a proxy tool for 
determining relationships in social animals: An example with African elephants. 
Applied Animal Behaviour Science, 163, 175-182. 

Hallworth, M.T. & Marra, P.P. (2015) Miniaturized GPS Tags Identify Non-breeding 
Territories of a Small Breeding Migratory Songbird. Scientific Reports, 5, 11069. 

Halsey, L.G., Shepard, E.L.C., Hulston, C.J., Venables, M.C., White, C.R., Jeukendrup, A.E. & 
Wilson, R.P. (2008) Acceleration versus heart rate for estimating energy 
expenditure and speed during locomotion in animals: Tests with an easy model 
species, Homo sapiens. Zoology, 111, 231-241. 

Hansen, M.C. & Riggs, R.A. (2008) Accuracy, Precision, and Observation Rates of Global 
Positioning System Telemetry Collars. The Journal of Wildlife Management, 72, 518-
526. 

Harja, Y.D. & Sarno, R. (2018) Determine the best option for nearest medical services using 
Google maps API, Haversine and TOPSIS algorithm. 2018 International Conference 
on Information and Communications Technology (ICOIACT), pp. 814-819. 

Heard, D.C., Ciarniello, L.M. & Seip, D.R. (2008) Grizzly Bear Behavior and Global Positioning 
System Collar Fix Rates. The Journal of Wildlife Management, 72, 596-602. 

Hill, R.W., Wyse, G.A., Anderson, M. & Anderson, M. (2004) Animal physiology. Sinauer 
Associates Sunderland, MA. 

Hofman, M.P.G., Hayward, M.W., Heim, M., Marchand, P., Rolandsen, C.M., Mattisson, J., 
Urbano, F., Heurich, M., Mysterud, A., Melzheimer, J., Morellet, N., Voigt, U., Allen, 
B.L., Gehr, B., Rouco, C., Ullmann, W., Holand, Ø., Jørgensen, N.H., Steinheim, G., 
Cagnacci, F., Kroeschel, M., Kaczensky, P., Buuveibaatar, B., Payne, J.C., Palmegiani, 
I., Jerina, K., Kjellander, P., Johansson, Ö., LaPoint, S., Bayrakcismith, R., Linnell, 
J.D.C., Zaccaroni, M., Jorge, M.L.S., Oshima, J.E.F., Songhurst, A., Fischer, C., Mc 
Bride, R.T., Jr., Thompson, J.J., Streif, S., Sandfort, R., Bonenfant, C., Drouilly, M., 
Klapproth, M., Zinner, D., Yarnell, R., Stronza, A., Wilmott, L., Meisingset, E., Thaker, 
M., Vanak, A.T., Nicoloso, S., Graeber, R., Said, S., Boudreau, M.R., Devlin, A., 
Hoogesteijn, R., May-Junior, J.A., Nifong, J.C., Odden, J., Quigley, H.B., Tortato, F., 
Parker, D.M., Caso, A., Perrine, J., Tellaeche, C., Zieba, F., Zwijacz-Kozica, T., Appel, 
C.L., Axsom, I., Bean, W.T., Cristescu, B., Périquet, S., Teichman, K.J., Karpanty, S., 
Licoppe, A., Menges, V., Black, K., Scheppers, T.L., Schai-Braun, S.C., Azevedo, F.C., 
Lemos, F.G., Payne, A., Swanepoel, L.H., Weckworth, B.V., Berger, A., Bertassoni, A., 
McCulloch, G., Šustr, P., Athreya, V., Bockmuhl, D., Casaer, J., Ekori, A., Melovski, D., 



 Filtering high-resolution GPS tracks 

124 

 

Richard-Hansen, C., van de Vyver, D., Reyna-Hurtado, R., Robardet, E., Selva, N., 
Sergiel, A., Farhadinia, M.S., Sunde, P., Portas, R., Ambarli, H., Berzins, R., Kappeler, 
P.M., Mann, G.K., Pyritz, L., Bissett, C., Grant, T., Steinmetz, R., Swedell, L., Welch, 
R.J., Armenteras, D., Bidder, O.R., González, T.M., Rosenblatt, A., Kachel, S. & 
Balkenhol, N. (2019) Right on track? Performance of satellite telemetry in terrestrial 
wildlife research. PLOS ONE, 14, e0216223. 

Humphries, N.E., Weimerskirch, H. & Sims, D.W. (2013) A new approach for objective 
identification of turns and steps in organism movement data relevant to random 
walk modelling. Methods in Ecology and Evolution, 4, 930-938. 

Hurford, A. (2009) GPS Measurement Error Gives Rise to Spurious 180° Turning Angles and 
Strong Directional Biases in Animal Movement Data. PLOS ONE, 4, e5632. 

Ironside, K.E., Mattson, D.J., Arundel, T.R. & Hansen, J.R. (2017) Is GPS telemetry location 
error screening beneficial? Wildlife Biology, 2017. 

Jacobson, S.L., Bliss-Ketchum, L.L., de Rivera, C.E. & Smith, W.P. (2016) A behavior-based 
framework for assessing barrier effects to wildlife from vehicle traffic volume. 
Ecosphere, 7, e01345. 

Janeau, G., Adrados, C., Joachim, J., Gendner, J.-P. & Pépin, D. (2004) Performance of 
differential GPS collars in temperate mountain forest. Comptes Rendus Biologies, 
327, 1143-1149. 

Jiang, Z., Sugita, M., Kitahara, M., Takatsuki, S., Goto, T. & Yoshida, Y. (2008) Effects of 
habitat feature, antenna position, movement, and fix interval on GPS radio collar 
performance in Mount Fuji, central Japan. Ecological Research, 23, 581-588. 

Jonsen, I.D., Patterson, T.A., Costa, D.P., Doherty, P.D., Godley, B.J., Grecian, W.J., Guinet, 
C., Hoenner, X., Kienle, S.S., Robinson, P.W., Votier, S.C., Whiting, S., Witt, M.J., 
Hindell, M.A., Harcourt, R.G. & McMahon, C.R. (2020) A continuous-time state-
space model for rapid quality control of argos locations from animal-borne tags. 
Movement Ecology, 8, 31. 

Joo, R., Boone, M.E., Clay, T.A., Patrick, S.C., Clusella‐Trullas, S. & Basille, M. (2020) 
Navigating through the R packages for movement. Journal of Animal Ecology, 89, 
248-267. 

Jung, T.S. & Kuba, K. (2015) Performance of GPS collars on free-ranging bison (Bison bison) 
in north-western Canada. Wildlife Research, 42, 315-323. 

Justicia, L.S., Rosell, F. & Mayer, M. (2018) Performance of GPS units for deployment on 
semiaquatic animals. PLOS ONE, 13, e0207938. 

Kerdok, A.E., Biewener, A.A., McMahon, T.A., Weyand, P.G. & Herr, H.M. (2002) Energetics 
and mechanics of human running on surfaces of different stiffnesses. Journal of 
Applied Physiology, 92, 469-478. 

Latham, A.D.M., Latham, M.C., Anderson, D.P., Cruz, J., Herries, D. & Hebblewhite, M. 
(2015) The GPS craze: six questions to address before deciding to deploy GPS 
technology on wildlife. New Zealand Journal of Ecology, 39, 143-152. 

Laube, P. & Purves, R.S. (2011) How fast is a cow? Cross-Scale Analysis of Movement Data. 
Transactions in GIS, 15, 401-418. 

Lewis, J.S., Rachlow, J.L., Garton, E.O. & Vierling, L.A. (2007) Effects of habitat on GPS collar 
performance: using data screening to reduce location error. Journal of Applied 
Ecology, 44, 663-671. 

Liu, D., Zhang, G., Jiang, H., Chen, L., Meng, D. & Lu, J. (2017) Seasonal dispersal and 
longitudinal migration in the Relict Gull Larus relictus across the Inner-Mongolian 
Plateau. PeerJ, 5, e3380. 



 Filtering high-resolution GPS tracks 

125 

 

Mattisson, J., Andrén, H., Persson, J. & Segerström, P. (2010) Effects of Species Behavior on 
Global Positioning System Collar Fix Rates. The Journal of Wildlife Management, 74, 
557-563. 

McDuie, F., Casazza, M.L., Overton, C.T., Herzog, M.P., Hartman, C.A., Peterson, S.H., 
Feldheim, C.L. & Ackerman, J.T. (2019) GPS tracking data reveals daily spatio-
temporal movement patterns of waterfowl. Movement Ecology, 7, 6. 

McGavin, S.L., Bishop-Hurley, G.J., Charmley, E., Greenwood, P.L. & Callaghan, M.J. (2018) 
Effect of GPS sample interval and paddock size on estimates of distance travelled by 
grazing cattle in rangeland, Australia. The Rangeland Journal, 40, 55-64. 

McGregor, H.W., Legge, S.M., Jones, M.E. & Johnson, C.N. (2016) GPS collars are more 
efficient when collecting high-frequency data. Australian Mammalogy, 38, 237-240. 

Moriarty, K.M. & Epps, C.W. (2015) Retained satellite information influences performance 
of GPS devices in a forested ecosystem. Wildlife Society Bulletin, 39, 349-357. 

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P.E. (2008) 
A movement ecology paradigm for unifying organismal movement research. 
Proceedings of the National Academy of Sciences, 105, 19052-19059. 

Nielson, R.M., Manly, B.F.J., McDonald, L.L., Sawyer, H. & McDonald, T.L. (2009) Estimating 
habitat selection when GPS fix success is less than 100%. Ecology, 90, 2956-2962. 

Owen‐Smith, N. & Goodall, V. (2014) Coping with savanna seasonality: comparative daily 
activity patterns of African ungulates as revealed by GPS telemetry. Journal of 
Zoology, 293, 181-191. 

Packer, C., Swanson, A., Ikanda, D. & Kushnir, H. (2011) Fear of darkness, the full moon and 
the nocturnal ecology of African lions. PLOS ONE, 6, e22285. 

Patel, A., Stocks, B., Fisher, C., Nicolls, F. & Boje, E. (2017) Tracking the Cheetah Tail Using 
Animal-Borne Cameras, GPS, and an IMU. IEEE Sensors Letters, 1, 1-4. 

Perry, A.K., Blickhan, R., Biewener, A.A., Heglund, N.C. & Taylor, C.R. (1988) Preferred 
speeds in terrestrial vertebrates: are they equivalent? Journal of Experimental 
Biology, 137, 207-219. 

Pfeiffer, T. & Meyburg, B.-U. (2015) GPS tracking of Red Kites (Milvus milvus) reveals 
fledgling number is negatively correlated with home range size. Journal of 
Ornithology, 156, 963-975. 

Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey, L.G., Shepard, E.L.C., Gleiss, A.C. & 
Wilson, R. (2012) Tri-Axial Dynamic Acceleration as a Proxy for Animal Energy 
Expenditure; Should We Be Summing Values or Calculating the Vector? PLOS ONE, 
7, e31187. 

Quaglietta, L., Martins, B.H., de Jongh, A., Mira, A. & Boitani, L. (2012) A Low-Cost GPS 
GSM/GPRS Telemetry System: Performance in Stationary Field Tests and 
Preliminary Data on Wild Otters (Lutra lutra). PLOS ONE, 7, e29235. 

Recio, M.R., Mathieu, R., Latham, M.C., Latham, A.D.M. & Seddon, P.J. (2013) Quantifying 
fine-scale resource selection by introduced European hedgehogs (Erinaceus 
europaeus) in ecologically sensitive areas. Biological Invasions, 15, 1807-1818. 

Rumble, M.A., Benkobi, L., Lindzey, F. & Gamo, R.S. (2001) Evaluating elk habitat 
interactions with GPS collars. Tracking animals with GPS, pp. 11-17. Macaulay Land 
Use Research Institute, Aberdeen, UK: Macaulay Institute. 

Ryan, P.G., Petersen, S.L., Peters, G. & Grémillet, D. (2004) GPS tracking a marine predator: 
the effects of precision, resolution and sampling rate on foraging tracks of African 
Penguins. Marine Biology, 145, 215-223. 

Samarasinghe, S. (2016) Neural Networks for Applied Sciences and Engineering: From 
Fundamentals to Complex Pattern Recognition. CRC Press. 



 Filtering high-resolution GPS tracks 

126 

 

Shepard, E.L., Wilson, R.P., Halsey, L.G., Quintana, F., Laich, A.G., Gleiss, A.C., Liebsch, N., 
Myers, A.E. & Norman, B. (2008) Derivation of body motion via appropriate 
smoothing of acceleration data. Aquatic Biology, 4, 235-241. 

Silvy, N.J., Lopez, R.R. & Peterson, M.J. (2005) Wildlife marking techniques. The Wildlife 
Society: Bethesda, MD. 

Skarin, A., Danell, Ö., Bergström, R. & Moen, J. (2008) Summer habitat preferences of GPS-
collared reindeer Rangifer tarandus tarandus. Wildlife Biology, 14, 1-15. 

Smith, B.J., Hart, K.M., Mazzotti, F.J., Basille, M. & Romagosa, C.M. (2018) Evaluating GPS 
biologging technology for studying spatial ecology of large constricting snakes. 
Animal Biotelemetry, 6, 1. 

Soltis, J., King, L., Vollrath, F. & Douglas-Hamilton, I. (2016) Accelerometers and simple 
algorithms identify activity budgets and body orientation in African elephants 
Loxodonta africana. Endangered Species Research, 31, 1-12. 

Swanepoel, L.H., Dalerum, F. & Van Hoven, W. (2010) Factors affecting location failure of 
GPS collars fitted to African leopards (Panthera pardus). African Journal of Wildlife 
Research, 40, 10-15. 

Ungar, E.D., Henkin, Z., Gutman, M., Dolev, A., Genizi, A. & Ganskopp, D. (2005) Inference 
of animal activity from GPS collar data on free-ranging cattle. Rangeland Ecology & 
Management, 58, 256-266. 

Vance, J.A., Jachowski, D.S., Boynton, A.C. & Kelly, M.J. (2017) Importance of evaluating GPS 
telemetry collar performance in monitoring reintroduced populations. Wildlife 
Society Bulletin, 41, 729-735. 

Visscher, D.R. (2006) GPS measurement error and resource selection functions in a 
fragmented landscape. Ecography, 29, 458-464. 

Walker, J.S., Jones, M.W., Laramee, R.S., Holton, M.D., Shepard, E.L.C., Williams, H.J., 
Scantlebury, D.M., Marks, N.J., Magowan, E.A., Maguire, I.E., Bidder, O.R., Di 
Virgilio, A. & Wilson, R.P. (2015) Prying into the intimate secrets of animal lives; 
software beyond hardware for comprehensive annotation in ‘Daily Diary’ tags. 
Movement Ecology, 3, 29. 

Wang, Y., Nickel, B., Rutishauser, M., Bryce, C.M., Williams, T.M., Elkaim, G. & Wilmers, C.C. 
(2015) Movement, resting, and attack behaviors of wild pumas are revealed by tri-
axial accelerometer measurements. Movement Ecology, 3, 1-12. 

Watanabe, S., Izawa, M., Kato, A., Ropert-Coudert, Y. & Naito, Y. (2005) A new technique 
for monitoring the detailed behaviour of terrestrial animals: A case study with the 
domestic cat. Applied Animal Behaviour Science, 94, 117-131. 

Weimerskirch, H., Pinaud, D., Pawlowski, F. & Bost, C.A. (2007) Does Prey Capture Induce 
Area‐Restricted Search? A Fine‐Scale Study Using GPS in a Marine Predator, the 
Wandering Albatross. The American Naturalist, 170, 734-743. 

Williams, H., Shepard, E., Duriez, O. & Lambertucci, S.A. (2015) Can accelerometry be used 
to distinguish between flight types in soaring birds? Animal Biotelemetry, 3, 1-11. 

Williams, H.J., Holton, M.D., Shepard, E.L.C., Largey, N., Norman, B., Ryan, P.G., Duriez, O., 
Scantlebury, M., Quintana, F., Magowan, E.A., Marks, N.J., Alagaili, A.N., Bennett, 
N.C. & Wilson, R.P. (2017) Identification of animal movement patterns using tri-
axial magnetometry. Movement Ecology, 5, 6. 

Wilson, A.M., Lowe, J., Roskilly, K., Hudson, P.E., Golabek, K. & McNutt, J. (2013) 
Locomotion dynamics of hunting in wild cheetahs. Nature, 498, 185-189. 

Wilson, R.P., Börger, L., Holton, M.D., Scantlebury, D.M., Gómez-Laich, A., Quintana, F., 
Rosell, F., Graf, P.M., Williams, H., Gunner, R., Hopkins, L., Marks, N., Geraldi, N.R., 
Duarte, C.M., Scott, R., Strano, M.S., Robotka, H., Eizaguirre, C., Fahlman, A. & 



 Filtering high-resolution GPS tracks 

127 

 

Shepard, E.L.C. (2020) Estimates for energy expenditure in free-living animals using 
acceleration proxies: A reappraisal. Journal of Animal Ecology, 89, 161-172. 

Wilson, R.P., Holton, M.D., di Virgilio, A., Williams, H., Shepard, E.L.C., Lambertucci, S., 
Quintana, F., Sala, J.E., Balaji, B., Lee, E.S., Srivastava, M., Scantlebury, D.M. & 
Duarte, C.M. (2018) Give the machine a hand: A Boolean time-based decision-tree 
template for rapidly finding animal behaviours in multisensor data. Methods in 
Ecology and Evolution, 9, 2206-2215. 

Wilson, R.P., Hustler, K., Ryan, P.G., Burger, A.E. & Noldeke, E.C. (1992) Diving birds in cold 
water: do Archimedes and Boyle determine energetic costs? The American 
Naturalist, 140, 179-200. 

Wilson, R.P., Shepard, E. & Liebsch, N. (2008) Prying into the intimate details of animal lives: 
use of a daily diary on animals. Endangered Species Research, 4, 123-137. 

Yamaç, E. & Bilgin, C.C. (2012) Post-fledging movements of Cinereous Vultures Aegypius 
monachus in Turkey revealed by GPS telemetry. Ardea, 100, 149-156. 

 



    Animal dead-reckoning in R 

127 

 

Chapter 5 

Dead-reckoning animal movements in R: a reappraisal using 

Gundog.Tracks 

 
Richard M. Gunner 

 

This work was published in Animal Biotelemetry as: 

Gunner, R.M., Holton, M.D., Scantlebury M.D., van Schalkwyk, O.L., English, H.M., 
Williams, H.J., Hopkins, P., Quintana, F., Gómez-Laich, A., Börger, L., Redcliffe, J., 

Yoda, K., Yamamoto, T., Ferreira, S., Govender, D., Viljoen, P., Bruns, A., Bell, S.H., 
Nikki, M.J., Bennett, N.C., Mariano, T.M., Duarte, C.M., van Rooyen, M.C., Bertelsen, 
M.F., Tambling, C.J. and Wilson, R.P., 2021. Dead-reckoning animal movements in R: 
a reappraisal using Gundog.Tracks. Animal Biotelemetry, DOI: 10.1186/s40317-021-

00245-z 

 

Photo taken by Martin C. van Rooyen 



Animal dead-reckoning in R 

128 

 

Abstract 

 

Fine-scale data on animal position are increasingly enabling us to understand the 

details of animal movement ecology and dead-reckoning, a technique integrating 

motion sensor-derived information on heading and speed, can be used to reconstruct 

fine-scale movement paths at sub-second resolution, irrespective of the 

environment. On its own however, the dead-reckoning process is prone to 

cumulative errors, so that position estimates quickly become uncoupled from true 

location. Periodic ground-truthing with aligned location data (e.g., from global 

positioning technology) can correct for this drift between Verified Positions (VPs). I 

present step-by-step instructions for implementing Verified Position Correction (VPC) 

dead-reckoning in R using the tilt-compensated compass method, accompanied by 

the mathematical protocols underlying the code and improvements and extensions 

of this technique to reduce the trade-off between VPC rate and dead-reckoning 

accuracy. These protocols are all built into a user-friendly, fully-annotated VPC dead-

reckoning R function; Gundog.Tracks, with multi-functionality to reconstruct animal 

movement paths across terrestrial, aquatic, and aerial systems, provided within the 

supplementary information as well as online (GitHub). The Gundog.Tracks function is 

demonstrated on three contrasting model species (the African lion Panthera leo, the 

Magellanic penguin Spheniscus magellanicus, and the Imperial cormorant 

Leucocarbo atriceps) moving on land, in water and in air. I show the effect of 

uncorrected errors in speed estimations, heading inaccuracies and infrequent VPC 

rate and demonstrate how these issues can be addressed. The function provided will 

allow anyone familiar with R to dead-reckon animal tracks readily and accurately, as 

the key complex issues are dealt with by Gundog.Tracks. This will help the community 

to consider and implement a valuable, but often overlooked method of 

reconstructing high-resolution animal movement paths across diverse species and 

systems without requiring a bespoke application. 
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Background 

 

Reconstructing animal movement paths is an important tool in ecology, providing 

insights into animal space-use, behaviour and habitat selection (Browning et al. 2018; 

McClune 2018; Schlägel et al. 2019). However, accurate estimation of paths at fine 

temporal scales has proved a persistent challenge (Cagnacci et al. 2010; Williams et 

al. 2020b). Dead-reckoning is a method used to reconstruct animal movement paths, 

based on sequentially integrating the vector of travel from a predetermined position 

using estimates of heading (also termed ‘bearing’ or ‘yaw’) and speed (and 

displacement about the vertical axis for 3-D movements), over an elapsed time 

interval (Cotter 1978; Levi & Judd 1996; Beauregard & Haas 2006; Walker et al. 2015). 

In its most advanced form, it can provide positional data with sub-second resolution, 

irrespective of the environment (e.g., Bidder et al. 2015; Wensveen, Thomas & Miller 

2015; Andrzejaczek et al. 2019) and it therefore has huge potential for providing data 

that can elucidate many fundamental behavioural and ecological issues related to 

space-use.  

The concept of dead-reckoning (also termed ‘track integration’) originated to aid 

nautical navigation (Cotter 1978; Bowditch 2002), though its utility to reconstruct 

uninterrupted fine-scale (in time and space) animal movement paths by integrating 

different sensors in animal-attached tags was suggested over three decades ago 

(Wilson & Wilson 1988; Wilson et al. 1991). Today, this typically involves the 

simultaneous deployment of tri-axial accelerometers and magnetometers (e.g., 

Mitani et al. 2004; Elkaim et al. 2006; Wilson et al. 2007; Wilson, Shepard & Liebsch 

2008; Bidder et al. 2015; Walker et al. 2015; Wilson et al. 2015), utilising the tilt-

compensated compass method (Li, Li & Wang 2009; Ozyagcilar 2012; Pedley 2012; 

Gheorghe & Bodea 2018) [see glossary for a definition of dead-reckoning related 

terminology used throughout]. 

The utility of dead-reckoning depends on the accuracy of speed and heading 

estimates (see Table. 1) and, due to the nature of vector integration, dead-reckoned 

tracks accumulate errors (commonly termed ‘drift’) over time (Wilson et al. 1991; Liu 
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et al. 2015; Dewhirst et al. 2016). As a result, periodic ground-truthing by a secondary 

source is important for maintaining the accuracy of animal paths with all its 

underlying scales and tortuosity of movement (Mitani et al. 2003; Bidder et al. 2015; 

Walker et al. 2015). For this reason, dead-reckoning data is normally enhanced by 

combining it with other methods for providing Verified Positions (VPs). These are 

primarily: direct observation (e.g., Whitney et al. 2010), light intensity-based 

geolocation (e.g., Lisovski et al. 2012), VHF- (e.g., Miller et al. 2009), acoustic- (e.g., 

Baumgartner et al. 2008) and GPS telemetry (e.g., Dewhirst et al. 2016). Other, less 

utilised, systems that may also have merit at sites frequented by the tagged animals, 

include radio frequency identification (RFID) stations (cf. Williams et al. 2019), 

camera traps (cf. Alexander et al. 2016) and video footage, such as closed-circuit 

television (CCTV) surveillance (e.g., English et al. (in review)). Although all these 

systems are subject to a number of issues that can make their positional fixes 

temporally widely spaced (e.g., Fancy et al. 1988; Soutullo et al. 2007; Cagnacci et al. 

2010), inaccurate (e.g., Catipovic 1990; Newey et al. 2015; Hofman et al. 2019) or 

impossible (e.g., Leonardo et al. 2005; Lewis et al. 2007; Kaur et al. 2011), they can 

be critical in providing ground-truthed positions, even infrequently, with which to 

reset accumulated drift (Walker et al. 2015; Dewhirst et al. 2016).  

Of the above VP options, GPS-corrected dead-reckoning is the most widely used and 

there is a marked bias towards marine studies (e.g., Wilson et al. 1991; Davis et al. 

2001; Wilson 2002; Johnson & Tyack 2003; Mitani et al. 2003; Mitani et al. 2004; 

Wilson et al. 2007; Shiomi et al. 2008; Narazaki et al. 2009; Ware, Friedlaender & 

Nowacek 2011; Aoki et al. 2012; Benoit-Bird et al. 2013; Bidder et al. 2015; Laplanche, 

Marques & Thomas 2015; Wensveen, Thomas & Miller 2015; Wilson et al. 2015; 

Adachi et al. 2017; Bras, Jouma’a & Guinet 2017; Wright et al. 2017; Andrzejaczek et 

al. 2018; Andrzejaczek et al. 2019; Wensveen et al. 2019). This is likely for logistical 

reasons, with many aquatic animals being larger (and thus can carry larger/more 

devices) than their terrestrial counterparts (Ropert-Coudert & Wilson 2005), whilst 

the utility of transmission telemetry is restricted to periodic resurfacing events 

(Francisco, Nührenberg & Jordan 2020). Moreover, speed can be more easily 
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measured or approximated in water, with previous studies obtaining estimates via 

acoustic flow noise (e.g., Goldbogen et al. 2006), passive sonar (e.g., Zimmer et al. 

2005), pitch and change in depth (e.g., Wensveen, Thomas & Miller 2015) and speed 

sensors (cf. Wilson, Ropert-Coudert & Kato 2002; Wilson et al. 2007; Gabaldon et al. 

2019). The efficacy of such techniques diminishes within the aerial environment, 

principally, due to the marked difference between water and air density (cf. Denny 

1993) and the current speed and volatility of wind (cf. Williams et al. 2015; Altynay 

et al. 2019). Indeed, this may explain why, in part, (to my knowledge) only one study 

to date has dead-reckoned a volant species (Williams et al. 2020a). More recently, 

dynamic body acceleration (DBA, see Wilson et al. (2020a), for recent review) has 

been validated as a proxy of speed for terrestrial animals (Bidder, Qasem & Wilson 

2012; Bidder et al. 2012) although there are still very few studies that use the dead-

reckoning method in terrestrial animals (e.g., Bidder et al. 2015; Walker et al. 2015; 

Dewhirst et al. 2016; di Virgilio et al. 2018; Markovska & Svensson 2019; English et 

al. (in review)).  

I suggest that another reason that Verified Position Correction (VPC) dead-reckoning 

has been little used relates to the apparent difficulty and poor accessibility of the 

analytical processes involved. With this in mind, the primary aim of this paper is to 

provide potential users with a clear, concise roadmap for implementing dead-

reckoning protocols. Specifically, I revisit the dead-reckoning methodology, from 

calibrating magnetometry data and deriving heading (tilt-compensated compass 

method), to VPC dead-reckoning within both terrestrial and fluid media. I provide 

simplistic conceptual explanations and mathematical protocols and describe the 

pitfalls within the procedure that can increase error. I also translate the relevant 

equations into complementary R code (https://www.r-project.org) throughout the 

text, with fully annotated scripts deposited in the supplementary information (SI) files 

and GitHub available at, https://github.com/Richard6195/Dead-reckoning-animal-

movements-in-R. 
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Table 1. Possible system errors that can affect the utility of animal dead-reckoning within the ‘tilt-compensated 

compass’ framework. ‘SI’ refers to Supplementary information. 

System 

error 

Reasons for 

error 

Underlying causes References Possible mitigation 

measures 

Derived 

Heading 

Errors in deriving 

static 

acceleration 

(postural) 

estimates 

During bouts of high centripetal (turning) 

acceleration. 

Free-falling behaviour  

(Shepard et al. 2008) 

(Noda et al. 2012) 

(Wilson et al. 2013a) 

(Williams et al. 2015) 

(McNarry et al. 2017) 

Gyro-integrated data (cf. Kaniewski 

& Kazubek 2009; Noda et al. 2014) 
 

Using Euler 

angles 

(angle of rotation 

about each axis 

of a given 

coordinate 

system) 

The orientation of the device with respect to 

the earth’s frame of reference (cf. SI.1: Text 

S2) can only be defined reasonably at angles 

less than perpendicular or less than a 180o 

inversion (dependent on pitch & roll equations 

used - cf. “VPC dead-reckoning procedure in R” 

section) from their longitudinal and lateral 

axes of ‘normal’ posture (otherwise, unstable 

measures arise from the Gimbal lock 

singularity complex (cf. Patonis et al. 2018), 

whilst x, y and z values can become inversed 

and/or represent different ‘surge’, ‘sway’ and 

‘heave’ planes) 

(Diebel 2006) 

(Han & Wang 2011) 

(Säll & Merkel 2011) 

(Pedley 2012) 

(Alaimo et al. 2013) 
 

Quaternion-estimated heading (cf. 

Valenti, Dryanovski & Xiao 2015; 

Feng et al. 2017; Chiella, Teixeira & 

Pereira 2019) 

Tag placement/ 

dislodgment 

In line with the above - range for accurate 

angular (pitch & roll) measures are restricted 

in one or more dimensions 

Heading will be biased according to the degree 

of displacement about the z-axis 

(Wilson et al. 2015) 

(Chapter 2 and 3) 
 

Ensure tag orientation is noted 

during deployment and retrieval 

operations (and subsequently used 

in corrections) 

Variations in the 

strength and 

declination of 

magnetic fields 

Animals that undertake long journeys 

(regionally/globally) 

Environmental and man-made magnetic noise 

(iron distortions) 

(Wiltschko 2012) 

Ensure at least one magnetic 

calibration procedure is carried out 

(see SI. 1: Text S3 for details) and 

apply magnetic declination offset 

to heading values where required 

Derived 

Speed 

Deviations of the 

DBA~speed 

relationship 

Load bearing 

Moving over a deformable substrate / 

changeable incline 

Changing gait 

Moving within fluid media 

Gliding/thermallng behaviour 

(Sequeira et al. 1995) 

(Kerdok et al. 2002) 

(Halsey et al. 2008) 

(Bidder, Qasem & Wilson 

2012) 

(Bidder et al. 2012) 

(Miwa et al. 2015) 

(Andrzejaczek et al. 2019) 

(Williams et al. 2015) 

 

Iteratively modulate the gradient 

and/or intercept within the 

DBA~speed linear regression 

according to environmental 

circumstance and mode of 

movement (cf. Bidder, Qasem & 

Wilson 2012). 

By-pass DBA (e.g., use 

speed/acoustic sensors, step/tail-

/wing beat frequency, vertical 

speed etc. (e.g., Laplanche, 

Marques & Thomas 2015))  

Both 

External forces 

(e.g., current 

vectors in air- 

and water flow) 

Decreases the signal-to-noise ratio of motion 

sensor data. 

Affects the relationship between an animal’s 

(longitudinal axis) direction of travel from their 

true vector of travel 

Some animals do not always move in the same 

direction as their anterior-posterior axis 

(Wilson et al. 1991) 

(Shiomi et al. 2008) 

(Chapman et al. 2011) 

(Wensveen, Thomas & 

Miller 2015) 
 

Smooth postural (and pre-

derivative data) / DBA estimates 

(cf. Wilson et al. 2020a) 

Incorporate current flow vectors 

within the dead-reckoning 

procedure 
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In addition to the above, I outline recent advances to the VPC dead-reckoning 

technique. For use in terrestrial environments, this includes implementing step 

counts as a distance measure, by-passing dynamic body acceleration (DBA) as a proxy 

of speed, and assessing the value of ‘reverse dead-reckoning’ (useful when VPs are 

concentrated to the latter end of an animal’s trajectory). For marine and aerial 

environments, I demonstrate the value of integrating tidal-/air current data with 

dead-reckoned vectors (hereafter termed ‘current integration’) to reduce errors 

attributed to drift (cf. Shiomi et al. 2008; Chapman et al. 2011). Across all three media 

of travel (land, water and air), I show the value of incorporating different speed 

coefficients according to behaviour types. In addition, I provide examples of the 

various methods by which VP data can be under-sampled (relevant for high-res GPS 

datasets) prior to correcting dead-reckoned tracks and discuss the scales at which 

users should consider VP correction (which depend on the details of species-specific 

movement and length of data acquisition).  

I specifically demonstrate the above using my R-functions (Gundog.Tracks being the 

primary function for dead-reckoning), providing examples of its utility across various 

scenarios. Lastly, I highlight the relevance of heading and distance correction factors 

(derived from the VPC procedure), which can also be used to interrogate the animal-

environment interaction and biases stemming from animal tag performance. To 

illustrate my approach, I used three model species (the African lion Panthera leo, the 

Magellanic penguin Spheniscus magellanicus and the Imperial cormorant Leucocarbo 

atriceps) that cover almost two orders of size magnitude in body mass and that 

operate in markedly different environments and at different scales of movement. To 

make this review more broadly applicable to researchers of varying dead-reckoning 

and R knowledge, I have departed from a traditional article format and instead, split 

this body of work into two distinct sections: Firstly, I provide an overview of the 

critical Gundog.Tracks function and provide a brief review of the conceptual 

workflow (“Implementation of Gundog.Tracks” section). With respect to this, I 

discuss the relevant strengths and limitations of the current dead-reckoning 

framework and the key considerations involved. Secondly, I detail each ‘potential’ 
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stage of the VPC dead-reckoning procedure with exemplar mathematical equations 

and R syntax (“VPC dead-reckoning procedure in R” section). 

 

Implementation of Gundog.Tracks 

 

I refer to mathematical equations as ‘Ex’ and R syntax as ‘Rx’, where ‘x’ is the reference 

number. To simplify concepts, I use base R syntax (wherever possible) and typically 

use vectors to demonstrate points made, though ‘df$’ directly before the variable 

name indexes data retained within data frame columns (assuming data frame is 

called ‘df’). I note, however, that more efficient code implementations are possible 

(e.g., data.table (Dowle et al. 2019) and lapply()) than presented here, especially for 

large data, but here wanted to make the code as readable as possible in this 

manuscript, especially to persons not familiar with complex coding. More efficient 

code will be implemented through updated GitHub versions of the functions. I 

expand on key concepts in SI. 1 and provide complimentary R scripts (outlined below) 

in SI. 2, 3, 4 and 5. I also supply an example data set of a Magellanic penguin walking 

through the colony on its way to the sea in SI. 6, which can be used to trial each of 

the provided R scripts and perform the full dead-reckoning process. SI’s 2:6 are 

deposited in GitHub (https://github.com/Richard6195/Dead-reckoning-animal-

movements-in-R). See SI. 1: Text S1 for the model species’ device set up and capture 

protocol and the glossary for a definition of dead-reckoning related terminology. 

The order and content of SI’s are listed below: 

➢ SI. 1) Methods expanded (.doc file). This contains: 
o Text S1. Device set up and capture protocol. 
o Text S2. The importance of having the correct coordinate system and 

axis alignment 
o Text S3. Magnetometer calibration, rotation correction and deriving 

yaw (heading) - Gundog.Compass() explained 
o Text S4. Step counts as a distance estimate - Gundog.Peaks() 

explained   
o Text S5. Time Data in R (POSIXct) 
o Text S6. VPC dead-reckoning – Gundog.Tracks() - explained 

https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R
https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R
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➢ SI 2) Gundog.Compass() (.R file) 
➢ SI 3) Gundog.Peaks() (.R file) 
➢ SI 4) Gundog.Tracks() (.R file) 
➢ SI 5) Step by step guide of using Gundog.Tracks (.R file) (to use in conjunction 

with below). 
➢ SI 6) Raw sensor and GPS data frame (.txt) of a penguin walking through the 

colony on its way to the sea. 
 

User functionality 

 

Gundog.Tracks is an all-encompassing dead-reckoning function that can be used to 

dead-reckon animal paths travelling terrestrially or through fluid media. Table 2 

details all the function’s input requirements/options.  

Reverse dead-reckoning 

 

Dead-reckoning backwards is useful when the start position is unknown, but the 

finishing coordinates are known. For example, central-place foraging, diving animals 

returning to land from the sea may not acquire a satellite fix for an appreciable period 

of time following submersion in water which can make determining the start position 

difficult. So, when VPs are skewed to the latter part of the track, it may be beneficial 

to start the iterative dead-reckoning process from that end. This involves reversing 

the order of data to be dead-reckoned and changing heading values by 180 degrees 

prior to dead-reckoning. 

 

Integrating current vectors 

 

Wind or ocean currents can change the relationship between an animal’s 

(longitudinal axis) bearing and speed of travel from their true vector of travel (Shiomi 

et al. 2008; Chapman et al. 2011). This drift can be incorporated within movement 

paths by advancing each iterated dead-reckoned vector according to the direction 

and speed of the current at that point in space and time (cf. Fig. 1).  
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DBA~speed derivation 

 

Given the approximate linear relationship between DBA (sensu Wilson et al. 2020a) 

and terrestrial animal speed [speed = (DBA • m) + c], DBA estimates can be 

multiplied by a gradient, m (the multiplicative coefficient) and summed with an 

intercept, c (the constant) to derive speed (Bidder et al. 2015; Dewhirst et al. 2016). 

These values are typically substituted with results from DBA~speed linear regression 

estimates, such as from treadmill tests or using GPS-derived speed (Bidder et al. 

2012; Dewhirst et al. 2016; Dunford et al. 2020; Chapter 4). The m-coefficient should 

be selected such that (uncorrected) dead-reckoned tracks accord with the apparent 

straight-line distance between VPs. Importantly, the DBA~speed relationship may be 

a function of terrain-type (e.g., sand vs concrete), animal state (e.g., weight variation) 

and mode of movement (e.g., running vs climbing) (cf. Bidder, Qasem & Wilson 2012). 

For instance, a condor gliding within a thermal would have high speeds, despite 

having negligible DBA, while an Ibex traversing across different substrate types and 

Figure 1. Schematic representation of a current flow vector (orange) (due to its speed and 

direction) being integrated to a given travel vector (blue). The x,y reflects the initial location of 

a dead-reckoned track, x2 and y2 are the resultant location following the integration of a travel 

vector (prior to current integration) and xxx and yyy advance these x2 and y2 values a step 

further in the direction of the current flow vector. The dashed lines indicate the magnitude of 

the x and y dimensions of travel (both pre- and post-current flow integration) and the green line 

reflects the actual travel vector.  
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gradients would impart varying magnitudes of acceleration that may scale non-

linearly with a change in stride gait. It may be of value, therefore, to iteratively change 

the supplied m (and possibly c) values between VPs according to behaviour and 

environment. The user may also opt to supply a ‘marked events’ (ME) vector (a 

marked event is a term I use that refers to a number of sequential (in time) data 

points within a dataset coded by integer values) to ensure dead-reckoned tracks are 

not advanced with non-animal movement behaviours. Within Gundog.Tracks, ME 

values of one or greater reflect progressive movement, and zero values code for 

stationary behaviour - dead-reckoned tracks are not advanced when ME = 0 

(irrespective of the allocated speed). For example, in its simplest form, ME could be 

filled with binary 0’s and 1’s as governed by a DBA threshold (labelling the ME vector 

0 in sleep and resting behaviour).  

 

Pre-determining speed 

 

For terrestrial species (specifically bipeds and quadrupeds), the interplay between 

peak heave acceleration amplitude and periodicity may be a useful indicator for the 

movement gait adopted (Wilson et al. 2020b), which may help decide the m-

coefficient in the DBA~speed relationship (Bidder et al. 2012). There may be times, 

however, when DBA is an unreliable proxy of terrestrial speed (cf. Bidder, Qasem & 

Wilson 2012). At this time, given that the stride cycle can be easily detected by cyclic 

peaks in a given acceleration channel (e.g., Rong et al. 2007; Willener et al. 2015; 

Wilson et al. 2018), peak periodicity (and amplitude) may be used as a proxy of 

distance moved by providing a distance per step estimate (assuming constant 

distance travelled between step gaits if only concerning step periodicity - cf. “VPC 

dead-reckoning procedure in R” section and SI.1: Text S4). 

DBA is a weak proxy of speed for many marine animals because overall body tissue 

density changes with depth when air is associated so that speed may be invariant of 

the movement kinematics (cf. Wilson et al. 1992; Aoki et al. 2011). DBA is also a weak 

proxy for flying animals that glide at constant velocity, use thermals or bank (cf. 



Animal dead-reckoning in R 

138 

 

Williams et al. 2017). One of the most common methods for determining animal 

speed in water is via devices that estimate flow or resistance rate (Wilson et al. 2007; 

Wilson et al. 2015; Altynay et al. 2019; Whitford & Klimley 2019). These often have 

appreciable limitations, with currents, biofouling, blockage and turbulence affecting 

performance (Altynay et al. 2019), and many of these issues are applicable to volant 

species, so that bird speed measures are typically restricted to GPS-derived estimates 

of ground speed (cf. Shamoun-Baranes et al. 2012). In the absence of a reliable 

motion sensor-derived speed proxy, previous reported approximated speed 

estimates according to movement modes and/or topological whereabouts can be 

used (cf. Miller et al. 2009). For example, for various diving animals such as penguins, 

a simple depth threshold may prove effective to differentiate between various 

previous reported modal ‘surface-resting‘ and ‘underwater-commuting’ speeds 

(Wilson 1985; Culik et al. 1991; Bethge et al. 1997; Wilson, Ropert-Coudert & Kato 

2002). For volant species, whilst wingbeat frequency or amplitude does not scale 

reliably with air speed (cf. Tobalske & Dial 1996), the interplay between both can 

decipher various flight modes (e.g., ‘cruising speed’ vs taking off/landing, Sato et al. 

2009; Williams et al. 2015). Furthermore, tail beat frequency has been shown to be a 

good predictor of swimming speed for various fish species (Scharold et al. 1989; 

Kawabe et al. 2003; Steinhausen, Steffensen & Andersen 2005). For diving animals, a 

proxy for horizontal speed can be obtained based on animal pitch and rate of change 

of depth (Miller et al. 2004; Wensveen, Thomas & Miller 2015). Specifically, the rate 

change of depth is divided by the tangent of the body pitch. 

 In any case, when high resolution VP data is available (e.g., 0.01-10 Hz GPS), for 

instance, during short-term trial deployments, speed estimates can be compared 

alongside those derived between VPs and approximated according to behaviour type 

(elucidated from, for example, accelerometery- (e.g., Laich et al. 2008; Chakravarty 

et al. 2019a), magnetometry- (e.g., Williams et al. 2017; Chakravarty et al. 2019b), 

depth- (e.g., Hochscheid 2014) or altitude- (e.g., Williams et al. 2015) data), and 

uncorrected dead-reckoned tracks can be compared alongside VPs to determine 

where biases may occur visually. Furthermore, the correction factors obtained from 
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the VPC process are viable comparators for detecting consistent under- or over-

estimations of speed and/or heading offsets (e.g., due to tag placement). Essentially, 

when empirical speed evidence is unavailable, the user can ad hoc iteratively adjust 

allocated speed values or the underlying DBA~speed coefficients until uncorrected 

dead-reckoned track segments scale proportionately to their aligned ground-truthed 

positions (pre-VPC). Within Gundog.Tracks, the user can modulate m, c and ME 

values to switch between pre-determined speed (m = 1, c = 0), DBA-derived speed (m 

> 0, c ≥ 0) and stationary behaviour (ME = 0). 

 

VPC procedure 

 

Ground-truthing dead-reckoned tracks typically involves the linear drift correction 

method (cf. Shiomi et al. 2008; Dewhirst et al. 2016), outlined in Constandache et al. 

(2010) & Symington and Trigoni (2012). In essence, a shift vector aligns the starting 

dead-reckoned path segment with the VP at time point one, after which the 

difference between the VP and dead-reckoned path segment at time point two is 

calculated to provide a correction vector that is applied linearly between time point 

one and time point two. This method follows the protocols outlined by Walker et al. 

(2015), whereby the underlying correction coefficients (hereafter termed ‘factors’) 

for both heading and (radial) distance are calculated - adjusting the length and 

heading at each dead-reckoned path segment until the end points align to each VP 

along the path. This process requires the trigonometric ‘as the crow flies’ Haversine 

formulae (Robusto 1957; Bullock 2007; Harja & Sarno 2018) which allows one to 

translate a distance across the curvature of the Earth’s surface (detailed within “VPC 

dead-reckoning procedure in R” section). The advantage of this method is that, whilst 

correction factors are constant between VPs, it does not assume that the dead-

reckoned path deviates linearly over time from the true path because (radial) 

distance is multiplied by the distance correction factor. This ensures that parts of 

track where the animal is determined to be stationary (e.g., ME = 0) are left unaltered. 

The function’s method of VPC, automatically handles NaN and Infinite (Inf) values 
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which can arise during the derivation of the distance correction factors (when no 

dead-reckoned movement occurs between successive VPs - detailed within the “VPC 

dead-reckoning procedure in R” Section). It is worth noting that even animals that 

travel in 3-D can be subject to the 2-D dead-reckoning formulae and Haversine 

computation of distance correction factors because we typically assume that both 

dead-reckoned- and VP positions are aligned in vertical space (assuming reliable 

pressure- [60]/ depth [13] data) and attempt to control for the horizontal component 

of speed (e.g., “VPC dead-reckoning procedure in R” section – E25,27) pre-correction. 

Although not covered here, I acknowledge that various state-space modelling 

techniques have also been developed to georeference dead-reckoned tracks (e.g., 

Laplanche, Marques & Thomas 2015; Wensveen, Thomas & Miller 2015). 

Table 2. Gundog.Tracks input fields and description of their role. Ref refers to the default value when no input is 

stated. Red shading represents required user inputs and green and orange shading reflect optional inputs (the 

latter change when using VPC). Note that if speed estimates (v) are directly inputted into the function then m and 

c (and possibly ME) defaults should not be changed. If either one of the VP.lon, VP.lat or method inputs is specified 

as NULL, then no VPC will occur.  

Function 

input 
Description Ref 

TS Timestamp - POSIXct object. No missing data (NA’s) permitted - 

h Heading (0
o
 to 360

o
) - No missing data (NA’s) permitted - 

v DBA (g or m/s
2
) or speed (m/s) - No missing data (NA’s) permitted - 

elv Elevation / depth data (m) - No missing data (NA’s) permitted 0 

p 
Pitch (o) – Only supply if user wants radial distance modulated according to pitch (cf. “VPC dead-reckoning procedure in 

R” section – E27). No missing data (NA’s) permitted 
NULL 

cs 
Current speed (m/s) - Supplied as a single value or vector/column of changeable values. NAs are replaced with the most 

recent non-NA prior to it (observations carried forward) 
NULL 

ch 
Current heading (0

o
 to 360

o
) -

 
Supplied as a single value or vector/column of changeable values. NAs are replaced with 

the most recent non-NA prior to it (observations carried forward) 
NULL 

m 
Multiplicative coefficient (gradient) - If speed (m/s) supplied for v, then m must be 1.  

Supplied as a single value or vector/column of changeable values 
1 

c 
Constant (y-intercept) – If speed supplied for v, then c must be 0 

Supplied as a single value or vector/column of changeable values 
0 
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ME 

Marked Events – 0 denotes periods of stationary behaviour and 1 (or any integer number > 0) denotes periods of 

traversing movement. ME overrides initial speed input / DBA-derived speed (calculated within the function itself). NA’s 

and character values are replaced with zero 

1 

lo Starting longitude coordinate to advance dead-reckon track from – Decimal format, e.g., 26.31989 0 

la Starting latitude coordinate to advance dead-reckon track from – Decimal format e.g., -06.11995 0 

VP.lon 
VP longitude coordinates – Decimal format. Missing relocation data expressed as either NA’s or 0’s. First (or last if 

reverse dead-reckoning) element/row allocated as lo within the function  
NULL 

VP.lat 
VP latitude coordinates – Decimal format. Missing relocation data expressed as either NA’s or 0’s. First (or last if reverse 

dead-reckoning) element/row allocated as la within the function 
NULL 

VP.ME 
TRUE = Supplied VPs removed at times when ME = 0 (relevant for high-res VP datasets, when location error is high during 

rest). Note, this does not remove the element/row allocated as lo/la  
FALSE 

method 

How the function under-samples VPs prior to correction (subsequent to the VP.ME subset, if set to TRUE) – 

“divide” = Fix kept every x (thresh) segments of supplied VPs, based on row number. The first and last fixes are always 

included 

“time” (s) = Fix kept every x (thresh) accumulated seconds (or the next available fix after a period of missing locational 

data (≥ thresh). The first and last fixes are always included 

“distance” = Fix kept every x (thresh) proportional segments of the total accumulated distance (m) between supplied 

VPs (using the stepping interval ‘dist.step’). The first and last fixes are always included  

“all” = Every supplied VP kept (irrespective of thresh value) 

NULL 

thresh 
Threshold - Degree of VP under-sampling prior to dead-reckon correction. The frequency of under sampling depends on 

the method selected 
1 

dist.step 

The stepping interval used for calculating distance between VPs, both within the VP summary distance metrics (see 

Table. 3) and within the ‘method = distance' VP under-sampling protocol prior to VPC. For example, dist.step = 5 

computes distance between every 5th VP (irrespective of the time difference between them) 

1 

bound 

TRUE = VPC dead-reckoning is bounded by the first and last VP present 

FALSE = VPC dead-reckoning is unbounded by the last available VP. The last dead-reckoned track segment inherits the 

previous correction factors 

 TRUE 

Outgoing 

TRUE = ‘normal’ dead-reckoning procedure 

FALSE = Reverse dead-reckoning. Note la and lo positions should now be the finishing longitude and latitude coordinates, 

respectively 

TRUE 

Plot 

FALSE = No summary plots 

TRUE = R graphics window initialised: VPC = 4 summary plots / no VPC = 1 summary plot (cf. top left) 

Top left) Uncorrected dead-reckoned track (blue) and VP track (red). If currents are supplied, the blue track has currents 

integrated and an additional green track with no current integration is plotted 

Top right) VPC dead-reckoned track (blue) in relation to VP track (red) 

Bottom left) Net error (m) between VPs and dead-reckoned positions (un-corrected = red and corrected = black). If 

currents are supplied, then uncorrected with no current integration = green and uncorrected with current integration = 

red 

Bottom right) VPC corrected dead-reckoned track 

TRUE 
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Default inputs for calculations and outputs 

 

Gundog.Tracks default input takes the form: 

Gundog.Tracks(TS, h, v, elv = 0, p = NULL, cs = NULL, ch = NULL, m = 1, c = 0, ME = 1, 

lo = 0, la = 0, VP.lon = NULL, VP.lat = NULL, VP.ME = FALSE, method = NULL, thresh 

= 1, dist.step = 1, bound = TRUE, Outgoing = TRUE, plot = FALSE) 

, with input modulated according to the animal in question and data available (see 

Fig. 2). 

