4,066 research outputs found

    WormBase: a multi-species resource for nematode biology and genomics

    Get PDF
    WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system

    BioCloud Search EnGene: Surfing Biological Data on the Cloud

    Get PDF
    The massive production and spread of biomedical data around the web introduces new challenges related to identify computational approaches for providing quality search and browsing of web resources. This papers presents BioCloud Search EnGene (BSE), a cloud application that facilitates searching and integration of the many layers of biological information offered by public large-scale genomic repositories. Grounding on the concept of dataspace, BSE is built on top of a cloud platform that severely curtails issues associated with scalability and performance. Like popular online gene portals, BSE adopts a gene-centric approach: researchers can find their information of interest by means of a simple ā€œGoogle-likeā€ query interface that accepts standard gene identification as keywords. We present BSE architecture and functionality and discuss how our strategies contribute to successfully tackle big data problems in querying gene-based web resources. BSE is publically available at: http://biocloud-unica.appspot.com/

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Ontology-Based Meta-Analysis of Global Collections of High-Throughput Public Data

    Get PDF
    The investigation of the interconnections between the molecular and genetic events that govern biological systems is essential if we are to understand the development of disease and design effective novel treatments. Microarray and next-generation sequencing technologies have the potential to provide this information. However, taking full advantage of these approaches requires that biological connections be made across large quantities of highly heterogeneous genomic datasets. Leveraging the increasingly huge quantities of genomic data in the public domain is fast becoming one of the key challenges in the research community today.We have developed a novel data mining framework that enables researchers to use this growing collection of public high-throughput data to investigate any set of genes or proteins. The connectivity between molecular states across thousands of heterogeneous datasets from microarrays and other genomic platforms is determined through a combination of rank-based enrichment statistics, meta-analyses, and biomedical ontologies. We address data quality concerns through dataset replication and meta-analysis and ensure that the majority of the findings are derived using multiple lines of evidence. As an example of our strategy and the utility of this framework, we apply our data mining approach to explore the biology of brown fat within the context of the thousands of publicly available gene expression datasets.Our work presents a practical strategy for organizing, mining, and correlating global collections of large-scale genomic data to explore normal and disease biology. Using a hypothesis-free approach, we demonstrate how a data-driven analysis across very large collections of genomic data can reveal novel discoveries and evidence to support existing hypothesis

    Phenotypic and genotypic data integration and exploration through a web-service architecture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linking genotypic and phenotypic information is one of the greatest challenges of current genetics research. The definition of an Information Technology infrastructure to support this kind of studies, and in particular studies aimed at the analysis of complex traits, which require the definition of multifaceted phenotypes and the integration genotypic information to discover the most prevalent diseases, is a paradigmatic goal of Biomedical Informatics. This paper describes the use of Information Technology methods and tools to develop a system for the management, inspection and integration of phenotypic and genotypic data.</p> <p>Results</p> <p>We present the design and architecture of the Phenotype Miner, a software system able to flexibly manage phenotypic information, and its extended functionalities to retrieve genotype information from external repositories and to relate it to phenotypic data. For this purpose we developed a module to allow customized data upload by the user and a SOAP-based communications layer to retrieve data from existing biomedical knowledge management tools. In this paper we also demonstrate the system functionality by an example application of the system in which we analyze two related genomic datasets.</p> <p>Conclusion</p> <p>In this paper we show how a comprehensive, integrated and automated workbench for genotype and phenotype integration can facilitate and improve the hypothesis generation process underlying modern genetic studies.</p