Figure 2. Schematic diagram of the conceptual workflow involved when dead-reckoning using Gundog.Tracks – 
elaborated within section 3. Note Gundog.Peaks is a peak finder function that locates peaks based on local signal 
maxima and Gundog.Compass is a function to correct iron distortions from tri-axial magnetometry data and 
subsequently compute tilt-compensated heading. Both functions are elaborated within “VPC dead-reckoning procedure 
in R” section and SI. 1. The direction of workflow and key questions asked follow from green- (pre-processing and data 
alignment) to purple- (computing heading) sections, before splitting into blue- (air/water) and brown- (land) sections 
(computing speed) and culminating at the red section (final pre-dead reckoning checks/data formats & post-dead-
reckoning checks/plots) in conjunction with the process of using Gundog.Tracks in R (yellow). 
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The function outputs a data frame containing various descriptive columns which, 

depending on the input, includes (but is not limited to): 

• The correction factors used 

• Heading and radial distance estimates (both pre- and post-current integration 

and/or VPC) 

• Distance moved and speed estimates (both in 2-D and 3-D when 

elevation/depth data supplied) 

• Net error between dead-reckoned positions and VPs (both pre- and post-

correction)  

• Various VP summaries including notation of when VPs are present and which 

fixes were used in the correction process.  

 

When specified, 2-D summary plots demonstrating the relationship between dead-

reckoned positions and VPs (both pre- and post-current integration and/or VPC) are 

provided (e.g., Fig. 3). Table 3 details all the function’s available outputs (modulated 

according to input). Gundog.Tracks uses the na.locf() function from the ‘zoo’ package 

(Zeileis et al. 2020) and the slice() function from the ‘dplyr’ package (Jockers & 

Thalken 2020) (both are checked as dependencies and installed when required within 

this function). Output 2-D distance/speed estimates are calculated with the 

Haversine formula. When depth/elevation data is supplied (and changes between 

sets of coordinates) 3-D distance/speed estimates are calculated with a variant of the 

Euclidean Formula - converting x, y, z from polar to Cartesian coordinates, and 

incorporating the Earth's oblate spheroid (cf. World Geodetic System (WGS84)), via 

conversion from Geodetic- to Geocentric-latitude (cf. Cross 2019). 
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Figure 3. Dead-reckoned (DR) movement path of lion as provided by Gundog.Tracks summary plots (within the 
initialised R graphics window). This is an approximate two-week trajectory over an approximated total travel (DR) 
distance of > 142 km. (Pre-filtered) GPS (red) was sampled at 1 Hz and derived heading and speed measurements 
were sub-sampled to 1 Hz (initial acceleration/magnetometry data were recorded at 40 Hz). The VPC dead-
reckoned track (blue) was constructed using DBA~GPS-derived speed regression estimates and corrected approx. 
every 6 hours. Note, for dead-reckoning within fluid media, an additional green dead-reckoned track with current 
integration and its associated distance estimates are also plotted (pre-correction) when wind/ocean currents are 
supplied (cf. Fig. 6). Accumulated 3-D DR distance is shown when elevation/depth data is supplied.  

Gundog.Tracks(TS = df$TS, h = df$Heading.smoothed, v = df$VeDBA.smoothed, elv = 0, p = NULL, cs = NULL, ch = 

NULL, m = 3.18403, c=0.26749, ME = df$Marked.events, lo = head(df$GPS.lon[df$GPS.lon !=0 ], 1), la 

=head(df$GPS.lat[df$GPS.lat != 0],  1), VP.lon = df$GPS.lon, VP.lat = df$GPS.lat, VP.ME = TRUE, method = "time", 

thresh =  21600, dist.step = 5, bound = TRUE, Outgoing = TRUE, plot = TRUE) 
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Table 3. Gundog.Tracks data frame output names and their parameters. The shading of Ref refers to when the 
outputs occur; red shading = always, purple shading = when pitch data is supplied, green shading = when 
elevation/depth data is supplied, blue = when current data is supplied and orange = when the user opts to 
undertake VPC. The symbol * demonstrates that the metrics will be derived from VPC tracks when correction is 
initialised. Note that, subsequent to reverse dead-reckoning, the data frame is reverted (back to original time 
order), though as a result, observations appear to be carried backwards in some instances, indicated by ↑. Due to 
the nature of reverse dead-reckoning (cf. SI. 1: Text S6), some input fields are shifted forward one row following 
the initial inversion of data. As such, fields indicated by #, are one row further forward in time (this is important 
when relating Head.corr.factor and Heading.corr output to the equivalent (uncorrected) Heading output. 
However, when currents are integrated, the Head.corr.factor and Heading.corr outputs refer to 
Heading.current.integrated and these are synchronised row-wise. All heading related data are rotated back 180 
degrees following reverse dead-reckoning. 

Function output Description Ref 

Row.number Row number  

Timestamp Supplied timestamp - POSIXct object  

DR.seconds Accumulated time (s) based on the supplied timestamp  

Heading Supplied heading (0
o
 to 360

o
)  

Marked.events Supplied Marked events (or replicated default)  

DBA.or.speed Supplied DBA (g or m/s
2
) or speed (m/s)  

Pitch Supplied pitch (o)  

Radial.distance The calculated q-coefficient (prior to VPC) (see Sector 3 – E26) # 

Elevation Supplied elevation / depth (m)  

Elevation.diff 
Rate change of supplied elevation/depth (m/s) - (elevation difference / time difference 

between rows) 
 

Current.strength Supplied current speed (m/s)  

Current.heading Supplied current heading (0
o
 to 360

o
)  

Heading.current.integrated Updated heading (0
o
 to 360

o
) following addition of current vectors (prior to VPC) # 

Radial.distance.current.integrated Updated q-coefficient following addition of current vectors (prior to VPC) # 

DR.longitude Dead-reckoned longitude coordinates – Decimal format (prior to VPC)  

DR.latitude Dead-reckoned latitude coordinates – Decimal format (prior to VPC)  

DR.longitude.corr Corrected dead-reckoned longitude coordinates – Decimal format (post VPC)  

DR.latitude.corr Corrected dead-reckoned latitude coordinates – Decimal format (post VPC)  

Dist.corr.factor Distance correction factor (observations carried forward) ↑ # 

Head.corr.factor Heading correction factor (0
o
 to 360

o
) (observations carried forward) ↑ # 

Heading.corr Corrected heading (0
o
 to 360

o
) (post VPC)  # 

Radial.distance.corr Corrected q-coefficient (post VPC)  # 
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Distance.error.before.correction 
Distance (m) between uncorrected dead-reckoned positions and VPs (observations carried 

forward), subsequent to sub-sampling according to ME, if VP.ME = TRUE  
↑ 

Distance.error.after.correction 
Distance (m) between corrected dead-reckoned positions and VPs (observations carried 

forward), subsequent to sub-sampling according to ME, if VP.ME = TRUE 
↑ 

DR.distance.2D Two-dimensional distance moved (m) between dead-reckoned fixes * 

DR.distance.3D Three-dimensional distance moved (m) between dead-reckoned fixes * 

DR.cumulative.distance.2D Accumulated two-dimensional distance moved (m) between dead-reckoned fixes * 

DR.cumulative.distance.3D Accumulated three-dimensional distance moved (m) between dead-reckoned fixes * 

DR.distance.from.start.2D Two-dimensional (straight-line) distance moved (m) from starting position  * 

DR.distance.from.start.3D Three-dimensional (straight-line) distance moved (m) from the starting position * 

DR.speed.2D Horizontal speed (m/s) (DR.distance.2D / time difference between rows) * 

DR.speed.3D Total speed (m/s) (DR.distance.3D / time difference between rows) * 

VP.seconds Accumulated time (s) between supplied VPs (observations carried forward)   

VP.longitude 
Supplied VP longitude values (observations carried forward), sub-sampled according to ME, if 

VP.ME = TRUE  
↑ 

VP.latitude 
Supplied VP latitude values (observations carried forward), sub-sampled according to ME, if 

VP.ME = TRUE 
↑ 

VP.fix.present 
Denotes when a fix was present (1) or absent (0), subsequent to sub-sampling according to 

ME, if VP.ME = TRUE 
 

VP.used.to.correct Denotes which VPs were used to correct (1) and which VPs were ignored (0)  

Number.of.VPCs Increments by 1 each time a VP was used to correct (observations carried forward)   ↑ 

VP.thresh 
Replicates the thresh value set (or default) or warns the user that additional VP under-

sampling was required if ‘Inf’ values produced 
 

VP.distance.2D 
Two-dimensional distance moved (m) between VPs, subsequent to sub-sampling according 

to ME, if VP.ME = TRUE and using the stepping interval ‘dist.step’ 
 

VP.cumulative.distance.2D 
Accumulated two-dimensional distance moved (m) between VPs, subsequent to sub-

sampling according to ME, if VP.ME = TRUE and using the stepping interval ‘dist.step’  
 

 

The interplay between numerical precision in R, correction rate and net error can 

make more than one round of adjustment necessary for dead-reckoning fixes to 

accord exactly with ground-truthed locations (cf. Fig. 4a), particularly given that slight 

discrepancies accumulate over time. Each iteration of the correction process 

produces a tighter adherence between estimated and ground-truthed positions (cf. 

Walker et al. 2015). Typically, this does not involve more than two rounds of VPC to 

achieve a maximum net error of .01 m (the threshold used within Gundog.Tracks) 
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across a ca. (1 Hz) 2 week-long track. For an indication of processing times see SI. 1: 

Text S6: Fig. 1; for example, dead-reckoning a lion at 1 Hz for 7 (continuous) days 

(with plot = TRUE, dist.step = 5, VP.ME = TRUE, method = “time” and thresh = 3600) 

took 25 seconds to compute (on a MSI GP72 7RD Leopard laptop with intel core i7 

processor). Logically, the net error between VPs and (corrected) dead-reckoned 

positions is positively correlated to the time between corrections (cf. Fig. 4b, cf. 

Shiomi et al. 2008), although the rate of net error ‘drop-off’ is dependent on the 

accuracy of the initial (uncorrected) dead-reckoned track (cf. Fig. 5), itself, modulated 

by the extent of system errors (Table. 1) and initial user-defined track scaling.   

 

Within this process, people assume VPs to be perfect, however, across all VP 

determining methods, the rate and accuracy of data acquisition is highly moderated 

according to the permissiveness of the environment, such as high-density shrub or 

submersion in water (e.g., Handcock et al. 2009; Gužvica et al. 2014; Hofman et al. 

2019). GPS technology is arguably the most popular and widely used method for 

determining estimates of free-ranging animal movement (cf. Hebblewhite & Haydon 

2010; Latham et al. 2015; Patel et al. 2017). This is because inspection of data is less 

Figure 4. Net error between (GPS-corrected) dead-reckoned and GPS positions for a track from 5 African lions. (a) 
Maximum net error (m) between ground-truthed GPS and time-matched dead-reckoned positions after one 
iteration of correction, both as a function of GPS correction rate (one correction per 1- (red), 12- (green) and 24- 
(blue) hours) and underlying m-coefficient used to determine the DBA-derived speed. Data from 5 lions (individual 
denoted by symbol shape) over a period of 12 days. Note that the difference in error varies according to individual, 
initial speed estimate and the rate of correction. (b) Net error between dead-reckoned positions and all available 
GPS fixes, according to correction rate (data from the same 5 lions), subsequent to the iterative procedure of GPS 
correction (maximum distance between GPS fix used in correction procedure and according dead-reckoned 
position < .01 m). Boxes denote the median and 25-75 % interquartile range with a blue ‘loess’ smooth line. 
Whiskers extend to 1.5 * Interquartile range in both directions. 
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complex and time-consuming than some of the alternatives, whilst improvements in 

design and battery longevity have enabled GPS units to be attached to a plethora of 

animals (up to almost four orders of magnitude in size and mass, cf. Wensveen, 

Thomas & Miller 2015; Gibb et al. 2017) and record at high frequencies (e.g., ≥ 1 Hz, 

Swain, Wark & Bishop-Hurley 2008; Patel et al. 2017). Consequently, GPS units are 

unparalleled for providing such detailed quantification of space-use outside of the 

VPC dead-reckoning framework, and are the most utilised VPC method within 

(including the case study datasets within this study). However, locational accuracy 

(excepting precision error radius (cf. Ryan et al. 2004) and variable latency (cf. Bouvet 

& Garcia 2000)) can vary by a few metres or be appreciably more depending upon 

the propagation of signal quality and/or receiver reception capability (Frair et al. 

2010; Hofman et al. 2019; Péron et al. 2020). As such, VP error becomes more 

relevant at smaller scales of assessed movement and this is the reason why VP 

distance-moved estimates can go from being typically underestimated at low 

frequencies (due to linear interpolation of tortuous movements, Marcus Rowcliffe et 

al. 2012; Dewhirst et al. 2016; Poulin, Clermont & Berteaux 2021) to overestimated 

at high frequencies (Ryan et al. 2004; Chapter 4) and result in highly variable 

correction factors within the VPC dead-reckoning process (cf. Bidder et al. 2015). 

Indeed, judicious selection of VPC rate is critical in maximizing dead-reckoned track 

accuracy when relocation data is taken at fine spatial- and temporal resolutions 

(Dewhirst et al. 2016) (cf. Table. 2 – ‘VP.ME’, ‘method’, ‘thresh’ and ‘dist.step’ inputs 

to aid in modulating VPC rate). Likewise, the initial screening for location anomalies, 

across all VP methods and sampling intervals, is important to prevent incorrect 

distortion of tracks. Put simply, the higher the quality of VP data input, the greater 

the robustness of the VPC dead-reckoning output. 

 

It was suggested by Bidder et al. (2015), that the next stage in this work is to derive a 

standardised set of rules to maximise the value of both GPS (though this applies to 

any VP method) and dead-reckoned data in line with the questions being asked. I 

argue that consistent trends in the magnitude and/or bias of correction factors can 
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be used as a diagnostic tool for elucidating; (i) VP inaccuracy (e.g., possibly 

manifested by extremely high distance and heading correction factors), (ii) required 

alterations to the DBA~speed relationship (e.g., due to traversing across different 

substrates (e.g., Fig. 5)) and (iii) drift due to current vectors (cf. Wilson et al. 2007; 

Shiomi et al. 2008, e.g., Fig. 6).  

 

 The case-studies 

 

An important question to address is how often to do VP correction. This is obviously 

dependent upon the scales of movement elicited and the medium in/on which the 

animal in question navigates. Put simply, one should VP correct as little as possible, 

but as much as is necessary and I elaborate on this using my model species operating 

in different media. Within Fig. 5, the 1 Hz GPS track (blue) is plotted alongside two 

different dead-reckoned tracks; ((a) = uncorrected & (b) = corrected approx. every 30 

mins (method = “time”)) from twelve days of data acquisition of one lion. There were 

two variations in the method of scaling the dead-reckoned tracks; a track based on a 

Vectorial Dynamic Body Acceleration (VeDBA) threshold (red), and a track advanced 

based on periods of identified movement (purple). The m-coefficient and c-constant 

values were determined from the VeDBA~GPS speed relationship [Fig. 5, insert a1] 

and the Movement Verified Filtering (MVF) protocol (outlined in Chapter 4), was used 

to depict movement and anomalous GPS fixes (green) and to compute reasonable 

GPS-derived speed estimates. This case study demonstrates three important points. 

Firstly, on its own, dead-reckoning is subject to substantial drift and so VPC is 

essential for resetting this error. The more frequent a user corrects, the more 

accurate the dead reckon track becomes (relative to VPs), though VP error can also 

be substantial, especially during rest behaviour (see Chapter 4 for demonstration of 

this). For collared animals, heading measurements can become inaccurate at times 

of erratic collar roll (cf. Table. 1) and conjointly, GPS performance is also reduced 

when antenna position becomes compromised (e.g., Belant 2009).  
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Secondly, and in conjunction to the above, irrespective of VPC rate, the initial 

allocation of speed is important. Here, only dead-reckoning identified movement 

periods resulted in greater accuracy than just advancing tracks based on a VeDBA 

threshold. This is because even stationary behaviours can impart appreciable DBA 

(e.g., Graf et al. 2015) (beyond the threshold), and thus wrongly advance tracks. The 

false patterns of tortuosity created from this, whilst scaled and possibly rotated with 

VPC (cf. “VPC dead-reckoning procedure in R” section), remain incorporated to some 

degree. Whilst not illustrated here, advancing tracks without a VeDBA threshold 

would incur greater error still. Lastly, in this section, the distance correction factor 

was consistently high [Fig. 5, insert b1] as the lion travelled along the Botswana fence 

boundary, perhaps as a result of the animal walking on the compact dirt road at this 

location [Fig. 5, insert a2], altering the VeDBA~speed relationship. Such patterns in 

correction factors (whether consistent or highly variable) can highlight issues with 

the underlying track scaling. 

 

Where animals move in water or air, obtaining accurate estimates of speed is more 

difficult without the use of speed sensors. Naturally, the resolution and accuracy of 

initial dead-reckoning track scaling (pre-VPC) reduces when speed has to be 

approximated using constant values according to behaviour type (a strategy used 

here). There is a balance between initial dead-reckoning accuracy and required VPC. 

The lower the initial track accuracy, the more frequent it should be corrected, and 

additional drift caused by external-force vectors compounds this issue. Within Fig. 6, 

I illustrate the value that current correction, dependent on current information, 

brings to the VPC procedure if the derived track is to be superimposed on the 

environment. Here, one Magellanic penguin was dead-reckoned with and without 

tidal vector integration (instantaneous tidal currents were deduced from a 3-D 

numerical model validated in the region (Tonini & Palma 2017), at hourly, 1 km2 grid 

nodes). Commuting speed was allocated 2.1 m/s (cf. Wilson, Ropert-Coudert & Kato 

2002; Wilson et al. 2004) and changed according to “VPC dead-reckoning procedure 

in R” section - R41 . Surface period ‘rest’ speed were allocated 0.416 m/s (cf. Wilson 
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1985). VP accuracy improved considerably both pre- and post- VPC when currents 

were integrated which points to the value of acquiring current data if possible, 

particularly if VPs are sparse. Notably the combination of dead-reckoning and VP 

estimation of both movements relative to the ground and fluid, may detail specific 

orientation strategies used and thus can have value for assessing the ability of drift 

compensation in aquatic or volant animals (Shiomi et al. 2008; Chapman et al. 2011) 

 

For all my case study animals, GPS units were set to record at 1 Hz. With this temporal 

resolution (which is not always possible anyway due to the high-power requirements 

of the GPS), the value of dead-reckoning would seem questionable. However, dead-

reckoning can; (i) work when GPS cannot – such as when an animal is underwater 

(e.g., Elkaim et al. 2006) or in thick forest (cf. McClune 2018) and it can (ii) by-pass 

the issues arising from GPS inaccuracies such as ‘jitter’ (cf. Chapter 4), allowing for 

more accurate and finer scale delineations of movement. This is illustrated in Fig. 7, 

in which twelve outgoing (green) and incoming (blue) dead-reckoned trajectories 

from Magellanic penguins walking to and from their nest are plotted. Incoming tracks 

were reverse-dead-reckoned (Outgoing = FALSE, bound = FALSE), because the GPS 

did not always register fixes for minutes after birds left the water and because nest 

coordinates were known [Fig. 7, insert]. This explains why the blue tracks extend into 

the sea rather than encroach further inland when speed was over-estimated. What 

is evident is that even ‘accurate’ GPS paths are coarsely resolved due to precision 

errors. Indeed, even with little or no GPS error, this can greatly compromise 

movement estimates (cf. Ryan et al. 2004). Conversely, the precision of the dead-

reckoned tracks is only limited by the amount of initial motion sensor data under-

sampling (usually required in some capacity to make datasets more manageable and 

less computationally expensive). Such fine-scale estimates can therefore (with 

suitable VPC) allow users to define movement in space with unprecedented 

resolution. The benefit of this is that such resolution can resolve important metrics 

of movement, such as step duration (cf. Wilson et al. 2013b) and the number and 

extent of turns made (cf. Potts et al. 2018); useful parameters for investigating 
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navigation and foraging strategies according to environmental circumstance - 

though, such parameters are also useful without superimposing on the environment. 

Moreover, even dead-reckoned tracks that are sparsely corrected or never corrected 

can detail important movement-specific behaviours (Andrzejaczek et al. 2019), for 

example, circling behaviour (Narazaki et al. 2021). 

 

Ultimately, the higher the frequency at which dead-reckoning is undertaken, the 

better the resolution and detail of reconstructed tracks. However, accuracy only 

improves up to a point because extrapolated travel vectors (heading and speed 

estimates) nearly always comprise some degree of error (no matter how small) and 

so, with very high frequencies (> 1 Hz), more error is accumulated per unit time (cf. 

Wilson 2002; Wilson et al. 2007). In particular, when the temporal resolution of dead-

reckoning results in a spatial resolution dominated more by sensor noise than by 

‘actual’ movement of the animal in question, dead-reckoning accuracy will begin to 

decrease (at least pre-VPC). The extent of this will depend on the size, speed and 

lifestyle of the animal in question. For example, the benefits of dead-reckoning a lion 

at 40 Hz rather than 1 Hz are questionable (how often does a lion turn substantially 

within a second?), particularly given the additional computation time (cf. SI.1: Text 

S6) and possible error (relative to VPs). As such, and akin with VP under-sampling, 

choice of under-sampling data to be dead-reckoned may have implications to the 

resultant accuracy, and this will be moderated according to the scales (and media) of 

movement elicited by the animal in question. Beyond this, Fig. 7 also demonstrates 

the importance of initial track advancement, with three variants used, including step 

counts instead of DBA.  

 

Finally, obtaining accurate estimates of altitude or depth allow users to plot and 

investigate scales of continuous movement in three dimensions and at times when 

VP success rate fails completely (such as underwater). I demonstrate this using the 

Imperial cormorant in Fig. 8. After visual inspection of data, uncorrected tracks were 

scaled according to the following speeds: periods of flying allocated 12 m/s, surface 
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‘rest’ periods allocated 0.1 m/s, bottom phase of dives allocated 0.4 m/s and descent 

and ascent speeds modulated according to “VPC dead-reckoning procedure in R” 

section - E25. Note that elevation was not resolved during flying periods (although 

flying periods were dead-reckoned). Regardless of the current limitations, the VPC 

dead-reckoning procedure represents a substantial advance for resolving, and 

thereby allowing investigation of, continuous, fine-scale, free-ranging 2- or 3-D 

space-use with all its underlying scales of tortuosity and distances moved (e.g., Fig. 7 

& 8). 
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Figure 5. Dead reckoned lion track in relation to GPS positions ((a) = uncorrected & (b) = corrected – 
approx. every 30 mins (black circles)). The start of the track (lo and la) is denoted with a black x. 
Three corresponding sections of each track are denoted with the same number and the finishing 
positions denoted with a circle (coloured according to its reference track). Note that the horizontal 
straight-line sections (cf. yellow arrow) result from the lion following the Botswana boundary fence 
(which this individual eventually crossed). Mean net error between (corrected) dead-reckoned 
positions and all available GPS fixes was higher for tracks resolved using a VeDBA threshold (0.11 
g), than for tracks advanced only at times of depicted movement using the MVF method. 
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Figure 6. One Magellanic penguin’s dead-reckoned foraging trip at sea, lasting approximately 9 hours (yellow 
arrow denotes the trajectory direction over time. Black track = GPS. Fifteen corrections (black circles) were made 
(method = “divide”). For comparison, the grey dotted track is the GPS corrected dead-reckoned track with current 
integration approx. every 1 min (where possible - method = “time”) (a). Note the difference of net error between 
dead-reckoned positions and all available GPS fixes across the various tracks [insert = grey track] (b). Both 
uncorrected and corrected dead-reckoned tracks had less error after current integration (black arrows vector 
every 5 mins) and this was reflected in the direction and magnitude of heading correction factors required per 
unit time (c). Heading correction factors obtained from the track corrected approx. every 1 min; the colour of the 
scale bar indicates the extent of the heading correction factor required). 
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Figure 7. Twelve outgoing (green) and incoming (blue) dead-reckoned trajectories from Magellanic penguins 
walking to and from their nest. Three variants of track advancement were used; (a) A VeDBA threshold (0.1 g) and 
constant m-coefficient (1.4) (b), depicted movement periods using the LoCoD method to identify steps (cf. Wilson 
et al. 2018) and constant m-coefficient (1.4) and (c) depicted individual steps within depicted movement periods, 
from which a constant distance estimate (0.16 m) was multiplied by step frequency (x ̄no. steps/s) (full details 
within SI. 1: Text S4) (c). Note that the accuracy with respect to the radial distance can be evaluated by examining 
the track stops in relation to the shore-line. DBA-derived speed estimates were typically overestimated for 
incoming tracks, due to the birds being heavier (and thus impart greater DBA per stide cycle) after foraing. Tracks 
(from (c)) were GPS-corrected (d) (method = “distance”, dist.step = 5, VP.ME = TRUE, thresh = between 8-15 
(depending on track length) approx. every 50 m). A portion of the GPS-corrected dead-reckoned tracks (bottom 
panel) are magnified (2 iterations) to show the difference in resolution of movement tortuosity, between GPS and 
dead-reckoned tracks. 
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Figure 8. GPS-corrected dead-reckoned tracks of Imperial cormorants foraging at sea; (a) 15 birds (blue = male, 
red = female). (b) shows one of these tracks illustrated in 3-D. Note gaps between dives are either associated 
with current drift, while the bird is resting at the sea surface, or periods of flight. (c) and (d) show the descent, 
bottom phase and ascent of a given dive in both 2-D (c) and 3-D, respectively.  
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VPC dead-reckoning procedure in R 

 

Preparing the three axes of rotation for derivation of heading 

 

The tilt-compensated compass method is a well-known practice for deriving heading 

(e.g., Li, Li & Wang 2009; Säll & Merkel 2011; Pedley 2012). Correct coordinate system 

axis alignment and suitable calibration of tri-axial magnetometry data (cf. Kunčar, 

Sysel & Urbánek 2016) are crucial pre-processors, without which, heading estimates 

would likely incorporate substantial error (cf. Pedley 2012; Kunčar, Sysel & Urbánek 

2016). The tilt-compensated compass method described below (following the 

framework outlined by Pedley (2012)), requires the aerospace (x-North, y-East, z-

Down – ‘right-handed’) coordinate system, or ‘NED’ (cf. SI. 1: Text S2: Fig. S1). I 

provide examples of axis alignment, outline the importance of transforming between 

coordinate frames (relative to the Earths fixed frame) and recommend a universal 

configuration calibration procedure to aid correct axis alignment within SI. 1: Text S2.  

Multiple mathematically sophisticated algorithms have been developed to correct 

distortions from each magnetometer channel’s output (e.g., Sodhi et al. 2008; 

Renaudin, Afzal & Lachapelle 2010; Ozyagcilar 2012; Tabatabaei, Gluhak & Tafazolli 

2013; Kunčar, Sysel & Urbánek 2016). I provide an annotated R script - 

Gundog.Compass (SI.. 2) that corrects both soft and hard iron distortions from tri-axial 

magnetometry data and subsequently computes tilt-compensated heading (0o to 

360o). Within this function, there are two main methods of correction to choose from, 

based on the mathematical protocols outlined by Vitali (2016) - least-square error 

approximation (constructing an ellipsoid rotation matrix) and Winer (2017) - scale 

biases with simple orthogonal rescaling (avoiding matrices altogether). I expand on 

this user-defined functionality, as well as outlining the causes of soft and hard iron 

distortions and the initial calibration procedure required to correct such distortions 

within SI. 1: Text S3. 
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Tilt-compensated heading derivation 

 

Device orientation is expressed in terms of a sequence of Euler angle (roll (Φ), pitch 

(θ), yaw (Ψ)) rotations about the x-,y- and z-axes, respectively, relative to the 

(inertial) Earths fixed frame of reference (e.g., Earth-Centre, Earth-Fixed (ECEF) 

system, Premerlani & Bizard 2009). Being a vector field sensor with two degrees of 

rotational freedom, accelerometers are insensitive to rotations about the gravity 

vector and thus discerning heading requires the arctangent of the ratio between the 

x- and y-orthogonal magnetometer measurements (Grygorenko 2011). For the 

correct computation of heading, these two channels need to be aligned parallel to 

the earth’s surface. This is achieved by correcting any orientation (de-rotation) 

according to pitch and roll angles (postural offsets) which can be deduced from 

acceleration. These angles are typically approximated by deriving gravity-based 

(static) acceleration (see Shepard et al. 2008; Gleiss, Wilson & Shepard 2011) from 

each channel by employing one of four approaches using; (i) a running mean (e.g., 

Shepard et al. 2008; Chapter 2), (ii) a Fast-Fourier transformation (e.g., Choi et al. 

2014), (iii) a high-pass filter (e.g., Sato et al. 2003) or (iv) a Kalman-filter (e.g., Li & 

Wang 2013). Here, I use a computationally simple running mean over 2 seconds 

(Shepard et al. 2008) (E1). 

 

𝐺𝑥,𝑦,𝑧 =
1

𝑤
 ∑ 𝐴𝑥,𝑦,𝑧

𝑖+ 
𝑤

2

𝑗=𝑖− 
𝑤

2

                                              (E1) 

 

where, w is an integer specifying the window size and 𝐺𝑥,𝑦,𝑧  and 𝐴𝑥,𝑦,𝑧  represents the 

smoothed and raw components of acceleration, respectively. In the absence of linear 

(dynamic) acceleration (see Gleiss, Wilson & Shepard 2011; Pedley 2013), values of 

𝐺𝑥,𝑦,𝑧  reflect the device orientation with respect to the earth’s reference frame 

(though see Table. 1), reading approx. +1 g when orientated directly towards the 

gravity vector (down), -1 g against the gravity vector (up) and 0 g at perpendicular to 

it (horizontal). In R, the ‘zoo’ package (Zeileis et al. 2020) provides useful wrappers to 

apply arithmetic operations in a rolling fashion (R1:4). 
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install.packages("zoo") ; library(zoo)                                 (R1)
Gx = rollapply(Ax, width=w, FUN=mean, align="center", fill="extend")   (R2) 
Gy = rollapply(Ay, width=w, FUN=mean, align="center", fill="extend")   (R3) 
Gz = rollapply(Az, width=w, FUN=mean, align="center", fill="extend")   (R4) 
 

here, w should be replaced with the window width of choice (e.g., for 20 Hz data and 

a smoothing of 2 seconds required, replace w with 40). I use a centre-aligned index 

(compared to the rolling window of observations), with "extend" to indicate 

repetition of the leftmost or rightmost non-NA value (though fill can equally be set 

as NA, 0, etc.). 

Importantly, for correct trigonometric formulae output within the tilt-compensated 

compass method, the vectorial sum of static acceleration (𝐺𝑥,𝑦,𝑧) and calibrated 

magnetometry (𝑀𝑥,𝑦,𝑧) measurements across all three spatial-dimensions must be 

normalised (to a unit vector) with a scaled magnitude (radius) of one (E2:3, R5:10). It 

was previously demonstrated that, for fast moving animals, high frequency of body 

posture changes could cause discrepancy between static acceleration data and 

magnetism data, which could consequently affect heading estimation (Shiomi et al. 

2010). Although this effect would not change general shapes of movement paths, I 

suggest that prior to the normalisation process (and magnetic calibration procedure), 

it may be of value to initially smooth out (see E1, R1:4) small deviations within 

magnetometry data, both to avoid this type of error and to reduce the magnitude of 

anomalous spikes in magnetic inference. I used a smoothing window of 10 events for 

the 40 Hz datasets used in this study. 

 

[

𝑁𝐺𝑥

𝑁𝐺𝑦

𝑁𝐺𝑧

] =  
1

√ 𝐺𝑥 •  𝐺𝑥  + 𝐺𝑦 •  𝐺𝑦  + 𝐺𝑧 •  𝐺𝑧 
• [

𝐺𝑥

𝐺𝑦

𝐺𝑧

] (E2) [
𝑁𝑀𝑥

𝑁𝑀𝑦

𝑁𝑀𝑧

] =  
1

√ 𝑀𝑥 •  𝑀𝑥  + 𝑀𝑦 •  𝑀𝑦 + 𝑀𝑧 •  𝑀𝑧  
• [

𝑀𝑥

𝑀𝑦

𝑀𝑧

]        (E3)   

NGx = Gx / sqrt(Gx^2 + Gy^2 + Gz^2)                                    (R5) 

NGy = Gy / sqrt(Gx^2 + Gy^2 + Gz^2)                                    (R6) 
NGz = Gz / sqrt(Gx^2 + Gy^2 + Gz^2)                                    (R7) 
NMx = Mx / sqrt(Mx^2 + My^2 + Mz^2)                                    (R8) 
NMy = My / sqrt(Mx^2 + My^2 + Mz^2)                                    (R9) 
NMz = Mz / sqrt(Mx^2 + My^2 + Mz^2)                                    (R10) 
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Depending on deployment position, the device-carried NED coordinate frame (the 

x,y,z axes) may not correspond with the animal’s body-carried NED frame. When this 

occurs, prior to deriving animal orientation, the normalised gravity and magnetic 

vectors are required to be corrected so that their measurements are expressed 

relative to the body frame of the animal (Johnson & Tyack 2003). This requires three 

rotation sequences, using 3 by 3 rotation matrices (E4:6) and involves two 

intermediate frames. The aerospace sequence used here is as follows: 

 

1) A right-handed rotation (𝐶), about the z-axis axis of the device’s frame (𝐷), 

through angle Ψ (E4), to get to the first intermediate frame (F1) 

2) A right-handed rotation (𝐶) about the y-axis at 𝐹1, through angle θ (E5), to get 

to the second intermediate frame (𝐹2) 

3) A right-handed rotation (𝐶) about the x-axis at 𝐹2, through angle Φ (E6), to get 

to the animal’s body frame (𝐵). 

 

  

𝐶𝐹1/𝐷
(𝛹) = [

𝑐𝑜𝑠(𝛹) 𝑠𝑖𝑛(𝛹) 0
−𝑠𝑖𝑛(𝛹) 𝑐𝑜𝑠(𝛹) 0

0 0 1

]                                                                                                             (E4)   

𝐶𝐹2/𝐹1
(𝜃) = [

𝑐𝑜𝑠(𝜃) 0 −𝑠𝑖𝑛(𝜃)
0 1 0

𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)
]                                                                                                              (E5)   

𝐶𝐵/𝐹2
(𝛷) = [

1 0 0
0 𝑐𝑜𝑠(𝛷) 𝑠𝑖𝑛(𝛷)

0 −𝑠𝑖𝑛(𝛷) 𝑐𝑜𝑠(𝛷)
]                                                                                                             (E6)   

 

Note the right-handed rule of rotation; a positive Ψ reflects a clockwise rotation of 

the anterior-posterior axis (relative to North), a positive θ reflects a nose-upward tilt 

of this axis and a positive Φ reflects a bank angle tilt to the right about this axis. 

Reversing the direction of two axes causes a 180o inversion about the remaining axis 

and interchanging two axes (e.g., x with y) or reversing the direction of one or all 

three axes reverses the ‘handedness’ of rotation (right-handed – ‘counter-clockwise’ 

vs left-handed – ‘clockwise’ (when viewed from the tip of the z-axis)). Rotation 

matrices are orthogonal (unitary), with every row and column being linearly 
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independent and normal to every other row and column. The consequence of this is 

that the inverse of a rotation matrix is its transpose (Evans 2001) (which essentially 

reverses the direction of rotation, and within (E4:6), this is achieved by negating the 

sign of the sines). Importantly, because rotation matrices are not symmetric, the 

order of matrix multiplication is important (Johnson & Tyack 2003 - otherwise Euler 

angles are without meaning for describing orientation). The product of the 

conventionally used aerospace rotation sequence outlined above (to get from the tag 

frame to the animal’s body frame) can be expressed as (E7). 

 

𝐶𝐵/𝐷
(𝛷,𝜃,𝛹) = 𝐶𝐵/𝐹2

(𝛷) • 𝐶𝐹2/𝐹1
(𝜃) • 𝐶𝐹1/𝐷

(𝛹)                                                                                                (E7)   

 

When matrix multiplied out, this yields (E8) - often referred to as a Direction Cosine 

Matrix (DCM). The composition of this DCM varies according the (six possible) 

orderings of the three rotation matrices (E4:6) and the direction of intended rotation 

relative to the direction of measured g within the NED system (see SI.1: Text S2). 

 

𝐶𝐵/𝐷
(𝛷,𝜃,𝛹) =

 [

𝑐𝑜𝑠(𝛹) • 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛹) • 𝑐𝑜𝑠(𝜃) − 𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝛹) • 𝑠𝑖𝑛(𝜃) • 𝑠𝑖𝑛(𝛷) − 𝑠𝑖𝑛(𝛹) • 𝑐𝑜𝑠(𝛷)  𝑠𝑖𝑛(𝛹) • 𝑠𝑖𝑛(𝜃) • 𝑠𝑖𝑛(𝛷) + 𝑐𝑜𝑠(𝛹) • 𝑐𝑜𝑠(𝛷) 𝑐𝑜𝑠(𝜃) • 𝑠𝑖𝑛(𝛷) 

𝑐𝑜𝑠(𝛹) • 𝑠𝑖𝑛(𝜃) •  𝑐𝑜𝑠(𝛷) + 𝑠𝑖𝑛(𝛹) • 𝑠𝑖𝑛(𝛷)  𝑠𝑖𝑛(𝛹) • 𝑠𝑖𝑛(𝜃) • 𝑐𝑜𝑠(𝛷) − 𝑐𝑜𝑠(𝛹) • 𝑠𝑖𝑛(𝛷) 𝑐𝑜𝑠(𝜃) • 𝑐𝑜𝑠(𝛷)
]             

 

Note the left-handed rule of reading the vectorial notation of ordered rotations, for 

example 𝐶𝐵/𝐷
(Φ,θ,Ψ) means going from the device frame to the animal’s body frame, 

by first rotating about the z-axis (though angle Ψ), followed by the y-axis (though 

angle θ) and then lastly the x-axis (though angle Φ). The device offset can be 

estimated from direct observation or deduced using photographs or from the tag 

data itself. For example, assuming that ‘normal animal posture’ has no pitch and roll 

angle offset, then a tri-axial spherical plot of static acceleration (Wilson et al. 2016) 

would show a densely populated band of datapoints at the cross-sectional origin of 0 

g about the x- and y-axes, respectively, when the tag and body NED axes are in 

alignment. 

 

 (E8) 
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𝑁𝐺𝑥,𝑦,𝑧 and 𝑁𝑀𝑥,𝑦,𝑧  are pre-multiplied by the DCM to compensate for offset. 

However, device offset is often parametrised by roll, pitch and/or yaw angles relative 

to the animal’s body frame and thus, the device actually requires de-rotation 

(switching the ‘handedness’ of rotation) according to these values. For example, a 

+45o yaw offset requires an inverse rotation about the z-axis by -45o, rather than a 

further +45o rotation. This simply involves taking the transpose of the DCM (E9), which 

is the same as the transpose of each of the individual rotation matrices (E10:11). 

 

𝐶𝐵/𝐷
(Φ,θ,Ψ)𝑇 =

 [

cos(Ψ) •  cos(θ) cos(Ψ) • sin(θ) • sin(Φ) − sin(Ψ) • cos(Φ) cos(Ψ) • sin(θ) • cos(Φ) +  sin(Ψ) • sin(Φ)  

sin(Ψ) • cos(θ)  sin(Ψ) • sin(θ) • sin(Φ) + cos(Ψ) • cos(Φ)   sin(Ψ)• sin(𝜃) • cos(Φ) − cos(Ψ) • sin(Φ)  

− sin(θ) cos(θ) • sin(Φ) cos(θ) • cos(Φ)
]   

  

[

𝑁𝐺𝑏𝑥

𝑁𝐺𝑏𝑦

𝑁𝐺𝑏𝑥

]

𝐵

= 𝐶𝐵/𝐹2

(Φ)𝑇 • 𝐶𝐹2/𝐹1

(θ)𝑇 • 𝐶𝐹1/𝐷
(Ψ)𝑇 •   [

𝑁𝐺𝑥

𝑁𝐺𝑦

𝑁𝐺𝑥

]

𝐷

                                              (E10) 

[

𝑁𝑀𝑏𝑥

𝑁𝑀𝑏𝑦

𝑁𝑀𝑏𝑥

]

𝐵

= 𝐶𝐵/𝐹2

(Φ)𝑇 • 𝐶𝐹2/𝐹1

(θ)𝑇 • 𝐶𝐹1/𝐷
(Ψ)𝑇 • [

𝑁𝑀𝑥

𝑁𝑀𝑦

𝑁𝑀𝑥

]

𝐷

                                                  (E11) 

 

where, 𝑇 is the matrix transpose and resultant 𝑁𝐺𝑏𝑥,𝑦,𝑧  and 𝑁𝑀𝑏𝑥,𝑦,𝑧  vectors are 

expressed in the animal’s body-carried NED frame. The input of these gravity and 

magnetic vectors are supplied as 3 by 1 column matrices for true matrix 

multiplication, and when expanding out (E11), this results in (E12) (substituting 𝑁𝑀 

with 𝑁𝐺 expands out (E10)). 

 

[

𝑁𝑀𝑏𝑥

𝑁𝑀𝑏𝑦

𝑁𝑀𝑏𝑥

]

𝐵

=  [

NMx • cos(Ψ) • cos(θ) + NMy • (cos(Ψ) • sin(θ) • sin(Φ) − sin(Ψ) • cos(Φ)) + NMz • (cos(Ψ) • sin(θ) • cos(Φ) + sin(Ψ) • sin(Φ))

NMx • sin(Ψ) • cos(θ) +  NMy • (sin(Ψ) • sin(θ) • sin(Φ) + cos(Ψ) • cos(Φ))+ NMz • (sin(Ψ) • 𝑠𝑖𝑛(𝜃) • sin(Φ) − cos(Ψ) • sin(Φ))

−NMx • sin(θ) + NMy • cos(θ) • sin(Φ) + NMz • cos(θ) • cos (Φ)

]

𝐷

 

 

In R then, the alignment of device to body axes for both gravity and magnetic vectors 

can be performed using the following procedure (R11:22). 

 

 (E9) 

 (E12) 
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RollSinAngle = sin(Roll * pi/180)                                                                                              (R11) 
RollCosAngle = cos(Roll * pi/180)                                      (R12) 
PitchSinAngle = sin(Pitch * pi/180)                                    (R13) 
PitchCosAngle = cos(Pitch * pi/180)                                      (R14) 
YawSinAngle = sin(Yaw * pi/180)                                                                                                          (R15) 
YawCosAngle = cos(Yaw * pi/180)                                                                                                         (R16) 
NGbx =  NGx * YawCosAngle * PitchCosAngle  + NGy * (YawCosAngle *          (R17) 

PitchSinAngle * RollSinAngle - YawSinAngle * RollCosAngle) + NGz *        
(YawCosAngle * PitchSinAngle * RollCosAngle + YawSinAngle * RollSinAngle)  
NGby =  NGx * YawSinAngle * PitchCosAngle + NGy * (YawSinAngle *       (R18) 
PitchSinAngle * RollSinAngle + YawCosAngle * RollCosAngle) + NGz *        
(YawSinAngle * PitchSinAngle * RollSinAngle - YawCosAngle * RollSinAngle)  
NGbz =  -NGx * PitchSinAngle  + NGy * PitchCosAngle * RollSinAngle +   (R19) 
NGz  * PitchCosAngle * RollCosAngle 
NMbx =  NMx * YawCosAngle * PitchCosAngle + NMy * (YawCosAngle *       (R20) 
PitchSinAngle * RollSinAngle - YawSinAngle * RollCosAngle) + NMz *        
(YawCosAngle * PitchSinAngle * RollCosAngle +  YawSinAngle * RollSinAngle)
NMby =  NMx * YawSinAngle * PitchCosAngle + NMy * (YawSinAngle *       (R21)
PitchSinAngle * RollSinAngle + YawCosAngle * RollCosAngle) + NMz *        
(YawSinAngle * PitchSinAngle * RollSinAngle - YawCosAngle * RollSinAngle) 
NMbz =  -NMx * PitchSinAngle + NMy * PitchCosAngle * RollSinAngle +    (R22)
NMz * PitchCosAngle * RollCosAngle 

 

here, Roll, Pitch and Yaw inputs denote the angular offset of the device, relative to 

the animal body frame. Note, standard trigonometric functions operate in radians, 

not degrees. In base R, π = pi. Multiplying values by pi/180 coverts degrees into 

radians, whilst multiplying values by 180/pi does the reverse. This rotation correction 

procedure is implemented within Gundog.Compass when pitch, roll and/or yaw 

offsets are supplied (see SI.1: Text S3). 

 

Following the alignment of device and body axes, pitch and roll of the animal are 

calculated from the DCM, and because there are multiple variations in the order that 

rotation sequences can be composed and applied, there are also different valid 

equations that output different pitch and roll angle estimates, for equivalent static 

acceleration input. The convention is to use formulae that have no dependence on 

yaw rotation and restrict either the pitch or the roll angles within the range -90° to 

+90° (but not both), with the other axis of rotation able to lie between -180o and 180o, 

thereby eliminating duplicate solutions at multiples of 360°. Multiplying (E8) by the 

measured Earth’s gravitational field vector (+1 g when initially aligned downwards 

along the z-axis) simplifies down to (E13). The accelerometer output for this aerospace 

 (E13) 
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rotation sequence is thus only dependent on the roll and pitch angles which can be 

solved (E14:15), allowing roll angles the greater freedom (Pedley 2013). This is relevant 

for studies using collar-mounted tags, whereby collar may roll > 90o in either direction 

from default orientation.  

 

 𝑁𝐺𝑏𝑥𝑦𝑧 [
0
0
1
] =

[

𝑐𝑜𝑠(𝛹) • 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛹) • 𝑐𝑜𝑠(𝜃) − 𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝛹) • 𝑠𝑖𝑛(𝜃) • 𝑠𝑖𝑛(𝛷) −  𝑠𝑖𝑛(𝛹) • 𝑐𝑜𝑠(𝛷)  𝑠𝑖𝑛(𝛹) • 𝑠𝑖𝑛(𝜃) • 𝑠𝑖𝑛(𝛷) + 𝑐𝑜𝑠(𝛹) • 𝑐𝑜𝑠(𝛷) 𝑐𝑜𝑠(𝜃) • 𝑠𝑖𝑛(𝛷) 

𝑐𝑜𝑠(𝛹) • 𝑠𝑖𝑛(𝜃) •  𝑐𝑜𝑠(𝛷) +  𝑠𝑖𝑛(𝛹) • 𝑠𝑖𝑛(𝛷)  𝑠𝑖𝑛(𝛹) • 𝑠𝑖𝑛(𝜃) • 𝑐𝑜𝑠(𝛷) − 𝑐𝑜𝑠(𝛹) • 𝑠𝑖𝑛(𝛷) 𝑐𝑜𝑠(𝜃) • 𝑐𝑜𝑠(𝛷)
] •

[
0
0
1
]  =  [

− 𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃) • 𝑠𝑖𝑛(𝛷)

𝑐𝑜𝑠(𝜃) • 𝑐𝑜𝑠(𝛷)
]                           

                                                                                                                                                                            

𝑡𝑎𝑛 𝜃𝑥𝑦𝑧 = (
−𝑁𝐺𝑏𝑥

√𝑁𝐺𝑏𝑦2  + 𝑁𝐺𝑏𝑧2

) ⇒ 𝜃 = 𝑎𝑡𝑎𝑛2(−𝑁𝐺𝑏𝑥 , √(𝑁𝐺𝑏𝑦   •  𝑁𝐺𝑏𝑦  + 𝑁𝐺𝑏𝑧  •  𝑁𝐺𝑏𝑧) ) •  
180

𝜋
            

 

𝑡𝑎𝑛𝛷𝑥𝑦𝑧 = (
𝑁𝐺𝑏𝑦

𝑁𝐺𝑏𝑧
) ⇒ 𝛷 =  𝑎𝑡𝑎𝑛2(𝑁𝐺𝑏𝑦 ,  𝑁𝐺𝑏𝑧) •  

180

𝜋
                                                                                          (E15) 

 

The equation for roll (E15) however, has a region of instability at obtuse pitch angles 

(e.g., for NED systems, the x-axis points directly up or down, with respect to the 

Earth’s frame of reference). Whilst there is no ‘gold standard’ solution to this problem 

of singularity (using Euler angles), an attractive circumvention (detailed within 

(Pedley 2013)) is to modify (E15) and add a very small percentage (𝜇) of the 𝑁𝐺𝑏𝑥 

reading into the denominator, preventing it ever being zero and thus driving roll 

angles to zero when pitch approaches -/+ 90o for stability (E16).  

 

𝛷 = 𝑎𝑡𝑎𝑛2(𝑁𝐺𝑏𝑦 , 𝑠𝑖𝑔𝑛(𝑁𝐺𝑏𝑧) • √(𝑁𝐺𝑏𝑧   •  𝑁𝐺𝑏𝑧  +  𝜇 •  𝑁𝐺𝑏𝑥   •  𝑁𝐺𝑏𝑥) ) •  
180

𝜋
                   (E16)                                                

 

where, 𝑠𝑖𝑔𝑛(𝑁𝐺𝑏𝑧) is allocated the value +1 when 𝑁𝐺𝑏𝑧  is non-negative and -1, 

when 𝑁𝐺𝑏𝑧  is negative (recovers directionality of 𝑁𝐺𝑏𝑧, subsequent to the square-

root). Taken together then, in R, pitch and roll are computed according to, (R24:25) with 

 (E14) 
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outputs within the range of -90o to +90o for pitch and -180o to +180o for roll, and this 

is the formula I use in the tilt compensated method outlined below (and within SI. 2). 

mu = 0.01 ; sign = ifelse(NGbz >= 0, 1, -1)                           (R23) 
Pitch = atan2(-NGbx, sqrt(NGby^2 + NGbz^2)) * 180/pi                  (R24) 
Roll = atan2(NGby, sign * sqrt(NGbz^2 + mu * NGbx^2)) * 180/pi        (R25)  

 

here, prior to the derivation of pitch and roll, μ is allocated the value 0.01 and a vector 

termed ‘sign’ is created, containing 1’s and -1’s according to the direction of 

measured g from 𝑁𝐺𝑏𝑧  (R23).  

The magnetic vector of the device is then de-rotated to the Earth frame (tilt-

corrected) by pre-multiplying by the product of the inverse roll multiplied by inverse 

pitch rotation matrix (E17), which when expanded out gives (E18). 

 

[

𝑁𝑀𝑏𝑓𝑥
𝑁𝑀𝑏𝑓𝑦
𝑁𝑀𝑏𝑓𝑧

] =  [

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) • 𝑠𝑖𝑛(𝛷) 𝑠𝑖𝑛(𝜃) • 𝑐𝑜𝑠 (𝛷)

0 𝑐𝑜𝑠(𝛷) −𝑠𝑖𝑛(𝛷)

− 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)  • 𝑠𝑖𝑛(𝛷) 𝑐𝑜𝑠(𝜃) • 𝑐𝑜𝑠 (𝛷)

] • [

𝑁𝑀𝑏𝑥

𝑁𝑀𝑏𝑦

𝑁𝑀𝑏𝑧

]             (E17)                                                                   

[

𝑁𝑀𝑏𝑓𝑥
𝑁𝑀𝑏𝑓𝑦
𝑁𝑀𝑏𝑓𝑧

] = [

𝑁𝑀𝑏𝑥 • 𝑐𝑜𝑠(𝜃) +  𝑁𝑀𝑏𝑦 • 𝑠𝑖𝑛(𝜃) • 𝑠𝑖𝑛(𝛷) + 𝑁𝑀𝑏𝑧 •  𝑠𝑖𝑛(𝜃) • 𝑐𝑜𝑠 (𝛷)

𝑁𝑀𝑦 • 𝑐𝑜𝑠(𝛷) − 𝑁𝑀𝑏𝑧 • 𝑠𝑖𝑛(𝛷)

−𝑁𝑀𝑏𝑥 • 𝑠𝑖𝑛(𝜃) + 𝑁𝑀𝑏𝑦 • 𝑐𝑜𝑠(𝜃) • 𝑠𝑖𝑛(𝛷) + 𝑁𝑀𝑏𝑧 • 𝑐𝑜𝑠(𝜃) • 𝑐𝑜𝑠 (𝛷)

]              (E18)                                                                    

 

here, 𝑁𝑀𝑏𝑓𝑥,𝑦,𝑧 are the calibrated, normalised magnetometry data (expressed in the 

animal’s body-carried NED frame) after tilt-correction. Finally, yaw (ψ) (heading – 

now defined by the compass convention, relative to magnetic North) can be 

computed from the 𝑁𝑀𝑏𝑓𝑥and 𝑁𝑀𝑏𝑓𝑦 (E19) via;  

𝜓 = 𝑎𝑡𝑎𝑛2(−𝑁𝑀𝑏𝑓𝑦 ,  𝑁𝑀𝑏𝑓𝑥) •  
180

𝜋
                                                                                                     (E19)                                                                                              

I outline the R code for this procedure below (R26:34). 

RollSinAngle = sin(Roll * pi/180)                                                                                           (R26) 
RollCosAngle = cos(Roll * pi/180)                                         (R27) 
PitchSinAngle = sin(Pitch * pi/180)                                    (R28) 
PitchCosAngle = cos(Pitch * pi/180)                                    (R29) 
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NMbfx = NMbx * PitchCosAngle + NMby * PitchSinAngle * RollSinAngle +   (R30) 
NMbz * PitchSinAngle * RollCosAngle 

NMbfy = NMby * RollCosAngle – NMbz * RollSinAngle                      (R31) 
NMbfz = -NMbx * PitchSinAngle + NMby * PitchCosAngle + RollSinAngle +  

(R32)   NMbz * PitchCosAngle * RollCosAngle                        
Yaw = atan2(-NMfby, NMfbx) * 180/pi                                     (R33) 
Yaw = ifelse(Yaw < 0, Yaw + 360, Yaw)                                 (R34) 

 

Note, yaw output from (R33) uses the scale -180o to + 180o. (R34) converts to the scale 

0o to 360o (specifically, 0o to 359̇o). This is also achieved by using a modulus (mod) 

operator (E20, R35), which in base R takes the form %%. 

𝜓 =  𝑚𝑜𝑑(360 +  𝜓, 360)                                                                                                                           (E20)                                                                                                                  

Yaw = (360 + Yaw) %% 360                                             (R35)                                                                                                                                                                                                                                                                                                                                                                                                         

 

Magnetic declination is defined as the angle on the horizontal plane between 

magnetic north and true north (Caruso 2000). Prior to dead-reckoning, magnetic 

declination should be summed to heading values to convert from magnetic to true 

North (Boelter 2020). There are many online sources to calculate the magnetic 

declination of an area (e.g.,                                      (e.g., 

http://www.geomag.bgs.ac.uk/data_service/models_compass/wmm_calc.html). 

Notably, logical corrections may need to be performed to ensure data does not 

exceed either circular direction after applying magnetic declination (R36).  

 

h = ifelse(h < 0, h + 360, h) ; h = ifelse(h > 360, h - 360, h)       (R36)                                                                                                                                                                                                                                                                                                                                                                                                         

 

where h refers to the vector containing the heading data. Should the user not correct 

for axis alignment between the device and animal body frame (cf. E4:12, R11:22) then a 

reasonable post-correction for small discrepancies about the yaw axis would be to 

subtract the difference to h values at this point. 

 

http://www.geomag.bgs.ac.uk/data_service/models_compass/wmm_calc.html
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Preparing speed estimates 

 

The vectorial dynamic body acceleration (VeDBA) (E21) (cf. Qasem et al. 2012; Wilson 

et al. 2020a) was my choice of DBA-based speed proxy for terrestrial dead-reckoning 

purposes. This is given by; 

𝑣 = √(𝐷𝑥
2 + 𝐷𝑦

2 + 𝐷𝑧
2)                                                       (E21) 

 

where 𝑣 represents VeDBA, 𝐷𝑥, 𝐷𝑦 & 𝐷𝑧
 are the dynamic acceleration values from 

each axis, themselves obtained by subtracting each axis’ static component of 

acceleration (cf. E1, R1:4) from their raw equivalent (R37). 

v = sqrt((Ax - Gx)^2 + (Ay - Gy)^2 + (Az - Gz)^2)                   (R37)                                                                                                                                                                                                                                                                                                                                                                                                         

 

where, Ax, Ay, Az and Gx, Gy, Gz are the raw and static (smoothed) values of each 

channel’s recorded acceleration. 

I recommend implementing a running mean (cf. E1, R1:4) to raw VeDBA values to 

ensure that both acceleration and deceleration components of a stride cycle are 

incorporated together per unit time and to reduce the magnitude of small temporal 

spikes, (likely not attributable to the scale of movement elicited. Choice of smoothing 

window size is dependent on the scale of movement being investigated, though as a 

basic rule, I suggest 1 to 2 seconds. For similar reasons, it is also worth post-

smoothing raw pitch, roll and heading outputs, although heading requires a circular 

mean (E22:23) (cf. Pewsey, Neuhäuser & Ruxton 2013). 

�̅�𝑝 = 𝑎𝑡𝑎𝑛2 (
1

𝑛
 ∑ 𝑠𝑖𝑛 (ℎ𝑗

𝑛
𝑗=𝑖 •  

𝜋

180
 ) ,

1

𝑛
 ∑ 𝑐𝑜𝑠 (ℎ𝑗

𝑛
𝑗=𝑖 •  

𝜋

180
 ))                                                  (E22)                                      

ℎ̅ =  𝑚𝑜𝑑 (360 + (�̅�𝑝  •  
180

𝜋
 ) , 360)                                                                                                            (E23) 

 

where ℎ𝑗 and h̅ are the unsmoothed and smoothed heading values, �̅�𝑝the arithmetic 

mean after converting degrees to cartesian coordinates and 𝑚𝑜𝑑 refers to the 

modulo operator.  
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In R, the above formula can be made into a function (R38), to be applied within the 

‘rollapply’ wrapper (replacing ‘FUN = mean’ with ‘FUN = Circ.Avg’) (cf. R1:4). 

  Circ.Avg = function(x){                                               (R38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
 H.East = mean(sin(x * pi / 180))                                       
 H.North = mean(cos(x * pi / 180))                                        
 MH = (atan2(H.East, H.North)) * 180/pi                                      
 MH = (360 + MH) %% 360 
 return(MH)                                 
 }                                                

 
Speed (𝑠) can be estimated from VeDBA (𝑣) via (E24). 

𝑠 = (𝑣 • 𝑚) + 𝑐                                                                                                                                               (E24) 

 

where 𝑚 is the multiplicative coefficient and 𝑐 is a constant (Bidder et al. 2012; Bidder 

et al. 2015). Here, a user can define various bouts of movement from motion sensor 

data (e.g., via various machine learning approaches (for review see Farrahi et al. 

(2019) or the Boolean-based LoCoD method (Wilson et al. 2018) and/or substrate 

condition (e.g., via GPS)), to be cross-referenced when allocating variants of the 

speed coefficients. As a simple example, in R, should walking (coded for as 1) and 

running (coded for as 2) be teased apart from all other (non-moving) data (coded for 

as 0) within a Marked Events vector (ME), then ME can be used to allocate various 𝑚 

(and if applicable, 𝑐) values using simple ‘ifelse’ statements (R39:40). 

m = ifelse(ME == 1, 1.5, ifelse(ME == 2, 3.5, 0))                     (R39)                                                                         

c = ifelse(ME > 0, 0.1, 0)                                                                                                           (R40) 
 

 

Here, walking is given an arbitrary coefficient of 1.5 and running, 3.5 with a value of 

0.1 for their constants. All other ME values are given a 0 coefficient and 0 constant, 

which results in no speed at such times, regardless of DBA magnitude.  
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By-passing DBA as a speed proxy 

 

Dividing the number of steps detected within a given rolling window length (cf. R1:4), 

by the window length (s) gives an estimated step count per second. This can be 

converted to speed by multiplying by a distance per step estimate (assuming constant 

distance travelled between step gaits). I review this further in SI. 1: Text S4, including 

a simple peak finder function – Gundog.Peaks (SI. 3) that locates peaks based on local 

signal maxima, using a given rolling window, with each candidate peak filtered 

according to whether it surpassed a threshold height (in conjunction with other 

potential user-defined thresholds). Note, this method can equally be applied to non-

terrestrial species, using flipper/tail beats instead, where appropriate.  

For diving animals, a proxy for horizontal speed can be obtained based on animal 

pitch and rate change in depth (Miller et al. 2004; Laplanche, Marques & Thomas 

2015). Specifically, rate change of depth (𝛥𝑑) (units in m/s) is divided by the tangent 

of pitch (𝜃) (converted from degrees to radians) (E25).  

𝑠 =  
𝛥𝑑

𝑡𝑎𝑛(𝜃 • 
𝜋

180
 )

                                                                                                                                               (E25) 

here, resultant speed values need to be made absolute (positive). This calculation is 

only valid when the direction of movement is the same as the direction of the 

animal’s longitudinal axis (equal pitch assumption) (cf. Laplanche, Marques & Thomas 

2015) and thus should only be calculated at times when the animal is travelling 

‘ballistically’ (at considerable vertical speed).  

s = ifelse(abs(p) >= 10, abs(RCD / tan(p * pi/180)), s)                                      (R41) 

In the above example (R41), nominal speed values are overwritten with the 

trigonometric formula output (E25) at times of ‘appreciable’ pitch (10o) (cf. Ropert-

Coudert et al. 2001), where RCD is the rate change of depth and p is the pitch (in 

radians). An upper limit should be imposed on speed values derived in this way 

because values can become highly inflated when the pitch angle is particularly acute. 
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Converting speed to a distance coefficient 

 

Speed (s) estimates are multiplied by the time difference between the values (𝑇𝐷) to 

give a distance estimate (units in metres) which, in turn, standardises coefficient 

comparisons across datasets sampled at different rates. These distance values are 

then divided by the approximate radius of the earth (R = 6378137 m) to give a radial 

distance coefficient (𝑞; see, https://www.movable-type.co.uk/scripts/latlong.html; 

E26). 

𝑞 =
𝑠 •  𝑇𝐷

𝑅
                                                                                                                                                            (E26) 

Assuming that high resolution depth data is not available, but ‘absolute’ speed 

estimates have been obtained, then an alternative to (E25, in accordance with the 

equal pitch assumption) is to derive horizontal distance estimates by multiplying the 

absolute distance by the cosine of the pitch (𝜃, converted from degrees to radians), 

which can equally be performed on the radial distance (E27). 

𝑞 = 𝑞 •  𝑐𝑜𝑠 (𝜃 •  
𝜋

180
)                                                                                                                                (E27) 

In R, to determine accurate lengths of time between values, it is best to save date 

and time variables together as POSIX class (Grolemund & Wickham 2011). Creating 

timestamp (TS) objects with POSIXct class enables greater control and manipulation 

of time data. This makes computing the rolling time difference (𝑇𝐷; units in seconds) 

between data points simple (R42) 

TD = c(0, difftime(TS, lag(TS), units = "secs")[-1])                                           (R42) 

I detail how to create timestamp objects of POSIXct class within SI. 1: Text S5, 

including formatting with decimal seconds (important for infra-second datasets) and 

various codes useful for manipulating data to be dead-reckoned based on time.  

In R then, following the computation of 𝑇𝐷, 𝑞 is obtained via (R43:44). 

s = (v * m) + c                                                       (R43)                                                                                                                 

q = (s * TD) / 6378137                                                (R44) 
 

https://www.movable-type.co.uk/scripts/latlong.html
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Note, if a negative c intercept is used (e.g., to allow for some body movement without 

translation), then any negative speed values would need to be equated to zero as an 

additional step.  

As previously mentioned, the ME vector (progressive movement coded by integer 

values greater than zero (e.g., 1) and stationary behaviour coded by zero) can be used 

to ensure q (essentially the distance moved) is zero when ME reads zero, ensuring 

dead-reckoned tracks are not advanced at such times, regardless of the computed 

speed (R45).     

q = ifelse(ME == 0, 0, q)                                             (R45)           

 

Derivation of co-ordinates 

 

Once 𝑞 and ℎ are obtained, coordinates are advanced using (E28:29); 

𝐿𝑎𝑡𝑖 = 𝑎𝑠𝑖𝑛(𝑠𝑖𝑛 𝐿𝑎𝑡0 • 𝑐𝑜𝑠 𝑞 + 𝑐𝑜𝑠 𝐿𝑎𝑡0 • 𝑠𝑖𝑛 𝑞 • 𝑐𝑜𝑠 ℎ)                                                              (E28) 

𝐿𝑜𝑛𝑖 = 𝐿𝑜𝑛0 + 𝑎𝑡𝑎𝑛2((𝑠𝑖𝑛 ℎ • 𝑠𝑖𝑛 𝑞 • 𝑐𝑜𝑠 𝐿𝑎𝑡0), (𝑐𝑜𝑠 𝑞 − 𝑠𝑖𝑛 𝐿𝑎𝑡0 •  𝑠𝑖𝑛 𝐿𝑎𝑡𝑖))                      (E29)  

where 𝐿𝑎𝑡0, 𝐿𝑎𝑡𝑖 and 𝐿𝑜𝑛0, 𝐿𝑜𝑛𝑖 are the previous and present latitude and longitude 

coordinates, respectively (in radians), ℎ is the (present) heading (in radians) and 𝑞 is 

the (present) distance coefficient. 

In R, the above can be performed iteratively within a for-loop (iteration of code 

repeated per consecutive 𝑖𝑡ℎ element of data; R49). Initializing the output latitude 

(DR.lat) and longitude (DR.lon) variables to the required length (e.g., as governed by 

the vector length of other input data (heading, speed, etc.) speeds up processing time 

(R46). Within the trigonometric dead-reckoning formulae, the starting latitude (la) 

and longitude (lo) coordinates and heading (ℎ) values must be supplied in radians 

(R47). The la and lo values are saved as the first elements of the DR.lat and DR.lon 

vectors to be advanced, respectively (R48).  
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DR.lat = rep(NA, length(h))  ;  DR.lon = rep(NA, length(h))                               (R46) 
la = la * pi/180 ; lo = lo * pi/180 ; h = h * pi/180                  (R47) 
DR.lat[1] = la ; DR.lon[1] = lo                                       (R48) 
for(i in 2:length(DR.lat)) {                                                                                                      (R49) 

DR.lat[i] = asin(sin(DR.lat[i-1]) * cos(q[i]) + cos(DR.lat[i-1]) * 
sin(q[i]) * cos(h[i]))                                                  
DR.lon[i] = DR.lon[i-1] + atan2(sin(h[i]) * sin(q[i]) * 
cos(DR.lat[i-1]), cos(q[i]) - sin(DR.lat[i-1]) * sin(DR.lat[i]))  

}     

 

Reverse dead-reckoning 

 

For this, firstly, the time difference is computed as usual (R50) and the dimensions of 

each vector required in the dead-reckoning calculation are reversed. I bind all 

relevant vectors into a data frame (df) (R51), subsequent to reversing data frame 

dimensions (R52); the last row becomes the first row, second to last row becomes the 

second etc. Note, this can equally be achieved by using the rev() function within base 

R, on each individual vector. These reversed columns are now restored as vectors 

(R53) and shifted forward by one element (R54). This is required for correct alignment 

in time so that dead-reckoning works in exactly the opposite manner to ‘forward’ 

dead-reckoning.            

                                                                                                                                                                                                                                    

TD = c(0, difftime(TS, lag(TS), units = "secs
df = data.frame(TD, h, v, m, c, ME)                                   (R51)                                                                                                                                                                                                                                                                                                                       

df = df[dim(df)[1]:1, ]                                               (R52)                                                                                                                                                                                                                                                                                                                                         

TD = df[, 'TD'] ; h = df[, 'h']  ; v = df[, 'v'] ;                    (R53)                                                                                                                                                                                                                                                                                                                                           
m = df[, 'm'] ; c = df[, 'c'] ; ME = df[, 'ME']                           

TD = c(NA, TD[-length(TD)]) ; h = c(NA, h[-length(h)]) ;              (R54)                                                                                                                                                                                                                                                                                                                                            
v = c(NA, v[-length(v)]) ; m = c(NA, m[- length(m)]) ; 
c = c(NA, c[-length(c)]) ; ME = c(NA, ME[-length(ME)])                                              
 

The next step is to rotate heading 180o and correct for its circular nature (R55). 

h = h - 180 ; h = ifelse(h < 0, h + 360, h)                        (R55)    

Lastly, 𝑞 is determined and DR.lon and DR.lat are advanced based on the dead-

reckoning formula (cf. R46:49), except in this instance, the first element of DR.lon and 

DR.lat needs to be supplied by the ‘known’ last lo and la coordinates.  
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Integrating current vectors 

 

In R, current vectors can be added according to (R56:60). Current speed (cs) is in m/s 

(ensure values are absolute) and current heading (ch) uses the scale 0o to 360o. Note 

the use of ‘yy’ and ‘xx’ vectors, storing the previous DR.lat and DR.lon coordinates 

prior to implementing the next ‘current drift’ vector per iteration. The current speed 

is also standardised according to the time period length and Earth’s radius (analogous 

to the derivation of 𝑞). When reverse dead-reckoning, it is important to ensure that 

cs and ch are included in the steps outlined above (R50:55).  

 

DR.lat = rep(NA, length(h))  ;  DR.lon = rep(NA, length(h))              (R56) 
xx <- rep(NA, length(cs)) ; yy <- rep(NA, length(cs))                 (R57) 
la = la * pi/180 ; lo = lo * pi/180 ;                                 (R58)                             
h = h * pi/180 ; ch = ch * pi/180                                    

DR.lat[1] = la DR.lon[1] = lo                                         (R59)                            
for(i in 2:length(DR.lat)) {                                          (R60)                            

DR.lat[i] = asin(sin(DR.lat[i-1]) * cos(q[i]) + cos(DR.lat[i-1]) *                                                                                               
sin(q[i]) * cos(h[i]))                                                                            
yy[i] = DR.lat[i]                                                   
DR.lon[i] = DR.lon[i-1] + atan2(sin(h[i]) * sin(q[i]) *            
cos(DR.lat[i-1]), cos(q[i]) - sin(DR.lat[i-1]) * sin(DR.lat[i]))      
xx[i] = DR.lon[i]                                                   
DR.lat[i] = asin(sin(yy[i]) * cos((cs[i] * TD[i]) / 6378137) +     
cos(yy[i]) * sin((cs[i] * TD[i]) / 6378137) * cos(ch[i]))             
DR.lon[i] = xx[i] + atan2(sin(ch[i]) * sin((cs[i] * TD[i]) /       
6378137) * cos(yy[i]), cos((cs[i] * TD[i]) / 6378137) - sin(yy[i]) * 
sin(DR.lat[i])) 

}                                                      

 

VPC procedure 

 

Specifically, this method entails calculating the difference of Haversine distance (net 

error) and bearing (from true North) between consecutive VPs and the corresponding 

time-matched dead-reckoned track positions. The trigonometric Haversine formulae 

(E30:31) are used to calculate the great-circle distance (𝑑) and great circular bearing 

(b) between consecutive VPs and consecutive (time-matched) dead-reckoned 

positions (note I use the term ‘bearing’ to differentiate between heading estimates 

from motion data – though they are essentially the same). 
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 𝑑 = 2 • 𝑅 • 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 (
𝐿𝑎𝑡𝑖−𝐿𝑎𝑡0

2
) + 𝑐𝑜𝑠(𝐿𝑎𝑡0) • 𝑐𝑜𝑠(𝐿𝑎𝑡𝑖) • 𝑠𝑖𝑛2 (

𝐿𝑜𝑛𝑖−𝐿𝑜𝑛0

2
 ))                    (E30)              

where, R is the Earth’s radius and 𝑑, the output in metres.  

𝑏 = 𝑎𝑡𝑎𝑛2(
𝑠𝑖𝑛(𝛥𝐿𝑜𝑛)  •  𝑐𝑜𝑠(𝐿𝑎𝑡𝑖),

𝑐𝑜𝑠(𝐿𝑎𝑡0)  •  𝑠𝑖𝑛(𝛥𝐿𝑎𝑡)  •  𝑐𝑜𝑠(𝐿𝑎𝑡𝑖)  •  𝑐𝑜𝑠(𝛥𝐿𝑜𝑛)
) •  

180

𝜋
                                        (E31)        

 

where, 𝛥𝐿𝑜𝑛 represents 𝐿𝑜𝑛𝑖 - 𝐿𝑜𝑛0,  𝛥𝐿𝑎𝑡 represents 𝐿𝑎𝑡𝑖 - 𝐿𝑎𝑡0 and b output is in 

the scale -180 o to +180o. To convert b to the conventional 0o to 360o scale, 360 should 

be added to values < 0. 

For each VP, the distance is divided by the dead-reckoned distance providing a 

distance correction factor (ratio; E32). The heading correction factor is computed by 

subtracting the dead-reckoned bearing from the VP bearing (E33). To ensure that 

difference does not exceed 180o in either circular direction, 360 should be added to 

values < -180 and 360 subtracted from values > 180. A simple example of why this is 

relevant can be illustrated by subtracting a dead-reckoned bearing value of 359o from 

a VP bearing value of 1o – post correction, the difference is +2o. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑜𝑟𝑟.𝑓𝑎𝑐𝑡𝑜𝑟 = 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑉𝑃

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑅
                                                                                                     (E32)        

𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑐𝑜𝑟𝑟.𝑓𝑎𝑐𝑡𝑜𝑟 = 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑉𝑃 − 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝐷𝑅                                                                           (E33)                       

 

All intermediate 𝑞 values are multiplied by the distance correction factor and the 

heading correction factor is added to all intermediate ℎ values (ensuring that ℎ values 

are in degrees). To ensure circular range is maintained between 0o and 360o, 360 

should be subtracted from values > 360 and added to values < 0.  

 

Specifically, I follow the protocol illustrated within Figure 9 for intermediate values. 

Note the formulae to calculate both distance (𝑑; E30) and bearing (b; E31) between 

two points, are also used to recalculate both the heading (ℎ) and radial distance (𝑞) 

between current-integrated dead-reckoned fixes (pre-VPC; cf. R60). Note that the 
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Haversine distance is required to be converted back to radial distance by dividing by 

R (R = 6378137). 

 

 

In R, the formulae to calculate the great-circle distance and great circular bearing are 

saved within the disty (R61) and beary (R62) functions, respectively, where lon1, lat1, 

long2 and lat2 represent longitude and latitude positions (decimal format) at 𝑡𝑖  and 

𝑡𝑖+1, (𝑡 representing time).  

 

disty = function(long1, lat1, long2, lat2) {                          (R61) 
      long1 = long1 * pi/180 ; long2 = long2 * pi/180 ; lat1 = lat1 *     

pi/180 ;  lat2 = lat2 * pi/180    
      a = sin((lat2 - lat1) / 2) * sin((lat2 - lat1) / 2) + cos(lat1) *   

cos(lat2) * sin((long2 - long1) / 2) * sin((long2 - long1) / 2) 
c = 2 * atan2(sqrt(a), sqrt(1 - a)) 
d = 6378137 * c 
return(d)  

} 
 
 

Figure 9. Schematic diagram illustrating the order of fixes used when calculating the 
 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑜𝑟𝑟.𝑓𝑎𝑐𝑡𝑜𝑟 and 𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑐𝑜𝑟𝑟.𝑓𝑎𝑐𝑡𝑜𝑟 (difference of both GPS and dead-reckoned (DR) 

positions between arrow heads). Note the discrepancy with the order at which these correction 
factors are applied to intermediate DR positions (as denoted by colour shading). Known starting 
position denoted with *. 
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beary = function(long1, lat1, long2, lat2) {                          (R62) 
      long1 = long1 * pi/180 ; long2 = long2 * pi/180 ; lat1 = lat1 *     

pi/180 ;  lat2 = lat2 * pi/180  
a = sin(long2 - long1)*cos(lat2) 
b = cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) * cos(long2 - long
1) 
c = ((atan2(a, b) / pi)*180)   
return(c) 

 } 

 

Below, I outline an example of VPC in R and assume VP coordinates (decimal format) 

are aligned in the same length vectors/columns as motion sensor-derived data, e.g., 

heading, DBA/speed etc, with the corresponding indexed (element-/row-wise) time. 

Typically, motion sensor data is recorded at much higher frequency so that there are 

many dead-reckoned fixes between sequential VPs. As such, in the example below, I 

assume NAs are expressed in the VP longitude and latitude fields at times of missing 

locational data. This approach of synchronising VP- with motion sensor data also 

applies when integrating current data; assuming ch and cs are element/row-wise 

matched to the relevant VP grid node. 

 

Firstly, an indexing row number (Row.number) vector, the length of the data used in 

the dead-reckoning operation (e.g., ℎ) is created (R63), which is relevant for merging 

full-sized and under-sampled data frames together (seen later). Together, the row 

number, (un-corrected) dead-reckoned longitude and latitude coordinates, VP 

longitude and latitude coordinates, heading and the radial distance vectors are 

inputted column-wise into a ‘main’ data frame, termed ‘df’ (R64; user-assigned 

column names of each vector are within quotation marks). This data frame is then 

filtered removing rows with missing VP data and stored as ‘df.sub’ (R65). This under-

sampled data frame thus, row-wise, contains the time-matched dead-reckoned and 

ground-truthed positions. The VPC process is analogous for reverse dead-reckoned 

tracks – although VP.lon and VP.lat must also be reversed (Row.number remains in 

ascending order (not reversed)). The first element of VP.lon and VP.lat must be the 

lo and la, respectively (or for reverse dead-reckoning, the last element prior to 

reversing these vectors). 
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Row.number = rep(1:length(h))                                            (R63) 

df = data.frame(Row.number, 'DR.longitude' = DR.lon,                    (R64)   
'DR.latitude' = DR.lat, 'VP.longitude' = VP.lon,                          
'VP.latitude' = VP.lat, h, q) 

df.sub = df[!with(df, is.na(VP.longitude) | is.na(VP.latitude)) ,]    (R65) 
 

 

Both sets of dead-reckoned and VP coordinates are shifted backwards one row within 

new columns termed: ‘DR.loni’, ‘DR.lati’, ‘VP.loni’, ‘VP.lati’ (R66). Row-wise, these 

columns represent the consecutive fix at 𝑡𝑖+1 with their originals being 𝑡𝑖. This 

provides the correct format for the inputs required within the disty (cf. R61) and beary 

(cf. R62) functions. The distances between consecutive dead-reckoned estimates are 

stored within the column termed ‘DR.distance’ (R67) and the corresponding distances 

between VPs are stored within the column termed ‘VP.distance’ (R68). The 

VP.distance is divided by the DR.distance to provide the distance correction factor, 

termed ‘Dist.corr.factor’ (R69). Importantly here, an ifelse statement is incorporated 

so that Dist.corr.factor defaults to zero at times when both VP.distance and 

DR.distance are zero (otherwise dividing zero by zero in R produces NaNs).  

 

df.sub$DR.loni = c(df.sub[-1, 'DR.longitude'], NA)                    (R66)                         
df.sub$DR.lati = c(df.sub[-1, 'DR.latitude'], NA)  
df.sub$VP.loni = c(df.sub[-1, 'VP.longitude'], NA)                         
df.sub$VP.lati = c(df.sub[-1, 'VP.latitude'], NA)  

df.sub$DR.distance= disty(df.sub$DR.longitude,                        (R67)                           
df.sub$DR.latitude, df.sub$DR.loni, df.sub$DR.lati)  

df.sub$VP.distance= disty(df.sub$VP.longitude,                        (R68)                                  
df.sub$VP.latitude, df.sub$VP.loni, df.sub$VP.lati)  

df.sub$Dist.corr.factor = ifelse(df.sub$VP.distance == 0 &            (R69)               
df.sub$DR.distance == 0, 0, df.sub$VP.distance / df.sub$DR.distance) 

 

Analogous to the distance correction, the bearings between consecutive dead-

reckoned estimates are stored within the column termed ‘DR.head’ (R70) and the 

corresponding bearings between VPs are stored within the column termed ‘VP.head’ 

(R71). Logical corrections are performed to convert both to the 0o to 360o scale (R72), 

DR.head is subtracted from VP.head providing the heading correction factor, termed 
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‘Head.corr.factor’ (R73) and further logical corrections are performed to ensure a 

minimum and maximum difference range between -180o to +180o (R74).  

 

df.sub$DR.head = beary(df.sub$DR.longitude,                           (R70) 
df.sub$DR.latitude, df.sub$DR.loni, df.sub$DR.lati)   

df.sub$VP.head = beary(df.sub$VP.longitude,                           (R71) 
df.sub$VP.latitude, df.sub$VP.loni, df.sub$VP.lati) 

df.sub$DR.head = ifelse(df.sub$DR.head < 0,                           (R72)                  
df.sub$DR.head + 360, df.sub$DR.head)  
df.sub$VP.head = ifelse(df.sub$VP.head < 0,                   
df.sub$VP.head + 360, df.sub$VP.head)  

df.sub$Head.corr.factor = df.sub$VP.head - df.sub$DR.head             (R73)   

df.sub$Head.corr.factor = ifelse(df.sub$Head.corr.factor < -180,      (R74)  
(df.sub$Head.corr.factor + 360), df.sub$Head.corr.factor) 
df.sub$Head.corr.factor = ifelse(df.sub$Head.corr.factor > 180, 
(df.sub$Head.corr.factor - 360), df.sub$Head.corr.factor) 

 

Only the relevant columns: Row.number, Dist.corr.factor and Head.corr.factor are 

preserved (R75) and merged back into the main data frame (df) based on the matching 

row numbers (R76). Both Dist.corr.factor and Head.corr.factor express NA’s between 

VPs. These are replaced with the most recent non-NA (observations carried forwards; 

R77). Dist.corr.factor and Head.corr.factor values are shifted forward by one row (R78) 

for correct alignment purposes with respect to ℎ and 𝑞 values to be adjusted (cf. Fig. 

9; R79:80). A logical correction is performed to ensure that a 0o to 360o circular scale is 

maintained after the heading correction (R81). Note, the na.locf() function is required 

from the ‘zoo’ package, to replace NA values with the last non-NA value. 

                                                                                                                                                            

df.sub = df.sub[, c('Row.number', 'Dist.corr.factor', 'Head.corr.factor')]  

df = merge(df, df.sub, by = "Row.number", all = TRUE) 

df$Dist.corr.factor = na.locf(df$Dist.corr.factor)                    (R77) 
df$Head.corr.factor = na.locf(df$Head.corr.factor)  

df$Dist.corr.factor = c(NA, df$Dist.corr.factor[-nrow(df)])           (R78)  
df$Head.corr.factor = c(NA, df$Head.corr.factor[-nrow(df)]) 

q = (df$q * df$Dist.corr.factor)                                      (R79) 
h = (df$h + df$Head.corr.factor)                                      (R80) 
h = ifelse(h > 360, h - 360, h) ; h = ifelse(h < 0, h + 360, h)       (R81) 

 

(R75) 
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These updated coefficients are substituted into the dead-reckoning formula (cf. 

R46:49) and this process is repeated iteratively (using the updated dead-reckoned 

coordinates, heading and radial distance each time) until dead-reckoning fixes accord 

‘exactly’ (Gundog.Tracks uses a threshold of .01 m) with ground-truthed locations. 

An important pitfall of the correction process to consider is that dividing ‘any' value 

(e.g., > 0) by 0 results in infinite (Inf) values in R. This can arise during the correction 

process when there is a given distance between consecutive VPs, but no 

displacement between the according dead-reckoned positions. This can be a 

consequence of ground-truthing too frequently (typically relevant to high-res GPS 

studies), where positional noise is more apparent during rest periods (cf. Chapter 4) 

and/or wrongly assigned speed estimates/ME values. Gundog.Tracks automatically 

resamples VPC rate where necessary to avoid Inf values, essentially by changing the 

VPC-rate to avoid using successive VPs at times of no dead-reckoned track 

advancement. Lastly, Gundog.Tracks outputs messages to the user’s console, 

detailing up to six stages of dead-reckoning progression, which includes reporting the 

maximum distance (units in metres) between dead-reckoned- and ground-truthed 

positions (used within the VPC procedure) at each iteration of correction and 

whether automatic VPC resampling due to Inf values occurred. 
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Conclusion 

 

I have provided a comprehensive, fully integrated application of the dead-reckoning 

procedure within the framework of the programming language, R, from pre-

processing raw tri-axial accelerometery and magnetometry data to VPC dead-

reckoning. I have highlighted important considerations to increase the accuracy of 

the analytical procedure and to avoid misinterpretation of error. I have also supplied 

extensive supplementary information and supporting functions to aid the process of 

deriving fine-scale movement paths, including the protocols to correct 

magnetometry data and derive (tilt-compensated) heading. Importantly, I have 

demonstrated the value of Gundog.Tracks; a multi-functional and user-friendly tool 

to derive animal movement paths across all media of travel, with detailed input 

flexibility and output summaries. I suggest the next phase in advancing the utility of 

animal dead-reckoning includes looking for ‘track signatures’ that may signify a 

particular behaviour or reference a particular ‘ground-truthed‘ location. Lastly to 

advance the utility of Gundog.Tracks, I aim to optimise future iterations of the online 

code to speed up computation time on larger datasets (e.g., sub-second data 

collected over many months). 
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Glossary 

 

Acceleration – The first derivative (rate of change) of an object’s velocity with respect 

to time. Units are expressed as metres per second squared (m/s2) or in G-forces (g). 

A single G-force on Earth (though this does vary slightly with elevation) is 9.81 m/s2. 

Tri-axial accelerometers measure acceleration in three orthogonal planes (surge – 

‘anterior-posterior’, sway – ‘medio-lateral’ and heave – ‘dorsal-ventral’). Under non-

moving conditions, relative to gravity, the device tilt (pitch and roll) can be calculated 

directly from raw accelerometery values since they are composed entirely of the 

static force (gravity). Under linear acceleration, ‘moving’ forces applied to the device 

(e.g., due to the animal moving) are superimposed to static readings and as such 

measured animal acceleration is typically comprised of both a static and dynamic 

component.  

Barometric pressure – pressure with the Earth’s atmosphere, that is a measure of 

force per unit area, often expressed as standard atmosphere (symbol: atm), defined 

as 101,325 Pa (1,013.25 mbar; 1 pascal = 1 N/m2). The Earths mean sea-level 

atmospheric pressure is approx. 1 atm. Barometric pressure decreases with elevation 

and increases with depth. 

Centripetal acceleration – Inertial force caused by circular motion because an object 

is always accelerating when either its direction or magnitude (speed) changes, and in 

circular motion, the direction changes instantaneously. This can cause the animal to 

‘pull g’, such as at times of banking and cornering very fast.   

Coordinate frame - In 3-D space, this is a set of three vectors (x,y,z axes) of unit 

length, perpendicular (orthogonal) to each other. 

Current flow vectors – (or ‘external’ current flow vectors). The heading and speed of 

tidal-/air-currents 

Current integration – Adding current flow vectors to dead-reckoned travel vectors. 
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De-rotation - Within the tilt-compensated compass framework, this is the conversion 

of the magnetic vector values through multiplying by the transpose (inverse) of the 

pitch and then roll rotation matrices.  

Distance correction factor – The 2-D Haversine distance ratio between successive 

Verified positions (VPs) (used in the VP-correction procedure) and corresponding 

dead-reckoned positions. This is multiplied to all intermediate (between VPs) radial 

distance (q) values. 

Drift – The accumulation of spatial errors relative to a Verified Position, arising from 

integrating incorrect dimensions of travel. 

Dynamic Body Acceleration (DBA) – The dynamic component of acceleration which 

is typically induced by the limb and/or spine kinematics of the animal (and thus the 

attached accelerometer). Generally, more mechanical work (via muscular 

contraction), corresponds to higher metabolic rate and greater magnitudes in 

accelerometery readings (dependent on tag deployment site). Typically, dynamic 

values from each multi-axial channel are integrated into an overall metric, such as 

‘Overall Dynamic Body Acceleration’ [ODBA = │DBAx│+│DBAy│+│DBAz│] or ‘Vectorial 

Dynamic Body Acceleration’ [VeDBA = (DBAx2 + DBAy2 + DBAz2)0.5]. Such derivatives 

have been demonstrated as useful proxies for movement-based power. 

Earth-Centre, Earth-Fixed (ECEF) system – This defines a non-inertial reference 

coordinate frame that rotates with the Earth (this is often simplified to ‘Earth frame 

of reference’ or ‘Earths fixed frame’ in text). Its origin is fixed at the Earth’s centre 

(the x-axis points towards the intersection of the Earth’s Greenwich Meridian and 

equatorial plane, the y-axis pointing 90 degrees East of the x-axis and the z pointing 

north, along the Earth’s rotation axis). Note, this is different to the Earth-Centred 

Inertial (ECI) system, which is non-rotating (and the x-axis instead always points 

towards the vernal equinox). 

Equal pitch assumption – The animal moves in the same direction and angle as its 

anterior-posterior axis (relative to North and the gravity vector, respectively). 
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Georeference – Within the dead-reckoning framework this is another term used for 

carrying out VPC-dead-reckoning, or drift-correction or GPS-corrected dead-

reckoning. 

Gimbal lock – This is the loss of a degree of freedom in 3-D, when two axes become 

parallel to each other (locked in the same attitude, reflecting the same rotation). For 

example if the anterior-posterior axis (‘surge’ or ‘forward-back’ - x-axis for NED 

coordinate frames) points in the plane of the gravity vector (pitched 90 degrees up 

or down), then the dorsal-ventral (‘heave’ or ‘up-down - z-axis for NED coordinate 

frames) and the medio-lateral axis (‘sway’ or ‘side-to-side’ – y-axis for NED coordinate 

frames) become parallel to each other, and changes about the yaw can no longer be 

compensated for (changes in the roll (or ‘bank’) is equivalent to changing the 

heading). 

GPS-derived speed – The Haversine distance calculated between successive GPS 

coordinates, divided by the time taken between locations. 

Ground-truthing - Empirical evidence (often information obtained by direct 

observation), as opposed to inference for validating something under investigation. 

Within the dead-reckoning framework, VPs such as GPS locations are used to 

periodically ground-truth an animal’s position.   

Haversine formula - Computes the great-circular distance (units in metres) between 

two locations (using their longitude and latitude coordinates) on a sphere, applying 

trigonometry to map a triangle to the surface of a unit sphere. This formula is only an 

approximation because the Earth is not a perfect sphere, with numerical errors also 

arising at the antipodal regions.  

Heading correction factor – The difference of heading (or ‘bearing’) from true North 

between consecutive VPs (used in the VPC procedure) and temporally aligned dead-

reckoned positions. This is summed to all intermediate (between VPs) heading (h) 

values. 
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Inf – Results from numerical calculations which are mathematically infinite (e.g., in R, 

dividing any value by zero results in Inf). 

Linear drift correction method – At each path segment, the dead-reckoned path is 

shifted to the position of the first VP encounter using a shift vector. A correction 

vector then adds the difference between the VP and estimated dead-reckoned end 

points linearly over this path segment period. 

Multiplicative (m)-coefficient – Within the dead-reckoning framework, this refers to 

the gradient of a linear regression, e.g., [speed = (VeDBA • m) + c], where m is the 

multiplicative factor of VeDBA, and c is the subsequently summed constant value 

(reflecting the y-intercept). 

NaN – Non-numeric (un-defined) values (e.g., in R, diving zero by zero results in NaN). 

Net error – Here, net error reflects the 2-D Haversine distance (units in metres) 

between VPs and temporally aligned dead-reckoned positions. 

Non-movement behaviours – Behaviour performed while stationary, whereby the 

animal may be moving, e.g., feeding on the spot, but there is no locomotion (not 

moving to a different position in 3-D space).  

North-East-Down (NED) system – Often used in flight mechanics, this defines a non-

inertial 3-D coordinate frame, the origin affixed as the devices centre of gravity and 

its axes oriented along the geodetic directions defined by the Earth surface (the x- 

and y-axis pointing true north and East, respectively, parallel to the geoid surface and 

the z-axis pointing downwards towards the Earth’s surface). 

Pitch – The angle of device’s anterior-posterior inclination or declination, relative to 

the horizontal plane of the Earth’s surface. Pitch is often expressed as an Euler angle, 

which describe the attitude and rotations of a device via a given Euler angle sequence 

(yaw, pitch and roll) of rotations (using rotation matrices). Pitch can be derived from 

the static component of acceleration. Assuming an NED system, pitch defines the 

degree of rotation about the y-axis. 
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Radial distance (q) – Within the dead-reckoning framework, this refers to a 

progression distance accounting for the approximate curvature of the Earth (longlat 

projection approximating the geoid to a sphere; Radius (R) = 6378137). 

Right-handed coordinates/rotations – The direction in which the fingers curl when 

pointing the right thumb along the positive direction (+ 1 g) of the z-axis (e.g., down 

for NED coordinates), reflect the direction of rotation to be applied about each axis 

(for a given Euler angle sequence), with the index finger representing the x axis and 

the middle finger representing the y-axis, respectively, when splayed out at right 

angles to the thumb.  

Roll – The angle of rotation about the device’s anterior-posterior axis. Roll is often 

expressed as an Euler angle, which describe the attitude and rotations of a device via 

a given Euler angle sequence (yaw, pitch and roll) of rotations (using rotation 

matrices). Roll is thus derived after rotating by yaw and pitch and can be derived from 

the static component of acceleration. Assuming an NED system, roll defines the 

degree of rotation about the x-axis (also termed ‘bank angle’). 

Static Body Acceleration (SBA) – The static component of acceleration, due to 

gravity. Apart from being used to calculate the angle of device tilt, increased inertial 

(centripetal) acceleration, e.g., when the animal ‘pulls g‘, can be captured more fully 

with static measures (rather than DBA estimates), and analogous to VeDBA, the 

computation of the Vectorial Static Body Acceleration [VeSBA = (SBAx2 + SBAy2 + 

SBAz2)0.5] has been considered as a proxy of power 

Tilt-compensated compass method - The compass heading (estimated using the 

arctangent ratio between two orthogonal components of the magnetic vector) is only 

accurate if the magnetometer outputs (typically x,y channels - assuming the NED 

coordinate system is used (SI2)) are taken when the compass is level. Assuming the 

accelerometer-magnetometer approach, static acceleration measures are used to 

calculate the angles between the tag’s gravity (and thus magnetic) vector and the 

Earths frame of reference (e.g., Earth-Centered, Earth-Fixed (ECEF) coordinate 

system). These angles are typically expressed as pitch and roll Euler angles which are 
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used to compensate for variations in the magnetometer output due to device tilt. The 

tilt-compensated compass method covers the procedures of adjusting the coordinate 

frame of the device to correspond with a level inclination and subsequently compute 

the compass heading from the adjusted magnetometry values. 

Tortuosity – The straight-line distance between the start and end positions of the 

path segment divided by the sum of the consecutive intermediate individual distance 

steps that constituted the total path segment’s length. Values closer to 0 (or 

conversely values closer to 1 if subtracting the resultant ‘tortuosity’ value from 1) 

reflect more twists and turns in the movement path. 

Vector integration – Adding vectors (of travel) together. Assuming Cartesian 

coordinates, vector addition is performed by adding the corresponding components 

of the vectors together. E.g., [𝐴 + 𝐵 = (𝑎1 + 𝑏1,  𝑎2 + 𝑏2, … , 𝑎𝑛 + 𝑏𝑛)]. 

Vertical speed – Distance travelled vertically up (at altitude) or down (at depth) 

divided by the time period between values. 

World Geodetic System 1984 (WGS-84) – The typical model of the Earth’s shape 

(standard for maps and satellite navigation), defining a coordinate system that 

accounts for the oblate spheroid.  

Yaw – The orientation of the device, generally, with respect to true North (assuming 

any required magnetic declination offset has been applied). Yaw, also termed 

‘heading’ or ‘bearing’, is often expressed as an Euler angle, which describe the 

attitude and rotations of a device via a given Euler angle sequence (yaw, pitch and 

roll) of rotations (using rotation matrices). Yaw can be derived is calculated using the 

arctangent of the ratio between the x- and y- magnetometer channel measurements. 

But for the correct computation of heading, these two channels need to be aligned 

parallel to the earth’s surface and so the magnetic vectors are required to de-rotated, 

or ‘tilt-compensating’ them, according to pitch and roll angles of the device. 

Assuming an NED system, yaw defines the degree of rotation about the z-axis.  
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Abstract 

 

Understanding what animals do in time and space is important for a range of 

ecological questions, however accurate estimates of how animals use space is 

challenging. Within the use of animal-attached tags, radio telemetry (including the 

Global Positioning System, ‘GPS’) is typically used to verify an animal’s location 

periodically. Straight lines are typically drawn between these ‘Verified Positions’ 

(‘VPs’) so the interpolation of space-use is limited by the temporal- and spatial 

resolution of the system’s measurement. As such, parameters such as route-taken 

and distance travelled can be poorly represented when using VP systems alone. 

Dead-reckoning has been suggested as a technique to improve the accuracy and 

resolution of reconstructed movement paths, whilst maximising battery life of VP 

systems. This typically involves deriving travel vectors from motion sensor systems 

and periodically correcting path dimensions for drift with simultaneously deployed 

VP systems. How often paths should be corrected for drift, however, has remained 

unclear. Here, I review the utility of dead-reckoning across four contrasting model 

species using different forms of locomotion (the African lion Panthera leo, the Red-

tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus 

magellanicus, and the Imperial cormorant Leucocarbo atriceps). Simulations were 

performed to examine the extent of dead-reckoning error, relative to VPs, as a 

function of Verified Position correction (VP correction) rate and the effect of this on 

estimates of distance moved. Dead-reckoning error was greatest for animals 

travelling within air and water. We demonstrate how sources of measurement error 

can arise within VP corrected dead-reckoned tracks and propose advancements to 

this procedure to maximise dead-reckoning accuracy. I review the utility of VP 

corrected dead-reckoning according to movement type and consider a range of 

ecological questions that would benefit from dead-reckoning, primarily concerning 

animal-barrier interactions and foraging strategies. 
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Background 

 

Much of animal behaviour is defined by movement patterns in environmental space 

(Morales et al. 2010; Edelhoff, Signer & Balkenhol 2016; Browning et al. 2018). Today, 

most researchers use transmission telemetry (e.g., VHF, GPS, and acoustic 

transmitters) to verify an animal’s location periodically connecting these ‘Verified 

Positions’ (VPs) linearly in time to reconstruct movement paths (Coulombe, Massé & 

Côté 2006; Campbell et al. 2012; McDuie et al. 2019; Yuan et al. 2019). Using this 

approach, researchers can use the combination of step lengths and turn angles as 

indicative of behaviour, functional motivation, habitat quality, resource selection and 

networks of space-use (Benhamou 2004; Morales et al. 2004; Fortin et al. 2005; 

Henderson et al. 2018; Wiesel, Karthun-Strijbos & Jänecke 2019). While it is 

acknowledged that more positional fixes enhance our ability to define these metrics, 

approaches for interpolating space-use depend on the temporal- and spatial 

resolution of the system’s measurement so that obtaining fine-scale, continuous and 

accurate estimates of animal space-use is not straight forward (Mills, Patterson & 

Murray 2006; Forin-Wiart et al. 2015; Hughey et al. 2018; Poulin, Clermont & 

Berteaux 2021). Specifically, the resolution of tortuosity – how convoluted an animal 

track is - in animal movement paths is compromised when consecutive VPs are 

temporally far apart (Swain, Wark & Bishop-Hurley 2008; Poulin, Clermont & 

Berteaux 2021), whilst all VP systems are subject to positional inaccuracy (Frair et al. 