    Two new ArrayTrack libraries for personalized biomedical research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in high-throughput genotyping technology are paving the way for research in personalized medicine and nutrition. However, most of the genetic markers identified from association studies account for a small contribution to the total risk/benefit of the studied phenotypic trait. Testing whether the candidate genes identified by association studies are causal is critically important to the development of personalized medicine and nutrition. An efficient data mining strategy and a set of sophisticated tools are necessary to help better understand and utilize the findings from genetic association studies. </p> <p>Description</p> <p>SNP (single nucleotide polymorphism) and QTL (quantitative trait locus) libraries were constructed and incorporated into ArrayTrack, with user-friendly interfaces and powerful search features. Data from several public repositories were collected in the SNP and QTL libraries and connected to other domain libraries (genes, proteins, metabolites, and pathways) in ArrayTrack. Linking the data sets within ArrayTrack allows searching of SNP and QTL data as well as their relationships to other biological molecules. The SNP library includes approximately 15 million human SNPs and their annotations, while the QTL library contains publically available QTLs identified in mouse, rat, and human. The QTL library was developed for finding the overlap between the map position of a candidate or metabolic gene and QTLs from these species. Two use cases were included to demonstrate the utility of these tools. The SNP and QTL libraries are freely available to the public through ArrayTrack at <url>http://www.fda.gov/ArrayTrack</url>. </p> <p>Conclusions</p> <p>These libraries developed in ArrayTrack contain comprehensive information on SNPs and QTLs and are further cross-linked to other libraries. Connecting domain specific knowledge is a cornerstone of systems biology strategies and allows for a better understanding of the genetic and biological context of the findings from genetic association studies. </p

    Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies

    Get PDF
    The challenge of modern nutrition and health research is to identify food-based strategies promoting life-long optimal health and well-being. This research is complex because it exploits a multitude of bioactive compounds acting on an extensive network of interacting processes. Whereas nutrition research can profit enormously from the revolution in ā€˜omicsā€™ technologies, it has discipline-specific requirements for analytical and bioinformatic procedures. In addition to measurements of the parameters of interest (measures of health), extensive description of the subjects of study and foods or diets consumed is central for describing the nutritional phenotype. We propose and pursue an infrastructural activity of constructing the ā€œNutritional Phenotype databaseā€ (dbNP). When fully developed, dbNP will be a research and collaboration tool and a publicly available data and knowledge repository. Creation and implementation of the dbNP will maximize benefits to the research community by enabling integration and interrogation of data from multiple studies, from different research groups, different countries and differentā€”omics levels. The dbNP is designed to facilitate storage of biologically relevant, pre-processedā€”omics data, as well as study descriptive and study participant phenotype data. It is also important to enable the combination of this information at different levels (e.g. to facilitate linkage of data describing participant phenotype, genotype and food intake with information on study design andā€”omics measurements, and to combine all of this with existing knowledge). The biological information stored in the database (i.e. genetics, transcriptomics, proteomics, biomarkers, metabolomics, functional assays, food intake and food composition) is tailored to nutrition research and embedded in an environment of standard procedures and protocols, annotations, modular data-basing, networking and integrated bioinformatics. The dbNP is an evolving enterprise, which is only sustainable if it is accepted and adopted by the wider nutrition and health research community as an open source, pre-competitive and publicly available resource where many partners both can contribute and profit from its developments. We introduce the Nutrigenomics Organisation (NuGO, http://www.nugo.org) as a membership association responsible for establishing and curating the dbNP. Within NuGO, all efforts related to dbNP (i.e. usage, coordination, integration, facilitation and maintenance) will be directed towards a sustainable and federated infrastructure

    Identifying Gene-Gene Interactions that are Highly Associated with Body Mass Index Using Quantitative Multifactor Dimensionality Reduction (QMDR)

    Get PDF
    Despite heritability estimates of 40ā€“70% for obesity, less than 2% of its variation is explained by Body Mass Index (BMI) associated loci that have been identified so far. Epistasis, or gene-gene interactions are a plausible source to explain portions of the missing heritability of BMI. Using genotypic data from 18,686 individuals across five study cohorts ā€“ ARIC, CARDIA, FHS, CHS, MESA ā€“ we filtered SNPs (Single Nucleotide Polymorphisms) using two parallel approaches. SNPs were filtered either on the strength of their main effects of association with BMI, or on the number of knowledge sources supporting a specific SNP-SNP interaction in the context of BMI. Filtered SNPs were specifically analyzed for interactions that are highly associated with BMI using QMDR (Quantitative Multifactor Dimensionality Reduction). QMDR is a nonparametric, genetic model-free method that detects non-linear interactions associated with a quantitative trait
    • ā€¦
    corecore