2010; Ironside et al. 2017; Hofman et al. 2019), which can lead to varying assessments 

of movement (Ryan et al. 2004; Marcus Rowcliffe et al. 2012). 

GPS units are one of the most technologically advanced (and arguably the most 

popular) VP systems (cf. Cagnacci et al. 2010; Latham et al. 2015; Seidel et al. 2018), 

capable of recording with high frequency (e.g., 5 Hz) (Hubel et al. 2018) and for many 

months (although not both simultaneously for reasons of power draw) (Krop-

Benesch et al. 2013). Yet, even with GPS, fix success rate can drop dramatically and 

locational accuracy can easily vary by a few metres or more, depending on the 

propagation of signal quality and/or receiver reception capability (D'eon & Delparte 

2005; Lewis et al. 2007). In addition, these units can be subject to latency delays by 
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up to ~ 5 s (Farrell et al. 1997; Bouvet & Garcia 2000), whilst most commercial loggers 

are only precise to around 1 m (Ryan et al. 2004) and so, irrespective of fix accuracy, 

time-based positional error can accumulate (as a function of sampling rate) when the 

spatial resolution of animal movement is less than the precision error radius between 

consecutive readings.  

Motion sensor systems (also called Inertial Measurement Units - IMUs) incorporating 

tri-axial accelerometers and magnetometers are increasingly being used in animal-

attached tags to determine fine-scale (second to infra-second) movement of animals 

via dead-reckoning (Cotter 1978; Wilson et al. 1991), thereby allowing elucidation of 

movement-related behaviours (cf. Yoda et al. 2001; Rong et al. 2007; Wilson, Shepard 

& Liebsch 2008; Brown et al. 2013; Graf et al. 2015; Wilson et al. 2018). Dead‐

reckoning involves sequentially integrating travel vectors (heading and speed 

estimates), radially in time (Walker et al. 2015) (and 3-D space with aligned 

pressure/depth data). Compared to animal‐borne video recorders and GPS units, 

motion sensors require far less current (cf. Bidder et al. 2015; Park et al. 2019) and 

operate at much higher recording frequencies and precision (Wilson, Shepard & 

Liebsch 2008; Brown et al. 2013; den Uijl et al. 2017; Barwick et al. 2018). Indeed, 

studies are increasingly demonstrating the value of motion sensors for resolving 

continuous and fine-scale movements in 2- or 3-D space, on/in terrestrial- (e.g., 

Bidder et al. 2015; Dewhirst et al. 2016), marine (e.g., Wensveen, Thomas & Miller 

2015; Andrzejaczek et al. 2019) and aerial (e.g., Williams et al. 2020) environments – 

far beyond what would have been obtained using VP systems alone (f. Latham et al. 

2015; Dewhirst et al. 2016; Poulin, Clermont & Berteaux 2021).  

Crucially, inertial measurements, being unaffected by factors that modulate VP 

accuracy, provide an independent and higher resolution comparator for assessing the 

extent (and type) of movement undertaken (cf. Chapter 4), which can be localised in 

environmental space when paired with a VP system. Uncorrected dead-reckoned 

paths have been referred to as ‘pseudo-tracks’ (Walker et al. 2015; Andrzejaczek et 

al. 2018), because extrapolated travel vectors always incur some error, and being 

additive (Bidder et al. 2015), even small errors accumulate to have more substantial 

influences on path shape (conventionally termed 'drift' (Wilson et al. 1991; Fischer et 
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al. 2008; Dewhirst et al. 2016)). This means that, although the form of animal 

movement is maintained most accurately by adjacent track sections (e.g., 

Andrzejaczek et al. 2019; Narazaki et al. 2021), the relationship between animal path 

and the environment tends to deviate over time (Wilson et al. 2007). VPs obtained 

from a secondary source (e.g., GPS) can correct for this by periodically resetting 

accumulated drift (Walker et al. 2015; Dewhirst et al. 2016).  

The fusion of VP systems and dead-reckoning involves a trade-off between dead-

reckoning accuracy and VP correction rate (itself, usually constrained by power 

consumption). Dewhirst et al. (2016) were the first to review this, as they compared 

various scales of GPS-corrected dead-reckoned tracks, obtained from domestic dogs 

(Canis lupus familiaris). Unsurprisingly, position error (the distance between 

temporally aligned dead-reckoned and GPS positions) decreased as a function of 

correction rate and the authors concluded that a correction rate of one fix every five 

minutes resulted in highly accurate distance moved estimates. For similar results 

using GPS alone, they noted that it would have required 12 fixes per minute 

(assuming no GPS error) which would have reduced battery life from months to days. 

Dead-reckoning thus provides the means to extend battery life (or reduce battery size 

in any tag deployment, with the attendant benefits for animal wellbeing (cf. Kay et 

al. 2019; Wilson et al. 2020b)) and improve the accuracy and detail of behaviour-

specific travelling movements between VPs (e.g., Mitani et al. 2004; Bidder et al. 

2015; Walker et al. 2015). How this extends to wild animals and beyond the terrestrial 

movement medium, however, requires further investigation. 

This study uses the dead-reckoning protocols and R functions described in Chapter 4 

to examine the movement of VP corrected dead-reckoned animal paths for four wild 

species (a mammal (lions - Panthera leo) and three bird species (penguins - 

Spheniscus magellanicus, cormorants - Leucocarbo atriceps, tropicbirds - Phaethon 

rubricauda)), varying across greater than an order of magnitude in mass and 

travelling in the three major media (land, water and air) using walking, swimming and 

flying. I sub-sampled the scale of VP correction to examine the trends in net error and 

compared cumulative distance moved estimates between VP corrected dead-

reckoned tracks and GPS paths alone according to VP correction rate and simulated 
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VP down-sampling, respectively. My goal was to demonstrate that the traditional 

trade-off between VP correction rate and dead-reckoning accuracy is more complex 

than simply ‘the higher the rate, the greater the accuracy’ (though this would be the 

case if VPs were perfect). Rather, the accuracy of both reconstructed paths is heavily 

dependent on the animal’s lifestyle (including the specifics of location and the speeds 

and mode(s) of movement). Accordingly, I assess the importance of appropriate 

dead-reckoned track scaling, which is primarily based on speed estimates prior to VP 

correction. I also highlight the benefit of acquiring external air-/tidal flow vectors for 

animals traveling in fluid media (air and water), particularly when VPs are temporally 

widely spaced, and emphasize the danger of carrying out VP correction too frequently 

(irrespective of battery consumption) due to VP error. Lastly, in context of the above, 

I outline the utility of dead-reckoning across various scenarios and the key 

considerations for deciding VP correction frequency. 

Materials and methods 

 

Study species 

 

I selected four free-living species, exemplifying almost two orders of magnitude of 

mass, which travel in three media. These were; 10 lions (mass ca. 130-190 kg; ‘four-

legged walkers’), 15 penguins (mass ca. 4 kg; ‘two-legged walkers’ & ‘swimmers’), 15 

cormorants (mass ca. 1.8-3.5 kg; ‘flyers’ & ‘swimmers’) and seven tropicbirds (mass 

ca. 0.6 kg; ‘flyers’). Animals were equipped with Daily Diaries (DDs) [Wildbyte 

Technologies - http://www.wildbytetechnologies.com/], recording tri-axial 

acceleration, magnetic field intensity and pressure (either barometric- or hydrostatic 

pressure) (Wilson, Shepard & Liebsch 2008). Unencapsulated DD models ranged 

between 27x26x10 mm and 26x17x5 mm and weighed 2-3 g (incl. microSD card and 

excl. batteries). In tandem, animals were also equipped with GPS (Axytrek or Gipsy) 

units [https://www.technosmart.eu/], programmed to record at one fix every minute 

for tropicbirds and one fix every second for the other species. Both encapsulated 

devices (incl. batteries) always comprised < 3% of the average body mass of each 

species. Animals were left to roam freely, for periods ranging between 1 to 16 days 

before the devices were recovered (Table. 1). 

http://www.wildbytetechnologies.com/%5d,
https://www.technosmart.eu/
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VP-corrected dead-reckoning procedure 

 

Tracks were reconstructed and drift corrected using the Gundogs.Tracks() function in 

R, based on the protocols outlined in Walker et al. (2015). See supplementary 

information (SI) for the VP correct dead-reckoning formulae. Pitch and roll 

(representing posture, expressed using Euler angles - cf. Johnson & Tyack 2003), were 

calculated from static acceleration estimates (Shepard et al. 2008b) and heading was 

derived using the tilt-compensated compass method (Pedley 2012), with any 

required magnetic declination offset applied. Pitch (used in the computation of speed 

for diving animals; see Table. 1) and heading were post-smoothed by 1-2 seconds 

(i.e., a rolling ‘circular’ mean used for heading values, cf. Pewsey, Neuhäuser & 

Ruxton 2013).  

I used the Vector of the Dynamic Body Acceleration (VeDBA; see eqn 1) (Qasem et al. 

2012; Wilson et al. 2020a) (smoothed by 2 seconds) as a speed proxy for terrestrial 

locomotion (Bidder et al. 2012).  

𝑉𝑒𝐷𝐵𝐴 = √(𝐷𝑥
2 + 𝐷𝑦

2 + 𝐷𝑧
2),                                                                                                           (1) 

where 𝐷𝑥, 𝐷𝑦 & 𝐷𝑧
 are the dynamic acceleration values from each axis. The ‘linear’ 

VeDBA~speed relationships [𝑠𝑝𝑒𝑒𝑑 = (𝑉𝑒𝐷𝐵𝐴 • 𝑚) + 𝑐] were derived either by 

iteratively changing the m-coefficient (gradient) per individual until (uncorrected) 

dead-reckoned tracks were scaled according to the corresponding GPS tracks (using 

a zero c constant (intercept)), or by substituting m- and c values with GPS-derived 

speed versus VeDBA regression estimates (Dewhirst et al. 2016). For swimming and 

flying locomotion, where Dynamic Body Acceleration (DBA) is considered a weak 

proxy of speed (cf. Wilson et al. 1992; Williams et al. 2020), speed values were 

allocated according to; (i) behaviour type (itself, elucidated from motion sensor data 

(e.g., Wilson et al. 2018; Yu & Klaassen, 2020.) (ii) rate of change of depth versus dive 

angle-derived speed (Laplanche, Marques & Thomas 2015) or (iii) GPS-derived speed 

estimates (using the Haversine distance formula, Chopde & Nichat 2013) between 

GPS fixes (at defined fix intervals). Movement-specific behaviours were identified 

using one or a combination of; visual interpretation of stylised patterns in 
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acceleration data (cf. Rong et al. 2007; Willener et al. 2015; Williams et al. 2015), the 

Lowest Common Denominator Method (LoCoD) method (Wilson et al. 2018) and the 

Movement Verified Filtering (MVF) method (Chapter 4). Species’ specific speed 

allocation details according to movement-specific behaviour and/or topological 

whereabouts, are given in Table. 1. Any required tag orientation offsets (e.g., due to 

imperfect tag placement along the longitudinal axis of the animal) as well as baseline 

pressure drift were accounted for by rotation correction of magnetic and acceleration 

vectors (Johnson & Tyack 2003; Chapter 5) and trend estimation with asymmetric 

least squares (cf. Peng et al. 2010), respectively. 

 

VP correction rate and metrics of analysis 

 

All tracks were dead-reckoned at periods between 1-10 Hz resolution (Table. 1). 

According to the duration of deployment and GPS fix rate, VP correction rate was 

thinned at scales of; 1 fix/24 h, 1 fix/12 h, 1 fix/6 h, 1 fix/3 h, 1 fix/1 h, 1 fix/30 min, 1 

fix/15 min, 1 fix/5 min, 1 fix/min, 1 fix/30 s, and 1 fix/1 s. Net error and distance 

moved estimates (in metres) were calculated for each species, individual and VP 

correction rate. The Haversine distance formula (Chopde & Nichat 2013) was used to 

compute 2-D net error, which we define as the distance between every VP 

(irrespective of VP-correction rate) and the corresponding time-matched VP 

corrected dead-reckoned position. Distance moved was summed separately, both 

between consecutive dead-reckoned positions and consecutive GPS positions, the 

latter being down-sampled according to the VP correction rate (e.g., if the VP 

correction rate was approx. 1 fix/h, then GPS data was sub-sampled to this frequency 

prior to computing distance moved between retained positions). The Haversine 

formula was used to compute 2-D distance moved (terrestrial ‘on-land’ movement). 

For 3-D dead-reckoned movements (penguins and cormorants at depth and 

tropicbirds at altitude), positions were converted to Cartesian coordinates (x,y,z), 

incorporating the Earth’s oblate spheroid shape (geodetic latitude) and the straight-

line distance between sets of Cartesian coordinates were calculated using 

Pythagorean theorem. 3-D distance moved was not computed between VPs since 
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both the level of VP thinning (particularly at lower VP correction rates) and the 

periods of time where fix success rate dropped (e.g., under water) made this 

inappropriate. Altitude (in metres) was calculated using local coastal meteorological 

recordings of air pressure at 5-min resolution by a portable weather station (Kestrel 

5500L, Kestrel instruments, USA) stationed at the highest point above sea-level (ca. 

280 m) on Round Island, Mauritius (Garde et al. (in review)). Ocean current vectors 

were composed from a validated 3-D numerical model constructed for the region 

(Tonini & Palma 2017), with tidal currents deduced hourly at 1 km2 resolution.    

All VPs (filtering out obvious outliers visually) were used when making inter-specific 

comparisons of net error estimates across VP correction rates and given that, in this 

process, VPs are considered the benchmark upon which net error is assessed, net 

error zeros out when VP correction includes all VPs (VP correction rate = VP logging 

frequency; see Table. 1). In conjunction with the main findings, I report various 

applications of dead-reckoning and extensions to improve dead-reckoning accuracy, 

such as the importance of initial speed estimates and incorporation of external 

current flow vector estimates in fluid media, using various species-specific case-

studies as examples.  
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Table 1. Experimental protocol for each species. Note, ‘Δd/tan(θ • 𝜋/180)’ refers to the rate change of depth (m/s) 
divided by the tangent of the body pitch (converted from degrees to radians).DR =, dead-reckoning and DBA = 
dynamic body acceleration. m- and c values represent the (multiplicative) coefficient (gradient) and constant 
(intercept) of the VeDBA~speed regression [speed = VeDBA • m + c]. 

 

 

Animal 
(number (n) 

assessed) 
 

Scheduled 
GPS 

frequency 
 

DR 
frequency 

 

Approx. 
DR 

length 
 

Extrapolated speeds 
 

Capture 
& 

Deployment method 
 

Lion 
(n = 10) 

 

1 Hz 
 

1 Hz 
 

2 weeks 
 

DBA-based speed 
Due to high variability in step gaits, m- & 
c-values were computed per individual 

from VeDBA~GPS-derived speed 
regression (cf. Chapter 4). 

Prides were lured to bait using audio 
recordings and individuals were 

anaesthetised at night according to 
SANParks operational procedures - 

detailed in SANParks’ ‘Standard 
Operating Procedures for the Capture, 

Transportation and Maintenance in 
Holding Facilities of Wildlife’ 

Units were mounted to a Litetrack 
collar [https://www.lotek.com]. 

Collars were loose enough to allow 
three fingers to pass through 

Penguin 
on land 

(walking) 
(n = 15 – 

2 DR paths 
per 

individual 
(out- & 

inbound) 
 

1 Hz 
 

10 Hz 
30 mins 

 

DBA-based speed 
Due to having a constant step gait, m- 

values were selected (c = 0) per 
individual based on the best scaling 

relative to GPS path pre-VP correction 
 

 
 

 
Penguins were caught at the nest 

during the chick rearing season using 
the clipboard method (Wilson 1997) 
and cormorants were caught at the 
nest during the chick rearing season 
via a crook on the end of a long pole 
(cf. Sakamoto et al. 2009). Birds were 

blind folded and restrained on a 
researcher's knees 

Devices fitted longitudinally to the 
base of the spine using Tesa® tape 

(Wilson & Wilson 1989; Wilson 1997; 
Wilson et al. 1997; Wilson et al. 2005) 

 

Penguin 
at sea 

(diving) 
(n = 15) 

 

1 Hz 
 

2 Hz 
1.5 

days 
 

Change between constant values 
(according to behaviour-type) and 
vertical movement-based speed 

→ speed = 0.416 m/s (cf. Wilson 1985) 
when depth ≤ 0.3 m (cf. Ropert-Coudert 

et al. 2001)  
→ speed = 2.1 m/s (cf. Wilson, Ropert-

Coudert & Kato 2002; Wilson et al. 
2004) when depth > 0.3 m and absolute 

values of pitch were < 10o 
→ speed = Δd/tan(θ • 𝜋/180) (upper 

cap of speed derived this way = 3 m/s) 
when depth > 0.3 m and absolute values 

of pitch were ≥ 10o  

Cormorant at 
sea (flying 
and diving) 

(n = 15) 
 

1 Hz 
 

10 Hz 
8 hours 

 

Change between constant values 
(according to behaviour-type) and 
vertical movement-based speed 

→ speed = 12 m/s when flying (derived 
from the heave acceleration (cf. 

Williams et al. 2015)) 
→ speed = 0.1 m/s when resting at the 
sea surface (derived from depth sensor 

and lack of dynamic acceleration)  
→ speed = Δd/tan(θ • 𝜋/180) (upper 

cap of speed derived this way = 3 m/s) 
during the ascents and descents of dives 
→ speed = 0.4 m/s during the bottom 

phase of dives 

Tropicbird at 
sea (flying) 

(n = 7) 
 

1 fix every 
minute 

10 Hz 
3 hours 

 

GPS-based speed 
→ speed = Haversine distance between 

GPS fixes divided by the time period 
between values and linearly 

interpolated (cf. Feng & Timmermans 
2013). Speed values overwritten as 0.1 

m/s when birds were resting at sea 
surface 

Devices were placed in a zip-lock bag, 
inside unheated heat shrink wrap and 

fixed longitudinally to the back 
feathers (Garde et al. (in review)) 

using Tesa® tape (Wilson & Wilson 
1989) 
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Results 

 

Net error decreased with increasing VP correction rate, although the species 

travelling in fluid media had much larger net error estimates for any given VP 

correction rate (Fig. 1). For example, considering a VP correction rate of 1 fix/h, the 

mean net error of penguins (at sea), cormorants and tropicbirds were approximately 

28, 42 and 95 times greater, respectively, than lions. A visually obvious ‘plateau’ of 

net error drop (relative to the initial gradient) varied between species (with respect 

to magnitude of net error and level of VP correction rate).  

 

Figure 1. Boxplots demonstrating the magnitude of net error according to the VP correction rate per species. Mean 
values were aggregated per individual and VP correction rate. Boxes encompass the 25-75 % interquartile range 
and horizontal bars denote the median value with ‘loess’ smooth line (grey shading shows the standard error and 
Whiskers extend to 1.5 * Interquartile range). Note net error drops to zero when the VP correction rate equates 
with GPS recording frequency (1 Hz for the lions, penguins and cormorants, and 1 fix/min for the tropicbirds). The 
inserts zoom in on the net error between VP correction rates of one fix per hour and one fix per second. 
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 Across all species, estimates of overall distance moved were smaller when summed 

between GPS positions (thinned according to VP correction rate) than for dead-

reckoned positions (Fig. 2). Dead-reckoned estimates of distance moved were 

generally more consistent across the VP correction rates, relative to the 

corresponding GPS-derived distance moved estimates (in which VP thinning is 

equivalent to VP correction rate). Although there are slight variations in the pattern 

of these trends between species, there was a notable increase when VP correction 

rate is highest. 

 

Figure 2.. Boxplots demonstrating the total distance moved (km) during the tag deployment period according to 
VP correction rate for the study species. Solid lines show the distance moved calculated using successive dead-
reckoned positions (distance moved (see methods) was 3-D and computed for penguins and cormorants operating 
at varying depths and tropicbirds at varying altitudes, and 2-D computed for lions and penguins walking on land). 
Dashed lines reflect the distance moved calculated from successive GPS positions according to the level of VP 
under-sampling stated (only 2-D distances were computed). Mean values were aggregated per individual and per 
VP correction rate. Boxes encompass the 25-75 % interquartile range and horizontal bars denote the median value 
with ‘loess’ smooth line (grey shading shows the standard error and Whiskers extend to 1.5 * Interquartile range). 
Note that the high spread of each species boxplot is due to the high intra-specific variability of distances moved – 
e.g., with the tropicbirds, differences in foraging/distance roamed may be due to breeding vs. non-breeding status. 
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Estimates of net error and distance moved were standardized according to the mean 

time between corrections per VP correction rate and the duration of the movement 

path, respectively, per individual (Fig. S1), which further highlighted the trend 

between speed of movement and net error estimates. Beyond this, the rate of net 

error was relatively consistent between VP correction rates (Fig. S1), demonstrating 

that the ‘plateaus’ of net error drop observed in Fig. 1, are primarily the result of the 

non-linear scales of VP correction thinning (although there was a noticeable minor 

decreasing trend from lowest to highest VP correction rates for animals moving in 

fluid media). Alongside VP-correction rate, dead-reckoning accuracy was heavily 

affected by the initial scaling of dead-reckoning tracks (Fig. 3). This principally related 

to appropriate speed allocation, such as threshold values of DBA to estimate speed 

and only advancing tracks at times of known travelling movements, thus excluding 

DBA values due to movements which do not lead to a displacement of the body in 

space (e.g., self-grooming movements). Here, per given VP correction rate, tracks 

advanced only during times of depicted movement (using the MVF protocol,  

(Chapter 4); green) recorded the lowest net error, relative to using all data (red) and 

subset data using a VeDBA threshold (blue) (Fig. 3). Whilst net error generally did not 

vary strongly with activity level (of which VeDBA is a proxy) for lions, the variance was 

markedly higher at both high and low VeDBA values, indicating that correcting for VP 

error during inactivity may be just as important as the initial track scaling (Fig. S2). 

VP corrected dead-reckoning provided the means to investigate behavioral responses 

with higher resolution, without incorporating the inaccuracies of positional noise 

associated with VPs obtained at high frequency (Fig. 4). For example, here, VP 

corrected dead-reckoning (using a VP correction rate of 1 fix/min) shows the various 

sites at which three female lions crossed the Kgalagadi Transfrontier Park fence line 

(into Botswana from South Africa), including patrolling behaviour of one female 

(purple) that became separated in time and space (Fig. 4).  
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Figure 3. A lion’s dead-reckoned movement path (approx. 12 days) in relation to (all) GPS positions (black), 
plotted both as a function of GPS correction rate ((a) = no correction, (b) = GPS corrected every 12 h, (c) = GPS 
corrected once every hour) and initial subset of data used to create the path (red = all data (no VeDBA threshold 
for speed), blue = only data that surpassed VeDBA threshold (> 0.1 g) used for speed, green = only data during 
periods depicted as proper movement (using the MVF protocol [23])). Note the difference in y-scales across the 
net error graphs. 
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Even when dead-reckoned travel vectors likely incorporated appreciable error (e.g., 

due to low-resolution (constant) speed estimates), fine-scale movement-specific 

behaviours were apparent (beyond the capacity of the VP systems used), for 

example, soaring in thermals (Fig. 5) or the tortuosity of foraging (Fig. 6).  

 

Figure 2. VP corrected dead-reckoned movements of lions in the Kgalagadi Transfrontier Park. The top left plots 
show a pride of 5 lions (2 Males – blue and 3 females – red). Both male and female movements abutted the 
Botswana fence boundary (dashed green line), although only the females crossed (illustrated in the dotted inserts, 
with yellow, cyan and purple tracks denoting individual females) The bottom right insert shows one female pacing 
along the fence line in an attempt to re-join the other two that crossed hours earlier. Note the extent of (unfiltered) 
GPS error that occurs (particularly during resting behaviours) (top right).   
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Figure 5. A 45-minute section of a tropicbird’s foraging flight at sea, encompassing periods of thermal soaring. The top plot 
characterises stylised trends in the raw values and select derivatives from the motion sensor and GPS unit outputs (2-D wave-
forms vs time), including differentiating flapping flight from thermal soaring (Marked events - primarily based on magnetism 
data). The sine waves appearing in two of the magnetometer channels simultaneously reflects circling. The bottom plot graphs 
the dead-reckoned track (coloured according to VeDBA) in 3-D, relative to all available GPS fixes obtained (black) (including an 
insert of circling behaviour). Note periods of thermal soaring are not apparent with GPS at the recording frequency of 1 fix/1 min 
as used here. Note that climb rate increases a function of the inverse of pressure. 

Figure 6. A 15-minute duration of a Magellanic penguin’s foraging trip at sea. The top plot characterises stylised trends in 
the raw values and select derivatives from motion sensor and GPS unit output (2-D waveforms vs time), including 
differentiating between dives and surface periods (Marked events - primarily based on depth data). Note that pressure is 
inverted to reflect depth. The bottom left plot maps the entire (17 hour) VP-corrected dead-reckoned foraging trip. The 
bottom right plot graphs the resultant VP-corrected dead-reckoned track from the 15-minute section of data shown above 
(coloured according to VeDBA) in 3-D, relative to all available GPS fixes obtained (black)). Note the latency delays in GPS 
recordings (as seen in the top plot), with a temporal offset of fixes (red dot projections) occurring at green marked events 
(at depth)). Fixes that occurred at depth were removed from the analysis.  
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I found that the interplay between the accuracy (and resolution) of speed estimates, 

animal behaviour and VP inaccuracy could result in correction factors (see discussion) 

that disproportionately (incorrectly) expanded sections of the dead-reckoned track 

(Fig. 7). For example, in Figure 7, clear scaling errors arose between the third and 

fourth VP (post-VP correction) during soaring in a thermal when VeDBA- and GPS-

derived speeds were used. At this path segment, the distance correction factor 

required when using constant speed values differentiated according to behaviour 

(green) was 3, juxtaposed with 22 and 47 for the VeDBA- (blue) and GPS- (red) derived 

speeds, respectively.  

 

 

 

Figure 7. Seven minutes of tropicbird flight with dead-reckoned tracks advanced according to 3 different 
allocations of speed, plotted alongside GPS (1 fix/min) both pre- and post-VP-correction. This demonstrates the 
main error that can arise during the VP correction procedure (using heading and distance correction factors (see 
discussion)), when there is a large disparity in distance between consecutive VPs and consecutive dead-reckoned 
positions, primarily due to inaccurate speed allocation and/or VP error. Note how a segment of thermalling 
behaviour was disproportionately expanded during the VP correction process when using GPS-derived speeds and 
DBA-based estimates, because there was no differentiation between thermal soaring and flapping flight (cf. Fig. 
5). Using a much lower speed value during thermal soaring value (a quarter of the magnitude allocated for 
flapping flight) greatly improved track estimates because the magnitude of linear drift correction works as a 
function of the underlying speed allocation. 
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The dead-reckoned tracks in air and water improved in general accuracy when 

suitably estimated external current flow vectors (tidal-/wind-speeds and direction 

per unit time and space) were incorporated (via travel vector and current flow vector 

addition -‘current integration’, Fig. 8).  

 

 

 

Figure 8. (a) One penguin’s dead-reckoned track calculated with- (green) and without- (blue) current integration 
and 3 variant VP correction rates (left panel).  (b) shows differences in net error when dead-reckoned tracks were 
iteratively integrated with space- and time-correction (net error estimates obtained from 5 penguin datasets). The 
boxes denote the median and 25-75 % interquartile range and whiskers extend to 1.5*IQR. (c) shows an 
uncorrected dead-reckoned tropicbird flight path, relative to GPS, both with (green) and without (blue) current 
integration. Note the clustering of fixes (e.g., due to animal not moving much for extended periods of time) that 
can occur when using temporal sub-sampling routines (a more refined method could include using a VP correction 
rate of 1 fix every x m moved (e.g., as estimated between VP’s)).  



How often to correct dead-reckoned paths? 

217 
 

Discussion  

 

Speed inaccuracies and VP corrected dead-reckoning 

 

It is notable that the calculated examples of animals travelling on land (lions and 

walking penguins), had far less net error per given VP correction rate than the animals 

travelling in fluid media (swimming penguins, cormorants and tropicbirds), 

confirming the accuracy of the method for the former medium. However, dead-

reckoning is very valuable for animals moving in fluid media (particularly for 3-D 

movement and movements underwater, which cannot be monitored by GPS), even 

though the inaccuracy is greatest at such times. There are three reasons for the 

greater inaccuracy: 

1. The DBA approach of deriving speed estimates is temporally highly resolved 

and more accurate than GPS-derived estimates (used for tropicbirds) and the 

constant values used for part of the paths calculated for penguins and 

cormorants. 

2. Typically, terrestrial species move slower than aerial/marine equivalents and 

thus incorporate less spatial error per unit time (cf. Fig. S1). 

3. External current flow vectors can cause the relationship between an animal’s 

(longitudinal axis) powered direction of travel and their true vector of travel 

to deviate (Shiomi et al. 2008; Chapman et al. 2011). Indeed, in one of the 

earliest considerations of dead-reckoning for animals, Wilson et al. (1991) 

noted that ocean currents were likely to be the greatest source of inaccuracy 

for positional fixes because of this. 

 

Although convenient and powerful, DBA-derived speed has its own inaccuracies. The 

proposed linear relationship between DBA and mechanical power (cf. Gleiss, Wilson 

& Shepard 2011; Wilson et al. 2020a) presumably changes when the animal is load-

bearing (Sequeira et al. 1995; Miwa et al. 2015), moving over a deformable substrate, 

over varying incline (Kerdok et al. 2002; Halsey et al. 2008; Bidder, Qasem & Wilson 

2012) or changing gait (Bidder et al. 2012), or the attached logger undergoes motion 

independent of the body frame (e.g., collar roll), whilst even stationary behaviours 
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can impart appreciable DBA, all of which may affect the relationship between DBA 

and speed (Bidder, Qasem & Wilson 2012; Bidder et al. 2015).  

DBA-derived speed estimates can sometimes break down for species that hold 

appreciable quantities of air underwater (such as birds (Wilson et al. 1992)) due to 

the compression of the air that takes place with increasing depth, with consequent 

changes in upthrust and power allocation according to swim angle (Wilson et al. 

2011) (cf. the difference of VeDBA magnitude between ascents and descents – Fig. 

6). In addition, DBA does not scale reliably with speed for animals that glide, use 

thermals (cf. Fig. 5 & 7), or bank and turn sharply (Williams et al. 2015; McNarry et 

al. 2017) because the more a gliding bird pitches down, the faster it will travel, even 

though there is no change in DBA. The same is true of animals with a higher density 

than water, such as elasmobranchs (cf. Smith et al. 2004), although in both cases the 

speed can be determined using the rate of change of altitude/depth if the pitch angle 

is known and it is high enough (Wensveen, Thomas & Miller 2015)).  

Most previous studies that have used in-water speed sensors have done so by 

counting rotation of an external propeller or paddlewheel (e.g., Mitani et al. 2003; 

Shiomi et al. 2008; Matsumura et al. 2011; Watanabe et al. 2011; Iwata et al. 2015). 

However, such systems have appreciable limitations with their ability to measure 

highly dynamic speed because (aside from environmental confounds such as 

blockage and turbulence (cf. Shepard et al. 2008c)) flow characteristics around the 

sensor can change radically as a function of speed, most particularly in proximity to 

the animal body where the sensors are situated (Kreye 2003). Recent research into 

fluid media speed sensors (e.g., Altynay et al. 2019) though, may eventually provide 

systems that could markedly enhance the dead-reckoning process for animals 

travelling in water or air. Beyond this, the principal low-resolution methods for 

determining a speed proxy involve GPS-derived speed estimates or 

constant/simulated values according to behaviour-type or topological whereabouts 

(the primary approach used here for aquatic/aerial movement). Clearly, using 

constant speed estimates (even if they are a mode of the true value) quickly give 

erroneous integrated travel vectors, which emphasises the importance of 

appropriately spaced VP correction, particularly when speed is highly variable.  
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Generally, environmental covariate maps are typically given with lower resolution in 

aerial and aquatic domains, so location errors seem less important because space-

use is, anyway, typically considered at larger scales (cf. Wensveen et al. 2019). For 

example, foraging ‘hotspots’ can be obtained based from 3-D dive profiles and even 

if dead-reckoning accuracy had an approximate 500 m error radius (e.g., 1 fix/hour 

VP correction rate for penguins (Fig. 1)), such errors seem more acceptable in an 

apparently predominantly featureless ocean (although not necessarily - e.g., 

investigating disturbances to animal movements created by underwater turbines). 

The same reasoning applies to most flying species although, because so many fly over 

land, higher absolute resolution is often required in order to map out the specifics of 

land-based features, such as wind turbines (Rydell et al. 2010; Everaert 2014) or 

thermals (Harel et al. 2016), that are relevant for bird (or bat) movement. Airflows 

themselves represent dynamic environments and assessing fine-scale dead-reckoned 

tracks in 3-D may reveal important interactions between animal and airscape and the 

energetic consequences involved (cf. Lempidakis et al. 2018; Williams et al. 2020; 

Lempidakis et al. 2021; Garde et al. (in review)). Most importantly, although dead-

reckoning for fliers can incur substantial wind-based drift, GPS-based VP is usually 

accurate, because of the open sky which enhances signal transmission (Forin-Wiart 

et al. 2015), and this can help correct tracks accordingly. 

Whilst the accuracy of current flow vectors may be imprecise, their integration (see 

Chapter 5 for method) can improve dead-reckoning estimates substantially (both 

pre- and post-VP correction, Fig. 8), which is especially important when VPs are 

scarce. It is worth noting however, that using GPS-derived speed and/or output from 

speed sensors estimating parameters of flow incorporates the speed of any current 

flow. Against this, assessing dead-reckoned travel vectors alongside VPs and external 

current flow vector estimates can provide insights into movement strategies of 

animals compensating for current drift (cf. Shiomi et al. 2008; Chapman et al. 2011). 

The greater accuracy of VP corrected dead-reckoning in terrestrial movement 

compared to fluid media is important because covariates of interest on land are 

typically highly resolved with, for example, habitat use (Valeix et al. 2010; Tracey et 

al. 2013), conspecific interactions (Schlägel et al. 2019) and the effect of man-made 
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structures (Shepard et al. 2008a; Panzacchi et al. 2016) (e.g., roads, fences etc.) being 

of interest. Unlike most aquatic and aerial species, DBA can be continuously applied 

as the speed proxy for land animals, and the DBA~speed regressions (m and c values) 

can be modelled according to behaviour/terrain type, for higher resolution estimates 

(Bidder, Qasem & Wilson 2012). In this, a primary factor in maximising dead-

reckoning accuracy in a speed context, is to ensure that only periods of genuine 

traveling movement are dead-reckoned, since even stationary behaviours (e.g., 

grooming, feeding, rolling over etc.) can impart appreciable DBA, which can 

inaccurately advance the vector of travel (cf. Fig. 3) (English et al. (in review)). Though 

notably, this is harder to achieve for animals in/on fluid media. 

The VP correction procedure outlined in Walker et al. (2015) (and used here), divides 

the distance between consecutive VPs with the corresponding distance between 

temporally aligned dead-reckoned positions to obtain a distance correction factor 

(ratio) that is multiplied to all intermediate dead-reckoned distance moved 

estimates. This method has the advantage that the periods when the dead-reckoned 

vectors are not advanced (e.g., by allocating zero speed values for stationary 

behaviours, which can be determined from inertial data (e.g., Graf et al. 2015)), are 

not subsequently expanded out in the linear drift correction procedure (since 

multiplying by zero achieves a zero-correction factor). Notably though, this method 

of correction can inflate error, beyond the normal linear vector expansion or 

contraction (cf. Constandache et al. 2010). This is particularly problematic in small 

looping movements because if there is a disparity in the distance estimates between 

successive VPs and the corresponding dead-reckoned positions, path segments may 

be disproportionately expanded (and even inappropriately rotated) in order for the 

endpoints of both to align. Even though such path segments may simply be an 

artefact of VP inaccuracy, heading error or (as demonstrated in Fig. 7), wrongly 

assigned speed values. This has consequences for space-use estimates and thus 

drives home the importance of initial behavioural identification, speed allocation, 

and VP screening prior to the VP correcting dead-reckoning procedure, particularly 

during highly tortuous movement. Erroneous estimates of speed can occur, for 

example, due to the DBA~speed relationship changing as a function of behaviour (i.e., 
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thermal soaring), or using low-resolution GPS-derived speed. Specifically, in Fig. 7, 

this was because, respectively, the GPS frequency was not high enough to resolve the 

tortuosity of movement involved between fixes accurately (and thus the distance 

travelled, from which GPS-derived speed is calculated), and because birds typically 

impart negligible DBA during soaring behaviour. The latter effect, along with the 

presence of external wind currents, can substantially alter the required coefficients 

(gradient and intercept) and/or linearity of the DBA~speed relationship in time and 

space.  

Heading inaccuracies and VP-corrected dead-reckoning accuracy 

 

Whilst not explicitly covered in these results, it is notable that because it is a vectorial 

operation, heading is the second major component in dictating dead-reckoning 

inaccuracy. Therefore, I clarify the potential causes of such error (first outlined in 

Chapter 5) below. Heading is calculated using the arctangent of the ratio between 

two orthogonal components of the magnetic vector when the magnetic field sensor 

is lying flat and parallel to the Earth’s frame of reference (Grygorenko 2011). The tilt-

compensated compass method rotates the attached tag’s magnetic vector 

coordinates and subsequently converts values of each magnetic vector channel to 

the corresponding Earth’s reference coordinate system, using the angles between 

the tag’s magnetic- and the gravity vector. These angles are typically expressed as 

pitch and roll (Euler angles), which are resolved from the static component of 

acceleration (the gravity vector). The difficulty can be separating the static- (due to 

gravity) and dynamic (due to the animal’s movement) components of acceleration 

(cf. Fourati et al. 2011). Although various methods have been proposed to do this 

(e.g., using a running mean (Shepard et al. 2008b; Gunner et al. 2020) or high-pass 

filter (Sato et al. 2003)), estimates are problematic during periods of high centripetal 

acceleration (‘pulling g‘; e.g., rapid cornering (McNarry et al. 2017)), free-falling (no 

discernible or low gravity-component) (Williams et al. 2015) and highly dynamic 

movements (Noda et al. 2014). Consequently, azimuth measurement error can be 

inflated at times when derived static acceleration estimates break down as a proxy 

of tag attitude relative to the Earth’s fixed reference frame.  
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Incorporating gyroscopes can improve the accuracy of computed heading, since they 

accurately reconstruct gravity-based attitude, irrespective of acceleration (Wen 

2019). However, gyroscopes suffer from drift, high-power requirements and rapid 

memory consumption (Fong, Ong & Nee 2008; Noda et al. 2012). Complex data 

processing makes them unappealing in most free-ranging bio-logging studies, 

particularly when information gains may be limited (cf. Martín López et al. 2016). 

Further work should assess the extent to which gyroscopes do improve (species-

specific) VP corrected dead-reckoning accuracy, particularly at fine-scales (e.g., 

during fast, transient manoeuvres such as prey pursuit).  

The usual method to derive Euler angles is to determine a set vectoral orientation 

with each orthogonal channel representing a particular body plane (anterior-

posterior, medio-lateral and dorsal-ventral) with respect to the earth’s frame of 

reference (Ozyagcilar 2012; Pedley 2012; Walker et al. 2015), and the order of these 

channels is pivotal for deriving correct estimates of body rotation about the three 

axes  (Johnson & Tyack 2003 - for equations see Chapter 5). However, this assumption 

breaks down for animals (or attached tags) that change orientations frequently at 

angles greater than perpendicular from their longitudinal and lateral axes of ‘normal’ 

posture due to the singularity issues (Gimbal lock) that arise when using the Euler 

sequence of 3-D vector rotation (Pedley 2013). This problem can be mitigated by 

using a quaternion-based orientation filter (Valenti, Dryanovski & Xiao 2015; Chiella, 

Teixeira & Pereira 2019), however such an approach requires complex mathematical 

processing which may, in part, explain why Euler rotations are favoured (at least in 

biologging studies). I suggest that quaternion estimated heading should be compared 

with Euler angle-derived heading within the dead-reckoning framework, to assess the 

extent of error that occurs during times when the Euler sequence for determining 

attitude/orientation is likely to break down (e.g., during high centripetal 

acceleration). At the very least (when using Euler angles), inertial measurement 

coordinate frame adjustments of the tag frame (reflecting the body frame) relative 

to the Earth should be carried out (cf. Johnson & Tyack 2003) for animals that carry 

out ≥ 90o body inversions (e.g., a penguin walking vs swimming).  
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Small discrepancies between the tag and animal body coordinate frames are not as 

vital to correct for deriving heading since the tilt-compensated compass only 

concerns the attitude of the tag relative to the Earth so any required heading offset 

between the tag and animal’s body frame can be subsequently applied. In fact, 

consistent biases in tag heading are easily corrected for within the VP corrected dead-

reckoning framework, with the difference in heading from true North between 

consecutive VPs and corresponding dead-reckoned positions being applied as the 

heading correction factor. However, there is no straight-forward solution to 

correcting heading from tags that move independently of the body (e.g., through 

partial dislodgment).  

Animals that undertake long migrations can be subject to variations in the strength 

and declination of magnetic fields and this can be difficult to account for, because the 

magnetometry calibration procedure (Williams et al. 2017), required for correcting 

soft and hard iron distortions (Chi, Lv & Wang 2019), is typically performed prior to 

deployment and is therefore only relevant according to the specific magnetic 

conditions of that area. Even after sufficiently calibrating magnetometry data, local 

changes in the magnetic field (e.g., due to the presence of ferrous material) and 

temperature-induced offsets (Caruso 2000; Johnson & Tyack 2003) can introduce 

channel bias in measured magnetism, confounding heading output. Moreover, the 

horizontal components of the magnetic field become small when the magnetic-field 

inclination angle increase towards the poles, which can also result in heading 

measurement error (Johnson & Tyack 2003). Lastly, heading estimates assume the 

animal moves in the direction of its longitudinal axis, which is not always the case 

(Laplanche, Marques & Thomas 2015). 

 

VP inaccuracies and VP-corrected dead-reckoning accuracy 

 

Data collected from tags attached to neck collars generally shows more variation in 

acceleration and magnetic field intensity values than data obtained from loggers 

deployed near an animal’s Centre of Mass (CoM). This is because collars can roll 

independently to that of the body frame. That our net error estimates plateaued for 
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(collared) lions at ca. 10 m, with a 1 fix/30 mins VP correction rate demonstrates 

though, the value that VP corrected dead-reckoning can have for constructing long-

term, fine-scale terrestrial movement. Indeed, across all VP correction rates, distance 

moved estimates alone were more consistent (and higher) when estimated between 

dead-reckoned positions than VPs (Fig. 2). The sharp increase that occurs in distance 

moved estimates (at the highest VP correction rate) stems principally from 

incorporating all the VP locational error (Fig. 2). Notably, the temporal sub-sampling 

intervals of VP correction were not always exact because fix success can fail for 

periods longer than the set VP correction rate (e.g., during submersion in water) 

(Costa et al. 2010). As such, I advocate that the VP correction rate should not be 

treated literally between species with the number and regularity of VP correction 

generally lower for aquatic animals per set VP sampling rate. Indeed, dead-reckoned 

distance moved estimates were generally much higher than the equivalent VP 

distance in aquatic and flying species. This is because VPs can fail for extended 

periods while dead-reckoning is continuous. 

It is worth reemphasizing that across all travel media, dead-reckoning accuracy as 

assessed via net error must not be taken literally (particularly at high VP correction 

rates), since VP error can also be appreciable (cf. Fig. 4, Fig. S2), whilst net error does 

not account for inaccuracies between VPs (cf. Fig. 7) and extremely high values at 

single points in time (likely due to VP error) may increase overall net error estimates 

(cf. Fig. 3). Only including fixes where genuine travelling movement occurred (e.g., as 

assessed from motion sensor data) can help remove GPS error that occurs when 

animals are stationary or extremely slow-moving (e.g., tortoises) where the disparity 

between VP error and genuine travelling movement become disentangled (even at 

low VP correction rates).  

Deciding drift correction rates 

 

The specific number of VPs that are required to drift correct are obviously species-

specific and there are many confounds to this process that we outline above, 

including user-defined track-scaling and initial VP screening, that will change on a 

case-by-case basis. The scenarios outlined above should provide a general idea of the 
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required correction rates for the resolution that is required in aerial, aquatic and 

terrestrial domains. In essence, we suggest that VP correction should be undertaken 

as little as possible, but as much that is required. For investigating highly defined 

scales of movement (for example here, lion-fence boundary interactions or penguin 

navigation strategies on land) then 1 fix/15 mins or more may be required - 

particularly during highly dynamic and tortuous movements when net error is 

generally greatest (cf. Fig. S2) and when speed estimates may be unreliable (cf. Fig. 

7). For longer-term studies (e.g., weeks to months) general movement networks and 

distance moved estimates, where net errors of ca. two hundred metres, may be 

deemed reasonable definition for the questions being asked, much lower VP 

correction rates could be used to preserve battery life, allowing animals to carry 

smaller tags. Importantly, even when high VP correction rate is possible (e.g., ≥ 0.1 

Hz), corrections should only be carried out at times of genuine traveling movement, 

whereby distance moved between VPs exceeds the positional error radius stemming 

from the precision of their measurement.  

The utility of dead-reckoning 

 

The vast majority of animal tag studies investigating space-use have done so subject 

to the resolution of the VP system utilised (typically GPS), something that has 

generally resulted in low-aspect ratio location-based point density (cf. Fleming & 

Calabrese 2017) or diffusive straight-line movements (cf. Edelhoff, Signer & Balkenhol 

2016). VP corrected dead-reckoning provides a means to incorporate all the various 

scales and directions of movement between VPs (rather than just linear interpolation 

(Poulin, Clermont & Berteaux 2021)) and thus has the capacity to map out movement 

patterns to a hitherto-unrealized degree (Dewhirst et al. 2016). Such expansion of 

the resolution of animal space-use into fine-scale, uninterrupted movement path 

networks can enhance insight into a number of fundamental concepts considered 

important in structuring movement paths and space-use by animals, including energy 

landscapes (Shepard et al. 2013), landscapes of fear (Gallagher et al. 2017) and 

accident landscapes (Wheatley et al. 2021). VP corrected dead-reckoning has 

particular relevance for marine underwater studies because 3-D movement can be 
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reconstructed (Wilson et al. 2007; Laplanche, Marques & Thomas 2015) at times 

when VPs cannot be obtained (Costa et al. 2010) (e.g., Fig. 6).  

The immediate benefits of using VP corrected dead-reckoning are: 

1. That it can reconstruct continuous, fine-scale 2-/3-D movement paths, 

irrespective of the environment and at higher resolution than any VP system 

(Bidder et al. 2015; Chapter 5) 

2. That it provides a means to reduce the recording frequency of GPS locations, 

thus extending battery life and/or reducing deployment bulk/weight 

(Dewhirst et al. 2016) 

3. That it prevents/limits positional noise (‘jitter’) of ’high-res’ (e.g., ≥ 1 Hz) GPS 

datasets, which is most apparent during non-moving behaviours such as rest 

and in highly heterogenous environments where radio signal can be easily 

obstructed (cf. Ryan et al. 2004; Chapter 4) 

 

In particular, the scales of tortuosity exhibited between VPs, as defined with VP 

corrected dead-reckoning, irrespective of the drift from true location (net error), can 

highlight behaviours that VPs alone cannot. For example, I demonstrate here that 

circling behaviour (Narazaki et al. 2021) can easily be distinguished in dead-reckoned 

tracks from tropicbirds (Fig. 5), even when the circling duration is as low as 10 s. VP 

corrected dead-reckoning can also greatly improve the accuracy of space-use 

estimates by limiting the inclusion of positional noise via advancing travel vectors and 

carrying out VP correction only at times when the animal is determined to be 

travelling (English et al. (in review)). In fact, we believe that a particular value of VP 

corrected dead-reckoning, is that it will provide important detail about the effects of 

humans and anthropogenic landscape features on animal movements, a topic that is 

increasingly germane (Rahel & McLaughlin 2018; Tucker et al. 2018; Suraci et al. 

2019). For example, understanding the extent of the permeability of anthropogenic 

barriers (e.g., fences, roads) and the hazards that they pose to specific animals (Foley 

et al. 2017; Shi et al. 2018; Xu et al. 2021) is key to proper livestock and wildlife 

management (Hooten et al. 2017; Katzner & Arlettaz 2020; Chung, Lee & Lee 2021; 

Li et al. 2021). My work demonstrates that this approach details the intricacies of 
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animal-barrier interactions, including the locations of barrier transgression as well as 

movement paths pre-, during and post- barrier transgression. Moreover, VP 

corrected dead-reckoning should also elucidate animal foraging- and predator 

avoidance strategies as well as provide vital information that will help us understand 

how animals respond to, and navigate through (air/tidal) current flows (Chapman et 

al. 2011). Beyond this, dead-reckoning has been demonstrated to have high welfare 

value in zoos, by enabling continuous assessments of enclosure space-use relative to 

enrichment regimes and the possible occurrence of stereotypical behaviours such as 

pacing (English et al. (in review)).  

Importantly, this approach has implications for informing conservation management. 

For instance, the impacts of free-ranging forest elephants depend largely on what 

they are doing at very specific localities (Ngene et al. 2010; Mills et al. 2018). At 

present, GPS is mostly used to reflect on where elephants move as a general response 

to the availability of resources such as food, water and safety (e.g., Blake, Douglas-

Hamilton & Karesh 2001; Ott & Aarde 2010; Mills et al. 2018). Drift-corrected dead-

reckoning can highlight the specifics of behaviours and localities, and therefore, for 

example, allow researchers to retrace elephant movements to determine what 

elephants feed on and where they do it, which has obvious 

management value. Lastly, alongside capturing under-water movements, dead-

reckoning may prove effective for elucidating movement-specific behaviours in other 

habitats that have poor signal reception, such as within caves and burrows.    

Key considerations governing the relationship between VP correction rate and dead-

reckoning accuracy 

 

To improve VP-corrected dead-reckoning estimates (assuming the accelerometer-

magnetometer Euler angle approach) the minimum pre-routine should consider the 

following: 

1) Screening for, and removal of, erroneous VP estimates 

2) A suitable magnetometer calibration (Vitali 2016; Williams et al. 2017) with 

correction of acceleration and magnetometry data for any discrepancies 

between the tag coordinate frame and body coordinate frame, relative to the 
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Earth’s fixed frame of reference (e.g., by visually taking note of the 

deployment angle offset and derotating using rotation matrices as outlined in 

Johnson & Tyack 2003) 

3) Application of any required magnetic declination offsets (and approximate 

yaw offset if step 2 was not carried out) 

4) Computation of suitable estimates of speed (possibly modulated according to 

identified behaviour and/or terrain type) 

5) Integration of external current flow vectors where appropriate (and when 

reasonably modelled/measured) 

6) Post-examination of dead-reckoned tracks (both pre- and post-VP correction), 

relative to VPs, visually to examine and readjust aspects of the initial track 

scaling.  

Further advances could include additional limb-borne logger deployments that may 

decipher limb stride frequency via clearer stylised patterns of inertial measurement 

(Radeski & Ilieski 2017; Wilson et al. 2018; Whitford & Klimley 2019). Such counts per 

unit time, may themselves be used as a speed proxy (cf. Chapter 5). Whilst not 

covered here, investigation of extremely high or biased distance (speed) and heading 

correction factors may be used to aid in identifying inaccuracies originating from tag 

performance (heading, speed and/or VP inaccuracy). Very low distance correction 

factors (< 1) either indicate inaccurately identified bouts of travelling movement or 

supplying inaccurately high-speed estimates. On the other hand, very high distance 

correction factors (> 1) again, could indicate inaccurately identified bouts of travelling 

movement, or supplying inaccurately low-speed estimates or, the most likely cause 

is due to VP error. Consistency in the direction of heading correction factors either 

indicate a yaw offset of the tag relative to the animal’s coordinate frame, a hard iron 

offset in magnetic data (or a required summation of the magnetic declination), or due 

to external current flow drift. 

Generally, the factors that affect dead-reckoning and VP accuracy are illustrated in 

Fig. 9, with the level of obtainable dead-reckoning accuracy depending on the user-

defined initial track scaling, VP screening and the study species.  
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Conclusion 

 

Combining dead-reckoning and VPs (specifically, GPS) produces an extraordinarily 

powerful method for looking at animal movement. Under ideal conditions, VP-

corrected dead-reckoning can enhance the resolution of animal movement from 

diffusive area-use to high resolution animal pathways. I have highlighted the main 

sources of inaccuracy within the dead-reckoning framework and considered the 

implications of such error across a diverse group of animals using different modes of 

movement and operating in the three main media. A major improvement to this 

approach necessitates accurate speed estimates (particularly in fluid media). Further 

work could build on these fundamentals and investigate the utility of VP-corrected 

dead-reckoning across a suite of animals and environments. Appropriate sharing of 

finding would provide a repository of species-specific rules for assessing movement-

specific behaviours, VP inaccuracy, speed allocation and heading computation for the 

community to benefit from maximum resolution of animal movement. 

 

Figure 9. Schematic diagram to illustrate the various elements that modulate VP and VP 
corrected dead-reckoning accuracy. Black dots illustrate the element’s graphical position. 
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Abstract 

 

The navigation mechanisms that penguins use on land are unclear. A time-

compensated sun compass is the most widely accepted theory because birds at sea 

returning from foraging to their nests, navigate back to specific localities across 

seemingly featureless expanses of ocean where landmark-type visual cues are 

normally absent. On land, studies also report straight-line travel between the nest 

and the sea, which could be explained by the sun-compass theory. Here, I assess the 

movements of 24 Magellanic penguins walking in well-defined landscapes varying in 

vegetation density, with infra-second resolution (40 Hz) using GPS-enabled dead-

reckoning to resolve bird pathways in detail, elucidating step lengths, pauses, turns 

and turn extents. Results show that outgoing birds each followed their own well-used 

Track of Familiarity (ToF) which took them in a straight line essentially perpendicular 

to the sea edge. Against this, incoming trajectories, which generally started at beach 

landing points displaced from the ToF, were rarely straight-line courses: Instead, 

penguins moved at an angle to the shore, which led to them crossing their ToF 

whereupon they corrected their paths to follow the ToF. There were notable 

differences in the dynamism, extent of pausing and the directionality of movement 

between incoming and outgoing trips and I argue that this supports the notion that 

penguins use vision-based navigation during on-land navigation. 
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Introduction  

 

The navigational ability of seabirds across extensive tracts of seemingly featureless 

ocean has long intrigued naturalists (Cooke 1984; Brooke 2020) and has been the 

subject of much study (e.g., Wehner 2001; Bonadonna, Benhamou & Jouventin 2003; 

Åkesson & Weimerskirch 2005; Bonadonna et al. 2005; Gill Jr et al. 2009; Chapman 

et al. 2011; Reynolds et al. 2015; Goto, Yoda & Sato 2017; Ballard et al. 2019; Yoda 

2019; Putman 2020) with many concluding that a time-corrected sun compass is 

important (Alerstam & Pettersson 1991; Guilford & Taylor 2014; Padget et al. 2018). 

Less effort has been devoted to seabird navigation on land, even though many 

species have prolonged phases moving overland between feeding and breeding sites 

(e.g. Emlen & Penney 1964; Péron & Grémillet 2013; Pollonara et al. 2015; Yoda et 

al. 2017; Shiomi et al. 2019), travelling in static landscapes where object salience 

could be used to navigate (Able 2001; Holland 2003; Newton 2015; Atchoi, Mitkus & 

Rodríguez 2020). Indeed, the constant, accessible environment of land should 

facilitate studies of seabird navigation although such studies are few compared to 

those looking at movement at sea (e.g., Nesterova et al. 2010; Yoda et al. 2017; 

Shiomi et al. 2020).  

Effective navigation is particularly relevant for breeding, central-place-foraging 

(Orians & Pearson 1979) seabirds because the ability to travel efficiently between the 

nest and the sea has fitness implications for both the provisioning adult and its brood 

(Boersma & Rebstock 2009; Phillips et al. 2017). For example, higher levels of track 

tortuosity (see Benhamou (2004), for review) manifest by higher turn frequencies 

and turn extents, increase both the overall distance travelled and the duration of the 

trip, whilst incurring a higher energetic cost associated with the turn processes 

(Wilson et al., 2020a). Effective navigational strategies should, therefore, be highly 

directional to minimise transport and time costs (Lusseau 2004; Wilson et al. 2013; 

Lempidakis et al. 2018; Wilson et al. 2020a). Many believe that land-based navigation 

in seabirds is based on vision (e.g. Nesterova et al. 2010; Clark et al. 2016; Atchoi, 

Mitkus & Rodríguez 2020), with recent work by Yoda et al. (2017) noting that vision 

seems important in streaked shearwaters (Calonectris leucomelas) even at sea 

because these birds follow the coastline to arrive at their colonies. As a corollary, 
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Shiomi et al. (2019) showed that shearwaters prefer to travel back to their breeding 

colony during daylight hours, presumably because visual range is greatest at such 

times.  

Penguins have well-developed vision, including at low light intensities (Howland & 

Sivak 1984; Martin & Young 1984; Sivak, Howland & McGill-Harelstad 1987; Suburo, 

Marcantoni & Scolaro 1988; Suburo & Scolaro 1990; Coimbra et al. 2012) and are 

reliant on vision for prey capture (Wilson et al. 1993; Thiebot et al. 2016). Theories 

about how penguins navigate using vision, range from a time-compensated sun 

compass (Emlen & Penney 1964; Emlen & Penney 1966) to the use of ‘landmarks’ 

(Mattern et al. 2007; Nesterova et al. 2010; Shiomi et al. 2020), although navigation 

studies on penguins are in their infancy, and typically in published studies no 

distinction is made between land and sea phases (though see Shiomi et al. 2020). I 

argue that navigation on land for penguins involves different mechanisms to 

navigation at sea and has different consequences. Firstly, penguins have a low profile 

at sea where they effectively disappear between wave troughs, which makes vision 

for navigation problematic, although this is generally not the case on land (Shiomi et 

al. 2020). But penguins travel much more efficiently at sea than on land, moving 4.6 

times farther per unit energy (Pinshow, Fedak & Schmidt-Nielsen 1977; Griffin & 

Kram 2000; Shiomi et al. 2020) at a speed that is about four time faster (e.g. Kooyman 

et al. 1971; Dewasmes et al. 1980; Wilson & Wilson 1990; Wilson et al. 1991; Wilson 

2004; Willener et al. 2015; Shiomi et al. 2020), so the consequences of inefficient 

navigation are less telling. 

I examined on-land navigation in breeding Magellanic penguins (Spheniscus 

magellanicus) at the Punta Norte colony, San Lorenzo (-63.86°E, -42.08°N), Argentina, 

which has particularly challenging characteristics for navigation as birds move 

between the shoreline and their nests: The penguins here breed in a large (600,000 

breeding pairs, Pozzi et al. 2015) densely populated colony and may walk distances 

of up to 700 m between their nests and the sea (Villanueva & Bertellotti 2014), having 

to navigate through different landscapes varying in vegetation density. The 

navigational challenge is particularly acute for birds returning to their broods from 

the sea since they have to locate the singular locality of their nests. The specifics of 
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the return trip at San Lorenzo involve arrival on the shore after foraging at distances 

typically ranging between 91 km (Boersma et al. 2009) and 231 km away (Sala et al. 

2012). The arrival site is an ostensibly featureless (because it is changes regularly by 

high tides) steep pebble beach, above which the penguin cannot see landmarks until 

they have climbed some 20-50 m, at which point they can see the landscape and 

colony beyond. At the top of the beach, the birds are presented with a flat, open 

pebble and low grass landscape some 100 m wide running parallel to the shore, over 

which landmarks at distance (low hilltops etc.) can be seen. Once this open expanse 

has been crossed, the penguins have to move through high-density shrub, with 

vegetation being typically much higher than an erect penguin’s head, thus precluding 

all but the most proximate visual cues for navigation (see Fig. 1 for a schematic cross-

section of the study site). This constellation of conditions forms a natural experiment 

within which to examine navigation in Magellanic penguins because their vision is 

compromised in a defined manner.  

Figure 1. Simplified topographic cross-section of the Magellanic penguin colony at Punta Norte, San Lorenzo. The 
height and density of shrubbery generally increases with distance from the sea which can restrict the ‘line-of-sight’ 
to just a few metres. I refer to ‘nest sector’ as a particular area of the San Lorenzo colony within which study nests 
sites were located. The black dashed lines denote the boundaries between the nest sites. The purple line shows an 
approximate boundary between ‘open colony’ and ‘closed colony’, which reflects the greatest change in the extent 
of shrubbery, though see Fig. 2 for a detailed mapping of the different vegetation types. 
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Quintana et al. (in review) have described the outgoing and incoming terrestrial paths 

at this study site with high resolution based on 108 trajectories from penguins with 

nests in the closed colony – see Fig. 1. Eighty-nine of these tracks were derived from 

twenty-two birds which were instrumented with GPS (recording at 1 Hz), with the 

remaining 19 tracks coming from eight birds instrumented with dead-reckoning tags 

(recording at 40 Hz, e.g., Bidder et al. 2015). The authors found that outbound 

penguins essentially took a (presumed familiar by virtue of its consistency and 

frequency of use) route that took them in a virtually straight line to the closest point 

of the sea (which they defined as the ‘I-point’ and termed here their ‘Track of 

Familiarity’ (ToF)). In contrast, returning birds exhibited greater variability in path 

shape, and this typically depended on the extent of lateral displacement from their 

ToF upon their exit from the sea, presumed to be due to them moving across less 

familiar terrain (Quintana et al. in review). Many of the displaced journeys had a 

characteristic ‘Y-path’ shape, which was hypothesised to be a navigation strategy – 

specifically walking obliquely to the coastline until they intersected their ToF. 

Interestingly though, penguin navigation seemed unaffected by time of day or night 

and moon so the extent to which these birds rely on sight for navigation is still largely 

conjecture. Whilst the work by Quintana et al., (in review) provided much new 

information, most tracks were GPS derived, precluding fine-scale (e.g., infra-second) 

assessments of turn extents and step lengths which may help understand navigation 

behaviour. In addition, Quintana et al., (in review) did not define vegetation density 

and distribution, which I assume is likely to be important. 

The aims of this study were to advance the resolution of on-land penguin navigation 

analysis, particularly to examine how movement patterns might vary with vegetation 

density. Here, I document the trajectories and behaviours of 24 Magellanic penguins 

from different nest sectors varying in distance from the sea and shrubbery extent 

(Fig. 1), as they moved between the nest and sea and back. Specifically, I reconstruct 

their terrestrial movement paths at 40 Hz using the verified position (VP) dead-

reckoning protocol outlined in Chapter 5. As part of this, I could resolve individual 

step lengths, pauses, turns (including turn extent) and more generally, the speed, 

tortuosity, and extent of movement involved. I examine such metrics with respect to 
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the proximity of the penguins from their ToF and the level of vegetation density 

through which they were travelling. 

I expect movement within open landscapes to be highly directed as birds should be 

able to use landmarks while the vegetated landscape should involve increased track 

tortuosity, most particularly in incoming trajectories that involve movement through 

vegetated sections away from the ToF. I examine whether ‘significant’ turns and 

pauses, are associated with homing corrections, irrespective of vegetation avoidance 

and ‘rest-recovery’ periods. Although this is primarily an exploratory analysis, 

working under the hypothesis that vision is important for navigation in Magellanic 

penguins, I would expect trends to become apparent between these various 

movement metrics and distance from the ToF as birds are forced to navigate through 

increasingly unfamiliar terrain. More generally though, I hypothesise that the tracks 

taken by returning birds within the different environments will show different 

properties, both in an energetics and time context, and the implications of this are 

discussed. 

 

Materials and methods 

 

Study site  

 

Field work was undertaken during November and December 2020 at the Punte Norte 

Magellanic penguin colony, located within the San Lorenzo Gulf, Peninsula Valdes, 

Chubut, Argentina (-63.86°E, -42.08°N). All penguin handling procedures were 

approved by the Dirección de Fauna y Flora Silvestre y el Ministerio de Turismo y 

Áreas Protegidas de la Provincia de Chubut. Figure 1 illustrates a simplified 

topographic map of the San Lorenzo penguin colony. 

 

 

 

 



Navigational ability of Magellanic Penguins on land 

247 
 

Animal-attached tags and capture protocol 

 

To determine route choice and activities in the penguins, I used animal-attached GPS 

(Axytrek, Technosmart, Italy; https://www.technosmart.eu) units and ‘Daily diary’ 

(DD) technology (cf. Wilson, Shepard & Liebsch 2008) 

(http://www.wildbytetechnologies.com). DD technology consisted of tags that 

logged inter alia tri-axial acceleration (1 g = 9.81 m/s-2) at 40 Hz (16-bit resolution) 

and tri-axial magnetic field intensity (0.73 mG/LSB resolution). The DD was placed 

within a waterproof, elongated rounded acrylic housing. The dimensions (in cm) of 

the DD unit (connected to the battery, with SD card, within the housing) were 7.8L x 

3W x 1.2H and it weighed 31.7 g. GPS units (integrated with a rechargeable battery) 

were made waterproof by setting them within flattened, angled resin. The 

dimensions (in cm) of the GPS unit (within the housing) were 6.4L x 3.9W x 1.9H and 

it weighed 55 g. These units were set to record fixes at 1 Hz and activated using a 

magnet. Both DD and GPS housings were designed to incorporate a streamlined 

hydro-dynamic profile following recommendations made in Bannasch, Wilson and 

Culik (1994). The combined weight of attached tags comprised < 1 % of the animal’s 

mass. 

 

For tag attachment, penguins were removed at their nest during the brooding 

season, using the clipboard method (cf. Wilson 1997). The devices were fitted 

longitudinally to the base of the spine using overlapping strips of Tesa® tape (cf. 

Wilson & Wilson 1989; Wilson et al. 2005). Birds were left to forage once at sea (a 

period that typically lasted between 24 and 48h) encompassing one outbound and 

one inbound terrestrial trip, before being re-caught at the nest to recover the devices. 

No tag-related detriment to the penguins was observed during device retrieval. Data 

were downloaded to a personal computer and GPS positions were time-synchronised 

with DD data.  

 

 

 

 

https://www.technosmart.eu/
http://www.wildbytetechnologies.com/
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Colony mapping 

  

An unmanned aerial vehicle (UAV, DJI Mavic Pro) was used to reconstruct fine-

resolution mapping of the various landscapes and shrub density. On a clear day, an 

automatic flight mission was performed using DJI Ground Station Pro Application (DJI 

GS Pro), at an altitude of approximately 125 m above ground altitude (3.9 cm per 

pixel), taking aerial photographs in the areas used by the instrumented penguins 

covering a total of ~58 ha. The images were captured at equal distance interval and 

using a course-aligned approach, with a front overlap ratio of 75 % and side overlap 

ratio of 60 % for each photo. The drone imagery was downloaded and processed 

using Structure-from-motion (SMF) available in Agisoft Photoscan version 1.4.3. The 

orthomosaic (i.e., orthophoto) and the Digital Elevation Model (DEM) of the colony 

were assembled and gridded with ~10 m by 10 m resolution. The I) beach landscape 

was decrypted by eye and the: II) non-vegetated- III) low vegetation-, IV) medium 

vegetation- and V) high vegetation density landscapes, were allocated based on 

estimates of pixel density per gridded cell (a proxy of shrubbery extent). Each 

ascribed landscape type was converted into polygon shape (.shp) files for subsequent 

analysis in the R environment (R Development Core Team 2021). 

 

Track analysis 

 

Pre-processing of GPS-integrated motion sensor data was carried out in custom 

software; Daily Diary Multi Trace (DDMT, http://www.wildbytetechnologies.com) 

which enables 2-D time series visualisations of each sensor axis output (including 

derivatives) and a built-in search platform for finding behaviours using a Boolean 

‘lowest common denominator’ (LoCoD) time-based approach (Wilson et al. 2018). 

Bird posture (pitch and roll) and heading were calculated using methods detailed in 

Chapter 5. A proxy of speed was derived from dynamic body acceleration (DBA; 

Bidder et al. 2012) - specifically, the vectorial dynamic body acceleration (VeDBA 

(smoothed by 2 s), Qasem et al. 2012; see Chapter 5 for calculation). The beginning 

of each penguin’s outgoing journey was determined by inspection of an appreciable 

period of movement away from nest (e.g., when the bird left the nest area and moved 

towards the sea), characterised by waveform signatures in the acceleration 

http://www.wildbytetechnologies.com/


Navigational ability of Magellanic Penguins on land 

249 
 

characteristic of walking (e.g. Willener et al. 2015; Wilson et al. 2018). The end of the 

outbound trip was made obvious by a substantial change in body posture (Shepard 

et al. 2008), from vertical walking to horizontal swimming and changes to the stylised 

patterns of acceleration (Wilson et al. 2010). Conversely, the beginning of each 

penguin’s incoming land journey was apparent when the longitudinal body posture 

changed back from the horizontal to the vertical and acceleration signatures 

demonstrated walking. Once the start and finish time of each journey had been 

determined, the LoCoD method was used to identify each individual stride cycle, with 

pauses between walking bouts also discerned. Only pauses ≤ 60 s in duration with 

minimal associated DBA (indicating immobility of the body trunk, and thus not 

attributed to preening behaviour) were included in analysis (cf. supplementary 

information (SI): Text S1: Fig. S1). Specifically, a one-minute cut off was used because 

this represented the greatest clustering of data points and the ~95 % quantile of all 

pause durations with the remaining durations sporadically spread up to 1200 s. 

Further, only pauses that had a mean VeDBA ≤ 0.25 g were considered, because this 

magnitude typically represented ˂ 25 % of the pause duration being attributed to 

sharp transitionary movements. I detail the LoCoD method used for identifying 

walking within SI: Text S1. All analyses from this point onwards were conducted in 

the R environment (R Development Core Team 2021). 

Each bird’s trajectory was reconstructed using the Gundog.Tracks dead-reckoning 

function in R, based on the formulae outlined in Chapter 5. The dead-reckoned tracks 

were corrected for drift approximately every 50 m moved using GPS (See SI: Text S2 

for information pertaining to how speed estimates and drift correction rates were 

decided within the dead-reckoning method). 

For each GPS-corrected dead-reckoned track and associated DD data, the following 

parameters were assessed: 

I) VP-corrected track heading (o) 
II) Percentage of time allocated to walking and pausing (%) 
III) Cumulative distance moved (m) 
IV) Straight-line distance moved towards or away from the the nest (m) 
V) Travelling speed (m/s)  
VI) Tortuosity (range 0-1, with higher values being more tortuous) 
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VII) Number of pauses (per 10 metres) and the extent of a turn from the start 
of a pause to one second into the subsequent walking bout (o). From here 
on, I refer to this as ‘the extent of turn following a pause’ 

VIII) Number of ‘significant’ turns (per 10 metres) and their angular extent (o) 
IX) Rate of change of heading during continuous walking (o/s), hereafter 

termed ‘turn extents during walking’ 
X) Distance from the track of familiarity (ToF) (m) 

 

Distance and speed estimates were calculated using the trigonometric haversine 

formula (Harja & Sarno 2018) between consecutive (GPS corrected) dead-reckoned 

positions. Only speed during walking was assessed. Two elements were necessary to 

calculate tortuosity because I define tortuosity as the straight-line distance (SLD) 

divided by the sum of the consecutive distance steps (SDS) for the same period 

according to;  

𝑆𝐿𝐷 = √(𝜆𝑛 − 𝜆1)2 + (𝜑𝑛 − 𝜑1)2                                                                                                             (1)                

𝑆𝐷𝑆 = ∑ (√(𝜆2 − 𝜆1)2 + (𝜑2 − 𝜑1)2)𝑛
𝑖=1                                                                                         (2) 

𝑇 = 1 − 
𝑆𝐿𝐷

𝑆𝐷𝑆
                                                                                                                                                        (3) 

where 𝜑 and λ are the latitude and longitude coordinates (decimal format), 

respectively. These were calculated to give one value per trip and one value per 10 

m moved, respectively. All tortuosity values were subtracted from one (eq 3), so that 

zero values reflect straight-line movement and values closer to one reflect more 

‘tortuous’ paths. Note that for the tortuosity calculated with 10 m resolution, only 

the shortest straight-line distance moved towards the goal-orientated destination 

was considered as the SLD value. For each bird, the goal-orientated destination was 

their last position before they entered the sea, and their nest location for outgoing- 

and incoming trips, respectively. 

Given that penguins typically have a well-used outgoing route (Quintana et al., (in 

review)), this was presumed to be their ToF. Line transects were constructed using a 

match-stick approach, with the GPS positions used within the drift correction 

procedure being treated as breakpoints of the transect (thus accounting for 

potentially ‘curvilinear’ paths, cf. SI: Text S2: Fig. S2).  
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To help assess the penguin’s incoming strategy, pseudo tracks were created in which 

the starting and finishing coordinates of the return journey were linearly interpolated 

(assuming constant travelling speed) to mimic the shortest course back to the nest. I 

define this as the ‘line-of-sight’ route (cf. Fig. 2). The most common vegetation type 

traversed per 10 m bin was calculated seperately for the ‘actual’ and ‘line-of-sight’ 

tracks, and the relative percentage frequency of distance spent traveling through 

each vegetation density was computed. Alongside this, horizontal Haversine distance 

between each i) dead-reckoned position and ii) ‘line-of-sight’ position and the closest 

point on the ToF was computed. R code for drift-corrected dead-reckoning and 

calculating the distance from the ToF is available at 

https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R. 

The intial travel heading angle relative to the shore-line (perpendicular equating to 

90o – directly South) was calculated for the actual route taken (the circular mean 

heading during first 25 m of travel) and for the ‘line-of-sight’ heading (which 

remained consistent throughout, cf. Fig. 2). 

‘Significant’ turns were calculated based on the turning-point algorithm described by 

Potts et al. (2018). Briefly, the algorithm looks for changes in the heading by sliding a 

small window (w = 40 consecutive points (over 1s) and used here) across the path 

and observes the squared circular standard deviation (SCSD) across the window. 

Spikes in the SCSD indicates a turn and candidate turns are filtered according to 

whether they achieved a threshold turn angle (thresh = 30o used here). For an 

illustration of computed turn points superimposed onto tracks, see SI: Text S4.  

 

 

https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R
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Statistical Analysis  

 

All data analysis was performed in the R core environment (R Development Core 

Team 2021). Linear mixed models (LMM) were undertaken using the lme package, 

(Zuur et al. 2009; Pinheiro et al. 2017). Generalised additive mixed effects model 

(GAMM) were constructed using the mgcv package (Wood 2007) and beta mixed 

effect models were performed using the glmmADMB and betareg packages (Bolker 

et al., 2012). Unless otherwise stated, for all models, penguin ID was included as a 

random factor and the significance of model parameters was evaluated by using 

likelihood ratio tests (backward selection - assessing the effect of removing the 

parameter of interest on the fit of the model). Non-significant terms were 

discounted, and model parameters of the significant terms are given in SI: Text S3, 

Tables S1:S4. For all models, required residual fit assumptions were examined and 

appropriate family-wise transformations were made. All statistical tests were 

Figure 2. Schematic diagram demonstrating the ‘actual’ track of a returning bird in relation to the shortest 
theoretical ‘line-of-sight’ track and the ToF, (itself based on the bird’s outgoing path). Vegetation density is 
reflected by the opaqueness of colour (from tan to greens increasing in darkness). Smaller (more acute) initial 
travel heading angles relative to the shoreline reflect more oblique angles relative to the nest.   
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performed using a significance level of p < 0.05. I define ‘status’ as either ‘outgoing’ 

or ‘incoming‘ tracks, and ‘vegetation density’ as the grouping variable of ‘none’, 

‘medium’ and ‘high’ vegetation types (no penguins traversed through ‘low’ 

vegetation, cf. Fig. 3). 

1) A two-sample Kolmogorov-Smirnov test was used to compare the cumulative 

distribution function (CDF) of turn extents to determine if pauses were followed by 

greater changes in walking heading than changes in heading associated with 

continuous walking.  

2) A Welch two sample paired t-test was used to determine if there was a significant 

difference in the tortuosity calculated over the entire trip as a function of ‘status’. 

Another two-sample paired t-test was performed to assess if there was a significant 

difference in the tortuosity calculated with 10 m resolution (grand mean per trip 

used), according to status. 

3) A linear mixed model was used to test if total distance travelled varied significantly 

between incoming and outgoing trips. For the incoming trips only, a linear model (LM) 

was fitted to test the relationship between the initial travel heading angle and the 

initial horizontal distance from the ToF, and a linear mixed models with nest sector 

(A, B, D or E – see Fig. 1) as the random effect, was fitted to test the relationship 

between total distance travelled and the initial horizontal distance from the ToF.  

4) Tortuosity estimates of the entire track were compared against status, total 

distance travelled and initial distance from the ToF, with a beta mixed effect model 

(glmmADMB; family = “beta”, link = "logit"). 

For all further analysis, variables of interest were aggregated (mean, or count used, 

depending on the variable) over 10 m distance travelled bins, per bird, per status, per 

vegetation density. 

5) A Wallraff test was used to compare the angular dispersion of heading values 

adopted between incoming and outgoing journeys. The distributions of mean 

heading values were compared as a function of vegetation density, separately for 

outgoing and incoming trips, respectively, using the Watson's goodness of fit test.  
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6) GAMM models were constructed to assess the non-linear trends in: tortuosity [per 

10 m], speed (m/s), number of ‘significant’ turns [per 10 m], extent of ‘significant’ 

turn angle (o), number of pauses [per 10 m], extent of turn angle following a pause 

(o) and duration of pauses (s), across the proportion of distance travelled accounting 

for the effect of status and vegetation density. All models were fitted with a smooth 

interaction term between the proportion of distance travelled and status to 

differentiate any potential patterns between outbound and inbound trips. The 

number of smooth term bases (k) was set at a moderate value of 9 (Wood 2017). 

Vegetation density and status was included as fixed factors to account for potentially 

varying intercepts, the latter being in conjunction with the smooth interaction, to 

evaluate whether the two conditions were different in overall means in addition to 

their smoothed patterns. The model involving tortuosity as the response variable was 

fitted with family = betar (link="logit") to account for the (left-skewed) bounded data. 

Both the number of ‘significant’ turns and the number of pauses were fitted with a 

zero-inflated Poisson regression family distribution (family = ziP). Lastly the extent of 

turn angle following a pause and extent of turn angle for ‘significant’ turns were 

modelled with family = Gamma(link="log") and pause duration with family = 

inverse.Guassian(link=”log), respectively. All GAM models used obtained full 

convergence and gam.check() was used to ascertain that residuals were randomly 

distributed and smooth terms were fitted with enough basis functions. 

 

Results 

 

In total, the tracks from 29 penguins from the five nest sectors (cf. Fig. 1) were dead-

reckoned (Fig. 3). The shore-line colony penguins (n = 5) and the beach phase of 

navigation was excluded from all further analysis because penguins often spent 

extensive periods of time resting and preening on the beach (typically after foraging 

at sea, cf. SI: Text S1: Fig. S1) - unrelated to navigation. 
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Outgoing penguins headed approximately North to the sea, with the majority using 

relatively straight pathways (Fig. 3, Fig. 4a,b). There was a significant difference in the 

variance of the heading values adopted between incoming and outgoing journeys (2 

= 181.82(1) p < 0.001, cf. Table. 1, Fig. 4b,c). Furthermore, the distributions of mean 

heading values differed significantly between the varying vegetation densities during 

incoming trips (F = 43.13(2) p < 0.001), though not for outgoing trips (F = 1.10(2) p = 

0.332). 

 

 

Figure 3. Outgoing and incoming trips - Fifty-seven dead-reckoned tracks constructed from the paths taken by 29 
penguins, coloured according to (a) status and (b) colony sector. (c) Frequency of grid revisits using a 10 x 10 m 
resolution. Note in (a), that no penguin walked through the low vegetation density polygon (the jagged yellow 
polygon denotes the beach). Also note that whilst plotted here, no results include the shoreline sector (sector C). 
birds.  
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Figure 4. Outgoing and incoming trips - Assessments of heading-related metrics and pauses according to status and 
vegetation density. (a) shows the dead-reckoned tracks from Fig. 2, starting at a 0,0 origin (b) and (c) show radial 
plots of the relative heading frequency distributions per vegetation type. (d) and (e) indicate, using boxplots, the 
tortuosity calculated over the entire track (according to status) and over 10 m resolution, (according to status and 
vegetation density), respectively. Boxplots are also given of; (f) pause number per 10 m, and g) their duration, (h) 
number of ‘significant’ turns per 10 m and (e) their extents. All boxplots (boxes encompass the 25-75 % interquartile 
range, horizontal bars reflect the median and whiskers extend to 1.5 * Interquartile range) were constructed using 
the mean values per bird, per status and (excepting (d)), per vegetation density. 
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Table 1. Descriptive statistics of various metrics relating to heading and pauses. Grand mean [± 1 SD] values were derived from all individual means, status, and vegetation type. 
The mean resultant length ([Rmean resultant length]) is a statistic between 0 and 1 that gives an index of the spread of heading values (values closer to 1 reflect a concentrated 
distribution and values closer to 0 reflect a large spread. A circular mean was used for heading values. 

Vegetation 
density 

Status 
Heading (o) 

[Rmean resultant length] 

Pauses  
 

‘Significant’ turns 
Tortuosity (0-1)  

[per 10 m] 
% of time spent 

walking 
Speed (m/s) 

Number of 
pauses 

[per 10 m] 

Pause duration 

(s) 

Turn extent 

following a pause 

(o) 

Number of turns 
[per 10 m] 

Turn extent (o) 

None 

Outgoing 
345 ± 23 

[0.92] 
0.55 ± 0.59 8.1 ± 5.2 14.2 ± 9.4 0.51 ± 0.55 39.1 ± 6.9 0.05 ± 0.06 84.1 ± 21.1 0.414 ± 0.092 

Incoming 
186 ± 47 

[0.71] 
0.60 ± 0.44 10.3 ± 5.2 13.6 ± 5.9 0.69 ± 0.43 38.0 ± 5.3 0.10 ± 0.09 64.7 ± 29.9 0.384 ± 0.065 

Medium 

Outgoing 
342 ± 21 

[0.93] 
0.68 ± 0.62 10.3 ± 4.5 22.9 ± 19.9 1.20 ± 0.70 50.1 ± 12.5 0.10 ± 0.14 74.6 ± 23.2 0.389 ± 0.080 

Incoming 
159 ± 39 

[0.79] 
0.36 ± 0.29 10.7 ± 8.8 21.3 ± 17.6 1.05 ± 0.61 43.6 ± 5.7 0.12 ± 0.09 80.6 ± 18.1 0.422 ± 0.064 

High 

Outgoing 
342 ± 23 

[0.92] 
0.58 ± 0.51 8.0 ± 4.1 32.4 ± 15.2 1.73 ± 0.59 48.1 ± 7.7 0.14 ± 0.06 80.6 ± 17.9 0.404 ± 0.082 

Incoming 
169 ± 29.8 

[0.87] 
0.33 ± 0.20 8.9 ± 7.3 34.8 ± 29.3 1.46 ± 0.40 45.3 ± 6.1 0.13 ± 0.04 86.6 ± 13.0 0.417 ± 0.063 

Combined 

Outgoing 
343 ± 23 

[0.92] 
0.60 ± 0.57 8.7 ± 4.7 23.0 ± 16.7 1.08 ± 0.79 45.6 ± 10.4 0.10 ± 0.10 80.2 ± 20.9 0.404 ± 0.085 

Incoming 
170 ± 38 

[0.79] 
0.44 ± 0.35 10.0 ± 7.0 22.2 ± 20.6 1.03 ± 0.57 42.0 ± 6.4 0.12 ± 0.08 76.0 ± 24.2 0.405 ± 0.065 
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There was no significant difference in the mean tortuosity (of the entire track or when 

considered over 10 m resolution) between outgoing- and incoming tracks (Table 1, 

Table 2, Fig. 4d,e; t(23) = 1.58, p-value = 0.064, and t(23) = 1.69, p-value = 0.052, 

respectively). There was a positive significant relationship between tortuosity (of the 

entire track) and total distance travelled (GLMMADMB: Deviance = 7.07, p = 0.008, 

Table 2), however status and the initial landing distance from the sea at the beach 

from the ToF did not have a significant effect on track tortuosity and did not improve 

model performance (GLMMADMB: Deviance = 1.63, p = 0.202 for status and 

GLMMADMB: Deviance = 0.56, p = 0.453 for the ToF, respectively), which supports 

the t‐test pair‐wise status comparison result. 

Table 2. Descriptive statistics of various metrics linked with energy expenditure. Grand mean [± 1 SD] values 
were derived from all individual values, per colony nest sector and status. Note that nest sector is given in the 
order from straight-line distance from the sea edge. 

 

Nest 
sector 

Status 

 
Trip duration 

(min) Straight-line 
distance (m) 

 
Cumulative 

distance 
travelled (m) 

Tortuosity 
(0-1) 

[entire trip] 

Distance from ToF (m) 

  Max Average 

D 

Outgoing 
11.757 ± 

3.061 
180.044 ± 30.669 192.856 ± 

38.909 
0.062 ± 
0.034 

4.856 ± 
2.751 

1.367± 0.417 

Incoming 
34.745 ± 

9.813 
333.640 ± 
213.118 

393.770 ± 
223.186 

0.154 ± 
0.114 

246.140 ± 
235.693 

146.572 ± 
147.658 

B 

Outgoing 
25.575 ± 
18.957 

405.183 ± 23.018 471.810 ± 
72.732 

0.130 ± 
0.091 

11.586 ± 
8.390 

2.288 ± 1.361 

Incoming 
35.501 ± 
11.747 

405.459 ± 22.550 454.987 ± 
40.413 

0.107 ± 
0.035 

72.791 ± 
40.335 

36.031 ± 27.359 

A 

Outgoing 
40.955 ± 
28.965 

412.201 ± 29.940 473.506 ± 
46.231 

0.126 ± 
0.065 

11.245 ± 
6.672 

2.916 ± 2.325 

Incoming 
45.679 ± 
12.862 

446.397 ± 34.408 590.854 ± 
136.373 

0.215 ± 
0.157 

232.908 ± 
79.933 

124.156 ± 
57.304 

E 

Outgoing 
48.028 ± 
20.436 

686.504 ± 15.986 773.683 ± 
39.116 

0.112 ± 
0.028 

9.220 ± 
1.191 

1.989 ± 0.489 

Incoming 
57.647 ± 
17.166 

727.459 ± 75.175 830.326 ± 
100.201 

0.122 ± 
0.025 

154.192 ± 
171.364 

69.646 ± 80.763 

Combined 

Outgoing 
31.579 ± 
23.637 

420.983 ± 
184.908 

477.964 ± 
215.197 

0.108 ± 
0.062 

9.22675 ± 
5.868 

2.1400 ± 1.411 

Incoming 
43.393 ± 

15.52 
478.239 ± 
186.477 

567.484 ± 
216.213 

0.150 ± 
0.102 

176.508 ± 
58.851 

94.101 ± 94.994 
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The greater dispersion in the overall directionality of incoming tracks appeared to be 

primarily modulated by the degree of horizontal displacement from the ToF in birds 

landing on the beach when they returned from foraging (Table 1, Fig. 3, Fig. 4a). 

Generally, birds walked further during inbound than outgoing trips (Table 2; LME: 

Lratio = 6.05, p = 0.014) and, for incoming trips, there was a significant relationship 

between distance travelled and the amount of initial horizontal displacement from 

the ToF (Table 2; LME: Lratio = 26.55, p = < 0.001; r2
m = 0.298, r2

c = 0.904). Of these, 29 

% started within 50 m of the bird’s ToF, 29 % were between 50 and 100 m, and the 

remaining 42 % ranged between 118-462 m. 

Birds that arrived on the shoreline close to their ToF, tended to remain on/close to it 

during their return route (Fig. 5a). Generally, the greater the displacement from the 

ToF, the more acute the initial travel angle with respect to the shoreline (Fig. 5b; LM: 

F(22) = 7.12, p = 0.014), with birds walking more obliquely to the coastline at a more 

acute angle to the ‘line-of-sight’ heading in favour of reaching the ToF more quickly 

(Fig. 5c,d). As part of this, birds generally walked less, in terms of distance travelled 

through ‘higher’ vegetation density, substituting it with distance travelled in open 

landscapes compared to the situation that would have occurred had they taken the 

‘line-of-sight’ route (Fig. 6a). Only three birds had a phase in their track > 15 m (the 

threshold used in (Quintana et al. in review) for classifying ‘I-point’ (ToF)) from the 

theoretical ‘line-of-sight’ track that was further away from the ToF than the ‘line-of-

sight’ track would have entailed (cf. Fig. 5d). Typically, as the return path to the nest 

progressed, a greater percentage of birds achieved a position where they were within 

15 m of their ToF than the theoretical birds taking a ‘line-of-sight’ trajectory (Fig. 6b). 
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Figure 5 Incoming trips - Relationship between distance travelled as a function of distance into the return trip (standardised to a 
proportion per bird; 0-1) and the track of familiarity (ToF). (a) The distance between each penguin’s ToF and the actual track taken. 
(b) The initial (absolute) angle of actual travel [blue] and theoretical ‘line-of-sight’ travel [red] relative to perpendicular from the 
coastline as a function of the initial displacement from the ToF with linear regression for both fitted (grey shading represents the 
standard error). (c) The distance between each penguin’s ToF and the theoretical ‘line-of-sight’ track. (d) The difference in distance 
from the ToF between actual route taken and the ‘line-of-sight’ track, where negative values (below the horizontal grey line) reflect 
the penguin taking a closer course to their ToF than if they were to follow the theoretical ‘line-of-sight’ heading. The horizontal grey 
line in (a) and (c) denote 15 m from the ToF. 
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Figure 6. Incoming trips - Relationship between distance travelled as a function of distance into the return trip 
(standardised to a proportion per bird; 0-1), vegetation type and the track of familiarity (ToF). (a) Mean relative 
percentage of distance travelled through each vegetation density per 0.1 increment of the total distance travelled fitted 
with a GAM line (k = 9) for (left panel) birds taking a theoretical ‘line-of-sight’ heading to the nest and (right panel) the 
actual course taken by penguins to their nest. (b) The percentage of birds within 15 m of their ToF per 0.1 increment of 
total distance travelled, for the actual track taken and the theoretical ‘line-of-sight’ track. Note in (a), the relative 

frequency of each vegetation type moved through per bird, per 0.1 increment of total distance travelled was calculated prior to 
calculating a grand mean per 0.1 increment and converting back to a relative percentage (out of 100 %). 

(a) 

(b) 
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GAM models showed many contrasting non-linear relationships between the 

response variables tested across the proportion of distance travelled as predicted in 

interaction with status and partial effects of vegetation density (Fig. 7, for all GAM 

model parameter estimates, see SI: Text S3, Tables S2:S4). Both smooth terms and 

partial effects were significant for tortuosity [with 10 m resolution]. Tortuosity 

significantly increased as a function of increasing vegetation density (cf. Table 1, fig. 

3e). Generally, tortuosity (Fig. 5a) was greatest at the start of outgoing trips and 

remained relatively consistent after about 40 % of the distance was travelled. 

Incoming trips were generally more tortuous in the first half of the distance travelled. 

Both smooth terms were significant for travelling speed (Fig. 7b) with incoming trips 

being much more variable across distance moved and on average, significantly higher 

than outgoing trips, although there were no significant differences according to 

vegetation density. Both smooth terms were significant for ‘significant’ turn number 

(Fig. 7c), with turn number being significantly higher in higher vegetated areas, 

though there were no significant differences in the overall means between incoming 

and outgoing. Both smooth terms for pause number (Fig. 7d) were significant and 

although on average, incoming trips had a significantly lower number of pauses, there 

were noticeably more pauses during the initial ~10 % of the distance travelled for 

incoming trips. Pause number did not significantly vary according to vegetation 

density. All smooth terms and partial effects were significant for the extent of 

‘significant’ turn angle (Fig. 7e), with turn extent increasing as a function of 

vegetation density (cf. Table 1, Fig. 3h), being lower on average during incoming trips. 

The extent of turn angle following a pause (Fig. 7f) was significantly higher in ‘high’ 

vegetated density, although all other terms were non-significant. Lastly, there were 

no significant differences in the smooth terms or partial effects for pause duration.  
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Figure 7. Smooth GAM line fits denoting the trends in various response variables across the proportion of distance 
travelled (0-1), as predicted by the additive component of the GAMM in interaction with status and partial effects 
of vegetation density. Blue shading denotes the standard errors (95 % confidence interval for the mean shape of 
the effect, which combines the partial effect terms with the standard errors of the model intercept).  
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The cumulative distribution function (CDF) of turn extents during walking (o/s) 

differed significantly to turn extents following a pause (D = 0.34, P < 0.001, Fig. 8) and 

turn extents following a pause were generally higher across all three vegetation types 

than during continuous walking (Fig. 8c). Example individual bird cases-studies are 

provided in the SI: Text S4, showing expanded out dead-reckoned tracks of outgoing 

versus incoming trips, with vegetation type and fine-scale depiction of turns, and 

pauses superimposed to demonstrate the trends reported here).  

 

 

Figure 8. Extent of turns made during incoming paths – The relative frequency density of absolute heading change 
(extent of a turn, (o)) between; (a) consecutive seconds during walking, and (b) between the start of a pause and one 
second into the following walking bout [coloured according to vegetation density]. (c) The 95 % and 99 % quantiles 
[vertical dashed lines] of the cumulative frequency distributions of change in heading following pausing [red] and 
during continuous walking [blue] for all vegetation densities. (d) Mean values of these turn extents per bird, per status 
[outgoing: solid line, incoming: dashed line], per vegetation density, with error bars showing ± 1 SD. 
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Discussion  

 

The specific conditions that define the San Lorenzo Magellanic penguin colony should 

help clarify aspects of penguin navigation because the four defined landscapes 

(beach – (excluded in this analysis) and the variable vegetation densities) through 

which birds must travel, provide different types of information for animals reliant on 

vision. As a starting point, I suggest that the most efficient navigation course for the 

penguins walking from the nest to the sea at San Lorenzo is a straight-line path, with 

minor deviations for vegetation in the highly vegetated areas, because there are no 

varying energy landscape - (sensu Shepard et al. 2013) or predator conditions that 

would augur otherwise (Gallagher et al. 2017). In support of this, outgoing birds 

executed highly directional paths (cf. Table 1, Fig. 3, Fig. 4a,b) at constant travelling 

speeds (Fig. 7b). As part of this, there was a clear trend in all heading related metrics 

(tortuosity, number-, and extent of ‘significant’ turns, and the extent of turns 

following a pause) increasing as a function of vegetation density and generally being 

highest at the start of outgoing trips where the vegetation densities is highest (Table 

1, Fig. 7). It is logical that higher vegetation density would relate to these metrics 

because higher bush numbers per unit area increase the probability that a bush will 

prohibit a straight-line path. Despite this, most outgoing birds managed to maintain 

a clear overall directionality (cf. Table 1, Fig. 4b) that did not significantly differ 

between vegetation types (juxtaposed with incoming trips that did), demonstrating 

the remarkable ability of these penguins to maintain what appears to be an optimum 

course despite necessary small-scale deviations around shrubbery. 

Penguins at sea return primarily underwater, swimming at ca. 2-3 m depth (Wilson & 

Wilson 1990; Wilson & Wilson 1995) and so have no contact with the seabed (a 

mechanism suggested important for the supposedly visually guided navigation in 

Yellow-eyed penguins, cf. Mattern et al. 2007) nor, at this time, can they see the land. 

Even during the short breathing periods (typically a few seconds – Wilson & Wilson 

1990) at the surface between dives, the low penguin profile, typically agitated sea of 

the region and low-lying topography of the colony means that visual cues will be 

minimal at best. Certainly, when Magellanic penguins initiate their return journey at 

sea, immediately post-feeding (some ~40 km or so away, cf. Chapter 8), land is not 
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visible at all, so much of the ‘at-sea’ navigation must be undertaken using a 

mechanism other than vision and landmarks, supporting the time-compensated sun-

compass navigation strategy theory (cf. Emlen & Penney 1966). This, and possibly 

limited access to landmarks as returning penguins approach the coast, results in 88 

% of birds at sea arriving at the beach within 300 m of their ToF: Considering the vast 

distances involved in the return leg at sea (Sala et al. 2012) in tidally-dominated 

current flows (Tonini & Palma 2017), this is impressive homing ability (cf. Chapter 8).  

Assuming that penguins predominantly use a time-compensated sun compass 

mechanism both for homing at sea and on land during their return journeys, the 

expectation is that they should follow a ‘line-of-sight’ heading back to their nest in a 

manner similar to their directed outbound approach. This was not the case however, 

with many trends in the direction and dynamism of movement elicited being 

significantly different from outgoing trips, particularly during the early stages of 

return travel (Fig. 7), indicating that other processes are at work. Notably, many birds 

walked at an angle to their ‘line-of-sight’ heading in favour of their ToF (all but one 

individual undercut its ‘line-of-sight’ track, Fig. 5). As noted in Quintana et al. (in 

review), the angle of this homing correction seems to be modulated by the extent of 

initial displacement from the ToF on landing at the beach with, once penguins had 

bisected their ToF, them turning and immediately following it until they reached their 

nest (cf. Fig. 3, Text S4). The authors proposed that these individuals landing on the 

beach at distance from their ToF adopt this strategy because it allows them to move 

generally towards their nest (albeit at a slower rate than the theoretical ‘line-of-sight’ 

trajectory which puts them in unfamiliar areas) while giving them certitude that they 

will cross their ToF, which will provide certain travel back to the nest (cf. Fig. 9). 

However, my work shows that vegetation density also plays a role (Table 1, Fig. 4): 

Although penguins landing on the beach at distance from the ToF travelling at an 

angle that is not the  ‘line-of-sight’ to their nest initially appear less efficient in terms 

of distance travelled, these more acute angles enable birds to remain in the ‘open’ 

colony for longer (cf. Fig. 6a), where they can benefit from walking in less vegetated 

areas with extended sightlines and no constraints in heading imposed by vegetation 

(they can choose from essentially a 360o arc). This is not only energetically favourable 
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but, in visually guided animals, it also enables the use of distant landmarks to 

facilitate travel decisions. This dovetails with the many studies that have 

hypothesised that path integration (essentially dead-reckoning) is an important 

mechanism used in a range of animal taxa including insects (Rolf et al. 1998), 

crustaceans (Patel & Cronin 2020), birds (Benhamou & Séguinot 1995) and mammals 

(Trapanese, Meunier & Masi 2019), to expediate movement from one place to 

another. Essentially, akin to the method described in Chapter 5, it is believed that 

some animals continuously update their records of their current direction and 

distance with respect to some ‘waypoint’ (Collett & Graham 2004). In this way, the 

inevitable errors that arise with path integration are minimised when animals travel 

in more familiar environments by use of recognisable landmarks, that essentially act 

as path integrator resets (Etienne et al. 2004). 

By the time that the returning penguins are travelling in the highly vegetated areas, 

they have extremely limited sightlines, and they can only follow discreet (tortuous – 

see above) paths dictated by the bushes that diverge at junctions with a limited 

number of choices. In such situations, the closer the bird gets to the nest, the more a 

wrong turn leads to a subsequent proportionately disadvantageous course deviation 

because it must be corrected by a similarly substantive change in angle. It thus 

becomes increasingly costly (in both time and energy) to take incorrect headings, the 

further a bird progresses inland, and this is likely to be particularly problematic in 

unfamiliar areas. In short, the closer a bird gets to its nest, the shorter the sightlines 

become and the more ‘appropriate’ the travel decisions are required to be, which 

may explain why there was a general increase in the number of pauses, ‘significant’ 

turns and turn extents during the latter ~70-100 % of the distance travelled for 

incoming trips terminating in dense vegetation (Fig. 7). Critically, though, being 

near/on the ToF in such areas (cf. Fig. 6b), likely facilitates decision-making at critical 

junctions and this, in turn, may explain why there was also a general increase in 
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travelling speed (assuming that speed is a proxy of ‘certainty’) - comparable to the 

outgoing paths (Fig. 7b).  

 

The trends witnessed here support the idea that penguins travelling on land use a 

sight-based, dead-reckoning mechanism of navigation which particularly benefits 

from distant landmarks for course correction. That the incidence of pauses was 

highest and (pause-independent) travelling speed was lowest during the initial stage 

of the incoming trips (Fig. 7) may indicate a decision-making process that required 

time for birds to integrate such waypoints, not least because, by virtue of their 

separation relative to that of the penguin, they can induce greater error in estimation 

of their distance and bearing. That time is an important component of navigation in 

returning penguin tracks was emphasised by generally greater turn extents (and thus 

possible course deviations) following pauses than not (cf. Fig. 8), and I suggest that 

consideration of the details of pauses in animal movement may help reveal 

Figure 9. Schematic diagram of the most common return strategies that penguins adopted when being appreciably 
displaced from their ToF, with the potential limitations and/or benefits of each (elaborated in the main text below). 
Vegetation density is reflected by the opaqueness of colour (from tan to greens increasing in darkness). Unlikely 
strategies (not witnessed in this study) involve taking trajectories away from the ‘line-of-sight’ in an unfavourable 
direction to the ToF, and substantially ‘over-shooting’ the ToF after bisection. Note that this is just an illustration – 
cf, Fig. 3 for the actual vegetation densities.  
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navigational insights, such as bottlenecks in processing capacity of navigationally 

relevant information. This study also highlighted the role that variable vegetation 

played in penguin navigation strategies, and I propose that the preference of some 

returning birds to maintain a position outside dense vegetation before turning inland 

and moving perpendicular to the sea reflects advantageous enhanced contact with 

distant waypoints until the area becomes familiar. The above considerations support 

the notion that, despite travelling significantly greater distances than necessary 

during the incoming trips, birds use a sophisticated sight-based strategy to move 

quickly and efficiently to their nests in a cluttered and complex environment.  

 

Conclusion 

 

Magellanic penguins are effective at navigating on land and many finely resolved 

movement parameters examined here enhance our understanding of the decision-

making processes used by these birds to navigate, most particularly in the highly 

heterogenous landscapes of the San Lorenzo colony. Specifically, movement trends 

differed significantly between inbound and outbound journeys, with this being 

principally affected according to how far away from the ToF birds landed on the 

beach. The work suggests that penguins actively correct for such displacements by 

travelling at angles in favour of their familiar paths, and/or where possible, choosing 

routes that coincide with lower shrubbery extent. The trends observed here suggest 

that penguins use visual information to both facilitate navigation and minimise 

energy associated with targeted movement. Lastly, I bring to attention the 

practicality of assessing fine-scale estimates of space-use with respect to pauses, 

turns and step lengths to qualify movement trends, which may prove informative for 

elucidating behaviour in other animals. 
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Abstract 

 

Animals that fly or swim must often deal with travelling through a moving medium. 

External current flow vectors can cause significant opposition, assistance, or lateral 

displacement (drift) to an animal’s travelling movements, depending on the speed 

and direction that the animal chooses to adopt (its travel vector), relative to the 

speed and direction of the current flow through which it is travelling. Animals 

traveling within fluid media (air and water) are therefore expected to be able to 

detect and react to current flows in accordance with their preferred direction of 

travel, to reduce overall cost of transport (COT) during goal-orientated movements. 

Understanding the strategies that animals use to achieve this is challenging however, 

particularly for free-ranging animals where direct observation is limited. Here, I 

combine GPS and motion sensor units on Magellanic penguins returning back to their 

colony from foraging forays at sea. I assess how motion sensor derived heading 

estimates, alongside the drift-corrected dead-reckoning technique can elucidate 

strategies for drift compensation when compared against tidal-dominated currents 

of the region. Here, the ebb and flow of the tide rarely enabled penguins to adopt a 

travel vector, that when combined with currents, resulted in straight-line travel back 

to the colony, without being heavily subjected to opposing-directed flows. My results 

demonstrate that penguins are able to perceive and react to currents and travel back 

in manner that enables them to exploit favourable flow-assisted travel. However, this 

increased overall distance travelled as well as the overall energetic investment 

estimates of the return trip, juxtaposed with flow-incorporated straight-line travel. I 

hypothesise that the strategy adopted by these penguins facilitates opportunistic 

foraging during their return leg, by improving resultant travelling speeds which likely 

offsets the marginally higher energy costs from the optimum return path. This study 

represents the first step for utilising the dead-reckoning technique to detail specific 

orientation strategies within high current regimes. 
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Background 

 

Animals moving within fluid media (water or air) may be subject to substantial 

current vectors relative to their own speed, that can cause substantial drift with 

appreciable energetic and navigational consequences, particularly when the 

movement is goal-oriented (see Chapman et al. 2011 for review). There is therefore 

presumed to be strong selection pressure for animals to deal with current vectors 

(Young & Braithwaite 1980; Åkesson & Hedenström 2007; Chapman et al. 2011; 

Shepard et al. 2013; Hays 2017). Accordingly, some animals respond either by only 

moving when flow vectors are favourable (Vogel 1978; Gibson, Barnes & Atkinson 

2001) or by modulating their speed (Liechti, Hedenström & Alerstam 1994; Kelly & 

Klimley 2012) or heading to varying degrees (Shiomi et al. 2008; Klaassen et al. 2011; 

Goto, Yoda & Sato 2017; Cerritelli et al. 2019), which presupposes that they can 

detect current vectors (Chapman et al. 2011). While mechanisms for detecting 

current vectors have been proposed such as hairs on the wings of bats (Jones 2011) 

or reference to landmarks (Liechti 2006), animals navigating at sea at depths that give 

them no reference to the seabed (Bonadonna, Benhamou & Jouventin 2003) are 

considered to face particular challenges and it is unknown how goal-orientated 

behaviour might occur in this scenario. It has been shown, however, that sea turtles 

manifest appreciable track tortuosity during their migrations from feeding sites to 

breeding islands, suggesting imperfect information about their position, the position 

of their goal and/or the current vectors to which they are subject (Hays 2017). Similar 

sorts of findings have been noted for birds (Carter et al. 2016; Tarroux et al. 2016; 

Sánchez-Román et al. 2019). 

Penguins are an excellent group with which to study the effects of current vectors on 

navigation strategies. During breeding, these birds are central place foragers 

(Boersma & Rebstock 2009; Sala et al. 2012; Rosciano, Polito & Raya Rey 2016) that 

must return regularly, efficiently and precisely to their colony from foraging far at sea 

(out of sight of land – a condition enhanced by their very low profiles at the sea 

surface and extensive time spent underwater - but see Mattern et al. 2007) to 

provision their brood (Williams & Busby 1995). Being unable to fly, the journey must 

be undertaken by swimming at speeds of ca. 2 m/s (Wilson, Ropert-Coudert & Kato 
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2002; Wilson et al. 2004), which compares to many ocean currents, particularly in 

areas exposed to substantial tides (Kantha et al. 1995; Kara, Metzger & Bourassa 

2007). Importantly, for understanding how penguins react to currents, much animal-

attached technology has been developed specifically for penguins, including dead-

reckoning devices (Wilson 2004; Wilson et al. 2007), recording animal heading, depth 

and speed so as to be able to reconstruct bird tracks using vectors assuming no 

current drift (Shiomi et al. 2008). 

I examined the navigation behaviour of Magellanic penguins Spheniscus magellanicus 

breeding at Peninsula Valdes, Chubut, Argentina while they were subject to well-

defined, in time and space, currents of the region (Glorioso & Flather 1995) which 

can reach 2.5 m/s (see below). For this, I equipped birds with GPS-enhanced motion 

sensors recording location, depth, tri-axial acceleration, and tri-axial magnetic field 

intensity, from which the homebound (goal-orientated) tracks could be 

reconstructed. These were drift-corrected, by reference to the GPS, and considered 

with respect to the space- and time-corrected currents. 

The aims of this study were three-fold. Firstly, to investigate the abilities of these 

birds to perceive the direction of their colony, secondly, to examine the extent to 

which birds react to currents when commuting back to the colony and finally, in 

tandem with the above, to evaluate the energetic and distance travelled 

consequences of their homing strategy. 
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Materials and methods 

 

Study site, tags used and attachment method 

 

Field work was undertaken between 22nd November and 1st December 2019 at the 

San Lorenzo Magellanic penguin colony (-63.86, -42.08) on birds brooding small 

chicks. Birds were fitted with GPS (Axytrek) units, programmed to record at 1 Hz and 

powered by a 3.6 V, Lithium Thionyl Chloride, 1,600 mAh battery and Daily Diary (DD) 

technology (Wilson, Shepard & Liebsch 2008) comprising a tri-axial accelerometer 

and tri-axial magnetometer recording at 40 Hz with 16-bit resolution and powered by 

a 3.6 V, Lithium Thionyl Chloride, 750 mAh battery. DDs were also integrated with a 

Keller pressure sensor, operating within the range of 0-30 bar with 24-bit resolution. 

DD units were fitted within an elongated rounded acrylic casing and GPS units within 

a flattened, angled resin mould, both housings being designed to be 

hydrodynamically streamlined following recommendations made in Bannasch, 

Wilson and Culik (1994). Combined device weight (85.7 g) comprised < 1 % of the 

penguin’s body mass and represented < 1 % of the penguin’s cross-sectional areas. 

Both units were attached to the base of the spine using Tesa® tape (Wilson et al. 

1997), a process that typically took less than 5 minutes. Birds were left to undertake 

a single foraging trip at sea (typically lasting between 24 and 48h at this site) before 

being re-caught at the nest and the devices recovered.  

 

Numerical ocean current model 

 

The output simulations were performed using a numerical model called Regional 

Ocean Modelling System (ROMS, Shchepetkin & McWilliams 2005). In the vertical 

(depth) axis, the primitive equations are discretised over variable topography using 

stretched terrain-following coordinates. In the horizontal axes, the primitive 

equations were evaluated using orthogonal curvilinear coordinates on a staggered 

Arakawa C-grid. For the vertical mixing parameterization, the scheme developed by 

Mellor and Yamada (1982) was selected. The bathymetry is based on digitised 

nautical charts. The computational grid had three open boundaries (South, West and 
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North) where the tidal amplitudes and phases of 8 principal constituents (four 

semidiurnal; M 2 , S 2 , N 2 , K 2 , and four diurnal: K 1 , O 1 , P 1 and Q 1), two long-

term constituents (M f and M m) and three higher harmonics (M 4 , MS 4 and MN 4) 

of the region were imposed, interpolated from a global tidal model (TPXO6, Egbert, 

Bennett & Foreman 1994). For more details in model setup simulations (grid, 

forcings, open boundaries, etc.) see Tonini and Palma (2017). The model was 

validated in the region using all in-situ data available from a long period of time 

(across > 10 years, see Tonini & Palma 2017 for details). The output instantaneous 

currents (3-D field) were used to perform a harmonic analysis of each tidal 

constituent in a 3-D and 2-D (depth averaged) field. After that, the most important 

current components that produced greatest variations of syzygy and quadrature (M2, 

S2 and N2) in the region were taken, with phase-adjustment using the free-to-use 

global xtide model (https://flaterco.com). From this, U and V components were 

assembled (cf. Pisoni et al. 2020). These are, respectively, the separate measures of 

flow speeds along two orthogonal axes: U represented the horizontal component in 

the East-West direction and V, the horizontal component in the North-South 

direction. Mean U and V components were calculated per grid node per hour (in m/s) 

(see supplementary information (SI): Text S1: Fig. S1). These were the averaged 

vertical currents because, in the case of instantaneous currents within the San 

Lorenzo gulf, there was no great variation from surface to bottom. Across all tracks, 

current strength averaged 0.6 ± 0.35 (± 1SD) (m/s) with peak syzygy being 2.5 m/s. In 

this study, the output model encompassed a sector covering 3.45x106 km2 (which 

incorporated the majority of penguins foraging trips, cf. Fig. 1) at 1 km2 resolution, 

starting from 22nd November at 1 am until 2nd December at 1 am (2019).   

 

Speed estimates 

 

I used 3 approaches to represent penguin swim speed. 

i. Surface swimming - When a bird was ≤ 0.3 m depth & absolute values of pitch 

(derived from the surge acceleration,  Bidder et al. 2015) were < 10o, it was 

considered to be travelling at 0.416 m/s (1.5 km/h based on the Wilson (1985) 



Navigational ability of Magellanic Penguins at sea 

281 
 

- reported surface swimming speed of the congeneric African penguins 

(Spheniscus demersus)). 

ii. Underwater swimming with low body pitch - When a bird was at > 0.3 m depth 

and absolute values of pitch were < 10o, it was deemed to be travelling at 2.1 

m/s (the average of two reported Magellanic penguin modal commuting 

speeds of 2.0 m/s (Wilson, Ropert-Coudert & Kato 2002) and 2.2 m/s (Wilson 

et al. 2004)). 

iii. Underwater swimming with high body pitch  - Following Ropert-Coudert et al. 

(2001), when a bird was > 0.3 m depth and absolute values of pitch were ≥ 

10o, speed (s) was estimated using; 

 

 𝑠 =  
Δd

tan(θ • 
𝜋

180
 )

                                                                                                                            (1)                                                                                                          

 

where speed is in m/s, Δd is the rate change of depth (m/s) and θ, the pitch angle (o). 

Speed values were capped at 5 m/s to ensure unrealistic speeds were not included. 

Prior to calculating speed, for equations deriving the three axes of rotation using the 

tilt-compensated compass method, see Pedley (2012); Bidder et al. (2015) and 

Chapter 5, offsets were applied to pitch and depth values to account for discrepancies 

of tag attitude relative to the body, and baseline pressure drift, respectively (SI: Text 

S2).  

 

Dead-reckoning procedure 

 

Bird heading during swimming was calculated using the Gundogs.Tracks() function in 

R, detailed in Chapter 5, before being integrated with speed and dive angle and finally 

being corrected using GPS fixes acquired when birds were at the surface (see SI: Text 

S2 for more information).  

The beginning of each penguin’s the return journey was determined by examining 

the shortest straight-line distance between the penguin and the colony over time 

during the period at sea, which I define as the ‘line-of-sight’ trajectory. When 
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graphed, this produced an inverted ‘V’, with the beginning of a continuous downward 

gradient highlighting the start of a penguin’s homing trajectory (SI: Text S1: Fig. S2). 

All data from this point onwards (providing this coincided within the grid of available 

currents data (Fig. 2)) were included in the analysis. Data was sub-sampled to 1 Hz 

resolution with the time and position of each DR fix matched to the relevant grid 

node current vector (mean U and V components).  

 

The travelling vectors and their derivation 

 

To convert U and V components into strength/speed and direction estimates, or vice 

versa, see SI: Text S2. 

In total, five 2-D vectors were calculated (cf. Fig. 2): 

(i) Water current (see above) 

(ii) Bird heading and speed relative to the water – This was derived from the 

estimated speed and heading derived during the DR process. I applied a 10 s 

running mean to all speed and heading values prior to converting it to U and 

V components (circular mean used for heading). Only the bird’s estimated 

speed and heading estimates prior to GPS correction were used.  

(iii)  Bird resultant vector - The U and V components of the bird were added to 

the U and V components of the current, respectively to compute the actual 

bird resultant vector (bird + current). 

(iv) Theoretical ‘best’ heading – At each point along the track, for the given bird’s 

estimated travelling speed and exposure to current direction and speed, the 

heading required to provide the vector travel direction to return directly back 

along the ‘line-of-sight’ trajectory was calculated (following integration with 

currents; see SI: Text S1: Fig. S3, and SI: Text S2).  

(v) Theoretical ‘best’ resultant vector - The U and V components of the 

theoretical ‘best’ were added to the U and V components of the current, 

respectively, to compute the theoretical resultant vector (theoretical + 

current). In most cases, the direction of the theoretical resultant and ‘line-of-

sight’ heading were the same. 
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Ease of transport (EOT) 

 

I specified the inverse of cost of transport (COT - cf. Taylor, Caldwell & Rowntree 

1972) as the Ease of transport (EOT in m/J) to highlight facilitated pathways by 

penguins exposed to the current landscape. For this, I calculated the power 

requirements for a penguin’s chosen speed using the formula given in Luna-Jorquera 

and Culik (2000) relating mass-specific power to swim speed for congeneric 

Humboldt penguins (Spheniscus humboldti), a species morphologically and 

physiologically very similar to the Magellanic penguin (Wilson et al. 2004). 

𝑃𝑜𝑤𝑒𝑟 = 2.954 • 𝑣3 − 6.354 • 𝑣2 + 5.818 • 𝑣 + 5.9                                              (2) 

where 𝑣 is velocity (penguin speed) and 𝑃𝑜𝑤𝑒𝑟 is in W/kg. Values were then 

multiplied by 4 (the average weight of Magellanic penguins is 4 kg (Williams & Busby 

1995)) to convert the power costs to a rate of energy usage per animal and second 

(J/s).  

At each point along the DR track, coordinates were advanced according to the speed 

and direction of the vector in question. This was done separately for actual bird 

resultant, theoretical ‘best’ resultant and actual bird options (pre-current integration 

- for comparison purposes). Finally, for each of the three progressed vectors, two 

variants of EOT (m/J) were calculated: 

(i) R1 (EOT transport in any direction) – Given by the distance moved per second 

divided by the power costs (cf. Fig. 1). 

(ii) R2 (Effective EOT) – Given by the distance covered along the effective ‘line-

of-sight’ trajectory towards the colony per second divided by the power costs 

(cf. Fig. 1). 

 

Negative EOT values for R2 (which could occur if the birds moved further away from 

the colony) were allocated as zero. This was another reason that EOT was explicitly 

used instead of COT, since descriptive stats incorporating joules per negative metre 
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made little mathematical sense and my approach sought to highlight distance 

covered by the birds. 

Figure 1. Representation of the five vectors calculated in this study. The schematic (top) diagram shows how vector 
addition of the current (solid blue) and either actual bird (solid red) or theoretical ‘best’ (solid green) options at 
bird position ‘n’, results in the actual bird resultant (dashed purple) or theoretical ‘best’ resultant (dashed 
turquoise), respectively, at bird position n+1. The dotted black lines reflect the magnitude and direction of the 
shortest straight-line distance (‘line-of-sight’) to the colony. The theoretical ‘best’ resultant always follows the 
direction of ‘line-of-sight’ heading except where penguin speed at any point was not high enough to correct for 
the current vector (SI: Text S2). In the lower panel, these vectors are calculated for the return journey of a penguin 
(plotted at 5-minute intervals along its dead-reckoned track (southerly trajectory)). Note that the theoretical ‘best’ 
(green) is sometimes directed against the current (> 90o) to achieve a theoretical ‘best’ resultant, directing the bird 
towards the colony. Note, R1 (EOT transport in any direction) is the distance progressed from bird position n to 
bird position n+1 and R2 (Effective EOT) is the difference between the ‘line-of-sight’ to the colony at bird position 
n and the bird position n+1. 
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Graphical and statistical analysis 

 

The derivations of pitch, roll and heading were computed in the custom designed 

software; Daily Diary Multi Trace (DDMT, http://www.wildbytetechnologies.com). All 

further work was performed in R (http://www.R-project.org). To control for unequal 

sample sizes between penguins, variables of interest (outlined below) were binned 

appropriately (sometimes 2-dimensionally) and a grand mean and standard error per 

bin was calculated from all ‘pooled’ mean/relative frequency values. For graphical 

purposes, when comparing variables as a function of proportion of total distance 

travelled (0-1), the calculated mean of a given variable per bin (0.01) per bird was 

pooled and in the case of comparing frequency distributions (of heading differences), 

the relative frequency per bin (into 5o or 10o epochs - range: -180o to +180o) per 

penguin was pooled prior to calculating a grand relative frequency across the bin 

range. For statistical analysis, data were binned into 1o epochs. 

A boot-strap version of the two-sample Kolmogorov-Smirnov (KS) test was used to 

determine if the distribution of heading difference between actual bird heading and 

‘line-of-sight’ heading was significantly different according to conditions of current 

strength. Data was subsetted between ‘slack’ current condition < 0.5 m/s (approx. 

half the relative distribution of current conditions and approximately a quarter of a 

Magellanic penguin’s modal commuting speed, cf. SI: Text S1: Fig. S4) and 

‘appreciable’ current condition ≥ 0.5 m/s. This was achieved using the ‘ks.boot’ 

function in R from the ‘Matching’ package (Sekhon & Sekhon 2020), in which the 

vertical distance between the empirical cumulative distributions functions from the 

two samples were compared using 1,000 bootstraps (Monto Carlo simulations) to 

determine the empirical p-value. Bootstrapping was chosen because of its robustness 

to integer ties. The null hypothesis was that the probability densities for both ‘slack’ 

and ‘appreciable’ current conditions were the same. Surface periods > 30 s were 

initially removed to include primarily ‘commuting’ movement rather than milling 

about at the water surface. 

Four two-tailed Welch Two Sample paired t-tests were used to determine if there 

was a significant difference between the paired means of the theoretical ‘best’ 

http://www.wildbytetechnologies.com/
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resultant EOT and the actual bird resultant EOT as well as the actual bird EOT and 

actual bird resultant EOT (using a grand mean from pooled mean EOT values per 0.01 

epoch of total distance travelled per individual). This was computed for both R1 and 

R2 separately. 

 

Results 

 

In total, 15 birds were used for the analysis and the majority executed ‘looping 

pathways’ (cf. Weimerskirch et al. 1993), heading approximately North to forage and 

returning in a southerly direction to their colony, with most return tracks having an 

S-shape (Fig. 2). On average (± 1 SD), the beginning of the return trips started 38 ± 

7.3 km from the colony. 

Figure 2. (a) The tracks at sea of 15 penguins, coloured according to outbound (blue) from inbound (red) phases 
(see text for details). The light grey shaded rectangle represents the grid for which current data is available. (b) 
The current conditions within this grid are visualised, showing peak syzygy (strength) as a function of the 
incoming (left panel) and outgoing (right panel) tides from a single day. Note that penguins are typically subject 
to cross-currents during their return phase. 
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Across individuals, penguin headings within both ‘slack water’ and ‘appreciable 

current’ conditions were centred about their ‘line-of-sight’ heading, rarely exceeding 

90o from this and following a Gaussian distribution (Fig. 3a, SI: Text S1: Fig. S3). 

However, actual bird heading under ‘slack water’ conditions was less spread than 

during the ‘appreciable current’ conditions (D = 0.106, p < 0.01). It was not apparent 

though, that homing ability improved with decreasing ‘line-of-sight’ distance to the 

colony (SI: Text S1: Fig. S5). The variation in penguin heading around the ‘line-of-sight’ 

heading could be further expanded to examine the effect of current heading on bird 

strategy via contour plots that added the ‘line-of-sight’ heading minus the current 

heading for ‘slack water’ and ‘appreciable current’ conditions (Fig. 3). During ‘slack 

water’ conditions, actual bird heading was similar to line-of-sight heading (Fig. 3b), 

with variation around this to both the left and right of the mean as exemplified in Fig. 

3a. However, during ‘appreciable current’ conditions, which were primarily manifest 

by currents that were perpendicular to line‐of‐sight travel due to the tide moving in 

and out of the gulf (cf. Fig. 2b), penguin heading minus ‘line‐of‐sight’ heading 

favoured swimming with the current, with greater deviation from the ‘line‐of‐sight’ 

heading (Fig. 3c).  
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Combining all data, the reaction of penguins to currents in general (cf. above) can be 

examined to see how the behaviour of the birds compares to putative optimal 

headings. Optimal headings are considered to be where penguins select headings 

that, after integration with current vectors, result in birds moving along a ‘line-of-

sight’ trajectory (cf. Fig. 1), thereby minimizing distance travelled to the colony. The 

bird data show that the resultant bird headings (the actual headings minus the 

current headings) rarely involved penguins swimming against the current, instead 

resulting in birds swimming preferentially with the current, even if that led to them 

Figure 3. (a) Distribution of the difference between the actual bird heading and ‘line of Sight’ heading for both 
‘slack water’ (< 0.5 m/s – green bars) and ‘appreciable current’ (≥ 0.5 m/s - red bars) conditions. Thus, values of 0° 
indicate that the birds were travelling directly towards the colony while 90° indicate that the birds were heading 
perpendicular to the colony. (b) and (c) expand plot (a) out into contour plots which highlight the effect of current 
magnitude and direction on bird heading with respect to the ‘line of Sight’ heading. (b) shows that the difference 
between ‘line of Sight’ heading and current heading (cf. 3a) does not substantially change with current heading 
under the (minimal) current conditions of ‘slack water’ (points centred around the 0° mark). However, under 
‘appreciable current’ conditions (c), actual bird heading is skewed to the right of the ‘line of Sight’ heading when 
the ‘line-of-Sight’ heading minus the current heading is negative and skewed to the left when the ‘line-of-Sight’ 
heading minus the current heading is positive. This indicates that under high current conditions, birds deviate from 
the mid-point of their heading distributions following a ‘line-of-sight’ heading, to swim preferentially with the 
current. 
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deviating from a ‘line-of-sight’ trajectory back to the colony (Fig. 4a). By contrast, the 

theoretical ‘best' heading would lead to penguins having to swim against the current 

(at an angle of > 90°) for most of the time (Fig. 4b, SI: Text S1: Fig. S3). 

 

Penguin heading with respect to current was calculated to have a substantial effect 

on the ease of transport. The ease of transport with respect to distance covered 

directly back to the colony (R2) indicated that of the theoretical ‘best’ heading 

produced significantly easier travel than that experienced by the penguins with their 

chosen headings (t(14) = 2.186, p-value = 0.046, P < 0.05) although in energetic terms 

the difference was marginal (Fig. 5a, SI: Text S1: Fig. S6). However, in terms of actual 

distance moved irrespective of direction, the mean ease of transport (R1) of the 

actual bird resultant vector of travel was significantly, and substantially, greater than 

the theoretical ‘best’ resultant (t(14) = -7.582, p-value < 0.001, Fig. 5b, SI: Text S1: Fig. 

S6).  

Figure 4. Contour plots (a) to show the strategy shown by the real birds, that have a diametrically opposed 
distribution with most time spent swimming with the current to some degree [inside the yellow boxes]. This is in 
stark contrast to the (b) theoretical ‘best’ heading by penguins (which would normally result in the birds navigating 
a ‘line-of-sight’ trajectory back to the colony – although not strictly in this visualisation since the speed cannot be 
incorporated) as a function of the current heading (y-axis), which results in displacement around the ‘line-of-sight’ 
heading (x-axis) with the birds spending most of the their time swimming against the current [outside the yellow 
boxes]. There is, however, a notable peak located at the bottom section (a) where an appreciable proportion of 
time is spent swimming against the current. This is due, almost exclusively to penguins that had moved close to 
the colony but found themselves downstream and thus had to swim against the current for the last phase of the 
return journey. 
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Discussion 

 

Orientation strategy 

 

My first aim, to investigate the abilities of the penguins to orientate themselves 

towards their colony, demonstrated that, with some (symmetrical) variation, they 

appeared to adopt a ‘line-of-sight’ heading (Fig. 3a). This is obviously most 

appropriate under conditions that I defined as ‘slack water’ (although even these 

usually had some minimal current flow) conditions. I suggest that the variation 

around the ‘line-of-sight’ heading at this time, stems from inaccuracies in the birds’ 

navigational systems but are also due to deviations in the trajectory due to penguins 

occasionally pursuing prey. The important observation that the variation around the 

mean heading did not substantially change with distance to the colony (SI: Text S1: 

Fig. S3) suggests that the navigation process is not based on landmarks, which cannot 

be visible when birds start their return journey (at ca. 30 km) although they should 

Figure 5. Mean (± 1 SE) penguin ease of transport (EOT - in metres travelled per joule) as a function of the 
proportion of the return distance to the colony for the (theoretical ‘best’ trajectory (turquoise) and the actual 
resultant trajectory (purple), linked with ‘loess’ smoothed lines. (a) shows the ease of transport in any direction 
(R1) while (b) shows ease of transport with respect to distance travelled towards the colony (R2) (for greater vector 
comparison, y-scales differ). 
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be when penguins are within a few km of the land, though, even when birds have 

line-of-sight, they do not improve, suggesting that sight is not important. Regardless, 

it appears that birds are not random in their return trajectories but rather have an 

overall ability to navigate at greater than ‘approximate’ cardinal directionality. The 

frequency distribution of ‘line-of-sight’ heading and current heading difference with 

respect to actual bird heading and ‘line-of-sight’ heading difference across the two 

current conditions, does suggest though, that they have a reasonable ‘homing 

compass’. However, I do note that little or no current flow was sporadically and 

locally clustered along parts of a few penguin’s return tracks. This was the reason for 

incorporating a relatively high current strength threshold between the two current 

conditions, and as such, I recommend that homing ability should be investigated 

further, in scenarios where current flow is predominantly lower and more variable in 

direction (current flow was rarely directly with or against ‘line-of-sight’ heading). 

Secondly, the data suggest that the birds are able to determine when they are 

exposed to a current stream because the variance around the ‘line-of-sight’ heading 

increased under higher current flow conditions (Fig. 3a). Importantly, even without 

landmark references (cf. Emlen & Penney 1964; Shiomi et al. 2020), there is evidence 

that the penguins could determine current direction because an appreciable part of 

the variance around the ‘line-of-sight’ heading was due to the birds swimming 

preferentially with the current (Fig. 3b,c, Fig. 4a). Specifically, due to the nature of 

cross-currents across the majority of return legs (cf. Fig. 2), birds could choose 

between heading directly ‘home’ (or ‘choosing’ a heading [theoretical ‘best’ heading] 

that, when incorporated with current flow, enabled this [theoretical ‘best’ resultant 

heading’ – cf. Fig. 1]) but at the expense of being greater exposed to opposing current 

conditions (Fig. 4b), or travelling at an angle to the ‘line-of-sight’ heading while 

capitalising on favourable current conditions, whilst still moving closer to the colony 

(Fig. 4a). That the penguins adopted the latter approach is a clear example of ‘flow 

assisted movement’ (cf. Chapman et al. 2011). 

The success of any ‘flow assisted movement’ depends on the gain of energy imparted 

by the current vector and the extent to which it moves the navigating animal from its 

goal. The specific situation for the penguins navigating South within the San Mattias 
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Gulf depends on the alternating current regime due to the tidal cycle for the area. 

Here, there is an East-West and West-East current flow which will trend to push the 

birds, alternately, too far to the West and/or then too far to the East. Importantly 

though, since the return journey takes several hours (8 ± 2 h (± 1 SD)), this is enough 

time for the penguins to be exposed to elements of both current directions, and 

therefore for the currents to correct substantially for the unwanted lateral 

displacement. This can be demonstrated by a simple model. If we assume, during 

their return, that birds start at a position 38 km directly North of the colony, generally 

move in a southerly direction (Fig. 2a), that they are exposed to a perpendicular 

current of say 0.6 m/s (Fig. 2b) and that they generally adopt an actual heading that 

is centred around 25° off the ‘line-of-sight’ heading in favour of the current (cf. Fig. 

4), swimming a mean speed of 1.5 m/s (accounting for surface periods, cf. Wilson 

1985; Wilson, Ropert-Coudert & Kato 2002), they will be moving to the West or East 

of the colony at a rate of 1.23 m/s (and 1.35 m/s South). If the current were constant 

and not alternating, this would result in a displacement of 35.54 km to one side of 

the colony after a nominal 8 h return journey (and a slight ‘overshoot’ southbound, 

travelling 39.15 km). To swim directly against this current at the ‘nominal commuting’ 

speed of 2.1 m/s (cf. Wilson, Ropert-Coudert & Kato 2002) for 35.54 km would take 

6.58 h, with an overall net speed of 1.5 m/s towards the ‘line-of-sight’ and require 

1,654,006 additional joules. During an 8 h return journey, however, even if the 

penguins start their journey soon after the tide turns tide turns (nominally 6 hours 

per turn – SI: Text S1: Fig. S1) and were exposed to 5 h of current in one direction, 

followed by 3 hours in the opposite direction and the bird carried out the same 

strategy upon the turn tide (adopting an actual heading centred around 25° off the 

‘line-of-sight’ heading in favour of the current, swimming at a mean speed of 1.5 

m/s), then this approach would ‘somewhat’ cancel out and leave a smaller lateral 

displacement. In this scenario, the bird will be displaced 8.88 km to one side of the 

colony.  

Assuming current direction is still in the favourable direction towards the ‘line-of-

sight’, the bird would be required to take an additional correction trajectory, that (for 

commuting speed) would take 0.91 h (54.8 mins), with an overall net speed of 2.7 
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m/s and costing 229,613 additional joules. In fact, it is unlikely that any penguin will 

begin its return journey at exactly the point of a turning tide, so the displacement 

distance would nominally be less, whilst I am also excluding (amongst over things) 

the impact that variation in peak synergy (current strength) over time and across 

space would have). Nevertheless, if this second scenario is assumed to be the case, 

then the total energy usage for this return trajectory would amounts to 1,842,735 

joules and a median net speed of 1.84 m/s. All this suggests that the navigation 

strategy of Magellanic penguins actually capitalises on the alternating current 

directions generated by the San Mattias Gulf tides, and that these are reflected in the 

typical ‘S-shaped’ movement patterns observed in these birds (Fig. 2a). However, the 

energetic benefits of this need to be considered with respect to a putative ‘optimal’ 

strategy, during which penguins adopt an ‘actual bird heading’ so that their 

‘theoretical ‘best’ resultant heading’ (cf. Fig. 1a) accords with the ‘line-of-sight’ 

heading to the colony.  

In accordance with the above scenario, if we now consider that the bird actually 

adopted the theoretical ‘best’ strategy, that is, the bird travelling at 1.5 m/s, would 

have to swim approximately 114o away from the current heading to obtain the ‘line-

of-sight’ course, post current integration. This would necessitate a 1.37 m/s 

southbound speed and have the penguin back at the colony after 8 h (39.47 km), 

requiring 1,186,589 joules (only 64 % of that from the second scenario). In line with 

the actual data, the consequences of the penguin navigation strategy with respect to 

energy, my third aim, indicated that it was marginally (though significantly) 

energetically more efficient to move ‘optimally’ [theoretical ‘best’ heading] when the 

distance considered was the straight-line trajectory towards the colony (R2, Fig. 5, SI: 

Text S1: Fig. S6). Against this, the ease of transport for distance covered in any 

direction was substantially better for the headings taken by the penguins, and indeed 

better than they would be if the birds were swimming in slack waters because the 

penguins capitalise on the current strength (cf. SI: Text S1: Fig. S4), in a manner akin 

the migrating birds flying with tailwinds (see Liechti 2006 for review). The specific 

advantage of this is that penguins can continue to search opportunistically for prey 

during their return journeys (as indicated by the depth of returning dives (SI: Text S1: 
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Fig. S7), which are much deeper than proposed ‘travelling dives’ (Wilson & Wilson 

1995)) at low energetic cost. Further, whilst currently unexplored, resting periods, 

may be a low energetic opportunity (and/or necessity) to travel when currents are 

‘somewhat’ favourable – this would rarely be possible when adopting the theoretical 

‘best’ heading, given this nearly always involves some form of locomotion away from 

the ‘line-of-sight’ heading (cf. Fig. 4). Lastly, it is worth noting that my analyses were 

constrained to the GPS-corrected dead reckoned tracks and so the impact following 

the theoretical ‘best’ resultant vector of travel (in terms of departing from the track 

and thus subject to changeable current conditions) is currently unexplored.  

Potential errors 

 

I consider findings to be taken as general trends given that the nature of this study 

involved a degree of uncontrollable error. Firstly, with respect to currents, a depth-

averaged field was used which does not take into account variations of syzygy with 

respect to depth (though the harmonic analysis used indicates that vertical variations 

in this area are minimal), or wind-generated waves at the sea surface, propagating 

chop through the top layers of the water column, whilst obviously current flow can 

vary within 1 km2 grid resolution. Also, the model uses climatological external forcing 

(heating flux and wind stress), long-period averaged data (more than 10 years) based 

on satellite image sensors. This prevents the model from capturing events of 

particular years and high frequency variations. Secondly, heading derived from the 

tilt-compensated compass method can become inaccurate during periods of highly 

dynamic movement (Noda et al. 2012), whilst slight discrepancies in tag placement 

between birds and dislodgment of tag position during logging can introduce a 

constant source of bias to heading output. Moreover, variation between estimated 

and ‘true’ speed per unit time is inevitable. As such resultant vectors of travel 

incorporating both the magnitude and direction from both current and bird vectors, 

would have incorporated some degree of error. Nevertheless, I would expect such 

sources of error to be uniformly variable and thus conclude that the noticeable bias 

that exists between the direction a bird travels with respect to the colony and current 

direction is a true phenomenon.  
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Conclusion 

 

I conclude from this study that penguins operating within high current regimes are 

able to perceive and react to currents and they do so in a manner that enables them 

to return home with a marginally greater effective cost than optimum, but at 

improved resultant speeds which, in the framework of dive performance and 

opportunistic foraging, makes for a sensible practice. This work provides a novel 

framework, merging both theoretical and practical aspects of movement within a 

dynamic medium for investigating animal-current interactions. I suggest that further 

work building on this approach should investigate ‘homing’ ability within 

environments where currents are minimal and have a multimodal directionality to 

further clarify the extent to which they ‘know’ where ‘home’ is.  
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Why did my thesis take the direction it did? 

 

One of the luxuries, for me, of undertaking a PhD, was the chance to pursue appealing 

avenues of research, and specifically ones that I felt would be of value to the 

community. It was clear that my work would involve animal-attached tags containing 

inertial measurement units (IMUs), but little was defined beyond that. The use of 

accelerometers within such tags, to quantify animal body posture and movement, 

has been examined extensively (Shepard et al. 2008a; Shepard et al. 2008b; Brown 

et al. 2013; McClune et al. 2014), providing information on travelling speed (Bidder 

et al. 2015; Walker et al. 2015), activity extent (Barwick et al. 2018; Fukasawa et al. 

2018), mechanical energetic expenditure (Gleiss, Wilson & Shepard 2011; Wilson et 

al. 2020a) and associated behavioural patterns (Guo et al. 2006; Graf et al. 2015; 

Williams et al. 2015; Chakravarty et al. 2019a; Rodriguez-Baena et al. 2020). Beyond 

acceleration though, IMUs are often integrated with magnetometers, enabling 

animal heading to be resolved with high accuracy (Wilson, Shepard & Liebsch 2008; 

Fourati et al. 2011; Patel et al. 2017). Heading is a fundamental variable for 

characterising behaviour and although a few studies (using the accelerometer-

magnetometer approach) have explored its utility for investigating various aspects of 

space-use (e.g., Bidder et al. 2015), behavioural time-budgets (e.g., Chakravarty et al. 

2019b; Narazaki et al. 2021) and magnetic alignment responses (e.g., Painter et al. 

2016), applications have been minimal compared to acceleration-based work.  

In addition, work on the derivative of heading, the rate change of heading, or as 

defined in Chapter 2 - angular velocity about the yaw axis (AVeY) - is virtually absent 

in the biologging literature (excepting the odd gyroscopic study (e.g., Noda et al. 

2014)), despite the interplay between step lengths and turn extents being important 

descriptors of behaviour-specific movements, as is referred to in navigation- (cf. 

Shiomi et al. 2020) and foraging strategies (cf. Weimerskirch et al. 2007). Many 

studies to date, have investigated such strategies using indices of tortuosity (cf. Li & 

Payandeh 2016) derived from interpolations between time-specific discrete verified 

positions (VPs; principally obtained using radio telemetry, cf. McLean & Skowron 

Volponi 2018) although, as highlighted with GPS in Chapter 4, 5 and 6, continuous 

measurements are not always possible and location estimates can be markedly 
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inaccurate anyway (Lewis et al. 2007; Frair et al. 2010; Forin-Wiart et al. 2015). For 

this reason, obtaining accurate fine-scale (e.g., infra-second) turn extents is simply 

not possible using this approach (cf. Hurford 2009), which compounds space-use and 

distance travelled estimates (McCann et al. 2021; Poulin, Clermont & Berteaux 2021). 

Furthermore, even coarsely resolved heading change requires consecutive VPs to be 

different and this precludes examination of orientation change (or lack of) when the 

animal is stationary (Swain, Wark & Bishop-Hurley 2008). Non-travelling orientations 

can be equally important to examine though, for example, to understand the impact 

of basking orientation on thermoregulation in ectotherms (e.g., Stanton-Jones, 

Parusnath & Alexander 2018). Indeed, one might speculate that patterns of angular 

rotation while stationary may have particular value for discerning behavioural state 

changes, for example, vigilance responses according to predator presence. 

With the above considerations, the central theme of this thesis was to investigate 

how body rotation can help us understand biological phenomena, particularly 

movement strategies that they are considered to enhance fitness (Boggs 1992). My 

overarching question throughout was ‘What does animal rotation tell us about 

behaviour?’, and as my own PhD journey comes full circle (!), I now appreciate that 

different proximate and ultimate questions and explanations of behaviour arise 

according to the different scales over which rotation is assessed. I like to use the 

analogy of a jigsaw puzzle; the detail lies in the pieces, but the story requires the 

‘complete picture’. Assessing body rotation at fine temporal scales can reveal 

important elements of behaviour and piecing them together in space and time can 

divulge important movement-specific behavioural strategies. I expand on this key 

concept here using the penguin and cormorant as example species to demonstrate 

my points and go on to speculate where I feel the direction of this work could usefully 

go in the future. 

Piecing together the puzzle: the dive and foraging strategy 

 
A critical consideration of Tinbergen’s ‘survival value’ concept is how behaviour is 

purported to maximise energy conservation and/or uptake (Nesse 2018). Turn rates 

are a key component of fitness because they have a direct link to energy expenditure 
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(Wilson et al. 2020b). The faster an animal changes its heading, the greater the 

energy investment and this is modulated according to its speed and medium of travel 

(Wilson et al. 2020b). Notably, in this, the time and energy that an animal allocates 

to different areas in space is a function of the time and speed that it adopts for given 

headings and turn angles, and this is a corollary of its behavioural response to internal 

motivation and environmental circumstance (e.g., Wilson et al. 2013a; Lempidakis et 

al. 2018).  

Air-breathing diving marine vertebrates spend a large proportion of their lives 

underwater and make for excellent subjects for examination of investment of time 

and heading in energies and space-use, because they must balance the need to locate 

and capture food with the energy costs associated with swim speed and swim angle 

at depth (Sato et al. 2003; Wilson et al. 2010; Okuyama et al. 2012). Specifically, 

diving animals that hold appreciable volumes of air in their tissues (including lungs, 

air sacs and plumage, as is the case for both penguins and cormorants), are generally 

highly buoyant at the water surface and so have to invest appreciable energy to 

overcome this ‘upward’ buoyancy force during the initial descent (Wilson et al. 1992; 

Watanuki et al. 2003; Kato et al. 2006). Air compression increases with pressure 

(Wilson et al. 1992) and pressure increases with depth (Hays, Metcalfe & Walne 2004) 

so the deeper the dive, the lower the power costs associated with work done against 

buoyancy (Wilson et al. 2010). It is not surprising therefore, that a strong inverse 

relationship exists between dive duration and energy investment (Hays et al. 2000; 

Enstipp et al. 2011; Davis 2014). In addition, the power costs of swimming in water 

rise with the cube of the velocity (Wilson, Ropert-Coudert & Kato 2002; Langerhans 

& Reznick 2010) (excluding the effect of upthrust) so judicious management of speed 

is important in energy management. And then there are the power costs associated 

with turning underwater, which whilst unknown, are likely to be equivalent to, or 

higher than, the turn costs on land (which scale disproportionately with speed and 

angular velocity - Wilson et al. 2020b). This is because, to facilitate a turn in water 

(particularly at high speeds), the bank angle of the body must increase (which 

requires energy anyway), compromising the hydrodynamic profile of the animal and 

thus the wake momentum of the surrounding fluid velocity in a manner that is less 



  Synopsis 

303 
 

favourable to thrust and more favourable to drag (Drucker & Lauder 2000). In short, 

the dynamics of the dive descent and changing heading in diving birds critically 

modulate energy use and this affects dive duration. The ascent phase of a dive is far 

less energetically expensive than the descent and bottom phase (both in terms of 

speed and turn costs), because as the depth decreases, the upthrust increases, which 

helps increase speed (irrespective of the animal kinematics) (Wilson et al. 2010).  

All the above boils down into two critical issues. Firstly, the functions of a given dive 

should govern its characteristics since changes in swim speed, body posture and/or 

heading at any given depth have energetic consequences. Secondly, if different dives 

(defined by their characteristics – cf. Wilson et al. 1996; Schreer, Hines & Kovacs 

1998; Schreer, Kovacs & O'Hara Hines 2001) serve different purposes (as suggested 

by Wilson et al. (1991); Williams et al. (1992); Wilson et al. (1993); Peters et al. (1998) 

and others), then their appearance in space and time should reveal important 

strategies relating to space-use (e.g., Wilson 2002). Such thinking leads to questions 

such as; how do animals allocate their time and energy to areas? In the specific 

context of heading, why should animals turn unless the ‘potential’ benefit of doing 

so outweighs the cost? Such issues are directly relevant to optimal foraging theory 

(cf. Pyke 1984), though to my knowledge have never been incorporated, and relate 

critically to prey distribution in time and space (cf. Wilson 1985). 

As highlighted in Chapter 3, researchers conventionally classify the functionality of a 

dive based on its time-depth profile – a representation of depth versus time (Halsey, 

Bost & Handrich 2007). Within this, Simeone and Wilson (2003) were amongst the 

first to demonstrate that undulations, or ‘wiggles’, during the bottom phase of 

penguin dives could be used to estimate prey consumption with reasonable accuracy 

(mean error: 10 ± 6 %) because each ‘wiggle’ corresponded to the capture of a single 

prey. The authors argued that this simple technique could be expanded to elucidate 

the foraging behaviour of other marine endotherm divers. Although illuminating, its 

utility is confined to animals that consistently have variation in depth associated with 

prey capture (such as Spheniscus penguins, which typically capture their prey from 

the underneath). However, this is not always the case in those species that display 

these patterns (Simeone & Wilson 2003) and serves virtually no purpose when 



  Synopsis 

304 
 

animals do not, such as in benthic feeders (e.g., most cormorant species, Quintana, 

Wilson & Yorio 2007; Cook et al. 2008; Laich et al. 2008; Kotzerka, Hatch & Garthe 

2011). This is illustrated in Fig. 1.  

In addition, the ‘effort’ underlying prey pursuit is hidden when just depth is assessed.  

Put simply, and seldom explicitly stated, the time-depth approach ignores space-use 

in 3-D, precluding potentially informative measures of effort, such as distance 

travelled, overall swim speed and the tortuosity of movement involved (Wilson et al. 

2007). A primary reason for not stating this is that very few researchers have the 

necessary data to be able to examine it. Acceleration-based metrics do provide an 

extra layer of insight beyond simple changes in depth though. Dynamic body 

acceleration (DBA, and VeDBA is a variant of this), can provide an indication of the 

mechanical power involved in movement (Gómez-Laich et al. 2013), although it has 

never been assessed with respect to turns, and body posture (swim angle) derived 

from static acceleration (Shepard et al. 2008a) can be used to approximate the 

horizontal component of travel during descent and ascent by using trigonometry 

employing the rate of change of depth (Laplanche, Marques & Thomas 2015). 

Figure 1. Variation in depth may or may not indicate prey capture depending on diving bird lifestyle. A dive 
profile of a Magellanic penguin [left] and Imperial cormorant [right] represented by depth (m) over time (s), 
coloured according to the 3 main components of a dive profile [descent = blue, bottom phase = green, ascent = 
red]. The vertical line demonstrates the point of maximum depth. Circles (S) represent ‘steps’ in depth - any time 
that the rate of change of depth changes from positive to negative or vice versa. Triangles (W) represent ‘wiggles’, 
which are supposedly indicative of prey capture (Simeone & Wilson 2003); steps are upgraded to wiggles when 
the difference in depth between steps ≥ 0.3 m and the differential of depth at any point during this candidate 
wiggle ≥ 0.3 m/s-1 (Simeone & Wilson 2003). Note the absence of wiggles in the benthic-foraging cormorants.  
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Importantly, the rate change of heading (AveY) can provide a useful independent 

metric of activity that should be at least as useful as acceleration-based metrics. In 

Chapter 2, I emphasise the utility of AVeY for discerning activity in slow-moving 

animals, though it clearly should have value in dynamic animals. Throughout this 

thesis, I have acknowledged that heading measurements can become erroneous 

during periods of high centripetal acceleration (using the accelerometer-

magnetometer approach; because the static acceleration, required to offset device 

tilt when deriving heading, can be difficult to resolve at such times). This would seem 

to negate the value of AVeY for dynamic animals, however I do not think this is a 

problem. This is because high centripetal acceleration is always linked to high turn 

rates and so, although exact heading values may not be accurately resolved, the 

derivative of heading will still display high variation. In terms of AveY as an activity 

metric, this is nonetheless helpful because power costs increase disproportionately 

with turn rate (Wilson et al. 2020b) and thus high or erratic changes in directionality 

would act as an important marker for this.  

An animal must change its heading to actively seek out and catch mobile prey during 

pursuit hunting (Wilson et al. 2013a; Hubel et al. 2016; Peterson, Soto & McHenry 

2021). AVeY, therefore, should be an invaluable metric to work alongside wiggle 

depiction and/or DBA when discerning dive function and performance. This is 

highlighted in Fig. 2, where there is clear disparity in the variation of AVeY estimates 

between non-pursuit and pursuit dives. In fact, this disparity appears greater than 

that provided by VeDBA (Fig. 2D versus Fig. 2E), indicating that AVeY may be a more 

sensitive measure of prey pursuit than either VeDBA or ‘wiggles’ in the depth profile. 

Importantly, what this figure makes clear, is that penguins have an astonishingly low 

rate of change of heading across all dive types except those associated with prey 

acquisition. Beyond this, and as alluded to in Chapter 5 and 6, the only method to 

date that can represent space-use under water in 3-D with fine resolution is dead-

reckoning (Fig. 2B), and this can be examined with respect to prey acquisition metrics 

(wiggles, VeDBA and AVeY) to construct prey-availability landscapes (Fig. 3). 
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Figure 2. Comparison of recognised penguin types based on the dive profile highlighting the value of AveY. 
The five different Magellanic penguin dive types (e.g., Schreer et al. 1998) are represented as; (A) depth over 
time, (B) 3-D dead-reckoned paths and (C) AVeY (o/s-1) over time, coloured according to VeDBA (g). The bottom 
panel shows mean absolute values of (D) angular velocity (AveY) and (E) VeDBA (E) per 0.1 increment of bottom 
phase (0 to 1), for each classified dive type (two dives per dive type).  
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Specifically, expanding out the scales of heading and rate of change in heading from 

individual dives to whole foraging trips can reveal how time and energy are allocated 

to space. For example, here aggregated mean (absolute) values of AVeY per given 

area of travelled movement (as ascertained via VP-corrected dead-reckoning - cf. 

Chapter 5) shows stark contrasts of rotation-related activity in space (Fig. 3B) which, 

at least visually, appear to also relate with the time spent in the area (Fig. 3A) and the 

incidence of ‘wiggles’; Fig. 3C). 

Figure 3. Metrics of putative prey capture can be examined in space in the dead-reckoned tracks of birds 
foraging underwater where normal tracking technologies fail. Mean values of; (A) time spent (s), (B) AVeY 
(o/s-1) and (C) the number of ‘wiggles’ (n) per ~ 1 km grid of travelled movement. Data taken from 29 
Magellanic penguin dead-reckoned tracks during foraging trips. Only the bottom phases of dives > 0.5 m 
were assessed. Sections of track without a coloured grid indicates periods at or near the surface (≤ 0.5 m, 
which were classified as either resting bouts or travel dives).  
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Almost all diving birds are central place foragers during the breeding season (Elliott 

et al. 2009), having to commute appreciable distances between nest and food source. 

Most birds have facilitated commuting by using flight as an efficient mode of travel 

(Tucker 1975). Nevertheless, energy expenditure costs can still be appreciable 

because birds may spend significant amounts of time flying (Gómez-Laich et al. 2013), 

with the return leg typically being higher due to load-bearing as they transport food 

to the young (cf. Matyjasiak, Bazzi & Rubolini 2021). For minimizing cost of travel 

(COT; sensu Taylor, Caldwell & Rowntree 1972), ideal outgoing and incoming 

commutes should be highly directional and this is what is observed in the Imperial 

Cormorant data that I collected for parts of this thesis (cf. Chapter 5 and 6). Here, 

(Fig. 4), clear bimodality is seen in the radial plot of heading distribution during the 

flying phases, which is far less variable than non-flying periods (Fig. 4A [insert]), 

illustrating the value of heading data in examination of animal decision-making.  

In terms of applying heading to diving strategy both via dead-reckoned paths and 

radial plots, I noticed that many birds foraged underwater using what appeared to be 

extensive line transects (e.g., Fig. 4B), rarely returning to a given area. This makes 

sense because, being bottom-foraging animals (Wilson & Wilson 1988) feeding 

primarily on stationary/slow-moving benthic prey (Punta, Saravia & Yorio 1993; 

Langerhans & Reznick 2010), they do not benefit by returning to a location recently 

visited. Confined tortuous movements did occasionally occur however (Fig. 4B 

[right]), and this likely relates to a high profitability in these areas, perhaps due to 

patchy prey (cf. Schoener 1971; Arditi & Dacorogna 1988; Foo et al. 2016). Further, 

whilst not shown here, some birds engaged in intermittent flights between dive 

bouts, presumably because, in contrast to area restricted searching (cf. Sims et al. 

2006; Paiva et al. 2010; Reynolds 2012), this strategy likely indicates areas of low prey 

availability (cf. Weimerskirch 2007). 
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The future 

 

Throughout this PhD, I have become aware of the value that body rotation has for 

elucidating animal behavioural ecology and dead-reckoning is a fundamental 

component of this. I have left mention of dead-reckoning brief here as it constitutes 

large sections of my thesis, although its value, particularly when understanding 

human-wildlife disturbance is something I would like to continue to explore because 

I think that it could have genuine welfare, conservation and management 

Figure 4. Examination of heading-based metrics reveals foraging patterns in a benthic foraging seabird. (A) One 
Imperial cormorant’s foraging dead-reckoned track with an insert of a rose plot representing the relative 
frequency distribution of heading during flight [purple], dives [green] and resting on the water’s surface [blue]. 
The intersection of the vertical and horizontal grey shading area shows the enlarged section in the left-hand panel. 
A section of the foraging phase of this track is magnified in (B) the bottom panel showing two different time 
periods and highlighting different path tortuosities. Note these two visualisations are inversely projected based 
on depth so that the bottom phase of dives appears to ‘come out of the page’. Yellow markers denote GPS fixes 
(recording at 1 Hz). 
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applications. Anthropogenetic alterations in habitat connectivity causes major 

disruption to the movement patterns of many free-ranging animals, and this can have 

deleterious consequences at various ecological levels (Clark et al. 2010; Marschall et 

al. 2011; Berger-Tal & Saltz 2019). Animal movement networks become fragmented 

and hazardous by works of deforestation and urbanisation (including the 

construction of roads, railways, fences, pipelines, dams and water diversion 

structures, Ito et al. 2013; Rahel & McLaughlin 2018). With respect to barriers, as an 

example, understanding where transgression occurs, including the conditions under 

which they occur and the effort involved by the transgressors, is critical to modelling 

the effect of the barriers on the issues they are designed to address (Hayward & 

Kerley 2009; Dupuis-Désormeaux et al. 2016). In contrast to the efforts of preventing 

passage, it may also be of value to examine the efforts of preserving connectivity, 

such as the utility of corridors (e.g., underpasses and overpasses) to facilitate safe 

movements between fragmented habitats (Panzacchi et al. 2016), such as adjacent 

sections of road (Lesbarrères & Fahrig 2012). In both scenarios, dead-reckoning may 

expedite the details of when, where, how and why transgression occurs by providing 

the necessary fine-scale movement trends pre- during- and post-transgression. 

Clearly, rotation metrics provide vital information from individual behaviours to life 

history strategies, and further work should investigate their value (and how they can 

be applied) in machine-learning behavioural classifiers (e.g., Korpela et al. 2020), 

especially given its interplay with DBA. In fact, I would like to speculate (the joy of a 

synopsis), that there will be further value in exploring how AVeY scales with VeDBA 

(and other acceleration-based metrics), relative to behaviour. For example, if an 

animal must invest a lot of energy moving quickly, e.g., a lion chasing its prey, then 

straight-line travel would be energetically preferable than if high turn rates were also 

incorporated (Wilson et al. 2013b; Wilson et al. 2020b). This is supported to some 

extent by the contrasting differences between AVeY and VeDBA, apparent between 

flying and foraging periods in cormorants (Fig. 5). 
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In line with the above, there should therfore be important underlying reasons for 

both VeDBA and AVeY to scale together during travelling movements, such as the 

reward in catching high energy density prey (Wilson et al. 2013a). Indeed, combing 

dead-reckoning with metrics of high performance such as DBA and AVeY should be 

particularly informative for understanding the hunting strategies and performance in 

pack animals such the lion (Fig. 6). 

 

 

 

 Figure 5. Might AVeY scale with VeDBA according to behaviour. Mean values aggregated per ascent 
(red), bottom phase (green) and descent (blue) per dive, and per flying (purple) period. Data taken from 
three individual Imperial cormorants across their entire foraging trips. Horizontal and vertical lines 
represent 1 SD (capped at 0 o/s-1 for flying).  
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Beyond this, rotation metrics may help elucidate how allometric scaling differences 

affect behaviour and associated activity budgets. For example, it well known that the 

male Imperial cormorant, being slightly larger than the female, dives to greater 

depths than females benefitting in dive capacity due to its size (Laich et al. 2012 - cf. 

Fig. 7A). However, to date, very few people have the capacity to resolve gender-

specific movement differences at depth such as 3-D tortuosity examined here (15 

cormorants: 8 M, 7 F – 1495 dives) with a view to understanding how allometry 

affects performance. In my dataset, males had slightly more tortuous tracks (defined 

Figure 6. The movement strategy of two female lions during a hunt shows that high angular velocity is employed 
only in the closing stages of the capture of prey in a pincer movement. (A) The dead-reckoned tracks of two 
female lions during a high performance ~30 s chase coloured according to speed (m/s) estimated from the GPS-
corrected dead-reckoned tracks. The circle symbols positioned ~ 2.5 s along the tracks are coloured according to 
the track ID with periodic ID numbers to help denote which track belongs to which individual. The females 
positioned themselves a dune apart (black circles) prior to initiating a chase, having separated some 40 mins 
beforehand, with the hunt terminating at the 0,0 m origin. (B) and (C) show the respective AVeY values over time 
profile associated with the two tracks, coloured according to VeDBA. This encompasses 30 s pre-chase (stationary- 
/slow stalking behaviour), the ~30 s chase and 30 s post-chase (stationary behaviour). This hunt was determined 
to be successful based on these two lions remining at the ‘kill site’ for an extended period of time with 
characteristic oscillating patterns of acceleration indicating feeding.  

1 2 
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as the straight-line distance divided by the sum of the distance travelled over the 

same period) in their 3-D dive profiles (Fig. 7B) which was determined to be 

significant (using two-sample t-tests), for the bottom phase (t = 6.368, p < 0.001 [x̅: 

M = 0.384, F = 0.291]). Whether the higher levels of tortuosity exhibited in males 

during the bottom phase are an artifact of them having less time attributed to the 

bottom phase (t = -3.161, p = 0.002 [x̅: M = 72.486 s, F = 79.249 s]) (cf. Laich et al. 

2012) or attributed to higher dynamism in directionality remains to be seen. 

 

 

Determination of the details of animal movements thus seems to be critically linked 

to resolving animal heading over time and speed, while the energetics of movements 

is linked to speed and turn velocity. Taken together, these are two cornerstones of 

animal behavioural ecology, which feed into understanding how animal behaviours 

link to energy use and how both energy- and space-use over time might affect the 

efficiency of foraging, the probability of survival and ultimately link to lifetime 

reproductive success. For me, the power of simple heading data and their derivatives 

Figure 7. Dive depths and bottom phase tortuosity differ between male and female cormorants. (A) Dead-
reckoned dive profiles from 15 cormorants (for 1495 dives), coloured according to gender [M = male (n = 3); blue 
and F = Female (n = 3); red]. The coordinates of each dive were zeroed off to start at 0,0 origin. (B) 3-D tortuosity 
was computed as the sum of the 3-D distance travelled divided by the straight-line distance over the same period.  
Values were subtracted from 1 so that a value of 0 reflects straight-line movement and values closer to 1 indicating 
more circular movement. Only the bottom phases of dives were assessed.  
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lies in two facets; first, that they operate over timescales ranging from fractions of a 

second to lifetimes, and second, that they can be so easily combined with other 

metrics and indices of animal action (ranging from DBA to the specifics of behaviour) 

to create a matrix of understanding where the resultant is so much greater than the 

simple arithmetic sum of its parts. I feel privileged and excited to be part of the sensor 

revolution that has revealed so much about the way wild animals operate and would 

like to think that my contributions on heading, turning, angular velocity, dead-

reckoning and the like will, in some small way, help catalyse the exhilarating hitherto 

unconsidered important elements of the future. 
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Chapter 2: Supplementary Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S1. Visualisations of yaw during bottom phase of type 1a dives when AVeY remained less than 
3 o/s (A) and greater than 3 o/s (B). Orientation-sphere visualisation [left panel] showing the 
simultaneous distribution of yaw angles (longitude plane) and pitch angles (latitude plane) coloured 
according to the magnitude of VeDBA gradient [low: blue –> green → red: high].  2-D frequency 
histograms [right panel] of the heading (0 - 360o) over time (bins = 50 for both x and y scales, size and 
colour intensity of each ‘facet’ represents a greater relative frequency.  

Figure S2. Yaw plotted in 3-D 
space. Time is represented by 
distance from the base colour-
coded according to the 
magnitude of VeDBA. Data 
taken from a bout of circling 
behaviour (17 revolutions in 3 
minutes 45 seconds). 
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Figure S3. Patterns of CuHe across 100 random U-dives (bottom phase). This is expressed both as (A) a line graph 
(coloured according to dive number) and (B) a 2d contour scatterplot with marginal histograms illustrating the 
relationship between the most frequented CuHe percentage and the uninterrupted duration such values were 
frequented for (before an increment). Note, each time CuHe resets to 0, all angles of the animal’s body 
circumference have been covered. A 1 % increase in CuHe corresponds to the body arc covering an extra 3.6 
degrees (not previously covered since the last reset).  
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Model   Coefficient ± S.E 
  

t-value(d.f.) p-value CI % 
5          95 

R
2

r
 R

2

c
 AIC ICC 

Lmer(M1) 
(Null) 
  

(intercept) 26.53 ± 1.40 18.91(4.30) <.001***   23.06        29.95 0.00 0.03 10674 0.03 

Lmer(M2) 
*chosen 
model  

(intercept) 
log(AAV) 

50.78 ±-2.23 
-24.86 ± 0.58 

22.75(5.76) 
-43.20(1269.86) 

<.001*** 
<.001*** 

45.54          54.05  
 -23.37      -21.34 

  
0.58 

  
0.66 

  
9530 

  
0.22 

Lmer(M3) 
  
 
 
Lmer(M4) 
 
 
Lmer(M5) 

(intercept) 
log(AAV) 
log(Depth) 
 
(intercept) 
log(AAV)*log
(Depth) 
 
(intercept) 
log(AVeY) 

37.83 ± -7.20 
-22.29 ± 0.52 
1.28 ± 1.43 

 
44.60 ± 4.49 
-2.24 ± 2.30 

 
37.71 ± 2.10 
-17.49 ± 0.42 

18.03(7.44) 
-42.80(1269.80) 
0.90(1261.74) 

 
9.93(107.24) 

-0.97(1266.52) 
 

17.94(5.11) 
-42.01(1268.46) 

<.001*** 
<.001*** 

  0.37 
 

<.001*** 
0.33 

 
<.001*** 
<.001*** 

41.83          53.81 
-23.31       -21.27 
-1.51             4.08 

 
35.80          53.41 
-6.73             2.26 

 
33.59          41.83 
-18.31       -16.68 

  
0.58 

 
 

0.58 
 
 

0.55 

  
0.66 

 
 

0.66 
 
 

0.63 

  
9533 

 
 

9533 
 
 

9576 

  
0.22 

 
 

0.22 
 
 

0.16 

  
Gam(M
4) 

  
(intercept) 
  

  
26.19 ± 0.30 

  

  
88.26 

  
<.001*** 

  

          

(k=7)   EDF         R2 (adj) F-value p-value           

  s(AAV) 5.563            0.57 
   

288.7 
  

<.001***           

Table S1.  Step selection function analysis. Dive duration (s) as the response variable 

 

Figure S1. Bathymetry estimates around the southern coast of Boa vista (nesting site) as given by constructed 
polygons (green crosses denote change of angle between successive connected lines.  Green polygon 
(perimeter = 20 km; area = 11 km2) outlines the area of sea surrounding the nesting beach. The deeper colour 
of blue shown in this area is a region of shallow depth (water depth < 3 m along purple transects). Red polygon 
(perimeter = 27 km; area = 20 km2)

 

outlines an approximate boundary, beyond which water depth exceeds 20 
m. Distance from the origin to the extremes of the yellow transects range from 2 to 5.3 km. The yellow circle 
shows an area of approximately 8 m depth, 3 km from the beach.  

S.E; standard error        
CI; confidence interval 

R
2

r
; marginal accounted variance  

R
2

c
; Conditional accounted variance 

  

*p<.05 
**p<.01 
***p<.001 
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Figure S2. Density estimates for raw values of yaw (o), pitch (o) and roll (o) per turtle (T) aggregated according to 
resting [blue] and active [red]. 
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Limitation of using Euler angles  

 

Typically, the derivation of each dimension’s scale of rotation relies on a set vectoral 

orientation with each orthogonal channel representing a particular body plane 

(anterior-posterior, medio-lateral and dorsal-ventral) with respect to the earth’s 

frame of reference (cf. Ozyagcilar 2012; Bidder et al. 2015). However, this assumption 

breaks down for animals that change orientations frequently at angles greater than 

perpendicular from their longitudinal and lateral axes of ‘normal’ posture and for 

‘severe’ offsets in tag placement, in which the range for accurate angular velocity 

measures are restricted in one or more dimensions, whereby x, y and z values can 

become inversed, representing different ‘surge’, ‘sway’ and ‘heave’ planes. 

Nevertheless, this is only problematic in animals that frequently undertake body 

inversions greater than 90 degrees (which turtles do not).   

 

Figure S3. Mean values of VeDBA per turtle, aggregated as a function of dive status (predominately; 
active [red] vs episodic-rest [green] vs rest [blue]). Boxes denote the median and 25-75 % interquartile 
range. Whiskers extend to the minimum/maximum value no further than 1.5 * IQR. Data points beyond 
this range are plotted individually. (VeDBA (g) = √((x^2  + y^2  + z^2), where x, y & z are the derived 
dynamic acceleration values from each axis). 
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Chapter 4: Supplementary Information 

 

Text S1 – The study design 

 

Study area 

 

The Kgalagadi Transfrontier Park is a large (ca. 38,000 km²) wildlife preserve and 

conservation area within the southern Kalahari Desert, encompassing both the 

Northern region of South Africa and South-Western region of Botswana. The terrain 

consists of sparse vegetation within an undulating red sand dune environment (Mills 

& Mills 2010). Two fossilised riverbeds (Nossob and Auob rivers) intercept this 

environment (Mills & Mills 2010). Artificial water holes are located along both 

riverbeds. As of 2005, this wildlife reserve is considered both a lion conservation unit 

and stronghold in Southern Africa (IUCN 2006). Dirt roads used by tourists and park 

rangers follow close to the fossilised riverbeds. 

Collar design and set up 

 

Fifteen LiteTrack GPS collar systems (six iridium and nine store-on-board) from Lotek 

Wireless Inc. were deployed. Twelve of these were fitted with Gypsy_5 Techno-smart 

GPS units (see later) and data from eleven analysed for this study. LiteTrack GPS units 

were pre-programmed to record one fix every 30 minutes. Iridium collars transmitted 

stored fixes every six hours. A magnet activated timed drop-off mechanism was fitted 

to each collar. There were two different collar sizes; five ‘large’ collars (two iridium, 

three store-on board), with an internal circumference range of 81-87 cm and ten 

‘small’ collars (four iridium and six store-on-board), with an internal circumference 

range of 64-71 cm.  

Daily diary (DD) logging units (cf. Wilson, Shepard & Liebsch 2008) recording at 40 Hz, 

enclosed in a water-tight aluminium housing were fitted to one side of the collar. DD 

units were coated with electro-lube clear protective lacquer and the inside of the 

housings were coated with insulating tape to prevent short-circuiting. Orthogonal 

acceleration measurements were logged as acceleration with respect to gravity (1 g 

= 9.81 m/s-2, measuring within the range of ± 16 g) and orthogonal magnetometry 

measurements were recorded in Gauss (G) (magnetic intensity recorded within the 
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range of ± 0.88 G at 0.73 mG/LSB resolution). DD’s were powered by 3 parallel 

circuited A-cell batteries. The combined weight of a fully equipped DD housing was 

239 g. Data were stored on a 2 GB removable microSD card.  

Gypsy_5 Techno-smart GPS units (attached the opposite side to DD units) were 

programmed to record at 1 Hz, requiring a minimum of ≥ 3 satellites before 

registering a fix. Gypsy_5 loggers were powered by 2 parallel circuited A-cell batteries 

and encased in a thick 3D-printed ABS oval plastic housing. This was to ensure signal 

propagation was not obstructed and to maintain robustness. Acetone was painted 

onto the housings to reduce porosity of plastic layers, reducing the risk of water 

seepage. GPS units were turned on via magnet activation and synced to GMT time 

zone from a personal computer. Once units were activated, GPS housings were 

coated with layers of black water-proof Tessa-tape to reduce conspicuousness (since 

lions are mostly nocturnal) and as an additional barrier to water ingress. The 

combined weight of a fully equipped Gypsy_5 Techno-smart GPS housing, was 128 g.  

Male lions weighed between 165 and 215 (x̅ ± SD (n) = 184.3 ± 18.1 (6)) kg and female 

lions weighed between 99 and 136 (x̅ ± SD (n) = 121.5 ± 12.3 (10)) kg. Small collars 

weighed 1.24 kg and large collars weighed 1.33 kg (including attached DD and 

Gypsy_5 Techno-smart GPS units). Collars attached with all devices (cf. Fig. S1. 1) 

constituted < 2 % and < 1 % of the body mass of the lightest equipped female and 

male, respectively. Based on morphological measurements, experienced veterinary 

personal estimated the age of collared individuals to be between 4 and 12+ years of 

age. 
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Capture protocol 

 

Lions were tracked and darted from vehicles during the evening and night, when 

weather conditions were coolest, and lions were most active. Areas of potential 

capture were pre-determined based on two critical parameters.  

(1) Reports from trackers sent to locate prides earlier in the day prior to capture and 

reported sightings from tourists on game drives.   

(2) Open sites close to the riverbed (where terrain is flattest) with clear 360o views. 

Once in position, audio playback of a buffalo calf in distress were played from the 

vehicle in which darting took place. Occasionally carcasses were used for bait. Darts 

contained Zoletil® (tiletamine and zolazepam) and medetomidine, the latter reversed 

with atipamezole at the end of the procedure. Once all individuals of a pride (or those 

in visible vicinity) were anaesthetised, all required veterinary procedures, 

measurements and collar fitting were carried out according to the Standard 

Operating Procedures of SANParks Veterinary Services. The collars were adjusted on 

the lion to allow three fingers to pass through, whilst ensuring that the collar size did 

not exceed the lion’s head circumference. Animals were monitored until ambulatory. 

To exclude periods of data acquisition where behaviour may have been altered due 

to human disturbance or drug administration, only data ≥ 6 hours after the lion’s 

anaesthesia had been reversed were included for analysis. Full details regarding the 

SANParks operational procedures as detailed in SANParks’ ‘Standard Operating 

Procedures for the Capture, Transportation and Maintenance in Holding Facilities of 

Wildlife’ are available at;  

https://www.sanparks.org/conservation/veterinary/about/animals/lion.php.  

 

The data were retrieved after approximately two weeks using a similar capture 

protocol. No females were with cubs or pregnant. At least one member of each pride 

wore an Iridium collar which remotely supplied the location of the individual (and 

thus the pride) twice daily. During the recapture, high-res GPS housings were 

detached, and the DD SD cards were replaced. The collars remained on the lions for 

https://www.sanparks.org/conservation/veterinary/about/animals/lion.php
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an additional 8 months (as part of a longer-term study), releasing automatically via 

the on-board timed drop-off mechanism - later found via the VHF beacon.  

 

 

 

 

 

 

 

 

 

Figure S1. 1. LiteTrack (Iridium) GPS collar, fitted with a ‘high-res’ 
techno-smart GPS and Daily Diary (DD) unit. 
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Text S2 – The Relationship between VeDBA and GPS speed 

 

I used the vectorial dynamic body acceleration (VeDBA) as the DBA metric;  

VeDBA = √(𝑥2  + 𝑦2  +  𝑧2)                                              (1) 

 

where x, y & z are the derived dynamic acceleration values from each axis (Wilson et 

al. 2020a). For this, a 2-second running mean was applied to each axis to derive the 

static component of acceleration, which was subsequently subtracted from the raw 

acceleration before the dynamic component from each axis was summed (eq 1). 

VeDBA values used in this analysis were post-smoothed using a rolling window of 2 

seconds to ensure that both acceleration and deceleration components of a lion’s 

stride cycle were incorporated together within any particular time period (Gleiss, 

Wilson & Shepard 2011). 

The shortest distance (d) between two GPS fixes via; 

𝑑 = 2 • 𝑅 • 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 (
𝜑2−𝜑1

2
)  + cos(𝜑1) • cos(𝜑2) • 𝑠𝑖𝑛2 (

𝜆2 𝜆1

2
 ))                  (2) 

where R is the radius of earth (approx. 6378137 km), 𝜑1, 𝜑2 are the latitude 

coordinates between point 1 and point 2 (in radians) and λ1, λ2 are the longitude 

coordinates between point 1 and point 2 (in radians), respectively (cf. Chopde & 

Nichat 2013). 
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Figure S2. 1. A fifteen-minute period of predominantly traveling movement for one lion, in which the 

magnitude of acceleration and GPS speed are plotted against time (top plot). GPS speed (Doppler) refers to 

the raw speed recorded by the GPS device itself calculated using the doppler shift from orbiting satellites. GPS 

speed (Haversine) refers to speed calculated using the Haversine distance between fixes (using a stepping 

range of 5 fixes and post-smoothing window of 5 seconds). Density plots of GPS-derived speed (m/s) from this 

period are shown in the bottom plot. The first row shows speed calculated from the doppler shift method and 

the second, third and fourth rows shows speed calculated using the Haversine method at 1, 5 and 10 fix 

stepping ranges, respectively. The first column (A) reflects no post-smoothing filter (raw data), with column 

(B) and (C) reflecting 5 and 10 second post-smoothing rolling mean windows, respectively.   
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The precision of calculated speed from both the doppler shift method and Haversine 

method is limited according to the number of decimal places given per GPS fix. 

Resampling at less frequent intervals can reduce the spurious noise associated with 

location error, especially when rates of moving are less than the limited spatial 

resolution of the GPS between fixes.  

Whilst I do not know the exact means in which speed is calculated from doppler shift, 

it is clear that the Haversine method applied over a suitable stepping range produces 

   

Figure S2. 2. The Relationship between VeDBA and GPS speed, with the data and order of plots following on from 
the same period of activity illustrated in Fig. S1. 1. Data points coloured red represent values that did not meet the 
MVF thresholds (0), with blue data points reflecting values that met the MVF criteria (1). Each plot consists of two 
linear regressions, with red lines representing a linear regression constructed from all values and the blue lines, 
from only values that met the MVF protocol. Regression estimates and R2 values are given for the regression 
constructed from only values that met the MVF protocol. 
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more detailed estimates of speed and a tighter relationship with VeDBA, as reflected 

in the more Gaussian-shaped distribution and higher R2 values in Fig. S2. 1 & 2, 

respectively. The bimodal clumping of points in Fig. S2. 2 is resultant from a change 

in stride gait (from walking to running, as demonstrated in the disproportionate 

peaks in VeDBA (top plot, Fig. S1. 1)) relative to the magnitude imparted at other 

times. We propose that a five-fix stepping range and 5 second post-smoothing rolling 

mean window was suitable for this study species, providing a creditable compromise 

between maintaining a level of comparability to acceleration estimates whilst 

interpolating speed estimates at a greater than 1 m resolution, per unit time. 
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Figure S2. 4.  GPS speed ~ VeDBA relationships for all lions with linear regression (y = a + bx). 
Male: blue, females: red. Data taken only from marked moving periods following the MVF 
method. Each data point represents the mean value per period. Insert showing a magnified 
section of the regression estimates is given in the top left of this plot. 

Figure S2. 3. DD- and GPS-derived data showing two different movement scenarios, each over 1 hour. In the 
upper panel, the animal was considered to be at rest (due to minimal DBA – All GPS fixes during this period were 
allocated MVF values of 0). In the lower panel, the animal was considered to be moving extensively (due to the 
succinctness between the patterns of magnitude between DBA and GPS speed – GPS fixes during this period that 
were allocated MVF values of 1 are denoted with the rug at the top of this plot coloured red). Note large 
locational errors prevalent during rest as manifest by inflated estimates of GPS speed and high levels of GPS 
jitter.  
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Figure S2. 5. GPS tracks for the entire data acquisition period of ~14 days, plotted according to MVF value. (A) and 
(B) show two individual lions from different prides; Data discerned as non-moving (MVF = 0: green) and moving 
(MVF = 1: blue). Missing locational data and data that failed the Z-threshold = red. Insert of (A) shows a magnified 
section of track with high rates of GPS jitter. (C) Each individual from the three prides plotted; Male (MVF = 1):  
blue, female (MVF value = 1): red. MVF values of 0 (including missing locational data and data that failed the Z-
threshold): green. Brief pride dynamics of the individuals analysed given. Dotted yellow line depicts the electric 
fence bordering Botswana (which the Leeu Drill pride females crossed). 
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Text S3 – Descriptive statistics comparing the MVF results 

 

For the majority of lions, battery longevity was just enough, with the GPS units having 

either run out of battery on the day of retrieval (after approx. 2 weeks) or still 

functioning, but at low voltage capacity. Only 1 lion (lion 4) had a significantly large 

portion of data (approx. 12 hours) missing at the end of the data acquisition period 

(Fig. S3. 1). In general, though, fix success rate did not seem to vary significantly 

according to the length of accumulated time being switched on, whilst the duration 

of the GPS not registering a fix varied considerably, indicating that missing locational 

data was not directly attributable to battery life (and associated voltage level). 

 

Figure S3. 1. Relative cumulative frequency of missing locational data duration (%) per lion over 
their respective data acquisition periods. Black solid lines reflect y~x 25 % quantiles and the 
black dotted line reflects an equal distribution of missing location data over time. 

Table S3. 1. Summary parameters of fix success rate during the data acquisition 
period of each lion. 
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Figure S3. 2. Relative frequency of the four possible combinations of movement and time thresholds (VeDBA 

(X), GPS speed (Y) and time (T)) that resulted in an MVF value of zero (condition classified as non-moving). 

Non-traveling behaviour with little or no GPS jitter: red, non-traveling behaviour with an appreciable degree 

of GPS jitter: blue, either transitionary movements, e.g., rolling over/feeding when GPS jitter is apparent, or 

temporally short travelling periods that were deemed not long enough to warrant a considerable movement 

bout: green, non-travelling movement: yellow. Missing locational and extreme outliers were not included 

in this analysis. 
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Table S3. 2. DD- and GPS derived summary metrics associated with data ascribed as non-moving (MVF = 0) and 
moving (MVF = 1) (A). Note, distance travelled estimates are used as a comparator between moving and non-
moving, however these are likely highly underestimated given that times of missing location data were excluded. 
Such missing locational data was also excluded prior to calculating the percentage of data acquisition determined 
as moving. The cells filled with colour shading (ID and gender) denotes which individuals belonged to the same 
pride. 

(A) 
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Text S4 - mathematical procedures for various DD- and GPS-derived metrics used to 

compare MVF results 

 

Derivation of pitch, roll and heading 

 

Prior to collars being fitted, magnetic calibrations were performed (cf. Williams et al. 

2017) and, following data retrieval, compass heading was computed using methods 

outlined by Bidder et al. (2015) and Walker et al. (2015). Compass heading (H) with 

respect to magnetic North, was given via: 

H = 𝑚𝑜𝑑 (360 + (𝑎𝑡𝑎𝑛2(−𝑚𝑦 , 𝑚𝑥 )  •  
180

𝜋
 ) , 360)                                                                (1) 

where mx,y,z refer to the normalised, ellipse-fitted and co-ordinate frame-adjusted x, 

y and z channels of the magnetometer, respectively (Pedley 2012; Bidder et al. 2015; 

Chapter 2). 

A common practice to derive animal posture (in terms of pitch and roll; required in 

the tilt correction procedure prior to calculating heading) is to use the static 

component of acceleration. This was achieved by passing a two-second rolling mean 

to each of the three orthogonal acceleration channels.  

Pitch and roll were then computed via; 

𝑃𝑖𝑡𝑐ℎ (β) =  (𝑎𝑡𝑎𝑛2(𝑆𝑥 , √𝑆𝑦   • 𝑆𝑦 + 𝑆𝑧   • 𝑆𝑧)  •  
180

𝜋
                                                                     (2)                                                         

Roll (Y) =  (𝑎𝑡𝑎𝑛2(𝑆𝑦, √𝑆𝑥   • 𝑆𝑥 + 𝑆𝑧   • 𝑆𝑧)  •  
180

𝜋
                                                              (3) 

where Sx,y,z refer to the static components of acceleration from the x (anterior-

posterior), y (medio-lateral) and z (dorsal-ventral) channels of the accelerometer 

(Chapter 2). 

Pitch, roll and heading values were post-smoothed using a rolling window of 1 

second, which represented a trade-off between reducing some of the signal-to-noise 

ratio of collar roll and maintaining sensitivity to the animal’s movements.    
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For this study site, magnetic declination (the angle on the horizontal plane between 

magnetic north and true north) was estimated at -16.5o so this value was added to 

each derived-heading value to acquire a true bearing. 

The pre- and post-smoothing windows used in the derivation of the DD’s static 

acceleration, heading, pitch and roll was carried out in DDMT at the frequency of 40 

Hz, prior to sub-sampling the data. 

GPS heading  

 

Heading (bearing) (𝜃) from the GPS data was calculated between consecutive fixes 

using; 

ψ = 𝑎𝑡𝑎𝑛2 (𝑠𝑖𝑛(𝛥𝜆1) • 𝑐𝑜𝑠(𝜑
2
), 𝑐𝑜𝑠(𝜑1) • (𝑠𝑖𝑛(𝜑2) − 𝑠𝑖𝑛(𝜑1)) • 𝑐𝑜𝑠(𝜑2) • 𝑐𝑜𝑠(𝛥𝜆1))        (4)       

The formula (cf. Robusto 1957) output is in radians, so values were multiplied by 

180/π to get degrees. Lastly, the range is -180° to +180°, so to convert to the same 

range as DD heading (0° to 360°), I applied the logical expression; 

H = (ψ+360) 𝑚𝑜𝑑 360                                                                                                                                (5)  

where mod refers to the modulo operator.  

The difference between DD heading and GPS heading was calculated per second, and 

a logical expression applied to ensure the difference between the two never 

exceeded 180° (cf. Pewsey, Neuhäuser & Ruxton 2013). Lastly, the resultant values 

were made absolute since the degree of turn was of more importance than the 

direction for analytical purposes. 

We applied a circular mean to raw values of DD-derived and GPS-derived headings 

per unique moving/non-moving period (cf. Chapter 2). 

The mean resultant length (�̅�) was calculated via: 

�̅� = √(𝑋2 + 𝑌2) /𝑛                                                                                                                                    (6) 

here X and Y are the sum of the sines and cosines of H, respectively (units in radians) 

and 𝑛, the length of X and Y input. Note that R̅ varies between 0 and 1, with values 

closer to 1, implying less variation in angular variance between observations. 
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A non-parametric circular kernel regression estimation (using von Mises kernel) was 

used to construct a circular covariate (DD heading) to the circular response (GPS 

heading) regression. This was achieved using the NPCirc package in R (Oliveira Pérez, 

Crujeiras Casais & Rodríguez Casal 2014). The bw.reg.circ.circ function was used to 

estimate the ideal bandwidth (to provide the least squares cross-validation 

smoothing parameter for the local linear estimators) and the kern.reg.circ.circ 

function (using the local linear estimator method) was used to construct a circular ~ 

circular regression. 

Tortuosity 

 

The tortuosity (T) was calculated by dividing the straight-line distance (SLD), that is 

the two-dimensional Euclidean distance between the initial fix and the end fix of the 

path, by the sum of the consecutive individual distance steps (SDS) between 

fix1, fix2,..., fixn that constituted the total path length (cf. Benhamou 2004) (the 

duration of each unique moving/non-moving period) using; 

𝑆𝐿𝐷 = √(𝜆𝑛 − 𝜆
1
)2 + (𝜑

𝑛
− 𝜑

1
)2                                                                                                             (7)                

𝑆𝐷𝑆 = ∑ (√(𝜆2 − 𝜆
1
)2 + (𝜑

2
− 𝜑

1
)2)𝑛

𝑖=1                                                                                         (8) 

𝑇 =
𝑆𝐿𝐷

𝑆𝐷𝑆
                                                                                                                                                        (9) 

𝜑 and λ are the latitude and longitude coordinates (decimal format), respectively. 

Here, a T of 1 represents straight-line movement while values below this indicate 

increasing deviations. 

Distance and speed estimates 

 

Following the MVF protocol, distance and speed estimates were recalculated 

separately for both moving and non-moving periods. Distance was computed using a 

stepping range of five seconds, (same as MVF, except that the stepping range reset 

with each new MVF period). This meant periods of non-moving ≤ 4 s were excluded 

from distance estimates (moving periods were always ≥ 5 s and so this stepping range 

provided at least one value per period). For speed estimates, distance values were 
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divided by the time between the rolling stepping range (in this case, always 5 s) and 

values were then smoothed using a rolling mean window of three seconds, which 

consequently excluded speed estimates from both non-moving and moving ≤ 6 s. 

 

 

 

Figure S4. 1. Relationship between DD- and GPS-derived heading for both non-moving (A) and moving (B) filtered 
datasets (all lions). Each value reflects the circular mean calculated per unique period. A non-parametric circular 
kernel regression estimation (using von Mises kernel) was used to construct a circular covariate (DD heading) to 
circular response (GPS heading) regression (red line). A linear relationship (intercept = -180) shown for reference 
(green). Note the banding of GPS heading values reading 0 are a consequence of identical consecutive longitude 
and latitude coordinates. Also note the range of heading given between -180o to +180o (both of which represent 
south). 
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Chapter 5: Supplementary Information 

 

Text S1 – Device set up and capture protocol 

 

I selected 3 free-living species (mixed sex) to demonstrate points being made: Twelve 

Magellanic penguins (Spheniscus magellanicus) (Argentina, San Lorenzo Magellanic 

penguin colony (-63.86, -42.08)), five lions (Panthera leo) (Kgalagadi Transfrontier 

Park in the Kalahari Desert (constituting parts of South Africa and Botswana) (-26.47, 

20.61)) and fifteen Imperial cormorants (Leucocarbo atriceps) (Argentina, Punta León 

Imperial Shag colony (-43.06, -64.03)) were used. Daily Diary (DD) (cf. Wilson, Shepard 

& Liebsch 2008) units (‘Daily Diaries’ - Wildbyte Technologies, 

http://www.wildbytetechnologies.com) recorded tri-axial acceleration (1 g = 9.81 ms-

2 ; range 0-32 g) and tri-axial magnetometry (G) at 40 Hz and GPS (Axytrek) units 

(https://www.technosmart.eu) recorded longitude and latitude positions (decimal 

format) at 1 Hz. Both were deployed simultaneously for each species. The DD’s were 

also integrated with a Keller pressure sensor, with an operating pressure of 0-30 bar 

at 24-bit resolution for both bird species. 

Penguins and cormorants were captured at the nest during the chick rearing season. 

Penguins were caught using the clipboard method (Wilson 1997) and cormorants via 

a crook on the end of a long pole (cf. Sakamoto et al. 2009). DD’s and GPS units were 

fitted longitudinally to the base of the spine using Tesa® tape (Wilson et al. 2005; 

Wilson et al. 2010). Field work for both these species occurred in November-

December, 2019. During instrumentation, birds were handled as quickly and 

efficiently as possible. Birds were left to execute one foraging trip at sea (typically 

lasting between 24 and 48h) before being re-caught at the nest and the devices 

recovered. Tag weight comprised < 1 % of the animal’s mass. 

 

Lion field work commenced February, 2019 - Units were collar mounted to a Litetrack 

collar (https://www.lotek.com) and caught according to the Standard Operating 

Procedures of SANParks Veterinary Services  

(see https://www.sanparks.org/conservation/veterinary/about/animals/lion.php) as 

detailed in SANPark’s ‘Standard Operating Procedures for the Capture, 
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Transportation and Maintenance in Holding Facilities of Wildlife’ (Reference: 17/Pr-

CSD/SOP capture, transport, holding facilities (04-17) v2) and SANParks SOP ‘Fitment 

of tracking devices and marking of fauna in South African National Parks’ (Reference: 

17/Pr-CSD/pro/tracking + marking (12/16) v1).  

 

Adult lions to be tagged were located through tourist and field ranger’s observations 

during the day. A carcass bait secured to a tree and pre-recorded animal distress calls 

played using an audio system (Truck Pro, Foxpro Inc) from a darting vehicle 

(positioned approx. 20 m distance from the bait station) were used to attract the lion 

at nightfall for distance immobilisation. The drug delivery system consisted of Pneu-

Dart single use powder charged darts (2cc, 1 ½” 14g wirebarbed needle) delivered 

with a DAN-INJECT CO2 rifle (Model JM.SP.25, DAN-INJECT) with 13 mm barrel. A 

combination of drugs - zolazepam/tiletamine (Zoletil®Virbac) and medetomidine 

hydrochloride (Medetomidine Compound, Kyron Laboratories,) at an average 1.2 

mg/kg and 0.05 mg/kg, respectively were used as anaesthetic agent. Once 

anaesthetised, individuals were blind folded, foot shackled and translocated to a 

well-lit processing station. Dart sites were treated systemically by subcutaneous 

injection at the recommended dose with Ceftiofur (Excede®, Zoetis, 1ml per 30 kg) 

and meloxicam (Metacam®, Boehringer, Randburg, 0.2mg per kg) respectively. Once 

processed (typically 10-15 mins per individual), animals were relocated to the capture 

location and the medetomidine component of anaesthesia reversed intramuscularly 

with a mix of atipamezole (Antisedan®, Zoetis) at 2.5 times the amount of 

medetomidine and yohimbine (Yohimbine Compound, Kyron) at 6.25 mg per kg body 

weight. Animals were monitored until ambulatory. Collars attached with all devices 

constituted < 2 % and < 1 % of the body mass of the lightest equipped female and 

male animals, respectively. Data were retrieved approximately two weeks after the 

tag deployment using the above methods for recapture. 
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Text S2 – The importance of having the correct coordinate system and axis alignment 
 

It is essential that tri-axial accelerometer and magnetometer readings are aligned to 

a designated tag coordinate system for accurate delineation of 3-D rotation with 

respect to the fixed Earth’s surface. The equations and R source code detailing the 

tilt-compensated method (cf. Text S3) assumes the aerospace (x-North, y-East, z-

Down) coordinate system, or ‘NED’ (cf. Fig. S2. 1). When lying flat and upright, the z-

axis reads approximately 1 g (1 g = 9.81 m/s) and the x- and y-axes are near 0 g, 

inversing the device 180o negates the z-axis reading. Pointing the device 90o 

downward and then upward along the x- and y-axis results in readings near 1 g and –

1 g, respectively. This is the reason why x-axis measurements are negated (essentially 

multiplied by -1) in the derivation of pitch (E14 – main text), because in the NED 

system, a downward inversion of the x-axis results in a positive increase in measured 

acceleration. Assuming the magnetometer and accelerometer channels are in 

alignment, the x-channel magnetometer reading is at a maximum and minimum 

when the (whole) device (positioned flat) is pointed North and South, respectively. 

The y-channel is at a maximum when the device is rotated to point West and reads a 

minimum when the device is pointed East, with the z-channel reading remaining 

relatively constant. Conversely, the y-axis will read a maximum when the device is 

pointed East following a 180o inversion, with the z-axis reading (though still constant) 

being lower than the upright condition (in the Northern hemisphere), because the 

channel is aligned against the downward geomagnetic field vector. Using this local 

frame, we assume that the x, y and z axes of both the accelerometer and 

magnetometer sensors are aligned to the anterior-posterior (surge), medio-lateral 

(sway) and dorsal-ventral (heave) axes of a given animal, respectively. 

Not all devices have an orthogonal set up with respect to the NED local frame, whilst 

discrepancies between deployment position may also change the local frame with 

respect to the earth’s vector. Transforming between coordinate frames requires 3 x 

3 rotation matrices, with the unique combination dependent on the coordinate 

frame of your device and the coordinate frame you are interested in (cf. Pedley 2013). 

This can become tricky however, since the direction of measured acceleration (with 

respect to the Earth's downward gravitational field) can differ between devices with 
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similar orthogonal layout. For example, the Daily Diary (DD) units (cf. Wilson, Shepard 

& Liebsch 2008) deployed on animals used in this study measure +1 g when lying flat 

and upright, similar to the NED system (Fig. S2. 1), despite an upward direction of 

measurement (NED being downward). Consequently, there is no ‘set’ rotation matrix 

for a given local coordinate frame transformation, whilst depending on board layout, 

magnetometry channels may require a variant matrix to the one used for acceleration 

readings. Put simply though, due to the layout of perpendicular (orthogonal) 

channels, any required correction just involves swapping and/or negating the 

measurements from your accelerometer and/or magnetometer channels until 

correctly aligned with the NED coordinate system (cf. Cheng 2011). 

 As a case in point using the above tilt-compensated method for DD’s (cf. Fig. S2. 1), 

the y- and z- axis of the magnetometer are required to be negated, since they are 

measuring magnetism in the opposite direction to that governed by the NED system. 

As for acceleration, despite the y-axis being opposite in direction from that of NED 

local frame, raising the left side of the device results in a positive increase of 

measured acceleration, which transcends to a positive roll (cf. E15 – main text). This is 

the same as the NED coordinate system, because of the point alluded to earlier 

whereby g is positive towards the downward component of earth vector for NED but 

negative for the DD axes configuration. If we picture a seesaw effect, as the DD y-axis 

tilts up, the corresponding NED y-axis tilts down, but both are measuring increasing 

g and thus depicted as rolling right. As such the y-axis does not need to be negated 

and in a similar manner, the z-axis also remains the same, but the x-axis does require 

negation, since a downward tilt (pitch) measures negative g for the DD configuration 

and positive g for the NED system. If a device was positioned on an animal 

perpendicular to ‘normal’ then as well as deciding channel negation, certain channels 

will be required to be swapped. Again, in the case of the DD, z-axis values are required 

to be exchanged with x-axis values (of both the accelerometer and magnetometer) 

following a clockwise 90o inversion about the y-axis (e.g., x-axis now points upwards 

and thus represents the ‘heave’ plane (originally reflected by z-axis values)). In this 

instance, the z-axis (now representing the (inverse) surge plane and swapped with x-

axis values) of the magnetometer requires negating, due to a 180o inversion, though 
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the equivalent accelerometer channel does not (because a negative increase in 

measured g now corresponds to a positive pitch - same as the NED system). Lastly, 

the x-axis (now containing z-axis values) and y-axis values of the accelerometer and 

magnetometer follow the same protocol as the ‘original orientation’ described 

above. 

Judicious choice of channel configuration is required for correct output of pitch, roll 

and yaw, though once this is obtained, the user can save the channel configuration 

for all future uses at this given orientation. Note, however, animals that travel with 

postures greater than perpendicular from one another (e.g., a penguin walking 

through a colony vs swimming in the ocean or a pine martin bounding across the 

forest floor vs climbing a tree) would require variant axis alignments according to 

mode of movement (when using Euler angles). Assuming a tag can be deployed at 

any perpendicular orientation, there are 24 possible channel local coordinate frame 

configurations. 

To aid the above process, I recommend alongside the magnetic calibration, the user 

undertakes a configuration calibration, in that the device is slowly pitched up and 

down and rolled left and right three times at each cardinal direction, starting and 

ending at North, before spinning the device slowly in a circle clockwise three times, 

again, starting and ending at North. Note, during this procedure, the ‘default’ device 

orientation should be equivalent to that when deployed on the animal (during 

‘normal’ traversing posture). The user can inspect results obtained during this 

calibration period to ensure the sequence of pitch and roll angles follow the intended 

direction of rotation (see Fig. S2. 1b). Further, the shape of this calibration period 

when dead-reckoned (using a constant progression (speed) value) should produce an 

approximate square shape followed by three circles, finishing at North, (see Fig. S2. 

1c). Should these diagnostic plots not show what is expected, then the accelerometer 

and/or magnetometer alignment is wrong with respect to the coordinate system 

assumed within the tilt compensated compass method outlined in Text S3.  
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Figure S2. 1. The aerospace north-east-down (NED) coordinate system (top) and the Daily diary north-west-up 
(NWU) coordinate system (bottom) (a). Both systems assume the x (red), y (green) and z (blue) channels of the 
magnetometer (M) and accelerometer (G = gravitational component) are in alignment. Dotted arrows reflect 

a 180
o
 inversion of each channel. Note the difference in the direction of measured acceleration (-1 g/ +1 g) 

between the two coordinate systems when pointing downward in relation to the earth’s gravitational vector. 
A clockwise rotation about the y-axis results in a positive inversion of the x-axis (pitch (𝜃)) and a clockwise 
rotation about the x-axis results in a positive inversion of the y-axis (roll (𝛷)), though note, for the NED 
coordinate system, x-axis values are required to be negated within the computation of 𝜃 so that a positive 
increase in measured acceleration results in a decreasing 𝜃. Evaluation of whether a coordinate system is 
correctly aligned to that required in the tilt-compensated compass method can be shown by plotting computed 
pitch (b), roll (b) and yaw (the latter being assessed as a dead-reckoned track (c)), from data collected during 
a configuration calibration (outlined in the text above).  
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Text S3– Magnetometer calibration, rotation correction and deriving yaw (heading)  

  

Device calibration should be performed so that magnetic distortions to the data can 

be corrected post-hoc. It is recommended that the device is rotated slowly, ideally in 

an open space, away from potential sources of magnetic disturbance, relative to the 

Earth’s magnetic field. Each orientation of roll, pitch and yaw should be incorporated 

in the device rotations (simply put, imagine a pen is attached to the end of the device 

being rotated and the aim is to ‘colour in’ all parts of a sphere). This section of data 

can then be used as a reference for the vectorial sum of magnetometry data across 

all three spatial dimensions, from which ‘hard’ and ‘soft iron’ errors which can occur 

in magnetometry data can be corrected. Note, only data during the calibration 

procedure should be used to deduce soft and hard iron offsets for each 

magnetometer channel, which is subsequently applied to all magnetometer readings. 

Hard iron deposits (e.g., ferrous materials or magnets) introduce a constant additive 

bias to the earth’s magnetic field and thus magnetometer readings, whereas soft iron 

distortions (non-magnetic materials that alter the magnetic field, e.g., nickel) are 

caused by variations in the surrounding magnetic field. A tri-axial magnetic field 

intensity scatterplot of the calibration period shows such distortion (cf. Fig. S3. 1), 

with hard iron deposits causing the sphere to shift from origin and soft iron deposits, 

stretching the sphere into an elliptical shape. This function corrects magnetometry 

data for soft and hard iron distortion and performs rotation correction of the 

magnetic and gravity vectors (assuming they are in alignment) if the user inputs Euler 

angle offsets (of the tag relative to the animal’s body frame), prior to computing 

heading.  
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Gundog.compass = function(mag.x, mag.y, mag.z, acc.x, acc.y, acc.z, 

ME, pitch.offset = 0, roll.offset = 0, yaw.offset = 0, method = 3, 

plot=TRUE) 

 

The function inputs given below follow in the order:  

• Raw tri-axial magnetometer data (mag.x,y,z)  

• Tri-axial static acceleration data (acc.x,y,z) (for computation of pitch and roll) 

• Marked events data (ME) specifying the period of the magnetic calibration 

period (as denoted by ‘M’ – any other input signifies data acquisition not part 

of calibration procedure).  

• Pitch, roll and/or yaw device offsets relative to the animal’s body frame 

(default values are zero) 

• method  

o method = 1, is the computationally cheaper method, using scale biases 

with simple orthogonal rescaling (avoiding matrices altogether), outlined 

by Winer (2017), but may prove effective when data is less affected by 

noise – e.g., nearly spherical. Within this method, hard iron offsets are 

resolved by obtaining the average recorded magnetism bias from each 

channel, specifically by dividing the summed maximum and minimum 

values of raw magnetism by two. Soft iron scale factors are used to 

rescale and thus equalise the magnetometer data along the three 

measurement axes. Here, the average maximum chord length is 

calculated from the ratio of the average maximum – minimum values of 

each axis by the summed equivalent of all axes. This is then multiplied to 

all data, subsequent to hard iron distortions being removed. 

o method = 2 and method = 3 essentially compute gains and cross-axis 

gains (from derived eigen- values and vectors, respectively), by 

performing a sphere (ellipsoid) fitting. This involves centring a sphere (or 

ellipsoid) to (0,0,0) origin, de-rotating by multiplying by the inverse of the 

rotation matrix and scaling appropriately via multiplying by the inverse of 

the gains. For rotated ellipsoids use method = 3 and for near spherical 

data and/or influenced by heavy noise, use method = 2. For, non-rotated 
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ellipsoids use method = 4, when x and y channel radii the same, use 

method = 5, when x and z are the same, use method = 6, when y and z 

are the same, use method = 7 and for spherical data use method = 1, 2 or 

8. Essentially, there up to eight variant methods included (default is 

method = 3). For a detailed review of the underlying mathematics of 

these methods, see Vitali (2016). Inspection of summary plots can aid in 

demonstrating the ‘best’ method to use.  

• Plot = TRUE (default) compares 2-D magnetic field intensity scatterplots 

(mag.x - mag.y, mag.x - mag.z and mag.z - mag.y) of the calibration period 

both pre- and post-calibration from one of the user-defined methods dictated 

above (see Fig. S3. 1). 

 

Note, within the function itself, Bx,y,z refers to (uncorrected) magnetism data during 

the calibration period (which should be coded for by ‘M’ in ME) and Mx,y,z refers to 

all (uncorrected) magnetism data (incl. calibration data). NMbx,y,z are the 

normalised channels expressed in the animal’s body frame after calibration and 

NMbfx,y,z are the calibrated, normalised data expressed in the animal’s body frame, 

after tilt-correction. NGbx,y,z are the normalised static acceleration data expressed 

in the animal’s body frame after calibration. Note the above notations stand when 

no rotation correction is performed (e.g., no Euler angle offsets supplied), since the 

magnetic and gravity vectors are assumed to aligned with the animal’s body-carried 

NED frame.  

 

The function returns a data frame containing columns in the order: 

• Normalised tri-axial static acceleration data expressed in the animal’s body 

frame (NGbx,y,z). 

• Calibrated tri-axial magnetometry data (Mx,y,z)  

• Calibrated, normalised tri-axial magnetometry data expressed in the animal’s 

body frame (NMbx,y,z)  

• Calibrated, normalised tri-axial magnetometry data expressed in the animal’s 

body frame, after tilt-correction (NMbfx,y,z) 
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• Marked events (ME) 

• Pitch 

• Roll 

• Yaw 

 

See Text S2 for relevance pertaining to the order 

of variable input. This function assumes the NED 

coordinate frame. Changing the order of 

variable input/channel negation may be 

required. To avoid confusion, within the 

function, assume the x, y and z input fields for 

both magnetometry and accelerometery data 

represents the surge, sway heave dimensions of 

orientation, respectively, which the user 

allocates the appropriate channel and/or 

required negation to (dependent on the local 

coordinate frame of the device used).  

 

See Gundog.Compass.R file for annotated 

function. 

 

 

 

 

 

 

 

 

Figure S3. 1.  Output summary plots from Gundog.Compass() (when plot = 
TRUE), showing 2-D dimensions of the xy, xz and zy magnetometry 
components during the calibration period (ME = ‘M’), both pre- (red) and 
post- (blue) correction. The 0,0 origin (centroid) is denoted with a black 
circle. 
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Text S4 – Step counts as a distance estimate 
 

Within the main text, a step count was used as a speed proxy within Gundog.Tracks 

for twelve penguin’s walking trajectories (cf. Fig. 7 – main text). There are multiple 

ways in which this could be performed. In R, if we use a Reference Vector (RV) and 

assume the duration of each stride cycle is coded for with a one (1) and anything else, 

a zero (0) (from some previous behavioural identifier), then the length (duration) of 

each uninterrupted RV (matching numerical) sequence can be computed (R1). For RV 

values of 1, this is the time period per step (TPS). The unique incremental change of 

each RV number (each time it ‘reappears’ - changes from 1 to 0 or vice versa) can be 

computed (R2:7). For RV values of 1, this is the step count (SC). Because of the nature 

of how SC is calculated, the rolling difference of SC provides an index of step 

frequency (SF) (with the value of 1 indexing ‘another step’; R8). One could then 

calculate the mean number of steps over a given window length and standardise to 

number of steps per second by dividing by the time difference (s) between values 

(TD; R9 - e.g., for 40 Hz data, TD will be approx. 0.025 s). Multiplying this step 

frequency by a ‘distance per step’ (d) progression value (0.16 m used for penguins; 

R10) gives an index of speed (m/s), which can be converted to q via dividing by the 

earth’s radius (R11).  

TPS = sequence(rle(RV)$lengths)                                        (R1)                                                                     
x1 = rle(RV)$values                                                    (R2) 

x2 = rle(RV)$lengths                                                   (R3) 

z = c()                                                                (R4) 

for(i in unique(x1)){                                                  (R5)                                                                                                               
  z[x1==i] = 1:sum(x1 ==i)}                                            (R6) 

SC = rep(z,x2)                                                         (R7) 

SF = c(0, diff(SC))                                                    (R8)     
SF = rollapply(SF, width=w, FUN=mean, fill=0, align = 'right') / TD    (R9)                                                         
d = 0.16                                                              (R10) 
q = (SF * d) / 6378137                                                (R11) 

 

here, w should be replaced with the rolling window of choice (e.g., assuming 40 Hz 

data and a five second window length desired, replace with 200).  

I provide a peak finder function; Gundog.Peaks() that locates peaks based on local 

signal maxima, using a given rolling window, with each candidate peak filtered 



  Appendices 

357 
 

according to whether it surpassed a threshold height. The function returns a data 

frame containing the (original) row index position of peaks, their amplitude and 

periodicity between peaks. To calculate the above outlined speed proxy, the row 

index position of each peak (this is contained within the column termed ‘Index’, from 

the function output) is required to be inserted within a reference vector (RV) the 

length of all other variables used within the dead-reckoning process (e.g., heading 

(ℎ)) to match step peaks in time with motion sensor data. This is because the function 

output does not include inter-peak data and so output is sub-sampled from the 

original data input. This process can be achieved by creating a sequentially increasing 

numerical vector (RN; e.g., analogous to the row number index of a data frame, or 

element number index of a vector), the length of, in this case, h (R12) and pasting the 

index location, ‘Index’ within a vector termed ‘RV’, based on the matching Index and 

RN values (R13).  

RN = rep(1:length(h))                                                                                                                         (R12) 
RV = as.integer(sub("\\.$", "", RN) %in% Index)                                                              (R13) 

Note, for column operations, replace ‘length’ with ‘nrow’ (R78). 

Gundog.Peaks was modelled from the find_peaks() function within ggpmisc package 

(cf. Aphalo 2018), with inputs, function processes and outputs explained below. Note, 

this function requires the zoo package installed and required. Further, this function 

is only applicable to searching peak maxima, however if peak minima are of interest, 

I suggest that the user multiplies all values within the spectrum by minus one, 

subsequent to changing negative values to zero. The user can then use the function 

in the same way (since minima become maxima, and values originally above zero 

become zero). The vector sum of acceleration across all three spatial dimensions (cf. 

Wilson et al. 2020b) is the variable I recommend using. 

 

 

 



  Appendices 

358 
 

Gundog.Peaks = function(TS, x, thresh = 0, LoM = 5, constant 

="med”, ME = 1, plot=TRUE, outlier = FALSE) 

 

The function inputs given below follow in the order:  

• TS = timestamp data (POSIX class) 

• x = the variable to locate peaks on  

• thresh = the minimum height of the candidate peaks (%): size threshold 

relative to the tallest peak considered (though see outlier = TRUE) with 

constant baseline subtracted  

• LoM = span (rolling window length) for local maximum, default is 5, ensure 

this value is odd (otherwise the function will add 1)  

• constant = the constant baseline (y-axis value to be surpassed according to 

the height threshold) can be user defined (own constant baseline value). The 

default setting is “med” for median constant. For the mean, “mn” can be 

input; both are calculated from all values ≥ 0 that have an ME value of one (1)  

• ME = marked events (default = 1) specifies which values to locate peaks on 

(e.g., periods of moving already demarked with a one (1), as opposed to 

periods to ignore, marked with a zero (0) 

• plot = TRUE (default) shows the peak spectrum over time with the identified 

peaks, height threshold, constant baseline and marked events demarked (cf. 

Fig. S4. 1) 

• outlier = FALSE (default). If changed, then the max value is not used when 

scaling height threshold (%) but rather, the quantile value input instead of 

FALSE (do not input TRUE). For example, rather than scaling a 35 % threshold 

height from the specified constant and the maximum value in the spectrum 

(with ME of 1), scale it in relation to outlier = 0.99 (0.99 quantile of data (with 

ME of 1)). 
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The function returns a data frame containing columns in the order: 

• Timestamp  

• Index (the original row/element position of input data) 

• Peak.Amplitude (value of x at peak location) 

• Peak.Period (duration between peaks (s)) 

• Marked.events 

 

See Gundog.Peaks.R file for annotated function. 

 

 

 

 

 

 

 

Figure S4. 1.  Output plot from Gundog.Peaks() (when plot = TRUE) on a snippet of data (x; vector sum of 
acceleration from a penguin walking). The green band represents ME values > 0 and each peak is signified 
with a red circle and dotted vertical line dissecting the peak. The user defined constant and height threshold 
(%) values are denoted with horizontal dashed blue lines. Here thresh = 25, LoM = 9 (data = approx. 40 Hz) 
and constant = "med"). 
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Text S5 – Time Data in R (POSIXct) 
 

In R, to determine accurate time period lengths between values, it is best to save date 

and time variables together as POSIX class (date-time format), so R recognises the 

character string to be manipulated. If date (D) and time (T) are within different 

vectors, simply paste together and convert to a POSIXct timestamp object (TS) (and 

specify the time zone (R1). 

TS = as.POSIXct(strptime(paste(D, T), format = "%d/%m/%Y %H:%M:%S",   (R1) 
tz = “GMT”))                                             

 

The order and type of code used in the format string composed may differ according 

to the original date and time format registered by the device (e.g. above, I assume 

date is in the format; ‘06/01/1995’ and time; ‘14:15:30’) (cf. Fortin et al. 2005).  

To convert to a different format, it is best to make the POSIXct variable using the 

format dictated by device output (R3; 1st format string) before converting to a 

character string using the format you desire (R3; 2nd format string) and then 

converting this character string back to a POSIXct variable (R4). In this example, I 

assume D was in the format, ‘1995/01/06’ and T, ’14-15-30’ and I desired the original 

format stated in (R1); 

TS = paste(D, T)                                                       (R2)                                                                                                                 

TS = format(as.POSIXct(TS, format = "%Y/%m/%d %H-%M-%S"),              (R3)                                                                                                                
"%d/%m/%Y %H:%M:%S")                                                                                                                                                                           

TS = as.POSIXct(TS, format= "%d/%m/%Y %H:%M:%S")                       (R4) 

 

For data recorded at infra second frequency, it is vital to include sub-seconds within 

the POSIX object. Below I provide R code (R5:9) using an example where date (D), time 

(T) and decimal seconds (DS) are stored in separate vectors, with date and time in the 

format alluded to above and decimal seconds in the format “0.555” (a zero before 

the decimal present).  

DS = sub("^(-?)0.", "\\1.", sprintf("%.3f", DS))                       (R5) 
T = paste0(T, DS)                                                      (R6)                                                              

TS = paste(D, T)                                                       (R7)  

options(digits.secs=3)                                                 (R8) 
TS = as.POSIXct(strptime(TS, format = "%d/%m/%Y %H:%M:%OS", tz = “GMT”) (R9) 
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Here, I remove the zero before the decimal point of DS, ensuring three decimal places 

follow ("%.3f"; R5). DS is then appended alongside T (no separation; R6) before D and 

T are pasted together (space-separated; R7). I then specify the number of decimal 

places of the fractional seconds to express (R8) subsequent to creating the POSIXct 

object ‘TS’ (R9) (note, ‘%OS’ refers to decimal seconds). The resultant TS object has 

the format, ‘06/01/1995 14:15:30.555’.  

 

Creating timestamp objects with POSIX class enables greater control and 

manipulation of time data, useful when preparing data to be dead-reckoned. Some 

useful processes include; correctly time ordering rows of a data frame (df; R10), 

deleting rows with duplicated timestamp readings (R11), merging two data frames 

together based on matching time stamps (e.g., VP data and motion sensor data; R12) 

and importantly for the dead-reckoning calculation, computing the rolling time 

difference (TD) between data points (R13). 

df = df[order(df$TS), ]                                               (R10)                                                                                                         

df = df[!duplicated(df$TS), ]                                         (R11)                                                            

new.df = merge(df1, df2, by.x = "TS" , by.y = "TS")                   (R12) 
 

here user should replace the “TS” input after ‘by.x =’ and ‘by.y =’ with the column 

names of each of the two data frame’s (df1 & df2) time stamp variables (assuming 

they have matching time format). 

TD = c(0, difftime(TS, lag(TS), units = "secs")[-1])                  (R13) 

 

In conjunction with the ‘lubridate’ package (Grolemund & Wickham 2011) (R14), it 

becomes easy to add or subtract time (useful if VPs are pre-programmed to record in 

a different time zone; R15) and to subset a data frame (df) between two time periods 

(TS1 & TS2; R16:19)  

Install.packages("lubridate") ; library(lubridate)                    (R14)                                                                                     

TS = TS + hours(3) ; TS = TS - minutes(20) ; TS = TS - seconds(55)    (R15)                                         

TS1 = as.POSIXct("2020-08-13 11:15:31.049")                           (R16)                                                  

TS2 = as.POSIXct("2020-08-19 17:48:11.705")                           (R17)                                                  

int = interval(TS1, TS2)                                        (R18)                                                                         

df = df[df$timestamp %within% int,]                               (R19) 
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Lastly, one can easily create a ‘pseudo’ time variable (of a given length, advanced 

according to a specified time interval) to act as the TS variable within 

Gundog.Tracks(). Below (R20), a single datetime POSIXct variable is created (though 

format and time zone may differ according to user choice). This is then advanced by 

a user-defined time interval (default assumes seconds) – In this example, this is a 

0.025 second interval between values (assuming 40 Hz). This incremental time 

column is advanced to a specified bounded length (here I use a data frame column 

‘VeDBA’ to act as the (row-wise) dimension limit.  

df$TS = seq.POSIXt(from = as.POSIXct("1995-01-06 05:07:28.05",        (R20) 
format = "%Y-%m-%d %H:%M:%OS", tz = "GMT"), length.out = length(df$VeDBA), 
by = 0.025) 
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Text S6 – VPC dead-reckoning – Gundog.Tracks 
 

Gundog.Tracks(TS, h, v, elv = 0, cs = NULL, ch = NULL, m = 1, c = 0, ME = 1, lo = 0, la 

= 0, VP.lon = NULL, VP.lat = NULL, VP.ME = FALSE, method = NULL, thresh = 1, 

dist.step = 1, bound = TRUE, Outgoing = TRUE, plot = FALSE) 

Gunodg.Tracks() input and output variables are explained within the main text (Table. 

2 & 3). The function outputs written messages to the console to update the user of 

the progressions of each stage. Important assumptions for variable input include: 

• Heading (h) (with magnetic calibration and any required declination angle 

already applied); scale 0o to 360o (both corresponding to true North - or 0o to 

359̇o)   

• Either speed (m/s) or a DBA proxy input (v). If inputting a DBA proxy, m and c 

values should be modulated 

• Depending on whether outgoing = TRUE or outgoing = FALSE (reverse dead-

reckoning), user supplies either starting or finishing longitude (lo) and latitude 

(la) coordinates, respectively. VP data input as decimal format (e.g., 26.31989, 

-06.11995) 

• Required packages installed: 'dplyr' & 'zoo' (these will be checked as 

dependencies and installed within the function) 

• If carrying out VPC, VP data should be synced up alongside motion sensor data 

within the same length columns/elements. Missing VP data should be 

replaced with NA or 0. 

• Timestamp (TS) must be in specific format (POSIXct object) (cf. Text S5). 

Function calculates time differences between values in seconds, thus infra-

second units must be included in TS object if data frequency is > 1 Hz. No 

duplicates are allowed. 

• Only supply pitch (p) if user wants radial distance modulated according to 

pitch (cf. E27 - main text). 

• No missing data (NA’s) for; TS, h, v, elv, p, TS, ME, m, c variables. The variables 

ch and cs may have NA’s but observations are carried forward and thus at 
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least the first row/element must contain values (though this can also be 

supplied as a single value input – analogous to m and c values) 

• User can select a different dist.step value (default = 1) to change the stepping 

interval when computing distance between VPs (within the ‘method = 

distance’ method of VP under-sampling and VP distance moved summary 

outputs) 

• Data from only one animal should be dead-reckoned at a time 

 

The 3-D distance and speed proxies are output using variants of the disty(method = 

Hav.SLD) function which is posited and fully annotated within the subsection of 

Gundog.Tracks() termed; ‘#2) Prepare 'disty' (distance) and 'beary' (bearing) 

functions for VPC and/or summary variables’.  

See Gundog.Tracks.R file for annotated function. Note more information detailing 

input and output is given at beginning and end of the .R file. See Fig. S6. 1 for an 

indication of processing times (on a MSI GP72 7RD Leopard laptop with intel core i7 

processor). Notably, system time seems appropriate to dead-reckon weeks-months 

long datasets at reasonable speeds (e.g., a few mins), though only when dead-

reckoning at lower frequencies (e.g., 1 Hz). 
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Figure S6. S1.  Elapsed system time (s) to execute Gundog.Tracks according to the duration of data 
acquisition, frequency (Hz) of motion-sensor derived speed and heading estimates and user defined 
inputs (plot = TRUE vs FALSE and whether VPC occurred). Note that the biggest increase in 
computation time is the frequency of initial data input. The biggest source of system time is the for-
loops used when dead-reckoning, plotting the tracks and computing the summary metrics (e.g., 
distance, speed etc.) at the end. This is why there is not much difference in computation speed when 
carrying out the method and degree of VPC as opposed to when not (VPC rate was chosen as 1 fix per 
hour here). This analysis was carried out on a MSI GP72 7RD Leopard laptop with intel core i7 
processor. Whilst various changes in other user-defined inputs may modulate processing speeds 
somewhat, DR frequency and executing the summary plots are the main modulators.  
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Chapter 6: Supplementary Information 
 

 

  

 

 

Figure S1. Boxplots demonstrating the magnitude of net error (top panel) and distance moved (bottom panel), 
per VP correction rate and animal. Net error (a) is standardised according to the mean time between 
corrections (m/s) and distance moved (b) is standardised according to trip duration, respectively, per individual 
and VP correction rate to provide an approximate rate in m/s. Mean values were aggregated per individual 
and VP correction rate. Boxes encompass the 25-75 % interquartile range and horizontal bars denote the 
median value with ‘loess’ smooth line (grey shading show the standard error and Whiskers extend to 1.5 * 
Interquartile range). Note net error drops to zero when the VP correction rate equates with GPS recording 
frequency (1 Hz for the lions, penguins and cormorants, and 1 fix/min for the tropicbirds). 
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Figure S2. Mean (± 1 SD) VeDBA (column/bar) and net error (line & symbol) per hour over the duration of three 
individual lion (top panel) and three penguin (bottom panel) dead-reckoned tracks, VP corrected approx. every 30 
minutes. Note that the net error of lions was generally slightly higher and more variable during the night when 
they were more active, although net error was still appreciable during the day when lions were predominantly 
resting, principally due to VP error. On the other hand, penguins demonstrated no clear circadian trends in activity 
or net error, in part due to the high variability between the dynamism of recorded movement and speed of travel 
(e.g., due to preening behaviour during ‘surface rest’ periods and the constant presence of external current flow 
vectors), as well as the variability in the time of day (and duration) of rests. Note that the y-scales differ between 
the species. 
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Text S1. Dead-reckoning formulae 

 

1) Compute the distance coefficient (𝒒) 

𝑞 =
𝑠 •  𝑇𝐷

𝑅
  

where 𝑠 refers to speed (units in m/s), 𝑇𝐷 refers to the time difference between 

values (units in s) and 𝑅 is the approximate radius of the earth (R = 6378137 m). 

2) Derive longitude and latitude coordinates 

𝐿𝑎𝑡𝑖 = 𝑎𝑠𝑖𝑛(𝑠𝑖𝑛(𝐿𝑎𝑡0) • 𝑐𝑜𝑠(𝑞) + 𝑐𝑜𝑠(𝐿𝑎𝑡0) • 𝑠𝑖𝑛(𝑞) • 𝑐𝑜𝑠(ℎ))                                                               
𝐿𝑜𝑛𝑖 = 𝐿𝑜𝑛0 + 𝑎𝑡𝑎𝑛2((𝑠𝑖𝑛(ℎ) • 𝑠𝑖𝑛(𝑞) • 𝑐𝑜𝑠(𝐿𝑎𝑡0)), (𝑐𝑜𝑠(𝑞) − 𝑠𝑖𝑛(𝐿𝑎𝑡0) •

 𝑠𝑖𝑛(𝐿𝑎𝑡𝑖)))                      

where 𝐿𝑎𝑡0, 𝐿𝑎𝑡𝑖 and 𝐿𝑜𝑛0, 𝐿𝑜𝑛𝑖 are the previous and present latitude and longitude 

coordinates, respectively, ℎ is the heading and 𝑞 is the distance coefficient. Note that 

the coordinates and heading must be supplied in radians. 

3) VP-correct procedure 

The distance (𝑑) and bearing (b) between consecutive VPs (used to correct) and 

consecutive (time-matched) dead-reckoned positions are calculated based on the 

below formulae; 

𝑑

= 2 • 𝑅

• 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 (
𝐿𝑎𝑡𝑖 − 𝐿𝑎𝑡0

2
) + 𝑐𝑜𝑠(𝐿𝑎𝑡0) • 𝑐𝑜𝑠(𝐿𝑎𝑡𝑖) • 𝑠𝑖𝑛2 (

𝐿𝑜𝑛𝑖 − 𝐿𝑜𝑛0

2
 )) 

where R is the Earth’s radius and the output 𝑑 is in metres. Note this is the 

Haversine formula. 

𝑏 = 𝑎𝑡𝑎𝑛2(
𝑠𝑖𝑛(𝐿𝑜𝑛𝑖 − 𝐿𝑜𝑛0)  •  𝑐𝑜𝑠(𝐿𝑎𝑡𝑖),

𝑐𝑜𝑠(𝐿𝑎𝑡0)  •  𝑠𝑖𝑛(𝐿𝑎𝑡𝑖 − 𝐿𝑎𝑡0)  •  𝑐𝑜𝑠(𝐿𝑎𝑡𝑖)  •  𝑐𝑜𝑠(𝐿𝑜𝑛𝑖 − 𝐿𝑜𝑛0)
)

•  
180

𝜋
 

where b output is in the scale -180 o to +180o. To convert b to the conventional 0o to 

360o scale, 360 should be added to values < 0. 
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The distance between each VP is divided by the distance between the 

corresponding dead-reckoned positions to provide a distance correction factor; 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑜𝑟𝑟.𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑉𝑃

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑅
           

The bearing (or rather, heading) between each VP is subtracted by the bearing 

between the corresponding dead-reckoned positions to provide a heading correction 

factor; 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑐𝑜𝑟𝑟.𝑓𝑎𝑐𝑡𝑜𝑟 = 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝑉𝑃 − 𝐵𝑒𝑎𝑟𝑖𝑛𝑔𝐷𝑅            

To maintain a maximum potential difference of 180o in either circular direction, 360 

should be added to values < -180 and 360 subtracted from values > 180. All 

intermediate 𝑞 values are multiplied by the distance correction factor and the 

heading correction factor is added to all intermediate ℎ values (ensuring that ℎ values 

are in degrees). To ensure circular range remains between 0o and 360o for the 

updated ℎ values, 360 should be subtracted from values > 360 and added to values < 

0. Note, these corrections for ensuring that circular range is maintained 

(adding/subtracting 360o) when deriving and applying the heading correction factors 

are not required if both 𝑏 and ℎ are in radians. It can be more intuitive though to have 

units in degrees when assessing biases in motion sensor derived heading offset/error, 

relative to VPs. After the correction factors have been applied, step 2 is repeated. 

Occasionally more than one iteration of the formulae (steps 2 and 3) is required for 

the path to adhere ‘exactly’ with the ground-truthed locations. 
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Chapter 7: Supplementary Information 

 

Text S1 – Identifying walking and pausing periods in DDMT software using the LoCoD 

method.  

 

The Boolean time-based decision-tree template LoCoD (Wilson et al. 2018) 

expressions used for depicting walking behaviour, outlined below, were modelled 

around the DD recording at 40 Hz and GPS recording at 1 Hz. During walking periods, 

the DD was positioned approximately perpendicular relative to the ground. That is, 

the x-axis was pointing towards the sky, the y-axis towards the penguin’s left, parallel 

to the ground and the z-axis pointing away from the penguin’s back, parallel to the 

ground. The ordered sequence to describe the LoCoD for discerning individual stride 

cycles is given In Table S1. 1 - see Wilson et al. (2018) for the conceptual and practical 

methodology for implementing this method, including definition of the terms 

presented in Table. S1. 1.  

In essence, the patterns of sway acceleration, represented by the y-axis is a valuable 

descriptor of walking (used here, see Fig. S1. 1) due to penguins possessing a 

‘waddling’ gait with each step inducing appreciable ‘side-to-side’ motion which is 

chiefly picked up by this channel (given the device orientation used). The pattern of 

its differential was used since derivatives are less affected by discrepancies between 

tag placement and angle of the substrate travelled over, producing a more consistent 

pattern of oscillations over time. Put simply, the template initiates a search when the 

rate change of sway acceleration (smoothed to some degree, cf. Table. S1. 1) exceeds 

zero, after which the differential must go above a given threshold above zero (‘right 

step’), followed by a given threshold below zero (‘left step’) before returning to zero 

whilst remaining within a VeDBA remit and registering GPS-derived speed greater 

than zero. This sequence of events denotes a single stride cycle.  
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The expressions documented below yielded > 99 % precision and an overall recall of 

~94 % pre-manual corrections. Most false negatives occurred at the start of incoming 

trips because GPS-derived speed was used in the expressions (to aid in reducing the 

number of false positives attributed to preening that also invoke oscillating sway 

movements similar to walking), and occasionally fixes (and thus GPS speed) would 

not occur for some time after submersion in water, preventing this template search 

to be valid at such times. 

 

 

 

Figure S1. 1. Values from the motion sensor and GPS unit outputs (represented as 2D waveforms versus time), including 
marked events based on the LoCoD rules of behaviour classification [red = walking periods (discerned from the LoCoD 
rules), blue = pauses either > 10 s duration or associated with appreciable DBA, likely attributed to preening, green = 
pauses ≤ 10 s duration with minimal DBA (pause type manually discerned between the bouts of marked walking)]. A 
45 s section of the top panel is magnified [bottom right] to demonstrate the oscillating pattern that the differential of 
y-axis acceleration has during walking. This is zoomed in further [bottom left] to demonstrate the Boolean time-based 
search template as given by allocated LoCoD sequence, with each behavioural element having to have passed its 
associated rules within given time frames of one another as stated in Table. S1. 



  Appendices 

373 
 

Table S1. 1. Acceleration- and GPS-based metrics used for identifying single stride cycles (one left step and one 
right step) per (‘flexible’) unit time. Prior to setting out the rules of each element the following pre-processing 
was performed: 

1) VeDBA smoothed→ Acceleration smoothing for VeDBA = 80 events. VeDBA smoothed over 40 events 
(1 s). 

2) GPS mean velocity → In DDMT GPS-derived speed (termed ‘velocity’ in DDMT) is computed by dividing 
the Haversine distance (computed according to the stepping range between fixes) by the time period 
between values. The stepping range was set at 5 (every 5th fix) and the smoothing was set at 200 
events (5 s). 

3) Diff_Chan (Accel Y smoothed → Acceleration smoothing of raw values = 10 events (0.25 s). The rolling 
differential of the smoothed y-axis values was then calculated using a stepping range of 10 events 
(0.25 s) and the resultant values were smoothed over 10 events (0.25 s). 

 

 

 

 

 

 

Time-
based 

sequence 

Element Rules 
Events 

valid for 
(presence) 

% time 
valid 
for 

Range to 
begin next 

search 

Flexibility 
after 

Extend 
to? 

1 1 

 
i) VeDBA smoothed > 0.1 
ii) VeDBA smoothed < 0.8 
iii) GPS mean velocity > 0 

iv) Diff_Chan(Accel Y smoothed 
(R=10)) > 0 

3 100 4 8 
✓ 
 (1 

before) 

2 2 

 
i) VeDBA smoothed > 0.1 
ii) VeDBA smoothed < 0.8 
iii) GPS mean velocity > 0 

iv) Diff_Chan(Accel Y smoothed 
(R=10)) > 0.15 

1 100 2 8 
✓ 
 (1 

before) 

3 1 

 
i) VeDBA smoothed > 0.1 
ii) VeDBA smoothed < 0.8 
iii) GPS mean velocity > 0 

iv) Diff_Chan(Accel Y smoothed 
(R=10)) > 0  

3 100 4 8 
✓  
(1 

before) 

4 3 

 
i) VeDBA smoothed > 0.1 
ii) VeDBA smoothed < 0.8 
iii) GPS mean velocity > 0 

iv) Diff_Chan(Accel Y smoothed 
(R=10)) < 0 

3 100 4 8 
✓ 
 (1 

before) 

5 4 

 
i) VeDBA smoothed > 0.1 
ii) VeDBA smoothed < 0.8 
iii) GPS mean velocity > 0 

iv) Diff_Chan(Accel Y smoothed 
(R=10)) < -0.15 

2 100 2 8 
✓ 
 (1 

before) 

6 3 

 
i) VeDBA smoothed > 0.1 
ii) VeDBA smoothed < 0.8 
iii) GPS mean velocity > 0 

iv) Diff_Chan(Accel Y smoothed 
(R=10)) < 0 

3 100 4 1  
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The exact form of the base elements within DDMT’s ‘behaviour builder’ take the 
expressions: 

(1) If ( ( Ch ( VeDBA smoothed ) > 0.1 ) AND ( Ch ( VeDBA smoothed ) < 0.8 ) AND ( Ch ( GPS 

mean velocity ) > 0 ) AND ( Diff_Chan ( Accel Y smoothed (R=10) ) > 0 ) ) then mark events 

(2) If ( ( Ch ( VeDBA smoothed ) > 0.1 ) AND ( Ch ( VeDBA smoothed ) < 0.8 ) AND ( Ch ( GPS 

mean velocity ) > 0 ) AND ( Diff_Chan ( Accel Y smoothed (R=10) ) > 0.15 ) ) then mark 

events 

(3) If ( ( Ch ( VeDBA smoothed ) > 0.1 ) AND ( Ch ( VeDBA smoothed ) < 0.8 ) AND ( Ch ( GPS 

mean velocity ) > 0 ) AND ( Diff_Chan ( Accel Y smoothed (R=10) ) < 0 ) ) then mark events 

(4) If ( ( Ch ( VeDBA smoothed ) > 0.1 ) AND ( Ch ( VeDBA smoothed ) < 0.8 ) AND ( Ch ( GPS 

mean velocity ) > 0 ) AND ( Diff_Chan ( Accel Y smoothed (R=10) ) > 0.15 ) ) then mark 

events 

 

 

These are added into the time series tab, taking the expressions: 

(1) Element (1): present for 3 events, %time 100, with next expression starting from range 4, 
flexibility after of 8 and ETNE 1 before 

(2) Element (2): present for 1 events, %time 100, with next expression starting from range 2, 
flexibility after of 8 and ETNE 1 before 

(3) Element (1): present for 3 events, %time 100, with next expression starting from range 4, 
flexibility after of 8 and ETNE 1 before 

(4) Element (3): present for 3 events, %time 100, with next expression starting from range 4, 
flexibility after of 8 and ETNE 1 before 

(5) Element (4): present for 1 events, %time 100, with next expression starting from range 2, 
flexibility after of 8 and ETNE 1 before 

(6) Element (3): present for 3 events, %time 100, with next expression starting from range 4, 
flexibility after of 1 

 

 

Within DDMT, the user can easily add/remove marked events manually. Any required 

corrections were performed prior to merging stride cycles occurring ≤ 40 events (1 s) 

from one another. 

 

 

 

 

 

(1) Set up behavioral elements (rules) 

(2) Add them in a time-based sequence 

(3) Manual evaluation 
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Text S2 – Descriptors of movement 

 

Heading (derived using the tilt-compensated compass method (cf. Pedley 2012)) and 

VeDBA values were smoothed using a rolling window of 40 events (1 s) (circular mean 

used for heading - (cf. Pewsey, Neuhäuser & Ruxton 2013). This was to reduce 

variations manifest by the ‘waddle’ of the stride cycle. For each trip, uncorrected 

dead-reckoned tracks were compared alongside the (1 Hz) GPS equivalent to 

determine the m-coefficient multiplier within the DBA~speed derivation process 

[𝑠𝑝𝑒𝑒𝑑 = (𝑉𝑒𝐷𝐵𝐴 • 𝑚) + 𝑐] (cf. Bidder et al. 2012). The m-value that produced the 

greatest adherence in terms of proportion scaling relative to GPS path (pre-drift 

correction) was selected. Dead-reckoned paths were only advanced at times of 

elucidated travelling movement (cf. Fig. S1. 1). Dead reckoned tracks were GPS 

corrected approximately every 50 m moved (as estimated between GPS locations 

using the Haversine formula (Harja & Sarno 2018); Fig. S2. 1). This was determined a 

reasonable compromise between correcting for inevitable error accumulation and 

not relying too frequently on GPS, given they themselves are not perfect with fix 

accuracy, precision and success rate (cf. Chapter 4). Following the GPS-correction 

procedure, the Haversine distance between (every) GPS and corresponding (time-

matched) dead-reckoned positions from pooled trajectories was estimated at 1.5 ± 

1.0 m [x ̅ ± 1 SD]. 
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Figure S2. 2. Example of the matchstick approach of deriving the ToF (red) based on linearly interpolating between 
GPS fixes used in the drift correcting procedure. 

 

 

 

Figure S2. 1. A 30-minute, ~525 m dead-reckoned track, pre-VP correction [top left], VP corrected once [top right] and 
corrected 10 times (approx. every 50 m distance moved), with the resultant net error estimates relative to GPS for 
each track plotted as a function of time [bottom right].  
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Text S3 – Model parameters 

 
Table S3. 1. Significant terms of two linear mixed effect models (LMM) with distance travelled as the response 
variable, and an extension of the generalised liner mixed effect model (GLM - glmmadmb), with tortuosity as the 
response variable. 

 LMM: Distance travelled LMM: Distance travelled (Incoming) 
glmmadmb: Tortuosity 

(family="beta") 
Predictors Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 477.96 388.80 – 567.1
3 

<0.00
1 

455.9 262.06 – 649.7
3 

<0.00
1 

-2.51 -2.95 – -2.07 <0.001 

DR.Cumulative.Distanc
e 

      
0 0.00 – 0.00 0.015 

Status: Outgoing Referenc
e 

  
Referenc

e 

  
Referenc

e 

  

Status: Incoming 89.52 18.94 – 160.10 0.017 
   

0.22 -0.12 – 0.56 0.199 
ToF 

   
0.72 0.58 – 0.86 <0.00

1 

   

Random Effects 
σ2 13970.12 4040.94 1.35 
τ00 30620.16 ID 36452.98 Nest 0.00 ID 
ICC 

 
0.9 0 

N 24 ID 4 Nest 24 ID 

Observations 48 48 48 
Marginal R2 / 
Conditional R2 

0.128 / NA 0.200 / 0.920 0.043 / 0.043 

AIC 642.763 561.596 -120.721 

 

 

Table S3. 2. GAM output, displaying the effect size of vegetation density (c), and the additive effect of the 
proportion of distance travelled (Prop.of.distance) smoothed and in interaction with the factor of status (incoming 
vs outgoing - for pause duration (s). 

 
  

Pause duration (family = Inverse 

gaussian, link="log") 
Predictors Estimates CI p 

(Intercept) 2.16 1.95 – 2.37 <0.001 
c: None Reference 

  

c: Medium 0.18 -0.05 – 0.41 0.116 
c: High 0.05 -0.21 – 0.31 0.714  

EDF F 
 

s(Prop.of.distance):StatusOutgoing 1.0 0.31 <0.001 
s(Prop.of.distance):StatusIncoming 1.92 1.42 0.242 

Status: Outgoing Reference 
 

0.518 
Status: Incoming -0.01 -0.16 – 0.14 0.918 
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Table S3.3. GAM output, displaying the effect size of vegetation density (c), and the additive effect of the proportion of distance travelled (Prop.of.distance) smoothed and in 
interaction with the factor of status (incoming vs outgoing) - for Tortuosity (0-1), travelling speed (m/s) and number of ‘significant’ turns [per 10 m]. 

  
Tortuosity [10 m] (family = Beta 

regression, link="logit") 

Speed (family = Inverse 

gaussian, link="log") 

Turns (family = zero inflated 
Poisson, link="identity") 

Predictors Estimate CI p Estimate CI p Estimate CI p 

(Intercept) -2.34 -2.45 - 2.23 <0.001 -0.89 -0.92 – 
0.86 

<0.001 0.17 0.09 – 0.25 <0.001 

c: None Reference 
  

Reference 
  

Reference 
  

c: Medium 0.23 0.11 – 0.35 <0.001 -0.01 -0.04 – 
0.02 

0.560 0.23 0.15 – 0.32 <0.001 

c: High 0.47 0.35 – 0.60 <0.001 -0.01 -0.04 – 

0.03 

0.660 0.41 0.31 – 0.50 <0.001 

 
EDF Chi.sq 

 
EDF F 

 
EDF Chi.sq 

 

s(Prop.of.distance):StatusOutgoing 3.09 40.38 0.028 2.86 5.85 <0.001 3.48 47.70 0.001 

s(Prop.of.distance):StatusIncoming 3.06 10.66 <0.001 8.69 12.09 0.027 4.12 20.49 0.014 

Status: Outgoing Reference 
  

Reference 
  

Reference 
  

Status: Incoming 0.20 0.13 – 0.27 0.01 0.04 0.02 – 

0.06 

<0.001 -0.00 -0.05 – 0.05 0.953 
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Table S3. 4. GAM output, displaying the effect size of vegetation density (c), and the additive effect of the proportion of distance travelled (Prop.of.distance) smoothed and in 
interaction with the factor of status (incoming vs outgoing) - for number of pauses [per 10 m], ‘significant’ turn extent (o) and extent of turn following a pause (o). 

  
Pauses (family = zero inflated 

Poisson, link="identity") 
Turn extent (family = Gamma, 

link="log") 
Turn extent following a pause 
(family = Gamma, link="log") 

Predictors 
Log-

Mean 
CI p Estimates CI p Estimates CI p 

(Intercept) -0.13 -0.36 – 
0.09 

0.245 3.73 3.67 – 3.78 <0.001 2.78 2.54 – 3.02 <0.001 

c: None Reference 
  

Reference 
  

Reference 
  

c: Medium 0.16 -0.09 – 
0.41 

0.197 0.07 0.01 – 0.13 0.017 0.09 -0.17 – 
0.36 

0.484 

c: High 0.08 -0.21 – 
0.36 

0.597 0.12 0.05 – 0.18 <0.001 0.45 0.15 – 0.75 0.004 

 
EDF Chi.sq 

 
EDF F 

 
EDF F 

 

s(Prop.of.distance):StatusOutgoing 3.68 37.89 <0.001 6.46 3.41 0.031 4.75 0.21 0.352 
s(Prop.of.distance):StatusIncoming 4.59 47.24 <0.001 6.76 2.08 0.243 1.88 0.34 0.322 

Status: Outgoing Reference 
  

Reference 
  

Reference 
  

Status: Incoming -0.56 -0.72 –
0.40 

<0.001 -0.07 --0.11 –
0.04 

<0.001 -0.01 -0.17 – 
0.15 

0.919 
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Text S4 – The case-studies  

Note the metrics on the right are assessed as proportion of 

time (0-1) to demonstrate that many returning birds spend 

large periods of time at the beach prior to travelling back. 

        Case study 1 – Nest sector A 
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                                 Case study 2 – Nest sector A 
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                               Case study 3 – Nest sector A 
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                                   Case study 4 – Nest sector B 
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Case study 5 – Nest sector B 
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        Case study 6 – Nest sector D 
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                                 Case study 7 – Nest sector D  
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                               Case study 8 – Nest sector E  
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Chapter 8: Supplementary Information 

 

Text S1 – Additional results 

Figure S1. 1. Elevations and components (U and V) in a period of 40 days showing the variation of the 
region, tidal influence and dominated cross-currents (U component).  

Figure S1.2. Determining the start of a penguins return journey. The red Vertical line in the left plot denotes the 
start of the return phase of a given penguins track, determined by selecting all data after the first GPS fix (1 fix 
every 15 min used; right plot) that occurred during the beginning of a continuous downward gradient of the 
shortest straight-line distance to the colony and was within the current model grid (horizontal red line). The blue 
section of track in the right plot denotes the section of track used for analysis. 
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Figure S1. 4. Relative frequencies of both actual bird speed (prior (red) and post (purple) current integration) and 
the theoretical ‘best’ resultant (turquoise) during return trajectories. Notice the actual bird resultant registers 
tightest proportion of ‘higher’ speeds. 

Figure S1. 3. Distributions of; (a) the actual bird heading and the Line of Sight heading difference, with respect to 
the actual bird heading and current heading difference and (b) the theoretical ‘best’ heading and Line of Sight 
heading difference with respect to the theoretical ‘best’ heading and current heading difference. The histogram 
bars represent the current heading difference, and the lines represent the Line of Sight heading difference within 
the bottom frequency plots (red = prior to current integration and blue = post current integration). 
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Figure S1. 7. Mean (± 1 SE) dive depth per 0.01 proportion of total distance travelled during return 
trajectories.  

Figure S1. 5. Mean (± 1 SE) absolute difference between actual bird heading and ‘line of sight‘ heading as a 
function of distance to the colony (divided into quarters with 0 = start of return trip and 1 = exit point onto the 
beach), grouped according to 4 current strength conditions. Error bars represent 1 SD either side of the mean. 
Note that, regardless of current strength, there appears no apparent trend to suggest the birds improve their 
homing ability the closer to the colony they get.  

Figure S1. 6. Mean penguin ease of transport (EOT - in metres travelled per joule) for the actual bird resultant 
trajectory (purple) and the theoretical ‘best’ trajectory (turquoise). The boxplots are constructed from the grand 
mean of pooled values (per 0.01 epoch) per individual. Boxes denote the median and 25-75 % interquartile range. 
On average, the actual bird resultant R1 EOT is much higher than the theoretical ‘best’ resultant. In contrast, 
whilst similar, R2 theoretical ‘best’ resultant is highest. 
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Text S2 – Methods expanded 

 

Accounting for Pressure drift 

 

In the case of depth, median pressure values were calculated when at/near the 

surface, governed by pressure < 10.4 m (a high upper limit of potential drift for these 

study animals at least (pressure recorded ≥ 10 m at surface)) and absolute values of 

rate change of depth ≤ 0.05 m/s (at surface differential typically did not fluctuate 

above this threshold - again, a high upper limit for this study species). Only median 

values from depicted surface periods ≥ 5 s were used. Trend Estimation with 

Asymmetric Least Squares (ALS; cf. Newey & Powell 1987) was then used on these 

values to depict the baseline of drift across time (lambda; smoothing parameter = 

0.001, p; asymmetry parameter = 0.001, eps; numerical precision for convergence = 

1e-8 and maxit; max number of iterations = 50). This baseline was subtracted to raw 

depth values across time (resultant depth values < 0 m were made 0 m). Median pitch 

values were also pooled from the surface periods depicted above and a grand median 

was used as the estimated pitch offset and applied to every pitch value (logical 

corrections were performed to ensure pitch remained within the -90o to +90o range). 

Correcting the dead-reckoned tracks for drift 

 

Dead-reckoned tracks were corrected at approximately 1-minute epochs. A rolling 

time function was applied in which a fix was only kept when the time period between 

it and the previously kept fix was ≥ 60 s, after which the time counter reset and the 

process continued. This ensured when there was a large gap between GPS data 

(caused at times when penguins rarely stayed at the surface long enough for a fix to 

be registered), the next available fix was always included. Prior to this, it was clear 

that GPS fixes were sometimes displaced in time (cf. Bouvet & Garcia 2000), often 

with registered fixes occurring into the subsequent dive. As such, to ensure animal 

movement paths (at depth) were not corrected based on previous surface positions 

within the drift correcting procedure, I reallocated the last GPS fix obtained during 

each depicted inter‐dive cycle (any data between surface periods) to the last row 

index of the prior surface period, disregarding all other fixes registered when the bird 
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was not deemed at the surface. Obvious outliers as determined visually were initially 

removed. 

Conversions between estimates of U and V components (m/s) and heading (o) and speed 

(m/s) 

 

The magnitude (or rather speed (m/s)) of a vector (𝑉𝑆⃗⃗⃗⃗  ⃗) was calculated via;  

𝑉𝑆⃗⃗⃗⃗  ⃗ =  √(𝑈2 + 𝑉2)                                                                                                               (1)              

The direction (or rather heading (0o to 360o - ‘towards the vector of travel’)) of a 

vector (VH) was estimated via; 

𝑉𝐻 = 𝑚𝑜𝑑 ((90 − 𝑎𝑡𝑎𝑛2(𝑉, 𝑈)  •  
180

𝜋
) , 360) ,                                                                          (2)              

where 𝑚𝑜𝑑 refers to the modulo operator and heading represents ‘going to’ rather  

than ‘coming from’ using the 0 to 360o scale.  

To convert VS and VH estimates (e.g., bird speed and heading estimates) to U and V 

components (m/s) (+U representing currents towards the East and +V currents 

towards the North), 180 was first added to every VH value (because meteorological 

convention traditionally states the direction from which U and V vectors originate). 

To ensure circular range was maintained between 0o and 360o, 360 was subtracted 

from values > 360. Lastly, for the below formula, VH had to be converted to the -180o 

to +180o scale and so 360 was subsequently subtracted from values > 180o. 

𝑈 =  −𝑉𝑆 • sin (𝑉𝐻 •   
𝜋

180
)                                                                                              (8)              

𝑉 = −𝑉𝑆 •  cos (𝑉𝐻 •  
𝜋

180
)                                                                                                              (9)              

 

Calculating the Theoretical ‘best’ heading 

 

This involved while() loops in R, whereby along each point along the DR track, each 

heading value between 0o and 360o (incrementing at 0.5o epochs) were trailed . At 

each epoch, U and V components were calculated and added to the U and V 

components of the current, before calculating the theoretical ‘best’ resultant 

heading. The theoretical ‘best’ U and V vectors that produced the closest heading to 

the ‘line-of-sight’ heading post current integration were used. 
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